《确定圆的条件》典型例题
3.5.2确定圆的条件
确定圆的条件(2012•六盘水)下列命题为真命题的是()A.平面内任意三点确定一个圆B.五边形的内角和为540°C.如果a>b,则ac2>bc2D.如果两条直线被第三条直线所截,那么所截得的同位角相等【考点】确定圆的条件;不等式的性质;同位角、内错角、同旁内角;多边形内角与外角;命题与定理.【分析】利用确定圆的条件、不等式的性质及多边形的内角与外角等知识进行判断找到正确的即可.【解答】解:A、平面内不在同一直线上的三点确定一个圆,故本答案错误;B、五边形的内角和为(5﹣2)×180°=540°,故本选项正确;C、当c=0时,原式不成立,故本答案错误;D、两直线平行,同位角相等,故本答案错误.故选B.【点评】本题考查了确定圆的条件、不等式的性质及多边形的内角与外角等知识,属于基础题,知识点比较多.(2010•河北)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M【考点】确定圆的条件.【专题】网格型.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB和BC的垂直平分线,交点Q即为圆心.故选B.【点评】此题主要是垂径定理的推论的运用.(2010•乌鲁木齐)如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【考点】确定圆的条件;坐标与图形性质.【专题】压轴题.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.【点评】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.(2010•乐山)如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【考点】确定圆的条件;坐标与图形性质.【专题】压轴题;网格型.【分析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.【点评】根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心.(2010•台湾)如图所示,△ABC中,∠B=90°,AB=21,BC=20.若有一半径为10的圆分别与AB、BC相切,则下列何种方法可找到此圆的圆心()A.∠B的角平分线与AC的交点B.AB的中垂线与BC中垂线的交点C.∠B的角平分线与AB中垂线的交点D.∠B的角平分线与BC中垂线的交点【考点】确定圆的条件;圆的认识.【专题】压轴题.【分析】因为圆分别与AB、BC相切,所以圆心到AB、CB的距离一定相等,都等于半径.而到角的两边距离相等的点在角的平分线上,圆的半径为10,所以圆心到AB的距离为10.因为BC=20,所以BC的中垂线上的点到AB的距离为10,所以∠B的角平分线与BC的中垂线的交点即为圆心.【解答】解:∵圆分别与AB、BC相切,∴圆心到AB、CB的距离都等于半径,∵到角的两边距离相等的点在角的平分线上,∴圆心定在∠B的角平分线上,∵因为圆的半径为10,∴圆心到AB的距离为10,∵BC=20,又∵∠B=90°,∴BC的中垂线上的点到AB的距离为10,∴∠B的角平分线与BC的中垂线的交点即为圆心.故选D.【点评】本题考查的是圆的确定,运用角平分线的判定和平行线的性质来解题,题目难度中等.(2008•雅安)下列叙述正确的是()A.三点确定一个圆B.对角线相等的四边形为矩形C.顺次连接四边形各边中点得到的四边形是平行四边形D.相等的圆心角所对的弧相等,所对的弦也相等【考点】确定圆的条件;平行四边形的判定;矩形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】根据确定圆的条件,矩形的判定定理,圆心角定理以及三角形的中位线定理即可作出判断.【解答】解:A、不在同一直线上的三点确定一个圆,故选项错误;B、对角线相等的平行四边形是矩形,故选项错误;C、E、F、G、H是四边形ABCD的中点,连接AC,∵E、H是AD、CD的中点,∴EH∥AC,EH=AC,同理FG∥AC,FG=AC,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形.故顺次连接四边形各边中点得到的四边形是平行四边形,是正确的.故选项正确;D、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,故选项错误.故选C.【点评】本题考查了确定圆的条件,矩形的判定定理,圆心角定理以及三角形的中位线定理,正确掌握定理是关键.(2007•上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块【考点】确定圆的条件.【专题】应用题;压轴题.【分析】要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.【解答】解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.【点评】解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.(2003•岳阳)下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc【考点】确定圆的条件;不等式的性质;全等三角形的判定;平行四边形的判定.【分析】根据平行四边形的判定定理,三角形全等的判定方法,确定圆的条件以及不等式的性质即可解决.