学案导学与随堂笔记北师大数学选修全套备课精选同步练习: 导数的概念
学案导学与随堂笔记北师大数学选修全套备课精选同步练习:第四章 单元检测B
第四章 导数应用(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .5.若函数f (x )=a sin x +sin x 在x =π3处有极值,那么a 等于( ) A .2 B .-1 C.233D .0 6.函数f (x )=x 3-3x 2+1的单调减区间为( )A .(2,+∞)B .(-∞,2)C .(-∞,0)D .(0,2)7.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )8.方程x 3+x 2+x +a =0 (a ∈R )的实数根的个数为( )A .0个B .1个C .2个D .3个9.函数y =4x -x 4在x ∈上的最大值,最小值分别是( )A .f (1)与f (-1)B .f (1)与f (2)C .f (-1)与f (2)D .f (2)与f (-1)10.函数f (x )=2x 2-13x 3在区间上的最大值是( ) A.323 B.163C .12D .9 11.对于函数f (x )=x 3-3x (|x |<1),正确的是( )A .有极大值和极小值B .有极大值无极小值C .无极大值有极小值D .无极大值无极小值12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a ,b 的值是( )A .a =-11,b =4B .a =-4,b =11题 号 1 2 3 4 5 6 7 8 9 10 11 12答 案二、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=-12x 2+b ln x +2在(0,+∞)上是减函数,则b 的取值范围是__________. 14.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于x ∈,都有f (x )≥0,则实数a 的值为________. 15.如图所示,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题: ①f (x )的解析式为f (x )=x 3-4x ,x ∈.②f (x )的极值点有且只有一个.③f (x )的最大值与最小值之和等于零.其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.(12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值. (1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈,不等式f (x )<c 2恒成立,求c 的取值范围.19.(12分)已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调减区间;(2)若f(x)在区间上的最大值为20,求它在该区间上的最小值.20.(12分)某大型商厦一年内需要购进电脑5 000台,每台电脑的价格为4 000元,每次订购电脑的其它费用为1 600元,年保管费用率为10%(例如,一年内平均库存量为150台,一年付出的保管费用60 000元,则60 000150×4 000=10%为年保管费用率),求每次订购多少台电脑,才能使订购电脑的其它费用及保管费用之和最小?21.(12分)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.22.(12分)已知函数f (x )=x 2+ln x .(1)求函数f (x )在上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图像在g (x )=23x 3+12x 2的下方.第四章 导数应用(B)1.B2.D3.C 4.A 5.B6.D7.A8.B9.B10.A11.D12.D13.(-∞,0]解析 ∵f ′(x )=-x +b x =-x 2+b x, 又f (x )在(0,+∞)上是减函数,即f ′(x )≤0在(0,+∞)上恒成立,又x >0,故-x 2+b ≤0在(0,+∞)上恒成立,即b ≤x 2在(0,+∞)上恒成立.∴b ≤0.14.4解析 若x =0,则不论a 取何值,f (x )≥0,显然成立;当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可转化为a ≥3x 2-1x3, 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4. 所以g (x )在区间⎝⎛⎭⎫0,12上单调递增, 在区间⎝⎛⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0,即x ∈.故①正确.由f ′(x )=3x 2-4=0得x 1=-233,x 2=233. 根据x 1,x 2分析f ′(x )的符号、f (x )的单调性和极值点.∴x =-233是极大值点也是最大值点. x =233是极小值点也是最小值点. f (x )min +f (x )max =0.∴②错,③正确.17.解 f ′(x )=x 2-ax +a -1,由题意知f ′(x )≤0在(1,4)上恒成立,且f ′(x )≥0在(6,+∞)上恒成立.由f ′(x )≤0得x 2-ax +a -1≤0,即x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),∴a ≥x 2-1x -1=x +1. 又∵x +1∈(2,5),∴a ≥5,①由f ′(x )≥0得x 2-ax +a -1≥0,即x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,∴a ≤x 2-1x -1=x +1. 又∵x +1∈(7,+∞),∴a ≤7,②∵①②同时成立,∴5≤a ≤7.经检验a =5或a =7都符合题意,∴所求a 的取值范围为5≤a ≤7.18.解 (1)f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b ,由f ′⎝⎛⎭⎫-23=129-43a +b =0, f ′(1)=3+2a +b =0得a =-12,b =-2. f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )>0,得x <-23或x >1, 令f ′(x )<0,得-23<x <1. 所以函数f (x )的递增区间是⎝⎛⎭⎫-∞,-23和(1,+∞),递减区间是⎝⎛⎭⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈, 由(1)知,当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 而f (2)=2+c ,则f (2)=2+c 为最大值,要使f (x )<c 2,x ∈恒成立,则只需要c 2>f (2)=2+c ,得c <-1或c >2.19.解 (1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3,所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ′(x ) >0,所以f (x )在上单调递增,又由于f (x )在上单调递减,因此f (2)和f (-1)分别是f (x )在区间上的最大值和最小值.于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2.因此f (-1)=1+3-9-2=-7,即函数f (x )在区间上的最小值为-7.20.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元. 令y =5 000x ·1 600+12x ·4 000·10%, y ′=-1x 2·5 000·1 600+12·4 000·10%. 令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.21.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x. ∵x >1时,f ′(x )>0,∴f(x)在上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2.(2)证明令F(x)=f(x)-g(x)=12x2-23x3+ln x,∴F′(x)=x-2x2+1x =x2-2x3+1x=x2-x3-x3+1x=(1-x)(2x2+x+1)x.∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)=12-23=-16<0.∴f(x)<g(x).∴当x∈(1,+∞)时,函数f(x)的图像在g(x)=23x3+12x2的下方.。
北师版高中同步学考数学选修1-1精品课件 第三章 §2 导数的概念及其几何意义
探究二
首页
自主预习
探究学习
当堂检测
思维辨析
探究二
导数的几何意义及其应用
【例2】 (1)已知曲线y=2x3上一点A(1,2),则点A处的切线的斜率
等于(
)
A.0 B.2
C.4 D.6
1
7
(2)求曲线 y= − 在点 P 4,- 4 处的切线方程.
分析(1)利用导数几何意义,只需求出函数在x=1处的导数值,即得
Δ →0 x
Δ
不存在,则称 f(x)在 x=x0 处不可导.
x→0 Δ
① lim
-5-
§2导数的概念及其几何意义
首页
自主预习
探究学习
f(1+x)-f(1)
等于(
3x
Δ→0
【做一做 1】 (1)设函数 f(x)可导,则 lim
A.f'(1)
)
B.3f'(1)
1
C. 3f'(1)
-9-
§2导数的概念及其几何意义
首页
自主预习
探究学习
当堂检测
思考辨析
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的
打“×”.
(1)函数f(x)在x0处的导数实质就是函数f(x)在x0处的瞬时变化率.
(
)
(2)函数f(x)在x0处的导数与Δx无关,只与x0有关.(
)
(3)曲线的切线与曲线只有一个公共点.(
自主预习
探究学习
当堂检测
思维辨析
反思感悟求函数 y=f(x)在点 x0 处的导数一般按下列步骤:
(1)求函数的增量 Δy=f(x0 +Δx)-f(x0);
学案导学与随堂笔记北师大数学选修全套备课精选同步练习: 函数的极值
1.2 函数的极值课时目标 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).1.函数的极大值点和极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为________________,其函数值f (x 0)为函数的________________________.2.函数的极小值点和极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都_________,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的__________.3.极值和极值点极大值与极小值统称为________,极大值点与极小值点统称为__________.极值是函数在一个适当区间内的局部性质.一、选择题1.函数f (x )的定义域为R ,导函数f ′(x )的图像如图,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点2.已知函数f (x ),x ∈R ,且在x =1处,f (x )存在极小值,则( )A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<03.函数f (x )=x +1x在x >0时有( ) A .极小值B .极大值C .既有极大值又有极小值D .极值不存在4.函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A . 1个B .2个C .3个D .4个5.函数f (x )=x 3-3bx +3b 在(0,1)内有且只有一个极小值,则( )A .0<b <1B .b <1C .b >0D .b <126.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( )A .-1<a <2B .-3<a <2C .a <-1或a >2D .a <-3或a >6题 号 1 2 3 4 5 6答 案二、填空题7.若函数f (x )=x 2+a x +1在x =1处取极值,则a =______. 8.函数f (x )=ax 3+bx 在x =1处有极值-2,则a 、b 的值分别为________、________.9.函数f (x )=x 3-3a 2x +a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是__________.三、解答题10.求下列函数的极值.(1)f (x )=x 3-12x ;(2)f (x )=x e -x .11.设函数f (x )=x 3-92x 2+6x -a . (1)对于任意实数x ,f ′(x )≥m 恒成立,求m 的最大值;(2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.能力提升12.