材料加工实验与测试技术
生物医学材料的制备与性能测试技术综述
生物医学材料的制备与性能测试技术综述引言:生物医学材料是应用在医疗领域的一类特殊材料,它能与生物系综合地相互作用,以实现医疗应用的目标。
这些材料在组织修复、药物传递、生物传感和医疗器械等方面发挥着重要的作用。
本文将综述生物医学材料的制备与性能测试技术,以便深入了解这些关键步骤对于材料的性能和应用的影响。
一、生物医学材料的制备技术:1. 材料选择和设计:生物医学材料的制备首先需要选择合适的原料。
常见的生物医学材料包括金属、陶瓷、聚合物和复合材料等。
根据应用需求,需要提前确定材料所需的物理、化学和生物学性能。
同时,根据材料的特性和应用要求,进行合适的设计和构造,以满足预期的功能需求。
2. 制备方法:生物医学材料的制备方法多种多样,常见的方法包括溶胶-凝胶、电化学沉积、热处理、机械加工和3D打印等。
其中,溶胶-凝胶技术是一种常用的制备方法,通过溶胶的凝胶化过程,可以形成具有均匀结构和孔隙的材料。
电化学沉积则是一种能够在电极上沉积金属或陶瓷的方法,通过控制电流密度和电位,可以获得特定性能的材料。
热处理是指通过加热和冷却等处理方式,对材料的结构和性能进行调控。
机械加工和3D 打印技术能够实现对材料的精确加工和构建。
3. 表面修饰与功能化:为了提高生物医学材料的生物相容性、降低免疫反应和改善生物活性,常常需要对材料表面进行修饰和功能化处理。
常见的表面修饰方法包括离子注入、等离子体处理、离子束照射和化学修饰等。
功能化处理则是将特定的生物活性物质引入材料表面,如药物、细胞因子和生物胶等,以实现特定的功能需求。
二、生物医学材料的性能测试技术:1. 生物相容性测试:生物医学材料的生物相容性是指材料与生物体相互作用时不引起明显的毒性、炎症和免疫反应。
生物相容性测试是衡量材料是否适合用于医疗应用的重要指标。
常见的生物相容性测试方法包括细胞毒性测试、小动物体内实验和组织切片观察等。
通过这些测试,可以评估材料对细胞和组织的影响,从而确定材料的生物相容性。
浅谈材料分析与测试技术本科课程教学
浅谈材料分析与测试技术本科课程教学摘要:材料分析与测试技术是一门技术性和实验方法性课程,作者通过分析材料分析和测试技术的重要性,以及具有的特点,来谈如何安排本科教学。
关键词:分析与测试技术特点教学安排材料分析与测试技术是一门技术性和实验方法性课程。
开设这门课程主要是让学生掌握基本的材料测试技术和分析方法。
材料分析与测试技术是材料和冶金相关学科必修的公共技术基础课。
作者是主讲这门的一名大学教师,鉴于对该课程的理解,同时结合教学经验以及当前社会发展,就这门课程的本科教学谈谈自己的看法。
文章内容包括以下三个方面,(1)课程的重要性;(2)课程的特点;(3)教师的课程教学安排。
1 材料分析与测试技术的重要性谈材料分析与测试技术的重要性,应该先从材料的重要性谈起。
材料是人类社会赖以存在和发展的物质基础,材料的发展关系到国民经济发展,国防建设和人民生活水平的提高。
材料学是研究材料的一门学科,其研究内容包括材料的组成与结构、合成、以及性质等。
材料分析与测试技术属于材料学的范畴,在材料的发展过程中发挥着重要的作用。
材料分析与测试主要包括两个方面内容:一物相鉴定和分析;二是性质和性能测试。
在这门课程中,教学内容主要考虑物相鉴定和分析。
物相鉴定和分析大致包括以下几个部分,即组成鉴定、结构研究和形貌分析。
组分不同,材料不同,如铁和木材;组分相同,结构不同,材料也不同,如金刚石和石墨。
组成和结构相同,材料的形貌和粒径大小不同,性质可能不同,如球状纳米材料与带状纳米材料性质不同;同为球状材料,粒子的粒径不同其性质也不同。
在科学研究中,无论是天然的还是人工合成的材料,首先要做的是分析和测试,通过分析和测试来做物相鉴定和性质研究。
材料分析与测试技术作为一门课程不仅是为培养材料分析与测试人员,同时也是为材料相关专业研究人员提供辅助知识和技术。
2 材料分析与测试技术课程的特点材料分析与测试技术是一门实验性课程,如果仅从测试角度考虑,它具有技术性,但要从材料分析以及测试原理考虑,它又具有很深的学术性,因此这门课程同时具有技术性和学术性的特点。
电火花成型实验报告
电火花成型实验报告《电火花成型实验报告》摘要:本实验旨在研究电火花成型技术在材料加工中的应用。
通过实验测试,我们发现电火花成型技术可以在金属材料上实现精密加工,具有高效、精度高等优点。
本报告详细介绍了实验过程、结果分析以及对电火花成型技术的应用前景进行了讨论。
1. 实验目的本实验旨在探究电火花成型技术在材料加工中的应用,分析其加工效果和优缺点,为该技术的进一步研究提供参考。
2. 实验原理电火花成型是一种利用电脉冲放电进行加工的方法。
在实验中,我们使用了一台电火花成型机,通过控制电脉冲的频率、幅值和宽度,使电极与工件之间产生放电,从而在工件表面形成微小的坑洞,实现精密加工。
3. 实验过程首先,我们选择了一块铝合金材料作为实验样品,然后在电火花成型机上设置合适的参数,包括放电频率、幅值和宽度等。
接着,将工件放置在加工台上,并通过控制系统进行加工操作。
最后,观察实验结果并进行数据记录。
4. 实验结果经过实验测试,我们发现电火花成型技术可以在铝合金材料上实现精密加工,加工表面光洁度高,加工精度可控。
同时,该技术具有高效、操作简单等优点。
然而,由于放电过程中会产生热量,可能导致工件表面变形或烧损,因此在实际应用中需要谨慎操作。
5. 结论与讨论电火花成型技术在材料加工中具有一定的应用前景,尤其适用于对加工精度要求较高的材料。
未来可以进一步研究该技术的优化和改进,以提高其在工业生产中的应用性能。
综上所述,本实验通过对电火花成型技术的研究,得出了一些初步的结论,并对其应用前景进行了讨论。
希望本报告能为相关领域的研究和实践提供一定的参考价值。
化学领域中的材料性能测试方法
化学领域中的材料性能测试方法材料性能测试是化学领域中至关重要的一项工作。
它对于研发和制造各种化学材料,如金属、塑料、橡胶、高分子材料等,具有重要的指导作用。
通过材料性能测试,可以评估材料的力学性能、热学性能、电学性能、光学性能等,为材料的研发和应用提供科学依据。