【解答】解:A、一组对边相等,另一组对边平行的四边形有可能是等腰梯形,故原命题错误;B、符合SSA的两个三角形不一定全等,故命题错误;C、不在同一直线上的三点确定一个圆,故错误;D、若a>b,c>0,则ac>bc,故正确.故选D.【点评】本题综合考查了各个易错点,应在做题过程中熟练掌握.(2002•荆州)下列说法不正确的是()A.只有当x=1时,分式的值才为零B.与2是同类二次根式C.等腰三角形底边上的中线与底边上的高重合D.三点确定一个圆【考点】确定圆的条件;分式的值为零的条件;同类二次根式;等腰三角形的性质.【分析】根据分式值是0的条件,二次根式的化简,三线合一定理,确定圆的条件即可解答.【解答】解:A、x2﹣1=0且x+1≠00,解得:x=1,故正确;B、=3,2=,故正确;C、根据三线合一定理可得.故正确;D、因为不在同一直线的三点确定一个圆,故D错误.故选D.【点评】此题综合性较强,考查了分式、同类二次根式、等腰三角形“三线合一”、确定圆的条件等知识点.(2002•黄石)下列命题中,错误的命题是()A.对角线互相平分的四边形是平行四边形B.等弧所对的圆周角相等C.经过三点一定可作圆D.若一个梯形内接于圆,则它是等腰梯形【考点】确定圆的条件;平行四边形的判定;等腰梯形的判定;圆周角定理.【分析】利用平行四边形的性质判定和圆的有关知识分析.【解答】解:A、对角线互相平分的四边形是平行四边形,此选项正确;B、等弧所对的圆周角相等,此选项正确;C、经过不在同一直线的三点一定可作圆,故此选项错误;D、若一个梯形内接于圆,则它是等腰梯形,此选项正确.故选C.【点评】本题综合考查了平行四边形的圆的有关知识.学生对这些基础性的知识要牢固掌握.(2006•黄石)正方形的四个顶点和它的中心共5个点能确定5个不同的圆.【考点】确定圆的条件.【专题】压轴题.【分析】根据不在同一条直线上的三点可以确定一个圆分析得出.【解答】解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.【点评】本题主要考查了确定圆的条件,不在同一条直线上的三点可以确定一个圆.(2005•苏州)如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.(2005•江西)平面直角坐标系中,点A(2,9)、B(2,3)、C(3,2)、D(9,2)在⊙P 上.(1)在图中清晰标出点P的位置;(2)点P的坐标是(6,6).【考点】确定圆的条件;坐标与图形性质.【分析】点P的坐标是弦AB,CD的垂直平分线的交点.【解答】解:弦AB的垂直平分线是y=6,弦CD的垂直平分线是x=6,因而交点P的坐标是(6,6).【点评】理解圆心是圆的垂直平分线的交点,是解决本题的关键.(1999•武汉)不在同一直线上的三个点确定一个圆,说法是:正确的.【考点】确定圆的条件.【分析】根据不在同一直线上的三个点确定一个圆判断.【解答】解:不在同一直线上的三个点确定一个圆.正确.【点评】本题考查的是确定圆的条件.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【考点】确定圆的条件;圆心角、弧、弦的关系.【专题】证明题;探究型.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)【点评】本题主要考查等弧对等弦,及确定一个圆的条件.(2010•本溪)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D 点坐标.【考点】确定圆的条件;正方形的性质.【专题】压轴题;新定义.【分析】(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,那么就求得了点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.【解答】解:(1)从图中我们可以发现四边形ADMB就是一个损矩形.∵点M是正方形对角线的交点,∴∠BMD=90°,∵∠BAD=90°,∴四边形ADMB就是一个损矩形.(2)取BD中点H,连接MH,AH.∵四边形OABC,BDEF是正方形,∴△ABD,△BDM都是直角三角形,∴HA=BD,HM=BD,∴HA=HB=HM=HD=BD,∴损矩形ABMD一定有外接圆.(3)∵损矩形ABMD一定有外接圆⊙H,∴∠MAD=∠MBD,∵四边形BDEF是正方形,∴∠MBD=45°,∴∠MAD=45°,∴∠OAN=45°,∵OA=1,∴ON=1,∴N点的坐标为(0,﹣1).(4)延长AB交MG于点P,过点M作MQ⊥x轴于点Q,设点MG=x,则四边形APMQ为正方形,∴PM=AQ=x﹣1,∴OG=MQ=x﹣1,∵△MBP≌△MDQ,∴DQ=BP=CG=x﹣2,∴MN2=2x2,ND2=(2x﹣2)2+12,MD2=(x﹣1)2+(x﹣2)2,∵四边形DMGN为损矩形,∴2x2=(2x﹣2)2+12+(x﹣1)2+(x﹣2)2,∴2x2﹣7x+5=0,∴x=2.5或x=1(舍去),∴OD=3,∴D点坐标为(3,0).【点评】解决本题的关键是理解损矩形的只有一组对角是直角的性质,综合考查了四点共圆的判定及勾股定理的应用.(2009•荆门)如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.【考点】确定圆的条件;平行四边形的性质.【专题】证明题.【分析】(1)只要证明A、E、C、F四点所构成的四边形的对角互补,则该四点共圆.(2)连接AC交BD于O,则O是该圆的圆心,OM=ON,所以易证BM=ND.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°.∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;(2)由(1)可知,∠AEC=90°,则AC是直径,设AC、BD相交于点O;∵ABCD是平行四边形,∴O为圆心,OB=OD,∴OM=ON,∴OB﹣OM=OD﹣ON,∴BM=DN.【点评】本题主要考查了四点共圆的判定条件及平行四边形的性质.(2008•巴中)已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.【考点】确定圆的条件;等腰三角形的判定.【专题】证明题.【分析】要求证:点E是过A,B,D三点的圆的圆心,只要证明AE=BE=DE即可,可以根据等角对等边可以证得.【解答】证明:∵点D在∠BAC的平分线上,∴∠1=∠2.(1分)又∵DE∥AC,∴∠2=∠3,∴∠1=∠3.(2分)∴AE=DE.(3分)又∵BD⊥AD于点D,∴∠ADB=90°.(4分)∴∠EBD+∠1=∠EDB+∠3=90°.(5分)∴∠EBD=∠EDB.(6分)∴BE=DE.(7分)∴AE=BE=DE.(8分)∵过A,B,D三点确定一圆,又∠ADB=90°,∴AB是A,B,D所在的圆的直径.(9分)∴点E是A,B,D所在的圆的圆心.(10分)【点评】本题主要考查了等腰三角形的判定方法,等角对等边.(2002•扬州)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.【考点】确定圆的条件.【专题】作图题.【分析】(1)、由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;(2)、在Rt△OAD中,由勾股定理可求得半径OA的长.【解答】解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA 长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,则根据勾股定理列方程:x2=122+(x﹣8)2,解得:x=13.答:圆的半径为13cm.【点评】本题利用了垂径定理,中垂线的性质,勾股定理求解.(1999•辽宁)过A,B,C三点,能否确定一个圆?如果能,请作出圆,并写出作法;如果不能,请用反证法加以证明.【考点】确定圆的条件;反证法.【专题】作图题.【分析】(1)根据确定圆的条件及三角形外接圆的作法作图即可.(2)利用反证法进行证明即可.【解答】解:(1)如果A、B、C三点不在同一条直线上,就能确定一个圆,作法:①连接AB,作线段AB的垂直平分线DE;②连接BC,作线段BC的垂直平分线FG,交DE于点O;③以O为圆心,OB为半径作圆.⊙O就是过A、B、C三点的圆.(2)如果A、B、C三点在同一条直线上,就不能确定一个圆,假设过A、B、C三点可以作圆,设这个圆心为O,由点的轨迹可知,点O在线段AB的垂直平分线l′上,并且在线段BC的垂直平分线l″上,即点O为′与l″的交点,这与“过一点只有一条直线与已知直线垂直”相矛盾,所以,过同一条直线上的三点A、B、C不能作圆.【点评】此题比较复杂,考查的是确定圆的条件及反证法,涉及面较广,但难度适中.(2011•浙江校级自主招生)如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4C.D.【考点】确定圆的条件;相似三角形的判定与性质;锐角三角函数的定义.【专题】压轴题.【分析】此题考查了直角三角形的性质和三角函数的性质.【解答】解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=ABsin∠BAC=6=.故选D.【点评】本题是一道根据直角三角形的性质结合角的三角函数求解的综合题,要注意圆的性质应用;要注意数形结合思想的应用.(2010•乌鲁木齐)如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【考点】确定圆的条件;坐标与图形性质.【专题】压轴题.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.【点评】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.(2010•乐山)如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【考点】确定圆的条件;坐标与图形性质.【专题】压轴题;网格型.【分析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.【点评】根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心.(2010•台湾)如图所示,△ABC中,∠B=90°,AB=21,BC=20.若有一半径为10的圆分别与AB、BC相切,则下列何种方法可找到此圆的圆心()A.∠B的角平分线与AC的交点B.AB的中垂线与BC中垂线的交点C.∠B的角平分线与AB中垂线的交点D.∠B的角平分线与BC中垂线的交点【考点】确定圆的条件;圆的认识.【专题】压轴题.【分析】因为圆分别与AB、BC相切,所以圆心到AB、CB的距离一定相等,都等于半径.而到角的两边距离相等的点在角的平分线上,圆的半径为10,所以圆心到AB的距离为10.因为BC=20,所以BC的中垂线上的点到AB的距离为10,所以∠B的角平分线与BC的中垂线的交点即为圆心.【解答】解:∵圆分别与AB、BC相切,∴圆心到AB、CB的距离都等于半径,∵到角的两边距离相等的点在角的平分线上,∴圆心定在∠B的角平分线上,∵因为圆的半径为10,∴圆心到AB的距离为10,∵BC=20,又∵∠B=90°,∴BC的中垂线上的点到AB的距离为10,∴∠B的角平分线与BC的中垂线的交点即为圆心.故选D.