已知函数f (x )=(x -a )2(x -b )(a ,b ∈R ,a <b ).(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.1.求函数的极值问题要考虑极值取到的条件,极值点两侧的导数值异号.2.极值问题的综合应用主要涉及到极值的正用和逆用,以及与单调性问题的综合,利用极值可以解决一些函数解析式以及求字母范围的问题.1.2函数的极值知识梳理1.函数y=f(x)的极大值点极大值2.大于x0点的函数值极小值3.极值极值点作业设计1.C2.C3.A4.A5.A6.D7.3解析f′(x)=2x(x+1)-(x2+a)(x+1)2=x2+2x-a(x+1)2.∵f′(1)=0,∴1+2-a4=0,∴a=3.8.1-3解析因为f′(x)=3ax2+b,所以f′(1)=3a+b=0.①又x=1时有极值-2,所以a+b=-2.②由①②解得a=1,b=-3.9.⎝⎛⎭⎫22,+∞解析∵f′(x)=3x2-3a2(a>0),∴f′(x)>0时得:x>a或x<-a,f′(x)<0时,得-a<x<a. ∴当x=a时,f(x)有极小值,x=-a时,f(x)有极大值.由题意得:⎩⎨⎧a3-3a3+a<0,-a3+3a3+a>0.a>0解得a>22.10.解(1)函数f(x)的定义域为R.f ′(x )=3x 2-12=3(x +2)(x -2).令f ′(x )=0,得x =-2或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:从表中可以看出,当x =-2时,函数f (x )有极大值,且f (-2)=(-2)3-12×(-2)=16;当x =2时,函数f (x )有极小值,且f (2)=23-12×2=-16.(2)f ′(x )=(1-x )e -x .令f ′(x )=0,解得x =1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =1处取得极大值f (1),且f (1)=1e. 11.解 (1)f ′(x )=3x 2-9x +6.因为x ∈(-∞,+∞),f ′ (x )≥m ,即3x 2-9x +(6-m )≥0恒成立,所以Δ=81-12(6-m )≤0,解得m ≤-34, 即m 的最大值为-34. (2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ; 当x =2时,f (x )取极小值f (2)=2-a , 故当f (2)>0或f (1)<0时,f (x )=0仅有一个实根.解得a <2或a >52. 12.(1)解 当a =1,b =2时,f (x )=(x -1)2(x -2), 因为f ′(x )=(x -1)(3x -5),故f ′(2)=1,又f (2)=0,所以f (x )在点(2,0)处的切线方程为y =x -2.(2)证明 因为f ′(x )=3(x -a )(x -a +2b 3),由于a <b ,故a <a +2b 3, 所以f (x )的两个极值点为x =a ,x =a +2b 3. 不妨设x 1=a ,x 2=a +2b 3, 因为x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点, 故x 3=b .又因为a +2b 3-a =2(b -a +2b 3), x 4=12(a +a +2b 3)=2a +b 3, 此时a ,2a +b 3,a +2b 3,b 依次成等差数列, 所以存在实数x 4满足题意,且x 4=2a +b 3.。
北师大版高中数学选修导数的概念及其几何意义学案
导数的概念及几何意义简析一、考试要求了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念和在某一点的导数的联系和区别;了解导数的概念,能利用导数定义求导数和解决与曲线的切线有关的问题.二、重点难点解释1导数概念的发生和发展过程的认识教材在了解瞬时速度的基础上抽象出变化率的概念,函数在一点处的导数的定义和导数的几何意义,变化率无限去趋近于唯一的一个常数,这个常数就定义为在该点的导数.对于一般的曲线,必须重新寻求曲线的切线的定义,所以新教材利用割线的极限位置来定义了曲线的切线.为此导数集数与形于一身,运动变化的认识导数的形成过程,代数的认为过曲线上某点的平均变化率无限趋近于唯一的一个常数,这个常数称为在该点的导数;几何的认为过曲线上任一定点引曲线的割线,当动点无限趋近于该定点时,割线的斜率无限趋近于唯一的一个常数,割线就变为切线,这就是导数的几何意义即为曲线上过该点的切线的斜率,于是,导数问题丰富多彩,切线问题使“数”和“形”达到完美的统一。
只要我们分析导数的形成过程,深刻理解导数概念和几何意义,设切点、写切线、跟题走,掌握解题归律,导数问题就不难被解决。
2求导数的方法把握导数定义的生成过程,可用两种方法求解,一是利用在某一点的导数的形成过程,即定义法求解;二是利用导函数的函数值即为某一时刻的瞬时速度。
对导数的定义,我们应注意以下三点:(1)x ∆是自变量x 在 0x 处的增量(或改变量);(2)导数定义中还包含了可导或可微的概念,如果x ∆→0时,xy ∆∆有极限,那么函数y=f(x)在点0x 处可导或可微,才能得到f(x)在点0x 处的导数;(3) 如果函数y=f(x)在点0x 处可导,那么函数y=f(x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行:(1)求函数的增量)()(00x f x x f y -∆+=∆;(2) 求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00; (3)()()0,0000,,0x f x x y y k x x x f k x y x =--=→=→∆∆→∆时,时,3 导数几何意义的再认识用运动变化的观念分析曲线()x f y C =:上某点()00,y x 切线的斜率就是过曲线上某点()00,y x 处的导数,它可以从曲线上某点()00,y x 引割线,当动点无限趋近某点()00,y x 时,割线就变为切线,割线的斜率趋近于唯一的一个常数,这个常数就是曲线上的某点()00,y x的导数,其几何意义为切线的斜率,计算方法为()()0,0000,,0x f x x y y k x x x f x y k x =--=→=∆∆=→∆时,时, 特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为x x =三、经典问题解释1导数的定义与瞬时速度的关系 例1 一质点运动的方程为S=8—3t 2.(1)求质点在[]t ∆+1,1这段时间内的平均速度; (2)求在t=1时的瞬时速度 ;简析:(1)理解平均速度的意义,质点在[]t ∆+1,1这段时间内的平均速度()()t t f x f t S ∆--=∆-∆+=∆∆611(2)由导数的定义,运动变化使增量趋近于1时,其平均速度变为t=1时的瞬时速度为-6;理解导数的意义,求导数导函数的函数值就是在某一刻的瞬时速度,()()61,6,,-=∴-=S t t S 为在t=1时的瞬时速度2 理解导数的概念和几何意义,用定义法求在某一点处的导数例2求下列函数的导数⑴ ()()()()()0f 5021,求,x x x x x f ---= ;⑵ 已知函数()()()()⎩⎨⎧<≥+=0022x x x x x f ,求在x=0处的导数 ; ⑶ 已知函数()x x x f =,求在x=0处的导数简析:理解导数的定义,运动变化的观念认识在某点的导数,注意导数发生发展中所蕴涵的方法,求导数的方法和步骤x y ∆∆→,研究xy ∆∆的变化趋势是否趋近于唯一的某个常数? ⑴ 若先对函数求导,用积的导数运算法则复杂难以切入;若用导数的定义求在0处的导数使问题获解。
学案导学与随堂笔记北师大数学选修全套备课精选同步练习: 导数的几何意义
2.2导数的几何意义课时目标 1.理解导数的几何意义;2.根据导数的几何意义,会求曲线上某点处的切线方程.1.函数y=f(x)在的平均变化率是过A(x0,f(x0)),B(x0+Δx,f(x0+Δx))两点的直线的________,这条直线称为曲线y=f(x)在点A处的一条割线.2.函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0,f(x0))处__________,反映了导数的几何意义.一、选择题1.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于()A.2 B.4C.6+6Δx+2(Δx)2D.62.如果曲线y=f(x)在点(2,3)处的切线过点(-1,2),则有()A.f′(2)<0 B.f′(2)=0C.f′(2)>0 D.f′(2)不存在3.下面说法正确的是()A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在4.若曲线y=h(x)在点P(a,h(a))处的切线方程为2x+y+1=0,那么()A.h′(a)=0 B.h′(a)<0C.h′(a)>0 D.h′(a)不确定5.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直6.已知函数f(x)的图像如图所示,下列数值的排序正确的是()A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)题号 1 2 3 4 5 6答案二、填空题7.设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为________.8.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是______________.9.如图,函数y=f(x)的图像在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.三、解答题10.试求过点P(1,-3)且与曲线y=x2相切的直线的斜率.11.设函数f(x)=x3+ax2-9x-1 (a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.能力提升12.已知抛物线f(x)=ax2+bx-7通过点(1,1),且过此点的切线方程为4x-y-3=0,求a,b的值.1.导数f ′(x 0)的几何意义是曲线y=f(x)在点(x 0,f(x 0))处的切线的斜率,即k =lim x ∆→f (x 0+Δx )-f (x 0)Δx =f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度. 2.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则切线方程为y -f(x 0)=f ′(x 0) (x -x 0);若已知点不在切线上,则设出切点(x 0,f(x 0)),表示出切线方程,然后求出切点.2.2 导数的几何意义知识梳理1.斜率2.切线的斜率作业设计1.D =6x 2.∴y ′=6.∴点A(1,2)处切线的斜率为6.]2.C3.C4.B5.B6.B 时,曲线上x =2处切线斜率最大,k =f (3)-f (2)3-2=f(3)-f(2)>f ′(3).] 7.-18.2x -y +4=0解析 由题意知,Δy =3(1+Δx)2-4(1+Δx)+2-3+4-2=3Δx 2+2Δx ,∴y ′=0lim x ∆→Δy Δx=2.∴所求直线的斜率k =2.则直线方程为y -2=2(x +1),即2x -y +4=0.9.2解析 ∵点P 在切线上,∴f(5)=-5+8=3,又∵f ′(5)=k =-1,∴f(5)+f ′(5)=3-1=2.10.解 设切点坐标为(x 0,y 0),则有y 0=x 20.因y ′=0lim x ∆→Δy Δx =0lim x ∆→(x +Δx )2-x 2Δx =2x. ∴k =y ′=2x 0.因切线方程为y -y 0=2x 0(x -x 0),将点(1,-3)代入,得:-3-x 20=2x 0-2x 20,∴x 20-2x 0-3=0,∴x 0=-1或x 0=3.当x 0=-1时,k =-2;当x 0=3时,k =6.∴所求直线的斜率为-2或6.11.解 ∵Δy =f(x 0+Δx)-f(x 0)=(x 0+Δx)3+a(x 0+Δx)2-9(x 0+Δx)-1-(x 30+ax 20-9x 0-1) =(3x 20+2ax 0-9)Δx +(3x 0+a)(Δx)2+(Δx)3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a)Δx +(Δx)2. 当Δx 无限趋近于零时,Δy Δx无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 20+2ax 0-9.∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a 23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23. ∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3. 又a<0,∴a =-3.12.解 f ′(x)=0lim x ∆→a (x +Δx )2+b (x +Δx )-7-ax 2-bx +7Δx =0lim x ∆→(a·Δx +2ax +b)=2ax +b. 由已知可得⎩⎪⎨⎪⎧a +b -7=12a +b =4,解得a =-4,b =12.。
《学案导学设计》高中数学北师大版选修2-2【配套备课资源】第2章 2
1
【学习要求】
1.理解导数的概念以及导数和变化率的关系.