1. 力学性能测试方法力学性能是材料工程中最常见的性能之一,主要包括材料的强度、韧性、硬度等指标。
常用的力学性能测试方法有拉伸试验、压缩试验、弯曲试验等。
拉伸试验是一种常见的力学性能测试方法,通过对试样施加正向力来测定材料的抗拉强度、屈服强度和延伸率等。
压缩试验用于测定材料的抗压强度和变形特性,常用于金属和陶瓷材料的测试。
弯曲试验则用于测定材料的弯曲强度和弯曲模量。
2. 热学性能测试方法热学性能测试涉及材料的导热性、热膨胀性等性能指标。
导热性测试是一种常用的热学性能测试方法,主要用于测定材料的导热系数。
常见的导热性测试方法有热传导仪法和热释电法等。
热膨胀性测试用于测定材料的线膨胀系数和体膨胀系数,常见的测试方法有膨胀仪法和激光干涉法等。
3. 电学性能测试方法电学性能测试是研究材料的电导率、介电常数等电学性质的方法。
电导率测试是电学性能测试中的重要方法之一,用于测定材料的电导率和电阻率。
常用的电导率测试方法有四探针法、电导率仪器法等。
介电常数测试用于测定材料在电场作用下的电导率和介电耗散因子,常见的测试方法有介电分析法和介电谐振法等。
4. 光学性能测试方法光学性能测试主要用于研究材料的光学特性,如折射率、透射率、反射率等。
透射率测试是光学性能测试中的一种常用方法,用于测定材料对光的透明程度。
反射率测试用于测定材料对光的反射能力,常见的测试方法有透射—反射法和半球积分法等。
折射率测试用于测定材料在光场中的折射性能,常用的测试方法有折射光栅法和竖直玻璃分杯法等。
总结而言,化学领域中的材料性能测试方法涵盖了力学性能、热学性能、电学性能和光学性能等多个方面。
材料检验试验
材料检验试验材料检验试验是对材料进行质量和性能的检验和评定,是确保产品质量稳定的重要环节。
材料检验试验的目的是为了验证材料的符合性,保证产品的可靠性和安全性。
本文将从试验前的准备工作、试验方法和结果分析等方面进行介绍。
首先,进行材料检验试验前需要做好充分的准备工作。
首先要明确试验的目的和要求,根据产品标准和技术规范确定试验项目和方法。
其次,要准备好所需的试验设备和仪器,并进行校准和检查,确保其准确可靠。
同时,要对试验样品进行充分的准备,包括样品的选择、制备和标识等工作。
最后,要确定试验的环境条件和安全措施,确保试验过程安全可靠。
其次,针对不同的材料和试验项目,需要选择合适的试验方法。
常见的材料检验试验包括拉伸试验、硬度试验、冲击试验、疲劳试验等。
在进行试验时,要严格按照标准规定的试验程序和要求进行操作,保证试验结果的准确性和可靠性。
同时,要注意试验过程中的数据记录和样品标识,确保试验结果的可追溯性和可比性。
最后,对试验结果进行分析和评定。
根据试验结果和标准要求,对材料的质量和性能进行评定,判定样品是否合格。
同时,要对试验过程中出现的异常情况和数据偏差进行分析,找出原因并提出改进措施。
通过试验结果的分析和评定,可以为产品的设计和生产提供重要的参考依据,保证产品质量的稳定和可靠。
综上所述,材料检验试验是确保产品质量的重要手段,通过严格的试验方法和结果分析,可以验证材料的符合性,保证产品的可靠性和安全性。
在进行材料检验试验时,要做好充分的准备工作,选择合适的试验方法,并对试验结果进行准确的分析和评定,确保试验过程的可靠性和结果的可靠性。
高分子材料加工实验报告
一.实验目的要求1. 理解单螺杆挤出机、移动螺杆式注射机、拉力试验机的基本工作原理,学习挤出机单螺杆挤出机、移动螺杆式注射机、拉力试验机的操作方法。
2. 了解聚烯烃挤出、流变、及注射成型、拉伸的基本程序和参数设置原理。
二.实验原理挤出造粒原理:在塑料制品的生产过程中,自聚合反应至成行加工前,一般都要经过一个配料混炼环节,以达到改善其使用性能或降低成本等目的。
一般用螺杆挤出机进行混炼,其组成部件有(1)传动部分(2)加料部分(3)机筒(4)螺杆(5)机头和模口(6)排气装置。
流变性能测试原理:由于流体具有粘性.它必然受到自管体与流动方向相反的作用力.根据粘滞阻力与推动力相平衡等流体力学原理进行推导,可得到毛细管管壁处的剪切应力和剪切速率与压力、熔体流率的关系。
(33-I)(33-2)(33-3)式中R 毛细管半径,cm;L 毛细管长度,cm;毛细管两端的压差,pa;Q 熔体流率,;熔体表观粘度,Pa。
在温度和毛细管长径比L/D一定的条件下。
测定不同压力下聚合物熔体通过毛细的流动速率Q.由式(33—1)和式(33—2)计算出相应的和,将对应的和在双对数坐标上绘制—流动的曲线图.即可求得非牛顿指数n和熔体表观粘度。
改变温度和毛细管径比.可得到代表粘度对温度依赖件的粘流活化能以及离模膨胀比B等表征流变特性的物理参数。
注射过程原理:注射成型是高分子材料成型加工中一种重要的方法,应用分广泛,几乎所有的热塑性塑料及多种热固件塑料都可用此法成型。
热塑性塑料的注射成型又称注塑,是将粒状或粉状塑料加入到注射机的料筒。
经加热熔化后呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下。
从料筒前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。
充满模腔的熔体在受压的情况下,经冷却固化后,开模得到与模具型腔相应的制品。
分为以下几个工序:(1)合模与锁紧、(2)注射充模、(3)保压、(4)制品的冷却和预塑化、(5)脱模。
塑胶零、部件加工通用技术要求和测试方法
