两位数乘两位数估算
两位数乘两位数乘法估算

知识小博士:
小鸟每秒飞40米,29秒大约 飞多少米?
知识小博士:
小白兔每秒跑22米,32 秒大约跑多少米?
知识小博士:
驼鸟每秒跑27米,32秒 大约跑多少米?
知识小博士:
Hale Waihona Puke 鲸鱼每秒游12米,58秒 大约游多少米?
知识小博士:
老虎每秒跑33米,18秒 大约跑多少米?
老师带来17箱水,每箱24瓶,大约有多少瓶?
除法估算练习: 1、 460÷6 2、390÷5
3、80÷9
4、52÷6
《两位数乘两位数估算》
一、 5×1= 5
3×2= 6
12×4= 48
5×10= 50
50×10= 500 二、
3×20= 60
30×20= 600
12×40= 480
120×40= 4800
1、24×50 3、250×40
2、36×80 4、106×50
(1) 17≈20 20 × 24=480 (2) 24≈20 20 × 17=340 (3) 24≈20 17≈20 20 × 20=400 假如现在有398人,你认为拿多少瓶较合理?
42≈40
40 × 6=240 240<300
每辆车坐42人,6辆车,老 师和学生共300人,够坐吗?
每人买门票需18元,共 有42人,老师带了850 元,够买吗?
每排有11人,有27排, 现在有263人,够坐吗?
(1) 11≈10 10 × 27=270 (2) 27≈30 30 × 11=330 (3) 11≈10 27≈30 10 × 30=300
苏教版三年级数学下册《两位数乘两位数的口算、估算》教案

苏教版三年级数学下册《两位数乘两位数的口算、估算》教案一. 教材分析苏教版三年级数学下册《两位数乘两位数的口算、估算》这一章节,是在学生已经掌握了两位数的加减法和除法的基础上进行教学的。
本章节主要让学生掌握两位数乘两位数的口算方法和估算方法,培养学生解决实际问题的能力。
二. 学情分析三年级的学生已经具备了一定的两位数运算基础,对于口算和估算也有了一定的认识。
但是,学生在进行两位数乘两位数的运算时,可能会出现计算错误和混淆的情况,需要教师在教学中进行引导和纠正。
三. 教学目标1.让学生掌握两位数乘两位数的口算方法。
2.让学生学会两位数乘两位数的估算方法。
3.培养学生解决实际问题的能力。
四. 教学重难点1.教学重点:两位数乘两位数的口算方法和估算方法的讲解和练习。
2.教学难点:两位数乘两位数的口算和估算的运算过程和技巧。
五. 教学方法采用讲授法、示范法、练习法、分组合作法等教学方法,通过教师讲解、示范,学生练习、合作交流的方式,让学生掌握两位数乘两位数的口算和估算方法。
六. 教学准备1.教师准备PPT,内容包括两位数乘两位数的口算和估算的方法和练习题。
2.学生准备练习本,用于记录和练习。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引出两位数乘两位数的重要性,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT,讲解两位数乘两位数的口算和估算的方法,让学生初步了解和掌握。
3.操练(10分钟)教师给出两位数乘两位数的练习题,学生独立完成,教师进行讲解和指导。
4.巩固(10分钟)教师给出一些两位数乘两位数的实际问题,学生分组合作解决,巩固所学知识。
5.拓展(10分钟)教师引导学生思考两位数乘两位数的其他解题方法,如列竖式等,并进行练习。
6.小结(5分钟)教师引导学生总结两位数乘两位数的口算和估算方法,以及解题技巧。
7.家庭作业(5分钟)教师布置一些两位数乘两位数的练习题,让学生回家巩固所学知识。
两位数乘以两位数知识点归纳

两位数乘以两位数知识点归纳
两位数乘以两位数知识点归纳
(一)口算乘法:
1、整十、整百、整千相乘的方法:先用0前边的数相乘,得到一个结果,然后再数一数被乘数和乘数中一共有多少个0,再在结果的后边添上多少0。
2、估算:想被乘数和乘数最接近或等于哪个整十的两位数,那么所要估算的结果就是这两个整十数的乘积。
(二)笔算乘法:注意竖式的格式。
两位数乘两位数在笔算时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加。
(遇到进位乘法时,那一位上的乘积满几十就向前一位进几)
1、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
2、验算:交换两个因数的位置。
——来源网络,仅供个人学习参考1 / 1。
两位数乘两位数的乘法估算.