本 课
2.会计算函数在某点处的导数,理解导数的实际意义.
时 栏
3.理解导数的几何意义,会求曲线上某点处的切线方程.
目
开 【学法指导】
关
通过导数的定义体会其中蕴涵的逼近思想,利用数形结合思
想进一步直观感受这种思想.
2
填一填·知识要点、记下疑难点
答 函数在某点处的导数就是函数在这点处的瞬时变化率,
本 课
导数可以反映函数在一点处变化的快慢程度.
时
栏 目
问题3
导数在实际问题中有什么意义?
开 关
答 导数可以刻画事物变化的快慢.
6
研一研·问题探究、课堂更高效
例1
蜥蜴的体温与阳光的照射有关,其关系为T(t)=
120 t+5
+
15,其中T(t)为体温(单位:℃),t为太阳落山后的时间(单
课 时
有一个交点,和曲线只有一个交点的直线
栏
目 和曲线也不一定相切.如图,曲线的切线
开
关 是通过逼近将割线趋于确定位置的直线.
11
研一研·问题探究、课堂更高效
例2 如图,它表示跳水运动中高度随时间变
化的函数h(t)=-4.9t2+6.5t+10的图像.
根据图像,请描述、比较曲线h(t)在t0,t1,
的.导数绝对值的大小反映了曲线上升和下降的快慢.
13
研一研·问题探究、课堂更高效
跟踪训练2 (1)根据例2的图像,描述函数h(t)在t3和t4附近增
(减)以及增(减)快慢的情况.
解 函数h(t)在t3、t4处的切线的斜率h′(t)>0,所以,在t=t3,
《学案导学与随堂笔记》北师大版数学选修1-2全套备课精选同步练习3.1归纳与类比
第三章 推理与证明 §1 归纳与类比课时目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.1.归纳与类比2.合情推理归纳和类比都是合情推理,得出的结论____________________.一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误2.已知数列{a n }中,a 1=1,当n ≥2时,a n =2a n -1+1,依次计算a 2,a 3,a 4后,猜想a n的一个表达式是( )A .n 2-1B .(n -1)2+1C .2n -1D .2n -1+13.根据给出的数塔猜测123456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111 ……A .1111110B .1111111C .1111112D .1111113 4.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2 D .35. 观察图示图形规律,在其右下角的空格内画上合适的图形为( )A .■B .C .□D .○二、填空题6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是__________________________.7.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为____________________.8.观察下列等式: ①cos 2α=2cos 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1. 可以推测,m -n +p =________.三、解答题9.观察等式sin 220°+sin 240°+sin 20°·sin 40°=34;sin 228°+sin 232°+sin 28°·sin 32°=34.请写出一个与以上两个等式规律相同的一个等式.10.已知正项数列{a n }的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n (n ∈N *),求出a 1,a 2,a 3,并推测a n 的表达式..能力提升11.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( )A .f (x )B .-f (x )C .g (x )D .-g (x )12.已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)具有性质:若M 、N 是椭圆C 上关于原点对称的两点,点P 是椭圆C 上任意一点,当直线PM 、PN 的斜率都存在时,记为k PM 、k PN ,那么k PM 与k PN之积是与点P 位置无关的定值.试对双曲线C :x 2a 2-y 2b2=1写出具有类似的特性的性质,并加以证明.1.归纳推理具有由特殊到一般,由具体到抽象的认识功能,归纳推理的一般步骤: (1)通过观察个别情况发现某些相同性质.(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).2.运用类比推理必须寻找合适的类比对象,充分挖掘事物的本质及内在联系.在应用类比推理时,其一般步骤为:①找出两类对象之间可以确切表述的相似性(或一致性).②用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.③检验这个猜想.第三章 推理与证明 §1 归纳与类比答案知识梳理作业设计 1.B 2.C 3.B 4.B 5.A6.正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即S =12ah =3×12ar ⇒r =13h ,类比问题的解法应为等体积法,V =13Sh =4×13Sr ⇒r =14h ,即正四面体的内切球的半径是高的14.7.13+23+33+43+53+63=2128.962解析 观察各式容易得m =29=512,注意各等式右面的表达式各项系数和均为1,故有m -1 280+1 120+n +p -1=1,将m =512代入得n +p +350=0.对于等式⑤,令α=60°,则有cos 600°=512·1210-1 280·128+1 120·126+116n +14p -1,化简整理得n +4p +200=0,联立方程组⎩⎪⎨⎪⎧ n +p +350=0,n +4p +200=0,得⎩⎪⎨⎪⎧n =-400,p =50.∴m -n +p =962.9.解 ∵20°+40°=60°,28°+32°=60°, 而cos 60°=12,sin 60°=32,由此题的条件猜想,若α+β=60°, 则sin 2α+sin 2β+sin α·sin β=sin 2(α+β)=34.10.解 由a 1=S 1=12⎝⎛⎭⎫a 1+1a 1得,a 1=1a 1, 又a 1>0,所以a 1=1.当n ≥2时,将S n =12⎝⎛⎭⎫a n +1a n , S n -1=12⎝ ⎛⎭⎪⎫a n -1+1a n -1的左右两边分别相减得a n =12⎝⎛⎭⎫a n +1a n -12⎝ ⎛⎭⎪⎫a n -1+1a n -1,整理得a n -1a n =-⎝ ⎛⎭⎪⎫a n -1+1a n -1,所以a 2-1a 2=-2,即a 22+2a 2+1=2, 又a 2>0,所以a 2=2-1.同理a 3-1a 3=-22,即a 23+22a 3+2=3, 又a 3>0,所以a 3=3- 2.可推测a n =n -n -1.11.D12.证明 类似性质为:若M 、N 为双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任一点,当直线PM 、PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与P 点位置无关的定值.其证明如下:设P (x ,y ),M (m ,n ),则N (-m ,-n ),其中m 2a 2-n 2b 2=1,即n 2=b 2a 2(m 2-a 2).∴k PM =y -nx -m ,k PN =y +nx +m , 又x 2a 2-y 2b 2=1,即y 2=b 2a2(x 2-a 2), ∴y 2-n 2=b2a 2(x 2-m 2).∴k PM ·k PN =y 2-n 2x 2-m 2=b 2a2. 故k PM ·k PN 是与P 点位置无关的定值.。
《学案导学设计》高中数学北师大版选修2-2【配套备课资源】第2章 4.1
D.y=4x-5
时
栏 目
解析 ∵y′=3x2-6x, ∴曲线在点(1,-1)处的切线斜率为-3.
Hale Waihona Puke 开关 ∴切线方程为y=-3x+2.
11
练一练·当堂检测、目标达成落实处 3.已知f′(1)=13,则函数g(x)=f(x)+x在x=1处的导数为_1_4__. 本 解析 g′(x)=f′(x)+1,
课 时
本 课
答 根据导数定义
时
栏 Δy=f(x+Δx)-f(x)
目
开 关
=(x+Δx)+(x+Δx)2-(x+x2)
=Δx+2x·Δx+(Δx)2.
∴ΔΔyx=1+2x+Δx,∴Δlixm→0 ΔΔyx=1+2x, 即f′(x)=1+2x.结论:(x+x2)′=x′+(x2)′.
4
研一研·问题探究、课堂更高效
问题2 将问题1的结论推广,可得到导数的加法、减法法则,
请你写出来.
本
课 时
答 [f(x)+g(x)]′=f′(x)+g′(x),
栏
目 开
[f(x)-g(x)]′=f′(x)-g′(x).
关
5
研一研·问题探究、课堂更高效
例1 求下列函数的导数. (1)y=x3+x2+x;(2)y=2x+ x.
本 解 (1)y′=(x3+x2+x)′=(x3)′+(x2)′+(x)′
本
课 两个函数和(差)的导数等于 这两个函数导数 的和(差),
时
栏 目
即[f(x)+g(x)]′= f′(x)+g′(x) ,
开 关
[f(x)-g(x)]′= f′(x)-g′(x)
.