塑胶零、部件加工通用技术要求和测试方法一、透明塑胶件:技术要求:1.粗糙度Ra0.4考核制品光面的模具面;2.粗糙度Ra25考核制品毛面的模具面;3.制品要求成型完整、边缘无披锋,表面不得有磕碰、刮伤、杂点、夹水纹、缩水、变形及裂痕等外观缺陷;4.对于多模穴制件需在内表面的非配合面上增加模号和材料的回收标志;对于分模线及水口、顶针的位置,均需在开模前经相关结构设计人员确认后才能正式开模;5.未注圆角为R0.2~0.3,未注脱模斜度均按注塑件成型要求选取,常取1°或较小值(一般情况下,制件内表面脱模斜度要大于外表面的脱模斜度);6.图中所有尺寸按GB∕T 14486-2008《塑料模塑制件尺寸公差》或SJ/T 10628-1995《塑胶制件尺寸公差》标准中所规定的要求选取,各尺寸均为制品注塑成型后应达到的尺寸(未考虑注塑成型时缩水的影响);7.图中线性尺寸和角度尺寸的未注公差,分别按GB/T 1804-2000《一般公差未注公差的线性尺寸和角度尺寸的公差》标准中m 级和 f 级选取;未注形状和位置公差,均按GB∕T 1184-1996《形状和位置公差未注公差值》标准中H级选取;8.带*标志的尺寸为影响装配及性能的重要尺寸,加工、检验人员要特别注意此类尺寸控制;9.成形前胶料应进行预热干燥,生产和检验人员要注意成形后制件表面质量,制件不得有扭曲、变形等。
二、非透明塑胶件:技术要求:1.粗糙度Ra0.4 考核制品光面的模具面;2.粗糙度Ra25考核制品毛面的模具面;3.制品要求成型完整、边缘无披锋,表面不得有磕碰、刮伤、杂点、夹水纹、缩水、变形及裂痕等缺陷;4.对于多模穴制件在其内表面的非配合面上增加模穴号和材料回收标志;对于分模线及水口、顶针的位置,均需模具供应商在开模前把模具资料经相关开发设计人员确认后才能正式开模;5.未注圆角为R0.2~0.3,未注脱模斜度均按注塑件成型要求,常取1°或较小值(一般情况下,制件内表面脱模斜度要大于外表面的脱模斜度);6.图中所有尺寸按GB∕T 14486-2008《塑料模塑制件尺寸公差》或SJ/T 10628-1995《塑胶制件尺寸公差》标准中所规定的要求选取,各尺寸均为制品注塑成型后应达到的尺寸(未考虑注塑成型时缩水的影响);7.带*标志的尺寸为影响装配及性能的重要尺寸,生产及检验人员要特别注意此类尺寸;8.图中线性尺寸和角度尺寸的未注公差,分别按GB/T 1804-2000《一般公差未注公差的线性尺寸和角度尺寸的公差》标准中m 级和f 级选取;未注形状和位置公差,均按GB∕T 1184-1996《形状和位置公差未注公差值》标准中H级选取;9.表面处理:外表面喷漆(喷油),如颜色为银灰色,喷涂层厚度:30~60um(内表面喷漆:20~30um;外表面喷漆:30~45um;打底漆:15±5um;喷面漆:25±5um),其表面光亮,不允许有颗粒、露底、起皱、多喷、异色等外观缺陷;喷层附着力要求能通过百格测试,其附着力要求≥4B,即用3M 600#胶纸粘贴,在同一位置进行3次(或2次)相同的试验,该镀层脱落总面积≤5%)为合格;10.表面电镀:镀铬(Cr3+),镀层厚度:20~50um(先以镀铜、镍做底,表面镀铬,即Cu15Ni20Cr0.4),外观光亮,表面不允许有气泡、凹坑、漏镀、划伤、黑点、锈斑及镀层脱落等缺陷,镀层附着力要求做百格测试,用胶带在同一位置进行3次(或2次)相同的试验,附着力要求≥4B,该镀层总脱落总面积≤5﹪为合格。
材料的性能及测试方法
1
➢ 使用性能:材料在使用过程中所表现的性能。 包括力学性能、物理性能和化学性能。
➢ 工艺性能:材料在加工过程中所表现的性能。 包括铸造、锻压、焊接、热处理和切削性
能等。
2
铸造性能评价
铸造性主要包括流动性、收缩、疏松、成分偏析、 吸气性、铸造应力及冷裂纹倾向。
➢ 流动性是指液态金属充满铸模的能力; ➢ 收缩性是指铸件凝固时,体积收缩的程度; ➢ 偏析是指金属在冷却凝固过程中,因结晶先
疲劳应力示意图
疲劳曲线示意2图6
疲劳断口
轴的疲劳断口
疲劳辉纹(扫描电镜照片)
通过改善材料的形状结构,减少表面缺陷,提高表面
光洁度,进行表面强化等方法可提高材料疲劳抗力。
疲劳性能测试27
五 其它金属力学性能测试方法
金属的扭转试验
28
扭转试验
29
金属的剪切试验
30
31
思考
焊管界面结合强度 复合管界面结合强度
KIC=Yσca1/2
Y-与裂纹形状及加载方式有关的量 σc - 裂纹失稳扩展的应力,即断裂应力 a-材料内部裂纹长度的一半
23
夏比(Charpy )冲击试验
24
影响因素显微组织和冶金质量有关外,还 受试样尺寸、缺口形状、加工粗糙度和实验环 境等影响。
体心立方金属具有韧脆转 变温度,而大多数面心立 方金属没有。
19
Titanic 号钢板(左图)和近代船用钢板(右图) 的冲击试验结果
Titanic
近代船用钢板
20
(g)
脆性断口与韧性断口
21
TITANIC
建造中的Titanic 号
TITANIC的沉没 与船体材料的质量
材料工程基础实验指导书
材料工程基础实验指导书1. 实验目的本实验旨在通过实际操作加深学生对材料工程基础知识的理解,培养学生的实验技能和分析问题的能力。
具体目标包括:•熟悉常用材料工程实验仪器的使用方法;•掌握材料的取样、制备和测试方法;•学会对实验数据进行处理、分析和结果判断。
2. 实验仪器和材料•金相显微镜•电子显微镜•扫描电子显微镜•金属材料样品•试样切割机•研磨机•电解腐蚀仪3. 实验步骤3.1 样品制备1.使用试样切割机根据需要制备样品,并在样品上进行标记。
2.使用研磨机对样品进行粗磨,直到表面光洁。
3.使用细研磨纸进行细磨,直到样品表面无瑕疵。
4.清洗样品,确保表面无污染物。
5.在电解腐蚀仪中对样品进行电解腐蚀处理,以去除样品表面的氧化物和污染物。
3.2 金相显微镜观察1.将样品放置在金相显微镜上,并调整焦距和光源亮度,使样品清晰可见。
2.使用目镜和物镜对样品进行观察,并记录所观察到的结构特征。
3.3 电子显微镜观察1.将样品放置在电子显微镜上,并调整电子束亮度和对比度,使样品清晰可见。
2.使用电子显微镜观察样品,并记录所观察到的微观结构特征。
3.4 扫描电子显微镜观察1.将样品放置在扫描电子显微镜上,并调整电子束亮度和扫描速度,使样品清晰可见。
2.使用扫描电子显微镜观察样品,并记录所观察到的表面形貌特征。
4. 数据处理与分析在实验过程中,需记录实验数据并进行处理与分析。
数据处理主要包括:•实验数据的整理与分类;•对观察到的结构特征和形貌特征进行描述;•运用相关理论知识对观察结果进行解释和分析。
5. 实验结果实验结果应包括实验数据记录、结构特征描述和形貌特征描述。
针对实验结果,可进一步进行数据图表绘制、实验结果分析和相关结论总结。
6. 实验注意事项1.在操作实验仪器时要遵循相应的操作规范,严格遵守安全操作规程。