21 39 72 80
从上面四个数中任选两 个数组成一道乘法算式, 你能说出几道乘法算式? 并试着估算一下结果。
3
1 估算42×18大约得多少?
想:42 ≈40
42 ×18 ≈720
40
42约等于多少?
2 估算42×18大约得多少?
想:42 ≈40 18≈20
42 ×18 ≈800
40 20估算42×18大约得多少? 18 ≈20
42 ×18≈ 840
20
18约等于多少?
第(1)种方法是:把( 18 )看成(20 ), 是估(高 )了,所以估算的结果就比实际的结 果要( 高 )。
第(2)种方法是:把( 22 )看成(20 ), 是估(低 )了,所以估算的结果就比实际的结 果要(低 )。
学校组织学生春游,每辆车坐42人,18 辆车,老师和学生共720人,够坐吗?
1
2
《气象知识知多少》每本18元,李老师决 定买12本,李老师大约要准备多少钱?
18×12≈
A、18×12≈180(元) B、18×12≈240(元)
(10)
(20)
李老师该采纳谁的建议:( )
小朋友步行每分钟走48米,19分钟能到电影院吗? 停车场 200米 400米 600米 800米 1000米
48 × 19≈1000(米)
(50)
(20)
1、能到
2、不能到
1号厅
1号厅
一号放映厅 每排22个座位。
一共有18排座位。
我们350个 学生够坐吗?
1、够
2、不够
1000名学生乘车回学校,学校打 算租21辆相同的车子,你认为租哪种 车子比较合理呢?
1、大巴车
准乘72人
三年级数学两位数乘两位数知识点

三年级数学两位数乘两位数知识点三班级数学两位数乘两位数学问点11、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。
)4、有大约字样的一般要估算。
5、凡是问够不够,能不能等的题目,都要三大步:①计算②比较③答题。
→别忘了比较这一步。
6、笔算乘法:先把第一个因数同其次个因数个位上的数相乘,再与其次个因数十位上的数相乘。
7、相关公式:因数×因数=积积÷因数=另一个因数运算挨次:先乘除,再算加减同级运算,应按从左到右的挨次进行计算;假如有括号,要先算括号内的运算。
三班级数学两位数乘两位数学问点2(一)口算除法1、整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2、三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的位或前两位,那么几百或几十就是所要估算的商。
(二)笔算除法1、坚固把握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,假如不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。
除到被除数的哪一位不够商1,用“0”占位。
每一次除得的余数必需比除数小。
)2、会推断商是几位数。
比较除数与被除数位的大小,假如被除数位上的数比除数小,那么商肯定比被除数少一位;假如被除数位上的数比除数大或相等,那么商和被除数的位数相等。
两位数乘两位数的估算的算理和算法

两位数乘两位数的估算的算理和算法在日常生活中,我们经常需要进行两位数乘两位数的计算,但是对于一些大型乘法运算,如果直接进行手算,可能会相对复杂和耗时。
估算乘法结果的算理和算法显得十分重要。
本文将从深度和广度两个角度对两位数乘两位数的估算进行全面评估,并据此撰写有价值的文章。
1. 估算的算理估算的算理是指对于乘法运算的结果进行估计时所遵循的一些原则和规律。
在进行两位数乘两位数的估算时,可以根据乘法的性质和规律进行合理的估算。
可以先将两个两位数的数值进行适当的近似,然后再进行乘法运算,最后根据估算结果进行修正。
另外,还可以利用乘法的交换律和结合律来简化估算过程,从而提高计算效率和准确性。
2. 估算的算法估算的算法是指在进行估算时所采用的一些具体的计算方法和步骤。
在进行两位数乘两位数的估算时,可以根据乘法的特点和规律采用不同的算法。
常见的估算算法包括近似相乘法、分步估算法和数字分解法等。
这些算法都可以根据具体的计算需求来灵活应用,从而得到更加准确和有效的估算结果。
总结回顾通过对两位数乘两位数的估算进行全面评估,我们可以发现估算的算理和算法在日常生活中具有重要的应用意义。
合理的估算方法和步骤能够帮助我们快速获得乘法运算的近似结果,并且能够有效提高计算效率和准确性。
在日常生活中,我们应该根据不同的需求,灵活运用估算的算理和算法,从而更加方便和高效地进行乘法运算。
个人观点和理解对于两位数乘两位数的估算,我认为估算的算理和算法是非常重要的。
在实际操作中,我们经常会遇到一些需要快速估算乘法结果的情况,因此掌握合理的估算方法和步骤是十分必要的。
通过学习和掌握估算的算理和算法,我们可以更加轻松地进行乘法运算,同时也能够提高计算的准确性和效率。
在撰写本文时,我深入研究了两位数乘两位数的估算的算理和算法,通过对其深度和广度的评估,能够更好地理解这一主题。
在文章中,我多次提及了“估算”、“算理”和“算法”等主题文字,以便读者能够更加清晰地理解文章内容。
两位数乘两位数的估算的算理和算法