【点评】本题考查的是圆的确定,运用角平分线的判定和平行线的性质来解题,题目难度中等.(2008•雅安)下列叙述正确的是()A.三点确定一个圆B.对角线相等的四边形为矩形C.顺次连接四边形各边中点得到的四边形是平行四边形D.相等的圆心角所对的弧相等,所对的弦也相等【考点】确定圆的条件;平行四边形的判定;矩形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】根据确定圆的条件,矩形的判定定理,圆心角定理以及三角形的中位线定理即可作出判断.【解答】解:A、不在同一直线上的三点确定一个圆,故选项错误;B、对角线相等的平行四边形是矩形,故选项错误;C、E、F、G、H是四边形ABCD的中点,连接AC,∵E、H是AD、CD的中点,∴EH∥AC,EH=AC,同理FG∥AC,FG=AC,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形.故顺次连接四边形各边中点得到的四边形是平行四边形,是正确的.故选项正确;D、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,故选项错误.故选C.【点评】本题考查了确定圆的条件,矩形的判定定理,圆心角定理以及三角形的中位线定理,正确掌握定理是关键.(2012•拱墅区校级模拟)在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.①若A、O、C三点在同一直线上,且∠ABO=2α,则=2sinα(用含有α的式子表示);②固定△AOB,将△COD绕点O旋转,PM最大值为.【考点】确定圆的条件;等腰三角形的性质;梯形中位线定理;相似三角形的判定与性质.【专题】综合题;压轴题.【分析】(1)连接BM、CN,则BM⊥OA,CN⊥OD,由四点共圆的判定知点B、C、M、N在以BC为直径的圆,且有MP=PN=BC÷2,而MN是△AOD的中位线,有MN等于AD 的一半,故AD:BC=MN:PM,而可求得△PMN∽△BAO,有MN:PN=AO:AB=2sinα,从而求得AD:BC的值;(2)当DC∥AB时,即四边形ABCO是梯形时,PM有最大值,由梯形的中位线的公式可求解.【解答】解:连接BM、CN,由题意知BM⊥OA,CN⊥OD,∠AOB=∠COD=90°﹣α,∵A、O、C三点在同一直线上,∴B、O、D三点也在同一直线上,∴∠BMC=∠CNB=90°,∵P为BC中点,∴在Rt△BMC中,PM=BC,在Rt△BNC中,PN=BC,∴PM=PN,∴B、C、N、M四点都在以点P为圆心,BC为半径的圆上,∴∠MPN=2∠MBN,又∵∠MBN=∠ABO=α,∴∠MPN=∠ABO,∴△PMN∽△BAO,∴,由题意知MN=AD,PM=BC,∴,∴,在Rt△BMA中,=sinα,∵AO=2AM,∴=2sinα,∴=2sinα;(2)当OC∥AB时,即四边形ABCO是梯形时,PM有最大值.PM=(AB+CD)÷2=(2+3)÷2=.【点评】本题利用了相似三角形的性质和等腰三角形的性质:三线合一、四点共圆的判定、正弦的概念、梯形的中位线的性质求解(2006•黄石)正方形的四个顶点和它的中心共5个点能确定5个不同的圆.【考点】确定圆的条件.【专题】压轴题.【分析】根据不在同一条直线上的三点可以确定一个圆分析得出.【解答】解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.【点评】本题主要考查了确定圆的条件,不在同一条直线上的三点可以确定一个圆.(2012•泰兴市一模)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF 的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.【考点】确定圆的条件;菱形的性质;正方形的判定.【专题】压轴题;新定义.【分析】(1)根据题中给出的定义,由于∠DAB和∠DCB不是直角,因此AC就是损矩形的直径.(2)根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.(3)本题可用面积法来求解,具体思路是用四边形ABCD面积的不同表示方法来求解,四边形ABCD的面积=三角形ABD的面积+三角形BCD的面积=三角形ABC的面积+三角形ADC的面积;三角形ABD的面积已知了AB的长,那么可过D作AB边的高,那么这个高就应该是BD•sin45°,以此可得出三角形ABD的面积;三角形BDC的面积也可用同样的方法求解,只不过AB的长,换成了BC;再看三角形ABC的面积,已知了AB的长,可用含BC的式子表示出ABC的面积;而三角形ACD的面积,可用正方形面积的四分之一来表示;而正方形的边长可在直角三角形ABC中,用勾股定理求出.因此可得出关于BC的方程,求解即可得出BC的值.【解答】解:(1)只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;(2)作图如图:∵点P为AC中点,∴PA=PC=AC.∵∠ABC=∠ADC=90°,∴BP=DP=AC,∴PA=PB=PC=PD,∴点A、B、C、D在以P为圆心,AC为半径的同一个圆上;(3)∵菱形ACEF,∴∠ADC=90°,AE=2AD,CF=2CD,∴四边形ABCD为损矩形,∴由(2)可知,点A、B、C、D在同一个圆上.∵BD平分∠ABC,∴∠ABD=∠CBD=45°,∴,∴AD=CD,∴四边形ACEF为正方形.∵BD平分∠ABC,BD=,∴点D到AB、BC的距离h为4,=AB×h=2AB=6,∴S△ABDS△ABC=AB×BC=BC,S△BDC=BC×h=2BC,S△ACD=S正方形ACEF=AC2=(BC2+9),=S△ABC+S△ADC=S△ABD+S△BCD∵S四边形ABCD∴BC+(BC2+9)=6+2BC∴BC=5或BC=﹣3(舍去),∴BC=5.【点评】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.(3)中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.(2010•本溪)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;。