2.在样品制备过程中,应保持样品的完整性和纯净性,确保实验结果的准确性和可靠性。
3.在观察样品时,应注意调整仪器参数,保证样品清晰可见。
飞秒激光加工的实验与仿真研究
飞秒激光加工的实验与仿真研究近年来,飞秒激光技术在材料加工领域得到了广泛的应用,成为了高精度、高效率的加工方法。
本文就飞秒激光加工的实验与仿真研究进行了探讨。
一、飞秒激光加工实验飞秒激光加工是一种利用超短激光来进行材料加工的方法。
其特点是能量密度高、功率大、作用时间极短。
这些特性使得飞秒激光加工可以在不影响材料性质的前提下,实现高精度和高效率的加工。
下面我们就来具体介绍一下这种加工方法的实验过程。
首先,我们需要准备一台飞秒激光加工设备。
一般来说,这种设备由激光发生器、透镜、光学扫描系统、控制系统等部分组成。
其中,激光发生器产生的激光具有超短的脉冲时间,一般在几飞秒到几百飞秒之间。
透镜的作用是使激光能够单点聚焦在材料的表面上。
光学扫描系统则用于控制激光刻画出的图形。
接下来,我们需要准备样品进行实验。
选择不同的材料样品,测试其在不同条件下所能承受的激光功率,以及加工后的表面形貌等参数。
这需要通过一系列实验来进行评估。
在实验中,我们需要进行一些重要的参数测试,例如激光能量、扫描速度、扫描线密度等。
这些参数对于最终的加工效果有着重要的影响。
同时,在实验过程中,我们还需要关注激光加工对样品的热效应,避免过高的激光功率造成样品烧损或其它不良影响。
二、飞秒激光加工仿真研究除了实验研究之外,仿真研究也是飞秒激光加工技术发展中至关重要的一部分。
仿真研究可以帮助我们更好地理解飞秒激光加工的物理过程,有利于我们设计出更加高效的加工方案。
在仿真研究中,我们运用有限元分析方法进行研究。
通过建立各种材料的数学模型,研究激光加工时的温度场、应力场及材料物理特性等参数,以及这些参数与激光加工的关系。
通过仿真研究,我们可以更加细致地了解激光在材料表面产生的过程,比如激光的穿透深度、蒸发速率等参数变化。
这些参数对于飞秒激光加工的效果有着至关重要的影响。
同时,在仿真研究中,我们还可以预测加工效果,并在实验中进行验证。
最后的总结总之,飞秒激光加工作为一种新兴的材料加工方法,具有独特的优势。
材料分析测试技术---教学大纲
《材料分析测试技术》课程教学大纲课程代码:050232004课程英文名称: Materials Analysis Methods课程总学时:24 讲课:20 实验4适用专业:材料成型及控制工程大纲编写(修订)时间:2017.07一、大纲使用说明(一)课程的地位及教学目标材料分析测试技术是高等学校材料加工类专业开设的一门培养学生掌握材料现代分析测试方法的专业基础课,主要讲授X射线衍射、电子显微分析的基本知识、基本理论和基本方法,在材料加工类专业培养计划中,它起到由基础理论课向专业课过渡的承上启下的作用。
本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,着重培养学生运用所学知识解决工程实际问题的能力,培养学生的创新意识。
通过本课程的学习,学生将达到以下要求:1. 掌握X射线衍射分析、透射电子显微分析、扫描电子显微分析的基本理论;2. 掌握材料组成、晶体结构、显微结构等的分析测试方法与技术;3. 具备根据材料的性质等信息确定分析手段的初步能力;4. 具备对检测结果进行标定和分析解释的初步能力。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握晶体几何学、X射线衍射以及电子显微分析方面的一般知识,了解X射线衍射仪、透射电子显微镜、扫描电子显微镜的工作原理以及适用范围。
2.基本理论和方法:掌握晶体几何学理论知识(晶体点阵、晶面、晶向、晶面夹角、晶带);掌握特征X射线的产生机理以及X射线与物质的相互作用;掌握X射线衍射理论基础—布拉格定律;掌握多晶衍射图像的形成机理;了解影响X射线衍射强度各个因子,了解结构因子计算以及系统消光规律;了解点阵常数的精确测定方法;了解宏观应力的测定原理及方法;掌握物相定性、定量分析原理及方法;了解利用倒易点阵与厄瓦尔德图解法分析衍射现象;了解电子衍射的基本理论以及单晶体电子衍射花样的标定方法;掌握表面形貌衬度和原子序数衬度的原理及应用;掌握能谱、波谱分析原理及方法。
高分子材料测试技术(精华版)
高分子材料的测试方法综述前言:高分子材料及其成品的性能与其化学,物理的组成,结构以及加工条件亲密相关;为了表征性能与组成,结构和加工参数之间的关系,分析测试技术将起到唯独的打算作用; 并为评定材料质量,改进产品性能和研制新材料供应依据;不管是基本的材料性质,仍是加工性质( 或加工参数) 以及产品性质,客观标准的评定都需要某种测试技术供应参数进行表征;摘要:DTA DSC 红外光谱1 差热分析和差示扫描量热法差热分析1,差热分析的定义差热分析是布程控温度下,测量物质和参比物之间的温度差与温度关系的技术;这种. 关系可用数学式表示为温度;TR 参比物温度;,式中Ts 为试样2,差热分析的测试原理与仪器组成根据热分析定义,全部热分析仪器,差热分析仪器也不例外,它们都是田三大部分组成:(1) 被测物质的物理性质检测装置部分;如图 1.} 虚线内组成一也称主体部分;(2) 温度程序掌握装置部分制和数据处理装置部分;;(3) 显示记录装置部分;此外,仍有气氛控差热分析仪器的组成如下列图,虚线内为其测里原理S为试样;UTC为由控温热电偶送出的微伏信一号;R 为参比吻;UT 为由试样的热电偶送出的毫伏信号;E 为电炉;U T 为由差示热散偶送出的毫伏信号l程序掌握器;2. 氛掌握;3. 差热放大器;4. 记录仪差示扫描量热法1,差示扫描量热法定义差示扫描量热法是在程控温度下,测量输入到物质和参比物之间的功率差与温度关系的技术,用数学式表示为2,外加热式的功率补偿型差示扫描量热仪器的结构组成1. 温度程序掌握器;2. 气氛掌握;3. 差热放大器;4. 功率补偿放大器;5. 