3
研一研·问题探究、课堂更高效
探究点一 导数的加法与减法法则
学案导学与随堂笔记北师大数学选修全套备课精选同步练习: 导数在实际问题中的应用
§2 导数在实际问题中的应用课时目标 1.理解实际问题中导数的意义.2.区分极值和最值.3.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).1.中学物理中,速度可以看作______________的导数,线密度是__________________的导数,功率是________________的导数.2.函数的最大值点:函数y =f (x )在区间上的最大值点x 0指的是:函数在这个区间上所有点的函数值都不超过f (x 0).3.函数的最值函数的最大值和最小值统称为________.一、选择题1.下列结论正确的是( )A .若f (x )在上有极大值,则极大值一定是上的最大值B .若f (x )在上有极小值,则极小值一定是上的最小值C .若f (x )在上有极大值,则极小值一定是x =a 和x =b 时取得D .若f (x )在上连续,则f (x )在上存在最大值和最小值2.函数f (x )=x 2-4x +1在上的最大值和最小值是( )A .f (1),f (3)B .f (3),f (5)C .f (1),f (5)D .f (5),f (2)3.函数y =x ex 在上的最大值是( ) A .当x =1时,y =1e B .当x =2时,y =2e2 C .当x =0时,y =0 D .当x =12,y =12e 4.函数y =x +1-x 在(0,1)上的最大值为( )A. 2 B .1 C .0 D .不存在5.已知函数f (x )=ax 3+c ,且f ′(1)=6,函数在上的最大值为20,则c 的值为( )A .1B .4C .-1D .06.已知函数y =-x 2-2x +3在上的最大值为154,则a 等于( ) A .-32 B.12C .-12D .-12或-32题 号 1 2 3 4 5 6答 案二、填空题7.函数f (x )=ln x -x 在(0,e]上的最大值为________.8.函数f (x )=12e x (sin x +cos x )在区间⎣⎡⎦⎤0,π2上的值域为____________. 9.氡气是一种由地表自然散发的无味的放射性气体,如果最初有500克氡气,那么七天后氡气的剩余量为A (t )=500×0.834t ,则A ′(7)约为________,它表示____.三、解答题10.求下列各函数的最值.(1)f (x )=12x +sin x ,x ∈; (2)f (x )=x 3-3x 2+6x -2,x ∈.11.某单位用2 160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)能力提升12.已知f (x )=x 3-x 2-x +3,x ∈,f (x )-m <0恒成立,求实数m 的取值范围.13.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大.1.求闭区间上函数的最值也可直接求出端点函数值和导数为零时x 对应的函数值,通过比较大小确定函数的最值.2.在求解与最值有关的函数综合问题时,要发挥导数的解题功能,同时也要注意对字母的分类讨论;而有关恒成立问题,一般是转化为求函数的最值问题.3.可以利用导数的实际意义,建立函数模型,解决实际生活中的最大值、最小值问题.§2 导数在实际问题中的应用知识梳理1.路程关于时间 质量关于长度 功关于时间3.最值作业设计1.D 上的极值不一定是最值,最值也不一定是极值,极值一定不会在端点处取得,而在上一定存在最大值和最小值.]2.D3.A4.A5.B 时,f ′(x )=6x 2>0,即f (x )在上是增函数,∴f (x )max =f (2)=2×23+c =20,∴c =4.]6.C 上单调递减,最大值为f (a )=-a 2-2a +3=154,解得a =-12或a =-32(舍去).] 7.-1解析 f ′(x )=1x -1=1-x x,令f ′(x )>0得0<x <1,令f ′(x )<0得x <0或x >1,∴f (x )在(0,1]上是增函数,在(1,e]上是减函数.∴当x =1时,f (x )有最大值f (1)=-1.8. 211,22e π⎡⎤⎢⎥⎣⎦解析 ∵x ∈⎣⎡⎦⎤0,π2,∴f ′(x )=e x cos x ≥0, ∴f (0)≤f (x )≤f ⎝⎛⎭⎫π2.即12≤f (x )≤122e π. 9.-25.5 氡气在第7天时,以25.5克/天的速度减少10.解 (1)f ′(x )=12+cos x .令f ′(x )=0,又∵0≤x ≤2π,∴x =2π3或x =4π3. ∴f ⎝⎛⎭⎫2π3=π3+32,f ⎝⎛⎭⎫4π3=2π3-32,又∵f (0)=0,f (2π)=π.∴当x =0时,f (x )有最小值f (0)=0,当x =2π时,f (x )有最大值f (2π)=π.(2)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3,∵f ′(x )在内恒大于0,∴f (x )在上为增函数.故x =-1时,f (x )最小值=-12;x =1时,f (x )最大值=2.即f (x )在上的最小值为-12,最大值为2.11.解 设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x(x ≥10,x ∈N +), f ′(x )=48-10 800x2, 令f ′(x )=0得x =15.当x >15时,f ′(x )>0;当0<x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2 000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.12.解 由f (x )-m <0,即m >f (x )恒成立,知m >f (x )max ,f ′(x )=3x 2-2x -1,令f ′(x )=0,解得x =-13或x =1. 因为f (-13)=8627, f (1)=2,f (-1)=2,f (2)=5.所以f (x )的最大值为5,故m 的取值范围为(5,+∞).13.解 收入R =q ·p =q ⎝⎛⎭⎫25-18q =25q -18q 2. 利润L =R -C =⎝⎛⎭⎫25q -18q 2-(100+4q ) =-18q 2+21q -100 (0<q <200), L ′=-14q +21, 令L ′=0,即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0;当84<q <200时,L ′<0,所以当q=84时,L取得最大值.所以产量q为84时,利润L最大.章末总结。
数学北师大版选修1-1导学案-3-2导数的概念及几何意义
§3.2导数的概念及其几何意义【学习目标】1.知道导数的概念以及导数和瞬时变化变化率的关系;2.会求函数在某点处的导数;3.知道导数的几何意义,会求曲线上某点处的切线方程。
一、知识记忆与理解【自主预习】阅读教材P60-P63,完成下列问题 1.导数的概念定义:设函数y =f (x ),当自变量x 从x 0变到x 1时,函数值y 关于x 的平均变化率为 Δy Δx =f (x 1)-f (x 0)x 1-x 0=f (x 0+Δx )-f (x 0)Δx趋于一个__________,那么这个值就是函数y =f (x )在x 0点的__________,也称为函数y =f (x )在x 0点的________。
记法:函数y =f (x )在x 0点的导数,通常用符号()0'x f 表示,记作()0'x f =______________=__________________.2.导数的几何意义导数的几何意义:函数y =f (x )在x 0处的导数()0'x f ,是曲线y =f (x )在点(x 0,f (x 0))处的________.【预习检测】 1、求函数x y =在1=x 处的导数。
2、利用导数定义求函数212+=xy 在1=x 处的切线方程。
二、思维探究与创新【问题探究】1、导数的概念及应用探究一:建造一栋面积为x 平方米的房屋需要成本y 万元,y 是x 的函数,y =f (x )=x10+x10+0.3,求f ′(100),并解释它的实际意义.变式训练1:一质点的运动路程s(单位:m)是关于时间t(单位:s)的函数:s =-2t +3,求s ′(1),并解释它的实际意义.整理 反思2、利用导数几何意义求切线方程探究二: 已知曲线y =13x 3上一点P (2,38),求:(1)在点P 处的切线的斜率; (2)在点P 处的切线方程。
变式训练2:直线l :y =x +a (a ≠0)和曲线C :y =f (x )=x 3-x 2+1相切,求a 的值及切点的坐标.【总结归纳】1、利用导数定义求函数在某点处的导数的步骤:“一差、二比、三取极限”(1)求函数的增加量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率ΔyΔx :=f (x 0+Δx )-f (x 0)Δx ; (3)求f ′(x 0)=limΔx →0Δy Δx. 2、利用导数的几何意义求曲线的切线方程的步骤如下:(1)求函数y =f (x )在点x 0处的导数f ′(x 0); (2)根据直线的点斜式方程,得切线方程y-y 0=f ′(x 0)(x -x 0).三、技能应用与拓展【当堂检测】1、若函数f (x )在x =a 处可导,则当h 无限趋近a 时,f (h )-f (a )h -a为( )A .f (a )B .f ′(a )C .f ′(h )D .f (h )2、已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 值为( )A .1B . 2C .-1D .03、已知函数f (x )在x =1处的导数为1,则当x 趋近于0时,f (x +1)-f (1)2x趋向________.4、曲线y =x 2-x +1在点(1,1)处切线的倾斜角为________.【拓展延伸】在曲线y =4x2上求一点P ,使曲线在点P 处的切线平行于直线y =x +1.整理 反思。
北师大版数学高二-选修1学案 导数的概念
第二课时 3.2.1 导数的概念学习目标1.了解导数的概念,知道瞬时变化率就是导数。
2.能解释具体函数在一点的导数的实际意义。
3.会求一些简单函数在某一点处的导数。
学法指导导数概念的建立比较困难,所以学习中可先回顾上一节的概念,体会从平均变化率到瞬时变化率(即导数)的变化过程,从而产生从更一般的角度研究函数瞬时变化率即导数的心理需求。
学习中可以相对淡化概念,注重用定义求导数的方法与过程。
知识点归纳设函数()x f y =,当自变量x 从0x 变为1x 时,函数值从()0x f 变为()1x f ,函数值y 关于x 的平均变化率为0101)()(x x x f x f x y --=∆∆x x f x x f ∆-∆+=)()(00当1x 趋于0x 时,即0→∆x ,如果平均变化率趋于一个固定的值,那么这个值就是函数()x f y =在0x 点的瞬时变化率。
在数学中,称 为函数()x f y =在0x 点的 ,通常用符号 表示。
重难点剖析重点:了解导数的概念,会用定义法求导数; 难点:导数概念的理解; 剖析: 1.导数的概念设函数()x f y =,当自变量x 从0x 变为1x 时,函数值从()0x f 变为()1x f ,函数值y 关于x 的平均变化率为: 0101)()(x x x f x f x y --=∆∆x x f x x f ∆-∆+=)()(00 当1x 趋于0x 时,即0→∆x ,如果平均变化率趋于一个固定的值,我们就说()x f y =在0x 处可导,并把这个值叫做()x f y =在0x 处的导数,记作()0x f ',即()x yx f x ∆∆='→∆00lim1010)()(limx x x f x f x --=→∆ x x f x x f x ∆-∆+=→∆)()(lim 000 说明:(1)函数()x f y =在0x 处可导是指0→∆x 时,xy ∆∆能够趋于一个固定的值,如果xy ∆∆不能趋于一个固定的值,就说()x f y =在0x 处不可导,或说无导数。
北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习