两位数乘两位数的估算的算理和算法两位数乘两位数的估算是一种快速计算乘法结果的方法,尤其适用于大数相乘时进行估算。
本文将介绍两位数乘两位数的估算的算理以及相关算法。
算理:两位数乘两位数的估算基于以下原理:1. 两位数乘积的估算结果应当接近实际结果。
2. 可以通过估算两位数的大小和乘积的位数来提供一个初始近似值。
3. 应该使用位数较少和计算较简单的数来实现估算。
算法:以下是两位数乘两位数的估算算法的步骤:步骤一:将两位数乘数和被乘数分别拆分为十位数和个位数。
例如:32 × 54 可拆分为(30 + 2) ×(50 + 4)。
步骤二:在计算过程中,只考虑乘数的十位数和被乘数的个位数这两个部分。
例如:只考虑 30 × 4 和 2 × 50。
步骤三:计算估算的数值。
- 对于 30 × 4,可以直接计算得到 120。
- 对于 2 × 50,先计算 2 × 5 = 10,再在结果末尾加一个 0 得到 100。
- 估算的结果即为 120 + 100 = 220。
步骤四:比较估算结果与实际结果的接近程度。
- 通过计算 32 × 54 得到实际结果为 1728。
- 比较估算结果 220 和实际结果 1728,发现估算与实际相差较大。
步骤五:调整估算方法以提高准确度。
- 继续拆分乘数和被乘数,增加更多的部分以提高计算准确度。
- 例如,将 32 × 54 拆分为(30 + 2) ×(50 + 4) = 30 × 50+ 30 × 4 + 2 × 50 + 2 × 4。
- 计算结果为 1500 + 120 + 100 + 8 = 1728,与实际结果相等。
步骤六:根据需求进行近似估算。
- 如果对计算准确度要求不高,可以根据拆分的结果进行近似估算。
- 例如,将 32 × 54 拆分为(30 + 2) ×(50 + 4) = 1500 + 120 + 100 + 8。
04两位数乘两位数估算

49 ×37=1813 24 ×76 =1824 33 ×54 =1782
49 × 37 343 147 1813
24 × 76 144 168 1824
33 × 54 132 165 1782
苏教版三年级数学下册
乘法估算
教学目标:
• 1.学习两位数乘两位数的估算方法。
• 2.进一步练习两位数乘两位数的笔算,提高对 估算价值的认识。
口算:
25×10= 250 14 ×20 = 280
= 940 30 ×23 = 690 40 ×11= 440 30 ×20= 600 20 ×12= 240 34 ×20=680
本课小结:
估算在我们的生活中常常出现,我们要善于 用学过的知识来解决这些生活中的问题。同学 们,你们学会了吗?
1218 千克
2 9 4 2 5 8 1 1 6 1 2 1 8 ×
估一估:
王老师要为儿童食堂买21个水瓶,每个 32元。大家看看王老师要带多少钱?
21×32=
一艘轮船可装19个集装箱,每个集装箱 的载重量为88千克。这艘轮船最多能载 重多少千克?
88×19=
先估算,再用竖式计算。
28×46 =1288 62 ×25 =1550 58 ×19 =1102
三年级数学下册 两位数乘两位数的估算2教案 苏教版