记录仪由于扫描量热法是在差热分析基础上进展起来的,因此,差示扫描量热仪在仪器结构组成上与差热分析仪特别相像;热流型兼示扫描量热法,实际上就是定量差热分析;功率补偿型差示扫描量热仪与差热分析仪的主要区分是前者在试样S侧和参比物R侧/l 面分别增加一个功率补偿加热丝( 或称加热器) ,此外仍增加一个功率补偿放大器;而内加热式功率补偿型差示扫描量热仪结构组成特点是测温敏锐. 元件是用铂电阻处而不是热电偶;高分子材料讨论中的应用差热分析技术和差示扫描里热技术在高分子材料科学与工程中的详细应用;为了实际应用时到底采纳哪种技术更为有益,先将这两种技术作比较;DTA 和DSC的主要区分:DTA 测定的是试样和参比物之间的温度差; 而DAC 测定的是热流率dH/dt, 定量便利;因此,DSC主要优点是热量定里便利,辨论率高,灵敏度好;. 其缺点是使用温度低,以功率补偿型DSC为例,最高温度只能到725;对于DTA,目前超高温DTA可作到2400 C,一般高温炉也能作到1500;所以,需要用高温的矿物,冶金等领域仍只能用DTA.但是对于需要温度不高, 灵敏度要求很高的有机,高分子及生物化学领域,DSC就是一种很有用的技术,正因如此,其进展也特别快速;近年来,DTA和DSC在高分子方而的应用特殊广泛,如讨论聚合物的相转变,测定结晶温度T, 结晶度θ,熔点Tm,等温结晶动力学参数和玻璃化转变温度以及讨论聚合,同化,交联,氧化,分解等反应,并测定反应温度或反应温区,TR,反应热,反应动力学参数等;2 热重法和微商热重法热重法和微商热重法定义热重法:根据ICTAC命名,热重法是在程序掌握温度下,测量物质的质量与温度关系的一种技术;用数学表达式为W=f(T 或t )式中:W 为物质重量;T 为温度;t 为时间微商热重法: 将热重法得到的热重曲线对时间或温度一阶微商的方法;记录的曲线为微商热重曲线简称DTG曲线,纵坐标为质量变化速率,dm/dt 或dm/dT;横坐标为时间或温度;测试原理由上述TG(DTG 定)义,可知其简洁原理;粗略的说;热重分析技术就是把物质放在炉子里进行加热称量的技术;也可在降温下称量;能够进行这种测量的仪器就是热天平(Therrnobalanee} ;下图分别表示热天平简洁示意图(简易的热重分析技术的简洁原理)和近代热天平的原理图;热重法( 微商热重法) 在高分子材料讨论中的应用热重法的主要特点是定量性强,能准地测量物质的质量变化及变化的速率;然而热重法的试验结果与试验条件有关;但是,对商品化的热天平而言,只要选用相同的试验条件,同种样品的热重数据是能重现的;试验证明,热重法广泛地应用在化学及化学有关的领域中,20 世纪50 岁月,热重法曾有力地推动了无机分析化学的进展,到幼岁月,热重法又在聚合物科学领域发挥根大作用;近年来,可以说在冶金学,漆料及油墨科学,制陶学,食品工艺学,无机化学,有机化学,生物化学及地球化学等学科中,热重法都有广泛的应用,发挥重要的作用;随着高分子材料与工程的. 进展,人们广泛应用热重法来讨论其中包括评估高分子材料的热稳固性,添加剂对热稳固的影响,氧化稳固性的测定,含湿量和添加剂含量的测定,反应动力学的讨论和共聚物,共混物体系的定量分析,聚合物和共聚物的热裂解以及热老化的讨论,等等;热重法现已成为生产部门和讨论单位讨论高分子材料热变化过程的重要手段,生产中可直接用于掌握工艺过程,理论土就可讨论聚合物分子链的端基情形;通过反应动力学的讨论,可以求得降解反应的速度常数,反应级数,频率因子及活化能;由于热重法具有分析速度快,样品用量少的特点,因而在高分子材料热老化方面的讨论中也口益引人注目;3 红外吸取光谱法红外吸取光谱特点红外吸取光谱最突出的特点是具有高度的特点性,除光学异构体外,每神化合物都有自己的红外吸取光谱;因此,红外光谱法特殊适于鉴定有机物,高聚物,以及其它复杂结构的自然及人工合成产物;固态,液态,气态样品均可测定,测试过程不破坏样品,分析速度快,样品用量少,操作简便;由于红外光潜法具有这些优点,现已成为化学试验室必不行少的分析仪器;但红外光谱法在定量分析. 方面精确度不高;在对复杂的未知物进行结构鉴定上,由丁它主要的特点是供应关于官能团的结构信息;故尚须结合紫外,核磁,质谱(U V,NMR,MS)及其它理化数据. 进行综合判定;目前在我国航空二二业系统中已广泛使用红外光谱代替传统的化学分析方法,对各种非金属材料进行质量监控; 并已制定了相应的检验标准,在各单位推广应用,取得了明显的经济效益;红外光谱仪,特殊是配有衰减全反射(ATR)漫反射(DRS)和光声池(PAS)等附件的傅里叫‘变换红外光谱仪,在涂料,胶粘剂,工程塑料以及树脂基复合材料的讨论中发挥着越来越大的作用;红外光谱仪器目前生产和使用的红外光谱仪主要有两大类,即色散型红外分光光度计和于涉分光——傅里叶变换红外光谱仪;用激光做光源的激光红外光谱仪尚处于研制阶段;1,色散型双光束红外分光光度计色散型红外分光光度计是由光源,单色器,检测器和放大记录系统等几个基术部分组成的;下图是红外分光光度计的方块图2,傅里叶变换红外光谱仪( 简称FT-IR)博里叶变换红外光谱仪与上述的色散型红外光谱仪的工作原理有很大不同,FT-IR 主要是由光源,迈克尔逊干涉仪,探测器和运算机等几部分组成;其工作原理如下列图;光源发出的红外辐射,通过迈克尔逊千涉仪变成干涉图,通过祥品后即得到带有样品信息的干涉图,经放大器将信号放大,记录在磁带或穿孔卡片或纸带. 上,输入通用电子运算机处理或直接输入到专用运算机的磁芯储备体系中;当十涉图经模拟一数字转换器(A/D)) 进行运算后,再经数字模拟转换(D/A) ,由波数分析器扫描,便可由X 一Y 记录器绘出通常的透过率对应波数关系的红外光谱;R—红外. 光源;M1肯定镜:M2 一一动镜;B —光束分裂器;S—样品;D—探测器;A—放大器;F—滤光器;A/D 模数转换骼;D/A 一数模转换器3,傅里叶变换红外光谱仪与一般色散型红外分光光度计相比的优点:①具有很高的辨论力;②波数精度高;③扫描时闻快;④光谱范畴宽;⑤灵敏度高;高聚物方面的应用红外光谱是讨论高聚物的一个很有成效的工具;讨论内容也很广泛,不仅可以鉴定米知聚合物的结构,剖析各种高聚物中添加剂,助剂,定量分析共聚物的组成,而且可以考察聚合物的结构,讨论聚合反应,测定聚合物的结晶度,取向度,判别它的立休构型等;.。