高中数学学习材料金戈铁骑整理制作导数的概念及其几何意义 导数的概念 同步练习 一,选择题:1.已知函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是( )A 、 2B 、 4C 、 2D 、 -22.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 、 7米/秒B 、6米/秒C 、 5米/秒D 、 8米/秒 4.32()32f x ax x =++,若(1)4f '-=,则a 的值等于( )A .319B .316C .313D .310 5.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( )A .2B .1C .0D .-16、根据导数的定义,)(1'x f 等于( ) A. 01010)()(lim1x x x f x f x --→ B.x x f x f x ∆-→∆)()(lim 010 C.x x f x x f x ∆-∆+→∆)()(lim 110 D.x x f x x f x ∆-∆+→)()(lim 1101 7、 物体作直线运动的方程为)(t s s =,则10)4('=s 表示的意义是( )(A )经过4s 后物体向前走了10m (B )物体在前4s 内的平均速度为10m/s(C )物体在第4s 内向前走了10m (D )物体在第4s 时的瞬时速度为10m/s8、某人拉动一个物体前进,他所做的功W (J )是时间t (s )的函数t t t t W W 166)(23+-==,则他在时刻s t 2=时的功率为( )(A )4s J / (B )16s J / (C )5s J / (D )8s J /9、一辆汽车从停止时开始加速行驶,并且在5秒内速度)/(s m v 与时间t (s )的关系近似表示为t t t f v 10)(2+-==,则汽车在时刻1=t 秒时的加速度为( )(A )9s m / (B )92/s m (C )82/s m (D )72/s m10、 若函数x x x f +-=2)(的图像上一点)2,1(--及邻近一点)2,1(y x ∆+-∆+-,则=∆∆xy ( ) (A )3 (B )2)(3x x ∆-∆ (C )2)(3x ∆- (D )x ∆-311、若函数)(x f 对于任意x ,有3'4)(x x f =,1)1(-=f ,则此函数为( )(A )1)(4+=x x f (B )2)(4-=x x f(C )1)(4-=x x f (D )2)(4+=x x f12、已知函数63)(23-+=x ax x f ,若4)1('=-f ,则实数a 的值为( )(A )319 (B )316 (C )313 (D )310 二,填空题: 13、一质点运动方程为2t s =,则质点在4=t 时的瞬时速度为 。
高中数学选修2-2 北师大版 导数的概念 同步训练(含答案)
§2导数的概念及其几何意义2.1导数的概念双基达标(限时20分钟)1.函数f(x)在x0处可导,则li mh→0f(x0+h)-f(x0)h().A.与x0、h都有关B.仅与x0有关,而与h无关C.仅与h有关,而与x0无关D.与x0、h均无关答案 B2.设函数f(x)在点x0处附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则().A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b解析∵ΔyΔx=f(x0+Δx)-f(x0)Δx=a+bΔx.∴f′(x0)=li mΔx→0f(x0+Δx)-f(x0)Δx=a.答案 C3.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数().A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的导数D.在区间[x0,x1]上的导数解析根据平均变化率的定义可知,当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比就是函数在区间[x0,x1]上的平均变化率.答案 A4.设f (x )在点x =x 0处可导,且f ′(x 0)=-2,则li m Δx →0 f (x 0)-f (x 0-Δx )Δx等于 ________.解析 li m Δx →0 f (x 0)-f (x 0-Δx )Δx=li m Δx →0 f [x 0+(-Δx )]-f (x 0)-Δx=f ′(x 0)=-2. 答案 -25.如果某物体做运动方程为s =2(1-t 2)的直线运动(s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为________.解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得.答案 -4.8 m/s6.利用导数的定义,求函数y =1x 2+2在点x =1处的导数.解 ∵Δy =⎣⎢⎡⎦⎥⎤1(x +Δx )2+2-⎝⎛⎭⎪⎫1x 2+2 =-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2, ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2x 3, ∴y ′|x =1=-2.综合提高 (限时25分钟)7.设函数f (x )=ax +3,则f ′(1)=3,则a 等于( ). A .2B .-2C .3D .-3 解析 ∵f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx=lim Δx →0a (x +Δx )+3-(ax +3)Δx =a , ∴f ′(1)=a =3.答案 C8.函数f(x)在x=a处有导数,则limh→a f(h)-f(a)h-a为().A.f(a) B.f′(a) C.f′(h) D.f(h) 解析令h-a=Δh,则有h=a+Δh.h→a等价于Δh→0,原式可化为limΔh→0f(a+Δh)-f(a)Δh,由导数的定义易得B.答案 B9.设函数f(x)=ax3+2,若f′(-1)=3,则a=________.解析f′(-1)=limΔx→0f(-1+Δx)-f(-1)Δx=limΔx→0a(-1+Δx)3-a(-1)3Δx=limΔx→0[a(Δx)2-3aΔx+3a]=3a=3.∴a=1.答案 110.曲线f(x)=x在点(4,2)处的瞬时变化率是________.解析ΔfΔx=f(4+Δx)-f(4)Δx=4+Δx-2Δx=14+Δx+2,∴limΔx→0ΔfΔx=14.答案1 411.如果一个质点从固定点A开始运动,时间t的位移函数为y=f(t)=t3+3,求t=4时,limΔt→0ΔyΔt的值.解∵Δy=(Δt+4)3+3-(43+3) =(Δt)3+12(Δt)2+48Δt,∴ΔyΔt=(Δt)3+12(Δt)2+48ΔtΔt=(Δt)2+12Δt+48.∴limΔt→0ΔyΔt=limΔt→0[(Δt)2+12Δt+48]=48.12.(创新拓展)服药后,人体血液中药物的质量浓度y(单位:μg/mL)是时间。
《学案导学与随堂笔记》苏教版数学选修2-2全套备课精选同步练习第1章1.1.2导数的概念第2课时
第2课时课时目标 1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数.1.瞬时速度的概念作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫____________.用数学语言描述为:如果当Δt 无限趋近于0时,运动物体位移S(t)的平均变化率S (t 0+Δt )-S (t 0)Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的____________. 2.导数的概念设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx=____________无限趋近于一个常数A ,则称f(x)在点x =x 0处________,并称该常数A 为________________________,记作f ′(x 0).3.函数的导数若f(x)对于区间(a ,b)内任一点都可导,则f(x)在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f(x)的导函数,记作f ′(x).4.瞬时速度是运动物体的位移S(t)对于时间t 的导数,即v(t)=________.5.瞬时加速度是运动物体的速度v(t)对于时间t 的导数,即a(t)=________一、填空题1.任一作直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则物体的初速度是________.2.设f(x)在x =x 0处可导,则当Δx 无限趋近于0时f (x 0-Δx )-f (x 0)Δx的值为________. 3.一物体的运动方程是S =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是________. 4.已知f(x)=-x 2+10,则f(x)在x =32处的瞬时变化率是________. 5.函数y =x +1x在x =1处的导数是________. 6.设函数f(x)=ax 3+2,若f ′(-1)=3,则a =________.7.曲线f(x)=x 在点(4,2)处的瞬时变化率是________.8.已知物体运动的速度与时间之间的关系是v(t)=t 2+2t +2,则在时间间隔内的平均加速度是________,在t =1时的瞬时加速度是________.二、解答题9.用导数的定义,求函数y =f(x)=1x在x =1处的导数.10.枪弹在枪筒中可以看作匀加速直线运动,如果它的加速度是a =5×105 m/s 2,枪弹从枪口射出时所用的时间为1.6×10-3 s .求枪弹射出枪口时的瞬时速度.能力提升11.已知函数y =ax 2+bx +c ,求函数在x =2处的导数.12.以初速度v 0 (v 0>0)垂直上抛的物体,t 秒时间的高度为s(t)=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.1.利用定义求函数在一点处导数的步骤:(1)计算函数的增量:Δy =f(x 0+Δx)-f(x 0).(2)计算函数的增量与自变量增量Δx 的比Δy Δx. (3)计算上述增量的比值.当Δx 无限趋近于0时,Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于A. 2.导数的物理意义是物体在某一时刻的瞬时速度.答 案知识梳理1.瞬时速度 瞬时速度2.f (x 0+Δx )-f (x 0)Δx可导 函数f (x )在点x =x 0处的导数 4.S ′(t ) 5.v ′(t )作业设计1.3解析 ΔS Δt =S (Δt )-S (0)Δt =3Δt -(Δt )2Δt=3-Δt , 当Δt 无限趋近于0时,ΔS Δt无限趋近于3. 2.-f ′(x 0)解析 ∵f (x 0-Δx )-f (x 0)Δx=f (x 0)-f (x 0-Δx )-Δx=-f (x 0)-f (x 0-Δx )Δx, ∴当Δx 无限趋近于0时,原式无限趋近于-f ′(x 0).3.at 0解析 ΔS Δt =S (t 0+Δt )-S (t 0)Δt =12a (Δt )+at 0, 当Δt 无限趋近于0时,ΔS Δt无限趋近于at 0. 4.-3解析 ∵Δf Δx =f ⎝⎛⎭⎫32+Δx -f ⎝⎛⎭⎫32Δx=-Δx -3, 当Δx 无限趋近于0时,Δf Δx无限趋近于-3. 5.0解析 Δy Δx =(1+Δx )+11+Δx -2Δx=(1+Δx )2+1-2(1+Δx )Δx (1+Δx )=(Δx )2Δx (1+Δx )=Δx 1+Δx , 当Δx 无限趋近于0时,Δy Δx无限趋近于0. 6.1解析 ∵f (-1+Δx )-f (-1)Δx =a (-1+Δx )3-a (-1)3Δx=a (Δx )2-3a (Δx )+3a . ∴当Δx 无限趋近于0时,Δf Δx无限趋近于3a , 即3a =3,∴a =1.7.14解析 Δf Δx =f (4+Δx )-f (4)Δx =4+Δx -2Δx =14+Δx +2, ∴当Δx 无限趋近于0时,Δf Δx 无限趋近于14. 8.4+Δt 4解析 在内的平均加速度为Δv Δt =v (1+Δt )-v (1)Δt =Δt +4,当Δt 无限趋近于0时,Δv Δt无限趋近于4.9.解 ∵Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx =-Δx 1+Δx ·(1+1+Δx ) ∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴当Δx 无限趋近于0时,-11+Δx ·(1+1+Δx )无限趋近于-12,∴f ′(1)=-12. 10.解 运动方程为S =12at 2. 因为ΔS =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2, 所以ΔS Δt =at 0+12a Δt . 所以当Δt 无限趋近于0时,ΔS Δt无限趋近于at 0. 由题意知,a =5×105 m/s 2,t 0=1.6×10-3s ,所以at 0=8×102=800 (m/s).即枪弹射出枪口时的瞬时速度为800 m/s.11.解 ∵Δy =a (2+Δx )2+b (2+Δx )+c -(4a +2b +c )=4a (Δx )+a (Δx )2+b (Δx ),∴Δy Δx =4a (Δx )+a (Δx )2+b (Δx )Δx=4a +b +a (Δx ), 当Δx 无限趋近于0时,Δy Δx无限趋近于4a +b . 所以函数在x =2处的导数为4a +b .12.解 ∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-⎝⎛⎭⎫v 0t 0-12gt 20=(v 0-gt 0)Δt -12g (Δt )2, ∴Δs Δt =v 0-gt 0-12g (Δt ), 当Δt 无限趋近于0时,Δs Δt无限趋近于v 0-gt 0. 故物体在时刻t 0处的瞬时速度为v 0-gt 0.。