圆的确定条件
圆的确定条件1. 你知道吗,一个圆的确定那可不是随便说说的事儿!就好比盖房子,得有坚实的根基呀。
比如说给你一个点,那能确定一个圆吗?当然不能啦!就像只有一块砖可盖不成房子一样。
2. 嘿,圆的确定条件可重要啦!想想看,如果没有足够的条件,那不就像在大海里没有方向地漂流吗?比如给你一段弧,这能完整地确定一个圆吗?显然不行呀!3. 哇塞,圆的确定条件真的很神奇呢!这就好像拼图,得有足够的碎片才行。
要是只给你圆心,没有半径,能画出一个完整的圆吗?不可能的呀!4. 哎呀呀,圆的确定条件可不是闹着玩的!就像一场比赛要有明确的规则一样。
给你几个点,它们能唯一确定一个圆吗?这可得好好琢磨琢磨呢!5. 哟呵,圆的确定条件可太有意思啦!好比搭积木,少了一块都不行。
要是只知道圆上的几个点,能准确地确定圆吗?那可不一定哦!6. 嘿呀,圆的确定条件那可是关键得很呐!就像走路要有目的地一样。
给你一个直径,能就此确定一个圆吗?这可不是那么简单的哟!7. 哇哦,圆的确定条件真的很有讲究呢!如同做菜要有合适的食材和调料。
要是只有一个模糊的概念,能确定出一个圆吗?肯定不行啦!8. 哎呀,圆的确定条件可不是随随便便的哟!好比选班长要有明确的标准。
给你一个扇形,能确定这个圆吗?想想就知道不可以呀!9. 嘿,圆的确定条件可不能小瞧呀!就像建造一座大桥,需要精确的设计。
只给你一些断断续续的线索,能确定一个圆吗?当然不能咯!10. 哇,圆的确定条件真的是太重要啦!如同一场精彩的演出需要各个环节的完美配合。
要是没有足够准确的信息,能画出一个完美的圆吗?绝对不可能呀!我的观点结论:圆的确定条件是非常明确和关键的,缺少任何一个重要条件都无法准确地确定一个圆。
我们必须要清楚地认识和理解这些条件,才能更好地掌握与圆相关的知识和应用。
专题3.4 确定圆的条件(专项训练)(解析版)
专题3.4 确定圆的条件(专项训练)1.(2021秋•信都区期末)已知⊙O的半径为3,平面内有一点到圆心O的距离为5,则此点可能是( )A.P点B.Q点C.M点D.N点【答案】D【解答】解:∵平面内有一点到圆心O的距离为5,5>3.∴该点在圆外,∴点N符合要求.故选:D.2.(2021秋•河西区期末)已知⊙O的半径为2cm,点P到圆心O的距离为4cm,则点P和⊙O的位置关系为( )A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【答案】C【解答】解:∵⊙O的半径为2cm,点P与圆心O的距离为4cm,2cm<4cm,∴点P在圆外.故选:C.3.(2021秋•沭阳县期末)若⊙O的直径为10,点A到圆心O的距离为6,那么点A与⊙O的位置关系是( )A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定【答案】A【解答】解:∵⊙O的直径为10,∴⊙O的半径为5,而圆心O的距离为6,∴点A在⊙O外.故选:A.4.(2021秋•滦州市期末)已知⊙O的半径是一元二次方程x2﹣3x﹣4=0的一个根,点A与圆心O的距离为6,则下列说法正确在是( )A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法判断【答案】A【解答】解:∵x2﹣3x﹣4=0,∴x1=﹣1,x2=4,∵⊙O的半径为一元二次方程x2﹣3x﹣4=0的根,∴r=4,∵d>r,∴点A在⊙O外,故选:A.5.(2021秋•鹿城区校级期末)如图,在矩形ABCD中,AB=3cm,AD=4cm.若以点B 为圆心,以4cm长为半径作⊙B,则下列选项中的各点在⊙B外的是( )A.点A B.点B C.点C D.点D【答案】D【解答】解:连接BD,在矩形ABCD中,AB=3cm,AD=4cm,∴BC=AD=4cm,∠C=90°,∴BD==5(cm),∵AB=3cm<4cm,BD=5cm>4cm,BC=4cm,∴点C在⊙B上,点D在⊙B外,点A在⊙B内.故选:D.6.(2022•龙岗区模拟)若⊙A的半径为5,圆心A与点P的距离是,则点P与⊙A 的位置关系是( )A.P在⊙A上B.P在⊙A外C.P在⊙A内D.不确定【答案】C【解答】解:∵AP=2<5,∴点P在⊙A内部.故选:C.7.(2021秋•定州市期末)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6,以点B为圆心,3为半径作⊙B,则点C与⊙B的位置关系是( )A.点C在⊙B内B.点C在⊙B上C.点C在⊙B外D.无法确定【答案】C【解答】解:Rt△ABC中,∠C=90°,∠A=30°,AC=6,∴BC=AC=2,∵以点B为圆心,3为半径作⊙B,∴R<d,∴点C在⊙B外.故选:C.8.(2021秋•西城区期末)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .【答案】(2,1)【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).9.(2021秋•潜山市期末)在平面直角坐标系中有A,B,C三点,A(1,3),B(3,3),C(5,1).