材料成型专业综合实验报告
材料成型专业综合实验报告一、引言材料成型是材料科学与工程的重要分支之一,涉及到材料的加工与制造过程。
本次实验旨在通过材料成型方法的实际操作,探讨材料成型技术在工程实践中的应用。
二、实验目的1.熟悉常见的材料成型方法,如挤压、注塑、拉伸等;2.学习掌握各种材料成型方法的工艺参数设置方法;3.分析与比较不同材料成型方法的优缺点。
三、实验内容与步骤1.实验材料准备:准备实验所需的材料,包括金属坯料、塑料颗粒等;2.挤压实验:将金属坯料放入挤压机中,调整挤压机的工艺参数,如温度、压力等,进行挤压成型;3.注塑实验:将塑料颗粒放入注塑机中,设定注塑机的工艺参数,如温度、压力等,进行注塑成型;4.拉伸实验:将金属试样放入拉伸机中,设定拉伸机的工艺参数,如应力、变形速度等,进行拉伸测试。
四、实验结果与分析1.挤压实验:经过调整挤压机的工艺参数,成功将金属坯料挤压成所需形状。
挤压成型具有高生产效率、成型连续性好、产品尺寸稳定等优点。
2.注塑实验:经过设定合适的注塑机工艺参数,成功将塑料颗粒注塑成所需形状。
注塑成型可以加工一些复杂形状的产品,具有生产周期短、产品密度均匀等优点。
3.拉伸实验:通过拉伸机的测试,获得金属试样的力学性能参数,如抗拉强度、延伸率等。
拉伸测试可以评估材料的机械性能。
五、实验总结与心得体会材料成型是工程实践中必不可少的环节,通过本次实验,我更加深入地了解到材料成型方法的具体操作和工艺参数的重要性。
不同的材料成型方法具有各自的优缺点,根据不同的产品需求和工艺要求,选择合适的成型方法很关键。
同时,了解和掌握材料的力学性能参数对于材料成型过程中的工艺优化和产品设计也非常重要。
[1]XX.材料成型实验教程[M].XX出版社,20XX.[2]XX.材料成型工艺原理[M].XX出版社,20XX.。
材料成型测试技术概述
由于0.105不是标准化精度等级值,因此该仪器需 要就近套用标准化精度等级值。0.105位于0.1级和0.2 级之间,尽管该值与0.1更为接近,但按选大不选小的 原则该数字电压表的精度等级G应为0.2级。
37
四、准确度、精密度、精度及精度等级
仪表精度等级的数字愈小,仪表的精度愈高。如0.5级的 仪表精度优于1.0级仪表,而劣于0.2级仪表。 值得注意的是:精度等级高低仅说明该检测仪表的引用 误差最大值的大小,它决不意味着该仪表某次实际测量中出 现的具体误差值是多少。 实际测量时,精度等级并不单纯由精确度决定,还需选 择合理的量程范围。使仪表的测量限制在容许误差内。
技术条件》规定,测量指示仪表的精度等级G分为0.1、0.2、0.5、
超过其量程的±1%。
36
四、准确度、精密度、精度及精度等级
•通过最大引用误差确定仪表的精度等级
例: 量程为0~1000 V的数字电压表,如果其
整个量程中最大绝对误差为1.05V,则有
Dmax 1.05 100% 100% 0.105% L 1000
13
底
14
1.1测试技术的作用和地位
测试技术在日常生活中的应用与日俱增
家用电器: 数码相机、数码摄像机:自动对焦---红外测距传感器 自动感应灯:亮度检测---光敏电阻 空调、冰箱、电饭煲:温度检测---热敏电阻、热电偶 电话、麦克风:话音转换---驻极电容传感器 遥控接收:红外检测---光敏二极管、光敏三极管 可视对讲、可视电话:图像获取---面阵CCD 扫描仪:文档扫描---线阵CCD 红外传输数据:红外检测---光敏二极管、光敏三极管 数字体温计:接触式---热敏电阻,非接触式---红外传感器 电子血压计:血压检测 --- 压力传感器 血糖测试仪、胆固醇检测仪 --- 离子传感器
材料科学研究与测试方法
材料科学研究与测试方法材料科学是研究材料的结构、性能和制备方法的一门学科,被广泛应用于材料制备、加工、改性和性能等领域。
测试方法是材料科学研究的基础,正确选择测试方法对于材料性能的测试和分析具有至关重要的作用。
本文将就材料科学研究与测试方法进行探讨。
一、材料科学研究。
材料科学的主要研究内容包括:1.材料制备:通过改变材料的结构、形貌等方式制备具有特定结构和性能的新材料。
2.材料结构:通过各种分析技术研究材料的微观结构特征,包括晶体结构、表面形貌等。
3.材料物性:研究材料的物理特性,如机械性能、热学性能、电学性能、光学性能等。
4.材料应用:将材料应用于各种领域,如建筑、汽车、机械、电子、医疗等。
二、常用测试方法。
1.机械性能测试方法:主要包括拉伸试验、压缩试验、弯曲试验等。
这些试验方法可以用来测量材料的强度、韧性、硬度等机械性能。
2.热学性能测试方法:主要包括热导率测定、热膨胀系数测定、热稳定性评估测试等。
这些测试方法可以用来测量材料的热性能。
3.电学性能测试方法:主要包括电导率测定、介电常数测定、电阻率测定等。
这些测试方法可以用来测量材料的电学性能。
4.光学性能测试方法:主要包括透过率测定、反射率测定、折射率测定等。
这些测试方法可以用来测量材料的光学性能。
5.化学性能测试方法:主要包括化学稳定性测定、化学反应行为测定等。
这些测试方法可以用来测量材料的化学性能。
三、测试方法的选择原则。
1.测试方法的选择应基于研究的目的和材料类型,例如,对于微观结构的研究,需要选择适合的测试方法,如扫描电镜、透射电镜等;2.测试方法应准确、可靠、重复性好,保证实验数据的可信度;3.测试方法应能够满足测试需求,如测试范围、精度、样品数量等;4.测试方法所需的设备和试剂应易得,操作简便。
四、结论。
材料科学研究与测试方法是相互支撑的。
正确选择测试方法可以确保研究结果的可靠性和准确性,进而为新材料的开发和应用提供技术支持。
材料工程基础实验报告(3篇)
第1篇一、实验目的1. 理解材料工程基础的基本概念和原理。
2. 掌握材料制备、加工、性能测试等基本实验方法。
3. 提高动手操作能力和分析问题、解决问题的能力。
二、实验仪器与设备1. 真空干燥箱2. 高温炉3. 拉伸试验机4. 显微镜5. 电子天平6. 粉末冶金设备7. 陶瓷制备设备三、实验内容1. 材料制备实验(1)实验目的:了解金属材料的制备方法,掌握粉末冶金技术。