[教学目标]
1.经历探索两位数乘两位数估算方法的过程,择不同的估算方法解决相应的实际问题,进一步发展数学思考,提高解决问题的能力。
3.在探索算法喝解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高合作交流的能力,获得成功的体验,树立学习的信心。
五、作业:想想做做1
[教学过程]:
教学预案
调整改进
一、情境导入
谈话:(出示主题图)今天,明明邀请我们去它加美丽的牧场参观,通过他的介绍,你了解牧场的哪些情况?明明向我们提出了什么问题?你能列出算式吗?
二、探索方法
1.谈话:估算一下,明明家1天大约可以挤奶多少千克?
小组讨论,交流各自的估算方法。
2.全班交流:你是怎样想的?
引导评析:你觉得他的估算方法时候合理?
3.计算验证:我们估算得对不对呢?请你用竖式计算进行验证(提醒学生注意竖式计算过程中连续进位的问题。)
比较交流:比较笔算与估算的结果,你有什么想法?
4.阅读课本并讨论:书上运用了哪些估算策略?对吗?谁估算的结果更接近正确的计算结果?
5.讲述:两位数乘两位数的估算,要求只是确定乘积在什么范围内,估算策略是多样的,只要合理,都是可以的。
三、巩固深化
1.想想做做2
谈话:每组3道题,上下两题可以口算,中间一题要列竖式计算,然后把这3道题比一比,你发现了什么?
学生独立计算。
指名在班内说说自己的发现。
2.想想做做3
独立估算,完成连线。同桌交流估算方法。
集体交流,指出:把两个乘数分别看做与它们相近的较小的整十数喝较大的整十数,可以确定积的大致范围。
讨论交流:你认为他可能买哪种篮球?你是怎样想的?
小结:生活中要根据具体情况,合理选择不同的方法进行估算。
两位数乘两位数的法则

两位数乘两位数的法则两位数乘两位数的法则是初中数学中的基础知识,也是日常生活中经常用到的计算方法。
它的运用涉及到数学知识、运算技巧和逻辑推理等多方面的能力,对于培养学生的数学思维和逻辑思维能力具有重要意义。
本文将从乘法原理、竖式乘法、估算乘法和分解乘法等方面介绍两位数乘两位数的法则。
1.乘法原理乘法原理是指把两个自然数a,b相乘,结果即为a和b的积,用符号“×”表示,即a×b,其中a 和b称为乘数,积称为乘积。
两个两位数相乘,常常涉及到进位和乘法分配律,需要有较好的数学运算能力才能掌握。
例如,23×45=1035,这个式子涉及到个位乘个位的结果为5,十位乘个位的结果为2×5=10,十位上的进位以及十位乘十位的结果为4×2=8,加上上一步的进位,最终结果为1035。
2.竖式乘法竖式乘法是一种有效的方法,可以在短时间内计算出两个两位数的乘积。
该方法需要将两个两位数的数字在相应的位数上对齐,然后从右往左按位相乘,并做好进位,最后把相应的部分加起来得到结果。
例如,23×45可以用竖式乘法计算如下:23 × 45 ----- 115 690 ----- 1035从右往左计算:第一个乘法项为5×3=15,写下5并进位;第二个乘法项为4×3=12,加上上一步的进位得到(1+4)×3=15,再写下5并进位;第三个乘法项为5×2=10,加上上一步的进位得到(1+6)×2=14;最后将3位数相加得到结果1035。
3.估算乘法估算乘法是一种有用的方法,可以在没有计算器或暂时没有纸笔的情况下快速估算两个二位数相乘的结果。
该方法需要把两个二位数先近似到十位或百位,然后相乘,最后根据实际情况做出一定的修正。
例如,23×45≈20×50=1000,这样的近似可以快速地得到结果,如果需要更精确的数值,可以再根据实际情况做出调整。
两位数乘两位数的估算教案3篇