现在要画一个圆同时经过这三点,则圆心坐标为 .【答案】(2,0)【解答】解:∵A(1,3),B(3,3),C(5,1)不在同一直线上∴经过点A,B,C可以确定一个圆∴该圆圆心必在线段AB的垂直平分线上∴设圆心坐标为M(2,m)则点M在线段BC的垂直平分线上∴MB=MC由勾股定理得:=∴1+m2﹣6m+9=9+m2﹣2m+1∴m=0∴圆心坐标为M(2,0)故答案为:(2,0).10.(2021秋•任城区校级月考)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.【答案】略【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,BC,BC交OA于D.∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,∴R2=82+(R﹣6)2,解得:R=cm,∴圆片的半径R为cm.11.(2022•黑龙江模拟)如图,半径为2的⊙O是△ABC的外接圆,∠BAC=30°,则弦BC的长等于 .【答案】2【解答】解:连接OB,OC,∵⊙O是△ABC的外接圆,∠BAC=30°,∴OB=OC,∠BOC=2∠BAC=60°,∴△OBC是等边三角形,∴BC=OB,∵⊙O的半径为2,∴OB=2,∴BC=2,故答案为:2.12.(2021秋•兴山县期末)如图,⊙O是△ABC的外接圆,∠AOB=60°,则∠ACB的度数是 .【答案】30°【解答】解:∵⊙O是△ABC的外接圆,∠AOB=60°,∴∠ACB=AOB=30°.故答案为:30°.13.(2022春•西城区校级月考)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=68°,则∠BCD等于( )A.22°B.34°C.68°D.112°【答案】A【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠ABD=68°,∴∠BAD=90°﹣68°=22°,由圆周角定理得:∠BCD=∠BAD=22°,故选:A.14.(2021秋•蜀山区期末)如图,⊙O是△ABC的外接圆,连接AO并延长交⊙O于点D,若∠B=55°,则∠CAD的度数为( )A.25°B.30°C.35°D.45°【答案】C【解答】解:连接CD,如图,∵AD为直径,∴∠ACD=90°,∵∠D=∠B=55°,∴∠CAD=90°﹣∠D=90°﹣55°=35°.故选:C.15.(2021秋•无锡期末)如图,在平面直角坐标系中,A(0,﹣3),B(2,﹣1),C(2,3).则△ABC的外心坐标为( )A.(0,0)B.(﹣1,1)C.(﹣2,﹣1)D.(﹣2,1)【答案】D【解答】解:如图,根据网格点O′即为所求.∵△ABC的外心即是三角形三边垂直平分线的交点,∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,1).故选:D.16.(2021秋•南岗区校级期末)如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O 的直径等于( )A.10B.6C.6D.12【答案】D【解答】解:连接OB、OC,如图,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC为等边三角形,∴OB=BC=6,∴⊙O的直径等于12.故选:D.17.(2021秋•兴化市期末)已知正三角形的边长为12,则这个正三角形外接圆的半径是( )A.2B.C.3D.4【答案】D【解答】解:如图,连接OB,作OD⊥BC,∵BC=12,∴BD=BC=×12=6,∵△ABC是等边三角形,∴∠OBD=30°,∴OB=.故选:D.。
3.5 确定圆的条件 课时练习(含答案解析)
北师大版数学九年级下册第3章第5节确定圆的条件同步检测一、选择题1.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线答案:B解析:解答:A.三个点不共线的点确定一个平面,故A不正确;B.由圆心角、弧、弦的关系及圆周角定理可知:在同圆或等圆中,同弧或等弧所对圆周角相等,故选项B正确;C.平分弦的直径垂直于弦,被平分的弦不能是直径,故此选项错误;D.与某圆一条半径垂直的直线是该圆的切线,错误,正确的应该是:一条直线垂直于圆的半径的外端,这条直线一定就是圆的切线.故此选项错误;故选:B.分析:根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆心角定理得出B 正确;由当弦为直径时不垂直也平分,以及利用切线的判定对D进行判定.2.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆答案:D解析:解答:A.直径是弦,根据弦的定义是连接圆上两点的线段,∴故此选项正确,但不符合题意,B.最长的弦是直径,根据直径是圆中最长的弦,∴故此选项正确,但不符合题意,C.垂直弦的直径平分弦,利用垂径定理即可得出,故此选项正确,但不符合题意,D.经过三点可以确定一个圆,利用经过不在同一直线上的三点可以作一个圆,故此选项错误,符合题意,故选:D.分析:根据弦的定义,以及经过不在同一直线上的三点可以作一个圆可判断和垂径定理分别得出即可.3.下列命题中的假命题是()A.三点确定一个圆B.三角形的内心到三角形各边的距离都相等C.同圆中,同弧或等弧所对的圆周角相等D.同圆中,相等的弧所对的弦相等答案:A解析:解答:A.应为不在同一直线上的三点确定一个圆,故本选项错误;B.三角形的内心到三角形各边的距离都相等,是三角形的内心的性质,故本选项正确;C.同圆中,同弧或等弧所对的圆周角相等,正确;D.