(2)实验步骤:1)称取一定量的金属粉末;2)将金属粉末放入模具中;3)在粉末冶金设备中进行压制;4)高温烧结,得到金属块体。
(3)实验结果:成功制备出金属块体,其密度、硬度和强度等性能指标达到要求。
2. 材料加工实验(1)实验目的:了解金属材料的加工方法,掌握机械加工技术。
(2)实验步骤:1)将金属块体放置在车床上;2)根据设计要求,进行车削、铣削等加工;3)检查加工精度,确保满足设计要求。
(3)实验结果:成功加工出符合设计要求的金属零件,表面光滑,尺寸精确。
3. 材料性能测试实验(1)实验目的:了解材料力学性能的测试方法,掌握拉伸试验技术。
(2)实验步骤:1)将加工好的金属零件放置在拉伸试验机上;2)进行拉伸试验,记录试验数据;3)分析试验结果,计算力学性能指标。
(3)实验结果:金属零件的拉伸强度、延伸率等力学性能指标达到要求。
4. 材料组织结构观察实验(1)实验目的:了解材料组织结构的观察方法,掌握显微镜使用技术。
(2)实验步骤:1)将加工好的金属零件进行抛光、腐蚀等预处理;2)将预处理后的金属零件放置在显微镜下进行观察;3)分析组织结构,了解材料的微观性能。
(3)实验结果:成功观察到金属零件的微观组织结构,发现其晶粒度、相组成等特性。
四、实验总结通过本次实验,我们了解了材料工程基础的基本概念和原理,掌握了材料制备、加工、性能测试等基本实验方法。
在实验过程中,我们不仅提高了动手操作能力,还学会了分析问题、解决问题的方法。
以下是对本次实验的总结:1. 材料制备实验:成功制备出金属块体,验证了粉末冶金技术的可行性。
物理实验技术中的材料表面性能测试
物理实验技术中的材料表面性能测试材料表面性能测试是物理实验技术中的重要一环。
表面性能直接影响着材料的使用寿命、功能及质量。
在材料研发、制备和加工过程中,准确测试和评估材料的表面性能具有重要意义。
本文将详细讨论几种常用的材料表面性能测试技术及其应用。
一、光学显微镜观察光学显微镜是一种广泛应用于材料科学领域的表面性能测试工具。
通过显微镜的放大功能,可以观察和研究材料表面的形貌和结构。
例如,利用高倍显微镜观察金属材料表面的晶体结构,可以评估材料的晶粒大小、晶体缺陷等信息。
此外,光学显微镜还可以观察材料表面的粗糙度、表面涂层的均匀性以及材料之间的结合情况等。
通过显微观察,可以获得对材料表面特征的直观认识,为进一步分析提供依据。
二、扫描电子显微镜扫描电子显微镜(SEM)是一种高分辨率的材料表面性能测试技术。
与普通光学显微镜相比,SEM具有更高的放大倍率和更优秀的分辨率。
通过透射电子显微镜的扫描电子束,在显微级别上观察和表征材料表面的形貌、纹理和结构等。
此外,SEM还可以对材料进行元素分析和成分定量分析。
通过SEM技术,可以精确地评估材料表面的微观结构和组成。
三、原子力显微镜原子力显微镜(AFM)是近年来发展起来的一种新型材料表面性能测试技术。
AFM通过测量锥尖和表面之间的相互作用力,实现对材料表面形貌的高分辨率成像。
与光学显微镜和扫描电子显微镜相比,AFM可以获得更高的空间分辨率,甚至可以观察到纳米级结构。
通过AFM技术,可以对材料表面的粗糙度、纳米级特征和表面力学性质进行详细研究。
AFM还可用于检测材料的表面硬度、弹性模量和摩擦力等。
四、接触角测量法接触角是评估材料表面润湿性和渗透性的重要参数。
接触角测量法通过测量液滴与材料表面之间的接触角来评估材料的表面性质。
通常会利用数码相机和图像处理软件来测量接触角。
接触角的大小和形状可以反映出材料表面的亲水性、疏水性和吸附性能等。
通过接触角测量法,可以评估材料的表面疏水性和润湿性,为材料的选择和应用提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷轧厚度控制技术的应用
引言:
随着国民经济的高速发展,科学技术的不断进步,用户对板带钢材的品种、材质、精度提出了更高的要求,尤其在汽车工业、电子工业、高压容器等领域是对各种板带材要求更为苛刻。
因而促使板带轧机向自动化、高速化和高精度方向发展,轧机的压下机构要具有高精度、快速性、稳定性、同步性、可靠性等要求。
而钢材产品的精度主要指产品的外形尺寸精度,对于板带钢来说,外形尺寸包括厚度、宽度、板形、板凸度、平面形状等等。
在所有的尺寸精度指标中,厚度精度是衡量板材及带材的最重要的质量指标之一,己成为国内外冶金行业普遍关注的一个焦点。
首钢京唐公司冷轧厂装备了国内数一数二先进的设备,例如三冷轧厂酸轧作业区的日本三菱日立的UCM轧机,采用了厚度自动控制系统。
1、薄板冷连轧机AGC系统:
(1)用测厚仪测厚的反馈式厚度自动控制系统
70年代,厚度控制系统大多是这类系统,带钢从轧机出来之后,通过测厚仪测出实际轧出厚度并与设定厚度值相比较,得到厚度偏差,当二者相等时,厚度差运算器输出为零。
若实测厚度值与给定厚度值相比较出现厚度偏差时,便将它反馈给厚度自动控制装置,变化为辊缝调节量的控制信号,输出给压下执行机构,以消除此厚度偏差。
然而,这种控制方式,因检出的厚度变化量与辊缝的控制量不是在同一时间内发生的,所以实际轧出厚度的波动不能得到及时的反映,结果使整个厚度控制系统的操作有一定的时间滞后。
为防止厚度控制过程中的此种时间滞后,往往采用厚度计式的厚度自动控制系统。
(2)厚度计式厚度自动控制系统
在轧制过程中,任何时刻的轧制压力P,机架刚度Km和空载辊缝S0都可以检测到,根据轧机的弹跳方程h=S0+P/Km,计算出任何时刻的实际轧出厚度h。
这就等于把整个机架作为测量厚度的“厚度计”,这种检测厚度的方法称为厚度计方法。
这种方法可以消除反馈式厚度控制的传递时间滞后,但是对于压下机构的电气和机械系
统、以及计算机控制时程序运行等的时间滞后仍然不能消除,这种方式从本质上讲仍然是反馈式的。
(3)前馈式厚度自动控制系统
前两种厚度控制系统,都避免不了控制上的传递上的滞后或过渡过程的滞后,因而限制了精度的进一步提高。
特别是当来料的厚度波动较大时,更会影响带钢的实际轧出厚度的精度。
为了克服此缺点,在现代化的冷连轧机上都广泛采用前馈式厚度自动控制系统,简称前馈AGC。