学案导学与随堂笔记北师大数学选修全套备课精选同步练习: 导数与函数的单调性
第四章 导数应用§1 函数的单调性与极值1.1 导数与函数的单调性课时目标 掌握导数与函数单调性之间的关系,会利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.1.导函数的符号和函数的单调性的关系:如果在某个区间内,函数y =f (x )的导数________,则在这个区间上,函数y =f (x )是增加的;如果在某个区间内,函数y =f (x )的导数f ′(x )<0,则在这个区间上,函数f (x )是________的.2.函数的单调性决定了函数图像的大致形状.一、选择题1.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙: f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若在区间(a ,b )内,f ′(x )>0,且f (a )≥0,则在(a ,b )内有( )A .f (x )>0B .f (x )<0C .f (x )=0D .不能确定3.下列函数中,在(0,+∞)内为增函数的是( )A .sin xB .x e xC .x 3-xD .ln x -x4.函数f (x )=2x -sin x 在(-∞,+∞)上是( )A .增函数B .减函数C .先增后减D .不确定5.定义在R 上的函数f (x ),若(x -1)·f ′(x )<0,则下列各项正确的是( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)=2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)与2f (1)大小不定6.函数y =ax -ln x 在(12,+∞)内单调递增,则a 的取值范围为( ) A .(-∞,0]∪C . 题 号 1 2 3 4 5 6答 案二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间是____________.8.已知f (x )=ax 3+3x 2-x +1在R 上是减函数,则a 的取值范围为__________.9.使y=sin x+ax在R上是增函数的a的取值范围为____________.三、解答题10.求函数f(x)=2x2-ln x的单调区间.11.(1)已知函数f(x)=x3+bx2+cx+d的单调减区间为,求b,c的值.(2)设f(x)=ax3+x恰好有三个单调区间,求实数a的取值范围.能力提升12.判断函数f(x)=(a+1)ln x+ax2+1的单调性.13.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,请说明理由.1.利用导数的正负与函数单调性的关系可以求函数的单调区间;在求函数单调区间时,只能在定义域内讨论导数的符号.2.根据函数单调性可以求某些参数的范围.第四章 导数应用§1 函数的单调性与极值1.1 导数与函数的单调性知识梳理1.f ′(x)>0 减少作业设计1.A2.A3.B4.A5.C6.C7.(-1,11)解析 ∵f ′(x)=3x 2-30x -33=3(x +1)(x -11).由f ′(x)<0,得-1<x<11,∴f(x)的单减区间为(-1,11).8.(-∞,-3]解析 f ′(x)=3ax 2+6x -1≤0恒成立⇔⎩⎪⎨⎪⎧ a<0Δ≤0,即⎩⎨⎧a<036+12a ≤0, ∴a ≤-3.9.即b =-32,c =-6. (2)∵f ′(x)=3ax 2+1,且f(x)有三个单调区间,∴方程f ′(x)=3ax 2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a 的取值范围为(-∞,0).12.解 由题意知f(x)的定义域为(0,+∞),f ′(x)=a +1x +2ax =2ax 2+a +1x. ①当a ≥0时,f ′(x)>0,故f(x)在(0,+∞)上单调递增. ②当a ≤-1时,f ′(x)<0,故f(x)在(0,+∞)上单调递减. ③当-1<a<0时,令f ′(x)=0,解得x =-a +12a , 则当x ∈⎝ ⎛⎭⎪⎫0,-a +12a 时,f ′(x)>0; 当x ∈⎝ ⎛⎭⎪⎫ -a +12a ,+∞时,f ′(x)<0. 故f(x)在⎝ ⎛⎭⎪⎫0,-a +12a 上单调递增,在⎝ ⎛⎭⎪⎫ -a +12a ,+∞上单调递减. 综上,当a ≥0时,f(x)在(0,+∞)上单调递增; 当a ≤-1时,f(x)在(0,+∞)上单调递减; 当-1<a<0时,f(x)在⎝ ⎛⎭⎪⎫0, -a +12a 上单调递增,在⎝ ⎛⎭⎪⎫ -a +12a ,+∞上单调递减. 13.解 (1)由已知,得f ′(x)=3x 2-a. 因为f(x)在(-∞,+∞)上是单调增函数, 所以f ′(x)=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈(-∞,+∞)恒成立. 因为3x 2≥0,所以只需a ≤0.又a =0时,f ′(x)=3x 2≥0,f(x)在实数集R 上单调递增,所以a ≤0.(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 则a ≥3x 2在x ∈(-1,1)时恒成立.因为-1<x <1,所以3x 2<3,所以只需a ≥3. 当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0, 即f (x )在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f (x )在(-1,1)上单调递减.。
学案导学与随堂笔记北师大数学选修全套备课精选同步练习:第二章 单元检测B
第二章 圆锥曲线与方程(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|P A |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( ) A.⎝⎛⎭⎫a 2,0 B.⎝⎛⎭⎫0,12a C.⎝⎛⎭⎫a 4,0 D.⎝⎛⎭⎫0,14a 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( ) A .x 2+y 2=2 B .x 2+y 2=4 C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22B.12C.2-12D.347.已知双曲线的方程为x 2a 2-y2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( ) A .2a +2m B .4a +2m C .a +m D .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0C .-2或0D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D .5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1±5 12.设F 1、F 2分别是双曲线22154yx-=的左、右焦点.若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于( )A .3B .6C .1D .2题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案二、填空题(本大题共4小题,每小题5分,共20分)13.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.14.已知抛物线C :y 2=2px (p>0),过焦点F 且斜率为k (k>0)的直线与C 相交于A 、B两点,若AF →=3FB →,则k =________.15.已知抛物线y 2=2px (p>0),过点M (p,0)的直线与抛物线交于A 、B 两点,则OA →·OB →= 16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________.三、解答题(本大题共6小题,共70分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(12分)已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F 交椭圆于A 、B 两点,求弦AB 的长.19.(12分)已知两个定点A (-1,0)、B (2,0),求使∠MBA =2∠MAB 的点M 的轨迹方程.20.(12分)已知点A (0,-2),B (0,4),动点P (x,y )满足PA →·PB →=y 2-8. (1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C 、D 两点.求证:OC ⊥OD (O 为原点).21.(12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.22.(12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线 y =14x 2的焦点,离心率为255. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA →=mF A →,MB →=nFB →,求m +n 的值..第二章 圆锥曲线与方程(B)1.A 2.B 3.D 4.D 5.A 6.B 7.B8.A9.B 10.A11.C 2-4k 2×4 =64(1+k )>0,解得k >-1,由x 1+x 2=4(k +2)k 2=4,解得k =-1或k =2,又k >-1,故k =2.] 12. B .]13.22或2-1解析 设椭圆的长半轴长为a ,短半轴长为b ,半焦距为c ,当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =ca =c b 2+c 2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时, 设直角边长为m ,故有2c =m,2a =(1+2)m ,所以,离心率e =c a =2c 2a =m(1+2)m=2-1.14. 3解析 设直线l 为抛物线的准线,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 1为垂足,过B 作BE 垂直于AA 1与E ,则| AA 1|=|AF|,| BB 1|=|BF|,由AF →=3FB∴cos ∠BAE =|AE ||AB |=12,∴∠BAE =60°,∴tan ∠BAE = 3. 即k = 3. .15.-p 2 16.2解析 设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2.17.解 由椭圆方程为x 29+y 24=1,知长半轴长a 1=3,短半轴长b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y2b2=1 (a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5c 2=a 2+b 2c a =52,解得⎩⎪⎨⎪⎧a =2b =1,故所求双曲线的方程为x 24-y 2=1.18.解 设A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2). 由椭圆的方程知a 2=4,b 2=1,c 2=3,∴F (3,0). 直线l 的方程为y =x - 3.①将①代入x 24+y 2=1,化简整理得5x 2-83x +8=0, ∴x 1+x 2=835,x 1x 2=85,∴|AB |=(x 1-x 2)2+(y 1-y 2)2=1+1⎝⎛⎭⎫8352-4×85=85.19.解 设动点M 的坐标为(x ,y ). 设∠MAB =β,∠MBA =α,即α=2β, ∴tan α=tan 2β,则tan α=2tan β1-tan 2β.①(1)如图(1),当点M 在x 轴上方时,tan β=y x +1,tan α=y 2-x,将其代入①式并整理得3x 2-y 2=3 (x >0,y >0); (2)如图(2),当点M 在x 轴的下方时, tan β=-yx +1,tan α=-y2-x,将其代入①式并整理得3x 2-y 2=3 (x >0,y <0);(3)当点M 在x 轴上时,若满足α=2β,M 点只能在线段AB 上运动(端点A 、B 除外),只能有α=β=0.综上所述,可知点M 的轨迹方程为3x 2-y 2=3(x >0)或y =0 (-1<x <2). 20.(1)解 ∵A (0,-2),B (0,4), ∴PA →=(-x ,-2-y ),PB →=(-x,4-y ). 