同圆中,相等的弧所对的弦相等,正确.故选A.分析:根据确定圆的条件,三角形内心性质,以及圆心角、弧、弦的关系,对各选项分析判断后利用排除法求解.4.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)答案:D解析:解答:如图:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.分析:根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.5.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块答案:B解析:解答:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.分析:要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.6.到三角形各顶点的距离相等的点是三角形()A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点答案:A解析:解答:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.故选:A分析:根据三角形外心的作法,确定到三定点距离相等的点.7.小红的衣服被铁钉划了一个呈直角三角形的洞,其中三角形的两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这块圆布的直径最小应等于()A.2cm B.3cm C.2cm或3cm D.2cm或cm答案:A解析:解答:由题意,若圆布的直径最小,那么2cm必为直角三角形的斜边长;由于直角三角形的外接圆等于斜边的长,所以圆布的最小直径为2cm,故选A.分析:由于已知的三角形两边没有明确是直角边还是斜边,因此有两种情况:①1cm、2cm同为直角边,②1cm为直角边,2cm为斜边;由于直角三角形的外接圆直径等于斜边的长,若外接圆直径最小,那么直角三角形的斜边最小,显然①是不符合题意,因此直角三角形的斜边为2cm,即圆布的最小直径是2cm.8.下列说法中错误的是()A.三角形的外心不一定在三角形的外部B.圆的两条非直径的弦不可能互相平分C.两个三角形可能有公共的外心D.任何梯形都没有外接圆答案:D解析:解答:A.根据三角形的外心是三角形三条垂直平分线的交点,则三角形的外心的位置有三种情况.正确;B.根据垂径定理的推论可以运用反证法证明可知,该选项错误;C.因为一个圆有无数个内接三角形,所以两个三角形可能有公共的外心.正确;D.等腰梯形一定有外接圆.错误.故选D .分析:本题根据三角形的外接圆与外心的位置及其性质特点,逐项进行分析即可求解.9.如图,已知△ABC 的外接圆⊙O 的半径为1,D ,E 分别为AB ,AC 的中点,则sin ∠BAC 的值等于线段( )A .BC 的长B .DE 的长C .AD 的长 D .AE 的长答案:B 解析:解答:如图:过B 作⊙O 的直径BF ,交⊙O 于F ,连接FC ,则∠BCF =90°,Rt △BCF 中,sinF =2BC BC BF = ∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,即DE =,∴sinA =sinF =2BC =DE . 故选B .分析:本题需将∠BAC 构建到直角三角形中求解,过B 作⊙O 的直径,交⊙O 于点F ,由圆周角定理,知∠F =∠A ;在Rt △BCF 中,易求得sinF =2BC BC BF =,而DE 是△ABC 的中位线,即DE =2BC ,由此得解. 10.如图,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径,且AC =5,DC =3,AB =42 ,则⊙O 的直径AE =( )A .52B .5C .42D .32答案:A 解析:解答: 如图:连接BE ,则∠BEA =∠ACB ,且三角形ABE 是直角三角形.在Rt △ACD 中,AC =5,DC =3,则AD =2222534AC DC -=-= sin ∠BEA =sin ∠ACB =45AD AC = 故⊙O 的直径52sin AB AE BEA ==Ð 故选A .分析:连接BE .易知∠BEA =∠ACB ,解直角三角形ABE 即可求出AE .11.如图,⊙O 是△ABC 的外接圆,连接OA 、OC ,⊙O 的半径R =2,sinB =4,则弦AC 的长为( )A .3B .C .D .答案:A解析:解答:延长AO 交圆于点D ,连接CD ,由圆周角定理,得:∠ACD=90°,∠D=∠B∴sinD=sinB=,Rt△ADC中,sinD=,AD=2R=4,∴AC=AD•sinD=3.故选A.分析:若想利用∠B的正弦值,需构建与它相等的圆周角,延长AO交⊙O于D,在Rt△ADC 中,由圆周角定理,易得∠D=∠B,即可根据∠D的正弦值和直径AD的长,求出AC的长.12.三角形的外心是三角形中()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交D.三条高的交点答案:A解析:解答:三角形的外心是三角形三边垂直平分线的交点.故选:A.分析:根据三角形外接圆的圆心是三角形三条边垂直平分线的交点,解答即可.13、有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个答案:C解析:解答:①圆的对称轴是直径所在的直线;故此选项错误;②当三点共线的时候,不能作圆,故此选项错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故此选项正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故此选项正确.