它用测厚仪或以前一机架作为“厚度计”,在带钢没有进入本机架之前测量出其入口厚度并与给定厚度值进行比较,当有厚度偏差时,便预2第一章绪论先计算出可能产生的轧出厚度偏差,从而确定为消除此偏差值所需的辊缝调节量,然后根据该检测点进入本机架的时间和移动辊缝调节量所需的时间,提前对本机架进行厚度控制,使得厚度控制点正好是厚度偏差的检测点。
前馈式厚度控制是属于开环控制系统,一般将前馈式与反馈式厚度控制系统结合使用。
(4)张力式厚度自动控制系统
张力的变化可以显著改变轧制压力,从而能改变轧出厚度。
改变张力与改变压下位置控制厚度相比,其惯性小、反应快、易于稳定,在冷轧机尤其是薄板冷轧机上,由于轧件很薄、轧件的塑性刚度很大,靠调节辊缝进行厚度控制,效果很差,为进一步提高成品钢带的精度,常采用张力AGC进行厚度微调。
(5)液压厚度自动控制系统
20世纪下半叶以来,流体传动与控制技术得到了长足的发展,由于其功率大。
惯性小、响应速度快等优点,在各工程领域中得到了广泛的应用。
轧机的压下系统也逐步采用电液伺服技术,对提高成品带钢的精度有很大的现实意义。
借助液压压下系统还可以实现轧机的刚度可调,做到在轧制过程中的实际辊缝固定不变,即“恒辊缝控制”,从而保证了实际轧出厚度不变,还可根据生产实际情况的变化,相应地控制轧机刚度,获得所需要的轧出厚度。
(6)冷连轧机流量AGC系统
20世纪90年代由于激光测速仪的推出使得有可能直接精确测量到带钢速度,因而不仅可精确获得各机架前滑值,而且通过变形区秒流量恒定法则有可能精确地计算出变形区的出口厚度。
这一技术解决了长期困扰冷连轧机AGC系统设计的问题,即用入口测厚仪信号
进行前馈,由于开环控制不能保证出口厚度偏差为零。
如果用出口测厚仪信号进行反馈,由于大滞后不稳定,为了保持稳定裕度,不得不减小反馈量。
如果用轧制力通过弹跳方程计算变形区出口厚度虽然不存在滞后但弹跳方程测厚精度太低。
由于激光测厚仪的采用,使这一问题迎刃而解,既可高精度地获得变形区出口厚度又可以没有滞后地进行反馈控制向厚度控制,其目的是为了获得带钢纵向厚度的均匀性。
对轧制力AGC不断进行标定或“监控”。
换句话说,为了提高测厚精度,在弹跳方程中还需要增加几个补偿量,这主要是轧辊热膨胀与磨损的补偿和轴承油膜的补偿。
由轧辊热膨胀与磨损所带来的辊缝变化以G表示之,这可以利用成品X射线测厚仪所测得的成品厚度,以及利用由此实测成品厚度按秒流量相等原则所推算出来的前面各架的厚度,把它们和用厚度仪方法所测算出的各架厚度进行比较,从而求得各架的G值。
因此,可以将这种功能称之为“用X射线测厚仪对各架轧机的AGC系统进行标定和监视”。
油膜补偿即是由于轧制速度的变化使支撑辊油膜轴承的油膜厚度发生变化,最终影响到辊缝值。
设其影响量为δ,则最终轧出厚度应为:
h=S0+[(P-P0)/K]-δ-G (1—6)
在轧机速度变化时,AGC系统应根据此式对所测厚度进行修正。
4、压力AGC控制(GMTR)
这种控制也被称为液压轧机的可变刚性。
压力AGC控制可以有效地增加轧机刚性,使轧机的等效刚性远大于轧机的自然刚性。
在轧制过程中,控制系统分别检测轧机操作侧和传动侧的轧制压力,根据轧机的刚性曲线,计算出轧制力所引起的机架拉伸,相对于预计机架拉伸的任何变化被送入辊缝控制环进行动态补偿。
如果上述变化被完全补偿,即100%补偿,则轧机将呈现一无限大刚性,轧辊辊缝将不受来料厚度和硬度的影响,可以产生恒定的出口厚度。
但是,100%轧机刚性补偿会使支承辊偏心完全反映在带材上,同时系统极不稳定,影响轧制精度,实际工作中,补偿的百分比需要调整以获得最佳的轧机性能。
2、厚度监控
通过出口侧测厚仪检测轧机出口侧带材的厚度偏差,控制轧辊辊缝或轧制压力,使厚度偏差趋于零。
厚度监控可以消除因热膨胀、轧
制速度等对出口厚度的影响,消除入口厚度变化和入口带材硬度变化的影响。
3、厚度预控
通过入口侧测厚仪检测轧机入口侧带材厚度,存入一先入先出的厚度链表中,经过延时,根据所存厚度值控制轧辊辊缝或轧制压力,使轧机出口侧带材的厚度偏差减小。
延时的时间决定于入口测厚仪至轧辊中心线的距离和轧材的线速度。
4、秒流量控制
根据流量恒定原理,单位时间内进入轧机的带材体积应等于轧机出口带材的体积,因此,可通过测量轧机入口、出口速度和入口厚度计算出轧机出口厚度,这一计算厚度与设定厚度的偏差用于控制轧辊辊缝或轧制压力,同时,用出口测厚仪测得的带材实际厚度偏差对上述控制进行校正。
(1)前馈AGC原理
前馈AGC不是根据本机架的实际轧出厚度的偏差来控制厚度,而是在轧制过程尚未进行之前,预先测定出来料厚度偏差ΔH,并往前馈送给轧机,在预定时间内提前调整压下机构,以便保证获得所需要的轧出厚度h。
正是由于它是往前馈送信号,来实现厚度自动控制,所以称为前馈AGC,或称为预控AGC。
(2)反馈AGC原理
板带从轧件中轧出之后,利用测厚仪测出实际厚度h实,并与设定值h设相比较,得到厚度偏差Δh=h设-h实,当二者数值相等时,厚度差运算器的输出为零,即Δh=0。
若实测厚度值与使得厚度值比较出现厚度偏差Δh时,便将该值反馈给厚度自动控制装置,变换为辊缝调节的控制信号,输出给执行机构,由压下电动机带动压下螺丝作相应的调节,以消除此厚度偏差。
(3)各种厚度控制方式的分析比较
压力AGC由于受压力测量设备以及轧机刚度非线性等条件的限制,不能进一步提高其控制精度,并且压力AGC也不能消除由轧机本身原因引起的厚度变化。
反馈AGC、张力AGC和监控AGC是纯滞后的反馈型AGC系统。
前馈AGC的主要用途就是消除来料的厚度波动,对于出口厚度偏差的修正却不能起到很好的调节作用,同时也不能很
好地消除由轧机本身原因引起的厚度变化。
控制精度更高的流量AGC系统被称之为微米级厚度自动控制系统( μm AGC)。
结语:
综上所述,影响冷轧带钢厚度变化的因素很多,但主要是由于轧制压力的影响。
冷轧带钢厚度控制的方法也有很多,但是最基本的还是调节压下,然后再配合其他的控制方法,最终达到理想的带钢厚度。
本文主要就薄板冷轧厚度控制技术的应用、冷轧厚度控制技术的分类、和影响带钢厚度的原因和解决方法做了简要的介绍和分析。
通过目前最先进的厚度控制技术以轧制出高精度厚度的带钢
函材升本14
宋家泉。