I don't speak first when spring comes, any bug dare to squeak.整合汇编简单易用(页眉可删)两位数乘两位数的估算教案3篇两位数乘两位数的估算教案1一、教材内容(P.59例2做一做和练习十四的第5~11题)二、教材分析本课内容是三年级下册第五单元《两位数乘两位数》的第两课时,内容是估算,即两位数乘两位数的估算。
口算是笔算的基础,也是估算的基础,教材先安排口算,在扩大学生的口算范围的同时,为学生下一步学习两位数乘两位数的估算和笔算方法作好必要的准备。
并且,在估算和笔算教学活动中,又可以进一步巩固口算。
这样,有利于提高学生的计算能力。
三、教学目标1.了解估算在日常生活中的意义,掌握估算的方法,能正确地进行估算;引导学生运用多种方法进行估算,培养学生的思维能力;培养学生的分析判断能力。
2.通过自主探究,合作、交流,展示不同的估算方法。
3.体会估算的作用,感受数学与现实生活的密切联系。
四、教学环境及资源准备多媒体课件五、教学过程1.复习练习十四第5、6题。
整十整百数的口算方法是怎样的?组织学生在小组中开展比赛,看谁算得又对又快。
然后集中订正答案。
2.新课引入计算在我们的日常生活中应用非常广泛。
但在实际生活中,有些计算并不要我们得出准确的结果,只要估算一下大致的结果就行了,这就要求我们学会估算,(揭示课题:两位数乘两位数的估算)(1)出示教材第59页例2的情境图。
师:请同学们观察图画,图上的小朋友在议论什么呢?从小朋友的话语中,你知道了哪些信息?师:要知道礼堂里的座位能否坐下350名同学,你是怎么想的?(学生根据已有知识经验都能很快回答出来。
)(教师根据学生回答板书:22×18)(2)师:请大家回忆一下,以前我们在估算乘法的时候,是怎样估算的呢?师:22×18怎样估算?同学们小组合作讨论一下。
教师巡视,指导估算能力较差的小组。
三年级数学下册《两位数乘两位数的口算估算》教案、教学设计

为了巩固本节课所学内容,检验学生对两位数乘两位数口算估算方法的掌握程度,特布置以下作业:
1.基础作业:
(1)完成课本第45页的练习题1、2、3。
(2)结合生活实际,选择两个两位数,运用口算估算方法计算乘积,并与精确计算结果进行对比。
2.提高作业:
(1)完成课本第46页的练习题4、5。
(2)运用口算估算方法,解决以下问题:一个长方形的长是25厘米,宽是16厘米,估算这个长方形的面积。
(2)终结性评价:通过课后作业、单元测试等形式,检测学生对两位数乘两位数口算估算方法的掌握程度,为后续教学提供依据。
4.教学反思:
(1)教师在教学过程中,要关注学生的学习状态,及时调整教学进度和教学方法,确保教学效果。
(2)注重课后反思,总结教学经验,不断提高自身教学水平,以更好地为学生服务。
四、教学内容与过程
4.培养学生的合作精神,让学生在相互帮助、共同进步中体会到团队力量的重要性。
5.培养学生具备良好的估算习惯,使学生能够根据实际情况灵活运用口算估算方法,提高解决问题的能力。
二、学情分析
在本章节的教学中,考虑到学生的年龄特点和已有知识水平,进行以下学情分析:
1.学生年龄:三年级学生正处于好奇心强、求知欲旺盛的阶段,对于新鲜事物有较高的兴趣,但注意力集中时间较短,需要教师采用生动、有趣的教学方法来吸引学生。
(四)课堂练习
1.教学活动设计:教师设计具有层次性的练习题,让学生在实际操作中巩固所学知识。
2.练习题类型:
a.基础题:针对口算估算方法的直接应用。
b.提高题:结合实际情境,运用口算估算方法解决问题。
c.拓展题:设计富有挑战性的问题,培养学生的应用意识和创新能力。
两位数乘两位数的估算的算理和算法