则PA →·PB →=(-x ,-2-y )·(-x,4-y ) =x 2+y 2-2y -8. ∴y 2-8=x 2+y 2-2y -8, ∴x 2=2y .(2)证明 将y =x +2代入x 2=2y ,得x 2=2(x +2),即x 2-2x -4=0,且Δ=4+16>0, 设C 、D 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则有x 1+x 2=2,x 1x 2=-4. 而y 1=x 1+2,y 2=x 2+2, ∴y 1y 2=(x 1+2)(x 2+2) =x 1x 2+2(x 1+x 2)+4=4,∴k OC ·k OD =y 1x 1·y 2x 2=y 1y 2x 1x 2=-1,∴OC ⊥OD .21.解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求的抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 到l 的距离d =55可得|t |5=15,解得t =±1. 因为-1∉[-12,+∞),1∈[-12,+∞),所以符合题意的直线l 存在,其方程为2x +y -1=0.22.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1 (a >b >0).抛物线方程可化为x 2=4y ,其焦点为(0,1), 则椭圆C 的一个顶点为(0,1),即b =1. 由e =c a =a 2-b 2a 2=255. 得a 2=5,所以椭圆C 的标准方程为x 25+y 2=1.(2)易求出椭圆C 的右焦点F (2,0),设A (x 1,y 1),B (x 2,y 2),M (0,y 0),显然直线l 的斜率存在,设直线l 的方程为y =k (x -2),代入方程x 25+y 2=1,得(1+5k 2)x 2-20k 2x +20k 2-5=0. ∴x 1+x 2=20k 21+5k 2,x 1x 2=20k 2-51+5k 2.又MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0),FA =(x 1-2,y 1),FB →=(x 2-2,y 2). ∵MA →=mF A →,MB →=nFB →,∴m =x 1x 1-2,n =x 2x 2-2,∴m +n =2x 1x 2-2(x 1+x 2)4-2(x 1+x 2)+x 1x 2, 又2x 1x 2-2(x 1+x 2)=40k 2-10-40k 21+5k2=-101+5k 2,4-2(x 1+x 2)+x 1x 2=4-40k 21+5k 2+20k 2-51+5k 2=-11+5k 2,∴m +n =10.。
《学案导学设计》高中数学北师大版选修2-2【配套备课资源】第2章 2
§2导数的概念及其几何意义一、基础过关1.函数f(x)=x2-1在x=1处的导数是() A.0 B.1C.2 D.以上都不对2.设函数f(x)=3+2,且f′(-1)=3,则a等于() A.-1D.13. 已知y=f(x)的图像如图所示,则f′()与f′()的大小关系是()A.f′()>f′()B.f′()<f′()C.f′()=f′()D.不能确定4.在曲线y=x2上切线倾斜角为的点是() A.(0,0) B.(2,4)C.(,) D.(,)5.设f(x)为可导函数,且满足=-1,则曲线y=f(x)在点(1,f(1))处的切线的斜率是()A.1 B.-1D.-26.曲线f(x)=-在点(1,-1)处的切线方程为() A.y=x-2 B.y=xC.y=x+2 D.y=-x-2二、能力提升7.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=. 8.若曲线y=2x2-4x+P与直线y=1相切,则P=.9.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角的范围为,则点P横坐标的取值范围为.10.一质点按规律s=s(t)=2+1做直线运动(位移单位:m,时间单位:s),若该质点在t=2 s 时的瞬时速度为8 m,求常数a的值.11.求过点P(-1,2)且与曲线f(x)=3x2-4x+2在点M(1,1)处的切线平行的直线.12.已知抛物线y=x2+4与直线y=x+10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.三、探究与拓展13.设函数f(x)=x3+2-9x-1(a<0),若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.14.根据下面的文字描述,画出相应的路程s关于时间t的函数图像的大致形状:(1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(2)小华早上从家出发后,为了赶时间开始加速;(3)小白早上从家出发后越走越累,速度就慢下来了.答案1.C2345 6 7.38.3910.解Δs=s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4aΔt+a(Δt)2,所以=4a+aΔt.由题意知,在t=2 s时,瞬时速度为s′(2)==4a,故4a=8,所以a=2.11.解曲线f(x)=3x2-4x+2在点M(1,1)处的切线斜率f′(1)==(3Δx+2)=2.∴过点P(-1,2)的直线的斜率为2,由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.12.解(1)由错误!解得错误!或错误!.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴f′(x)===(Δx+2x)=2x.∴f′(-2)=-4,f′(3)=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.13.解∵Δy=f(x0+Δx)-f(x0)=(x0+Δx)3+a(x0+Δx)2-9(x0+Δx)-1-(+-9x0-1)=(3+20-9)Δx+(3x0+a)(Δx)2+(Δx)3,∴=3+20-9+(3x0+a)Δx+(Δx)2.当Δx无限趋近于零时,无限趋近于3+20-9.即f′(x0)=3+20-9.∴f′(x0)=3(x0+)2-9-.当x0=-时,f′(x0)取最小值-9-.∵斜率最小的切线与12x+y=6平行,∴该切线斜率为-12.∴-9-=-12.解得a=±3.又a<0,∴a=-3.14.解相应图像如下图所示.。
学案导学与随堂笔记北师大数学选修全套备课精选同步练习:第二章 单元检测A
第二章 圆锥曲线与方程(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12C .2D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( ) A .(2,2) B .(2,5)C .(2,5)D .(2,5)7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( )A .1B .2C .3D .08.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .19.(12分)直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)OA →⊥OB →,求k 的值.第二章 圆锥曲线与方程(A)1.A2.B∵c 2=m 2-n 2=4,∴n 2=12.∴椭圆方程为x 216+y 212=1.] 3.B4.D ,|PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号. |PF 1|·|PF 2|=|PF 1|(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2≥-c 2+a 2=b 2,所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.]5.B6.B7.B8.B=x 1+1+x 2+1+x 3+1=6.]9.C10.B11.B12.D13.32解析 由已知得∠AF 1F 2=30°,故cos 30°=c a ,从而e =32. 14.2x -y -15=0解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.因为线段AB 的中点为P (8,1),所以x 1+x 2=16,y 1+y 2=2.所以y 1-y 2x 1-x 2=x 1+x 24(y 1+y 2)=2. 所以直线AB 的方程为y -1=2(x -8),代入x 2-4y 2=4满足Δ>0.即2x -y -15=0. 15.22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c , 因此e =c a = c 2a 2= c 2b 2+c 2= 12=22. 16.③④解析 ①错误,当k =2时,方程表示椭圆;②错误,因为k =52时,方程表示圆;验证可得③④正确.17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2, 把⎩⎪⎨⎪⎧x 0=xy 0=y 2代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b 2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1. 19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0, 由⎩⎨⎧k ≠0(4k +8)2-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0. 解得:k =2或k =-1(舍去)由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1, 解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知|PF 1|+|PF 2|=65,①又|PF 1|2+|PF 2|2=|F 1F 2|2=100,②①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20. 21.解 焦点F (p 2,0),设A (x 1,y 1),B (x 2,y 2), 若AB ⊥Ox ,则|AB |=2p <52p ,不合题意. 所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p 2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x , 整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 = (1+1k2)·(y 1-y 2)2 = 1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p . 解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p 2). 22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0. 其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,即x 1x 2+y 1y 2=0. 而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.。
学案导学与随堂笔记北师大数学选修全套备课精选同步练习:第三章 单元检测A
第三章 变化率与导数(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设正弦函数y =sin x 在x =0和x =π2附近的瞬时变化率为k 1,k 2,则k 1,k 2的大小关系为( )A .k 1>k 2B .k 1<k 2C .k 1=k 2D .不确定2.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末3.设函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)ΔxD .f (x 0+Δx )-f (x 0)4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -55.函数y =sin x -cos x 的导数是( )A .cos x +sin xB .cos x -sin xC .cos x sin xD .2cos x6.函数y =x 2x +3的导数是( ) A.x 2+6x (x +3)2 B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)27.函数y =x 5a x (a >0且a ≠1)的导数是( )A .5x 4a x ln aB .5x 4a x +x 5a x ln aC .5x 4a x +x 5a xD .5x 4a x +x 5a x log a e8.下列求导数运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x9.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数函数C .f (x )=g (x )=0D .f (x )+g (x )为常数函数10.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.193B.163C.133D.10311.下面四组函数中,导数相等的一组是( )A .f (x )=2x +1与g (x )=2x -1B .f (x )=sin x -cos x 与g (x )=cos x -sin xC .f (x )=x -1与g (x )=2-xD .f (x )=sin x +cos x 与g (x )=sin x -cos x12.点P 在曲线y =x 3-x +23上移动,设点P 处的切线倾斜角为α,则α的范围为( ) A.⎣⎡⎦⎤0,π2 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 题 号 1 2 3 4 5 6 7 8 9 10 11 12答 案二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=2x 3+3x 2-5x +4的导数f ′(x )=______________,f ′(3)=________.14.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.15.如图所示,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=______;lim x ∆→f (1+Δx )-f (1)Δx =________.(用数字作答) 16.函数f (x )=(2x +5)2在点P (-2,1)处的导数是________.三、解答题(本大题共6小题,共70分)17.(10分)(1)求函数y =5x 3和y =3x 的导数;(2)求函数f (x )=4x 3在x =16处的导数.18.(12分)设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图像的一个公共点,两函数的图像在点P处有相同的切线.试用t表示a,b,c.19.(12分)设函数f(x)=ax3+bx+c(a>0)为奇函数,其图像在点(1,f(1))处的切线与直线x -6y-7=0垂直,导函数f′(x)的最小值为-12,求a,b,c的值.20.(12分)已知函数f (x )=x 3+bx 2+cx +d 的图像经过P (0,2)且在点M (-1,f (-1))处的切线方程为6x -y +7=0,求函数y =f (x )的解析式.21.(12分)已知函数f (x )=2ax -a 2+1x 2+1(x ∈R ),其中a ∈R ,当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程.22.(12分)已知曲线C :y =3x 4-2x 3-9x 2+4.(1)求曲线C 在点(1,-4)处的切线方程;(2)对于(1)中的切线与曲线C 是否还有其他公共点?若有,求出公共点;若没有,说明理由.第三章 变化率与导数(A)1.A2.D3.D4.B5.A6.A7.B8.B [⎝⎛⎭⎫x +1x ′=1-1x 2,(3x )′=3x ln 3, (x 2cos x )′=2x cos x -x 2sin x .]9.B10.D11.A12.B13.6x 2+6x -5 67解析 f ′(x )=(2x 3+3x 2-5x +4)′=6x 2+6x -5,f ′(3)=6×32+6×3-5=67.14.-4解析 f ′(x )=′=2x +2f ′ (1),则f ′(1)=2×1+2f ′(1),所以f ′(1)=-2,所以f ′(0)=2×0+2f ′(1)=-4.15.2 -2解析 由A (0,4),B (2,0)可得线段AB 所在直线的方程为f (x )=-2x +4 (0≤x ≤2).同理BC 所在直线的方程为f (x )=x -2 (2<x ≤6).所以f (x )=⎩⎪⎨⎪⎧ -2x +4 (0≤x ≤2),x -2 (2<x ≤6),所以f (0)=4,f (4)=2.limx ∆→f (1+Δx )-f (1)Δx =f ′(1)=-2. 16.4 17.解 (1)y ′=(5x 3)′=(35x )′=3525x -, y ′=(3x )′=3x ln 3. (2)∵f ′(x )=(4x 3)′=(34x )′=3414x -=344x ,∴f ′(16)=34·416=34×2=38. 18.解 因为函数f (x ),g (x )的图像都过点(t,0),所以f (t )=0,即t 3+at =0.因为t ≠0,所以a =-t 2.g (t )=0,即bt 2+c =0,所以c =ab .又因为f (x ),g (x )在点(t,0)处有相同的切线,所以f ′(t )=g ′(t ).而f ′(x )=3x 2+a ,g ′(x )=2bx ,所以3t 2+a =2bt .将a =-t 2代入上式得b =t .因此c =ab =-t 3.故a =-t 2,b =t ,c =-t 3.19.解 ∵f (x )为奇函数,∴f (-x )=-f (x ),即-ax 3-bx +c =-ax 3-bx -c ,∴c =0.∵f ′(x )=3ax 2+b 的最小值为-12,∴b =-12.又直线x -6y -7=0的斜率为16,切线与已知直线垂直,所以切线斜率为-6. 因此,f ′ (1)=3a +b =-6,∴a =2,b =-12,c =0.20.解 由f (x )的图像经过P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c ,由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0. 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.21.解 当a =1时,f (x )=2x x 2+1,f (2)=45, 又f ′(x )=2(x 2+1)-2x ·2x (x 2+1)2=2-2x 2(x 2+1)2, f ′(2)=-625. 所以,曲线y =f (x )在点(2,f (2))处的切线方程为y -45=-625(x -2), 即6x +25y -32=0.22.解 (1)y ′=12x 3-6x 2-18x ,∴f ′(1)=-12.所以曲线过点(1,-4)的切线斜率为-12,所以所求方程为y +4=-12(x -1), 即y =-12x +8.(2)设与曲线C 还有其他公共点,于是有⎩⎪⎨⎪⎧y =3x 4-2x 3-9x 2+4y =-12x +8, 整理得x 3(3x -2)-(3x -2)2=0, 即(3x -2)(x 3-3x +2)=0,即(x +2)(3x -2)(x -1)2=0.所以x =-2,x =23,x =1. 即除切点外还有公共点(-2,32)和⎝⎛⎭⎫23,0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 导数的概念及其几何意义
2.1 导数的概念
课时目标 1.了解导数的概念及实际背景.2.会求函数在某一点的导数,并理解其实际意义.
设函数y =f(x),当自变量x 从x 0变到x 1时,函数值从f(x 0)变到f(x 1),函数值y 关于x
的平均变化率为Δy Δx =f (x 1)-f (x 0)x 1-x 0
=f (x 0+Δx )-f (x 0)Δx . 当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f (x )在x 0点的瞬时变化率,.在数学中,称瞬时变化率为函数y=f(x)在x 0点的导数,
通常用符号f ′(x 0)表示,记作f ′(x 0)=10
lim x x →f (x 1)-f (x 0)x 1-x 0=0lim x ∆→f (x 0+Δx )-f (x 0)Δx . 一、选择题
1.已知f(x)=-x 2+10,则f(x)在x =32
处的瞬时变化率是( ) A .3 B .-3 C .2 D .-2
2.下列各式正确的是( )
A.f ′(x 0)=0
lim x ∆→f (x 0-Δx )-f (x 0)x B.f ′(x 0)=0
lim x ∆→f (x 0-Δx )+f (x 0)Δx C.f ′(x 0)=0
lim x ∆→f (x 0+Δx )-f (x 0)Δx D.f ′(x 0)=0
lim x ∆→f (x 0+Δx )+f (x 0)Δx 3.设f(x)在x= x 0处可导,则0
lim x ∆→f (x 0-Δx )-f (x 0)Δx 等于( ) A .-f ′(x 0) B .f ′(-x 0)
C .f ′(x 0)
D .2f ′(x 0)
4.函数y =x 2-1在x =1处的导数是( )
A .0
B .1
C .2
D .以上都不对
5.曲线y =-1x
在点(1,-1)处的导数值为( ) A .1 B .2 C .-2 D .-1
6.设函数f(x)=ax 3+2,若f ′(-1)=3,则a 等于( )
A .-1
B .12
C .13
D .1 题 号 1 2 3 4 5 6
答 案
二、填空题
7.某汽车启动阶段的路程函数为s(t)=2t 3-5t 2,则t =2秒时,汽车的瞬时速度是__________.
8.已知函数y =f(x)在x =x 0处的导数为11,则0
lim
x ∆→f (x 0-Δx )-f (x 0)Δx =________ 9.设函数f(x)=ax +4,若f ′(1)=2,则a =______.
三、解答题
10.用导数的定义,求函数y =f(x)=1x
在x =1处的导数.
11.心理学家研究发现,学生的接受能力G 和教师提出概念所用的时间x(时间单位:分钟)有如下关系:G(x)=0.1x 2+2.6x +43,计算G ′(10).
能力提升
12.已知二次函数f(x)=ax 2+bx +c 的导数为f ′(x),f ′(0)>0,对于任意实数x ,有f(x)≥0,
则f (1)f ′(0)
的最小值为________. 13.设一物体在t 秒内所经过的路程为s 米,并且s =4t 2+2t -3,试求物体在运动开始及第5秒末时的速度.
1.由导数的定义可得求导数的一般步骤(三步法):
(1)求函数的增量Δy =f(x 0+Δx)-f(x 0);
(2)求平均变化率Δy Δx
; (3)取极限,得导数f ′(x 0)=0lim x ∆→Δy Δx
2.导数就是瞬时变化率,可以反映函数在某一点处变化的快慢.
§2 导数的概念及其几何意义
2.1 导数的概念
作业设计
1.B
2.C
3.A [0
lim
x ∆→f (x 0-Δx )-f (x 0)Δx =0
lim x ∆→-f (x 0)-f (x 0-Δx )Δx =-0
lim x ∆→f (x 0)-f (x 0-Δx )Δx =-f ′(x 0).] 4.C
5.A
6.D
7.4 m /s
解析 s ′(2) =0
lim x ∆→2(2+Δt )3-5(2+Δt )2-(2×23-5×22)Δt =4.
解析 0
lim
x ∆→f (x 0-Δx )-f (x 0)Δx =-0
lim x ∆→f (x 0-Δx )-f (x 0)-Δx →0 f (x 0-Δx )-f (x 0)-Δx
=-f ′(x 0)=-11.
9.2 解析 ∵f ′(1)=0lim
x ∆→a (1+Δx )-a Δx =a =2. ∴a =2.
10.解 ∵Δy =f(1+Δx)-f(1)=
11+Δx -11 =1-1+Δx 1+Δx =-Δx 1+Δx·(1+
1+Δx ), ∴Δy Δx =-1
1+Δx·(1+1+Δx )
, ∴0lim x ∆→Δy Δx =0lim x ∆→-1
1+Δx·(1+1+Δx )=-11+0·(1+1+0)=-12, ∴y ′|x=1=f ′(1)=-12
. 11.解 G ′(10)=0
lim x ∆→G (10+Δx )-G (10)Δx =0
lim x ∆→0.1(10+Δx )2+2.6(10+Δx )-0.1×102-2.6×10Δx =4.6.
12.2
解析 由导数的定义,
得f ′(0)=0
lim x ∆→f (Δx )-f (0)Δx =0
lim x ∆→a (Δx )2+b (Δx )+c -c Δx =0
lim x ∆→=b. 又⎩⎨⎧
Δ=b 2-4ac ≤0a>0
,∴ac ≥b 24,∴c>0. ∴
f (1)f ′(0)
=a +b +c b ≥b +2ac b ≥2b b =2. 13.解 s ′(0) =0
lim x ∆→4(0+Δt )2+2Δt -3-(4×02+2×0-3)Δt =2;
=0
lim x ∆→4(5+Δt )2+2(5+Δt )-3-(4×52+2×5-3)Δt =42, 故物体在运动开始的速度为2 m /s ,第5秒末时的速度为42 m /s .。