两位数乘两位数的估算的算理和算法在两位数乘两位数的估算中,算理和算法扮演着重要的角色。
算理是指通过对数学知识和规律的理解和推演,利用估算的思维方式,快速而准确地计算出两个两位数相乘的积。
算法则是指按照一定的步骤和规则进行计算,通过逐步操作得出最终的结果。
我们来探讨算理方面。
在计算两位数乘以两位数时,我们可以通过数学知识和规律来进行估算。
对于两位数相乘,我们可以先将两个数相乘的个位数部分进行计算,然后再计算十位数部分的乘积,最后将两个部分的结果相加得出最终的积。
这种方法可以帮助我们快速而准确地进行估算,而不需要进行繁琐的长乘法计算。
通过深入理解数学知识和规律,我们可以更加灵活地运用估算的方法进行计算,从而提高计算的效率和准确性。
我们来讨论算法方面。
在计算两位数乘以两位数时,我们可以采用竖式乘法的算法来进行计算。
我们将两个数分别的十位数和个位数进行相乘,然后将结果相加得出部分积;接着再将十位数和个位数相乘得出另一部分积,最终将两个部分积相加得出最终的积。
这种算法可以帮助我们有条不紊地进行计算,确保每一步的计算都是正确的,最终得出准确的结果。
通过掌握和熟练运用这种算法,我们可以在计算过程中更加有条不紊,减少错误的发生。
在总结和回顾性方面,通过对算理和算法的深入探讨,我们可以看到估算在两位数乘以两位数的计算中的重要性。
通过深入理解数学知识和规律,我们可以更加灵活地运用估算的方法进行计算,快速而准确地得出结果。
通过掌握并熟练运用算法,我们可以有条不紊地进行计算,确保每一步的计算都是正确的,最终得出准确的结果。
这些方法和技巧可以帮助我们在日常生活和学习中更加高效地进行计算。
个人观点和理解方面,我认为深入理解数学知识和规律对于估算的方法和计算都至关重要。
通过对数学知识的深入理解,我们可以更加灵活地应用估算的方法进行计算,从而提高计算的效率和准确性。
算法的掌握和熟练运用也是十分重要的,它可以帮助我们有条不紊地进行计算,确保每一步的计算都是正确的,最终得出准确的结果。
《两位数乘两位数的口算与估算》教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与两位数乘两位数口算与估算相关的实际问题。
2.实验操作ቤተ መጻሕፍቲ ባይዱ为了加深理解,我们将进行一个简单的计算游戏。通过实际操作,学生可以直观地感受到口算与估算的便捷性。
3.通过实例分析,让学生理解口算与估算在实际问题中的应用;
4.练习两位数乘两位数的口算与估算题目,巩固所学知识。
二、核心素养目标
《两位数乘两位数的口算与估算》教学旨在培养学生的数学核心素养,具体目标如下:
1.培养学生数感与符号意识,能理解两位数乘两位数的算理,掌握口算与估算方法,形成数学运算能力;
2.发展学生数据分析观念,通过解决实际问题,学会运用估算方法进行快速计算和结果验证;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解两位数乘两位数的口算与估算的基本概念。口算是直接用心算完成乘法运算,估算则是通过近似计算快速得到结果。它们在日常生活中帮助我们快速准确地进行计算。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算63×57,我们可以先估算为60×50得到3000,再根据实际数值进行微调。这个案例展示了口算与估算在实际中的应用。
在接下来的教学中,我会针对这些问题进行调整。一方面,加强基础知识的教学,让学生熟练掌握口算与估算的方法,提高他们的运算速度和准确率;另一方面,注重培养学生的合作意识和实际应用能力,让他们在解决实际问题时能够灵活运用所学知识。
最后,我要反思自己在教学过程中的表达方式和教学方法。在讲解重点难点时,是否用简单易懂的语言让学生更容易理解?在课堂互动中,是否充分调动了学生的积极性?在以后的教学中,我将努力改进这些方面,提高教学质量,让每个学生都能在课堂上收获满满。
两位数乘两位数的乘法估算

答 够买。
每排有11人,有27排, 现在有263人,够坐吗?
(1) 11≈10 10 × 27=270 (2) 27≈30 30 × 11=330 (3) 11≈10 27≈30 10 × 30=300
老师带来17箱水,每箱24瓶,大约有多少瓶?
(1) 17≈20 20 × 24=480 (2) 24≈20 20 × 17=340 (3) 24≈20 17≈20 20 × 20=400 假如现在有398人,你认为拿多少瓶较合理?
30×20= 600
12×40= 480
120×40= 4800
1、24×50 =
1200
2、36×80=
2880
3、250×40= 10000
4、106×50= 5300
你能估算下面各题的结果吗? 28×4 ≈ 120 (30) 62×6 ≈ (60) 360
3、 你能说出下列各数的近似数 多少吗?
小朋友步行每分钟走48米,19分钟能到电影院吗?
停车场 200米 400米 600米 800米 1000米
48 × 19≈1000(米)
(50) (20)
1、能到
2、不能到
1000名学生乘车回学校,学校打 算租21辆相同的车子,你认为租哪种 车子比较合理呢?
1、大巴车
准乘72人
2、中巴车
3、小巴车
《两位数乘两位数估算》
80×10= 800
50×40= 2000 90×90= 8100 24×10= 240
60×20= 1200
700×20= 14000 40×80= 3200 12×200= 2400
一、 5×1=5
3×2= 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两位数乘两位数估算
金坛市薛埠中心小学张扬教学内容:乘法估算三(下)第33页中的例题,第33——34页的1——5题教学目标:
1.让学生自主探索并掌握两位数乘两位数的估算方法,体会解决问题的方法的多样性。
2.体会不同估算方法的不同价值,估算时根据具体情况合理选择估算方法。
发展学生的数学思维,提高解决问题的能力。
3.体会估算的作用,帮助学生养成自觉估算、验算的良好习惯。
教学重点难点:
重点:掌握两位数乘两位数的估算方法,体会估算的作用。
难点:根据具体情况,合理选择不同的方法进行估算。
教学资源:
学生经验:1.学生已经有了两位数乘两位数笔算的基础,在此基础上鼓励学生自主探索两位数乘两位数估算的方法。
2.教师准备情境图。
教学过程:
一、创设开放情境、自主探究
出示:春天到了,薛埠小学的师生乘车去春游,每辆车坐了42人,一共坐了29辆车,一共有多少人去春游?
学生列出算式(教师板书42×29)
不计算,说一说下面三位同学计算的得数对吗。
你是怎么想的?
赵阳 42×29=788( )
龚成轩 42×29=1518( )
王康 42×29=1208( )
学生思考后纷纷表达看法。
生:赵阳计算的得数不对,因为即使把42看做40,把29看做20,40×20还等于800呢!正确得数应该比800大,所以788不对。
师:谁明白他的意思?随着学生的再次回答教师板书:得数比800大。
生:1518也不对,因为即使把42看做50,把29看做30,把这两个乘数都看大了,得数才1500。
正确得数应该比1500小。
师:他的意思谁明白了?随着学生的再次回答板书:得数比1500小。
生:我觉得王康计算的结果是正确的,因为把42看做40,把29看做30,40×30=1200,得数应该在1200左右。
很多学生都这样认为;随着学生的回答教师板书:得数在1200左右。
师:1208到底对不对呢?怎么办?
学生一致认为用竖式计算出准确的得数。
师:那你们用竖式来算一算吧!
计算后,学生发现准确的结果是1218。
师:刚才为什么有的同学会认为1208是对的得数呢?
生:得数在1200左右,所以我们刚才还以为是正确的得数。
生:刚才我们看见只有一个得数了,而且1208与1200很接近,所以我们就以为是对的了。
现在我明白估算只能算出大概的结果,准确的结果需要用竖式计算。
二、巩固练习,内化新知
1.想想做做2
谈话:每组3道题,上下两题可以口算,中间一题要列竖式计算,然后把这3道题比一比,你发现了什么?
学生独立计算。
指名在班内说说自己的发现。
2.想想做做3
独立估算,完成连线。
同桌交流估算方法。
集体交流,指出:把两个乘数分别看做与它们相近的较小的整十数和较大的整十数,可以确定积的大致范围。
3.出示:58×42 31×62 68×39
每人选择其中一题进行估算,再计算结果。
小组讨论:怎样估算结果更准确些?为什么?
归纳:把两个乘数分别看做与它们接近的整十数,估算的结果会准确一些。
4.想想做做4
独立估算,并列式计算。
交流:说说你为什么选择这种估算方法。
三、设置简约情境,有效突破难点
薛埠小学三(3)班有38个学生,公园的门票每张25元,估一估大约要准备多少钱?
学生思考后汇报:
生:我认为大约要准备1200元。
因为38×25,把38看做40,把25看做30,40×30=1200元。
(部分学生表示赞同)
生:我认为大约要准备800元。
因为把38看做40,把25看做20,40×20=800元。
(也有部分学生表示赞同)
生:我认为大约要准备1000元,我是这样想的,我把25不变,把38看做40,40×25=1000元。
(也有学生对这一新估算的方法表示赞同)
紧接着,教师让学生围绕第3种估算方法思考以下三个问题:
(1)这样估算对吗?
(2)这样估算好吗?
(3)什么时候我们可以这样估算?
最后,教师问学生:1000元够不够?你知道买门票具体要花多少钱?让学有余力的学生能够从40个25元里面去掉2个25元,从而巧算得出950元,让他们得到差异提升。
四、总结延伸
师:通过今天的学习,你知道了什么?
谈话:计算两位数乘两位数在古人看来是十分困难的问题,人们研究了数千年才研究出了现在所使用的竖式计算。
我国古代的人民在这方面也有自己的研究喝创造,明朝的一部数学书《算法统宗》中讲述了一种两位数乘两位数的计算方法,叫做“铺地锦”。
课本P34“你知道吗?”介绍了这种算法,你们课后可以认真阅读,看能不能弄懂这种算法,并且可以把这种算法与竖式计算相比较,找到相同之处。
五、作业:想想做做1。