故选:C.分析:根据圆中的有关概念、定理进行分析判断.14、若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形答案:B解析:解答:锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.故选:B.分析:根据直径所对的圆周角是直角得该三角形是直角三角形.15.如图,△ABC中,∠A、∠B、∠C所对的三边分别记为a,b,c,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=()A.a:b:c B.111::a b cC.cosA:cosB:cosC D.sinA:sinB:sinC答案:C解析:解答:设三角形的外接圆的半径是R.连接OB,OC.∵O是△ABC的外心,且OD⊥BC.∴∠BOD=∠COD=∠A在直角△OBD中,OD=OB•cos∠BOD=R•cosA.同理,OE=R•cosB,OF=R•cosC.∴OD:OE:OF=cosA:cosB:cosC.故选C.分析:设三角形的外接圆的半径是R,根据垂径定理,在直角△OBD中,利用三角函数即可用外接圆的半径表示出OD的长,同理可以表示出OE,OF的长,即可求解.二、填空题16.当点A(1,2),B(3,-3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.答案:5m+2n≠9.解析:解答:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,-3),∴解得:k=-2.5 ,b=4.5 ,∴直线AB的解析式为y=-2.5 x+4.5 ,∵点A(1,2),B(3,-3),C(m,n)三点可以确定一个圆时,∴点C不在直线AB上,∴5m+2n≠9,故答案为:5m+2n≠9.分析:能确定一个圆就是不在同一直线上,首先确定直线AB的解析式,然后点C不满足求得的直线即可.17.平面直角坐标系内的三个点A(1,0)、B(0,-3)、C(2,-3)确定一个圆(填“能”或“不能”).答案:能解析:解答:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,-3)、C(2,-3)能确定一个圆.故答案为:能.分析:根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.18.如图△ABC中外接圆的圆心坐标是.答案:(6,2).解析:解答:如图:分别做三角形的三边的垂直平分线,可知相交于点(6,2),即△ABC中外接圆的圆心坐标是(6,2).故答案为:(6,2).分析:本题可借助网格在网格中根据三角形三边的位置作出它们的垂直平分线,垂直平分线相交于一点,该点就是圆心,根据网格中的单位长度即可求解.19.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是. 答案:30°或150°.解析:解答:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A在劣弧BC上时,∠A=150°.∴∠A=30°或150°.故答案为:30°或150°.分析:利用等边三角形的判定与性质得出∠BOC=60°,再利用圆周角定理得出答案.20.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是.答案:3解析:解答:∵∠ACB=∠ACD=90°,∴Rt△ABC和Rt△ACD分别是AB,AD的中点,∴两三角形的外心距为△ABD的中位线,即为12BD=3.故答案为:3.分析:利用直角三角形的性质得出两三角形的外心距为△ABD的中位线,即可得出答案.三、证明题21.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.答案:见解析解析:解答:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,12BC为半径的圆上.分析:求证E,B,C,D四点在同一个圆上,△BCD是直角三角形,则三个顶点在斜边中点为圆心的圆上,因而只要再证明F到BC的中点的距离等于BC的一半就可以.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.答案:略解析:解答:(1)证明:∵AD为直径,AD⊥BC,∴»»BD CD=∴BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:BD=CD,∴∠BAD=∠CBD,又∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.23.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE⊥AB交BC于点D,交⊙O于点E,F在DA的延长线上,且AF=AD.若AF=3,tan∠ABD=34,求⊙O的直径.答案:20 3解析:解答:如图,连接BE.∵AF=AD,AB⊥EF,∴BF=BD.是直径∵AB=AC,∴∠FBA=∠ABC=∠C=∠E.∵tan∠ABD=3 4,∴tanE=tan∠FBA=3 4.在Rt△ABF中,∠BAF=90°.∵tan∠FBA=AFAB=34,AF=3,∴AB=4.∵∠BAE=90°,∴BE是⊙O的直径.∵tanE=tan∠FBA=34,AB=4,∴设AB=3x,AE=4x,∴BE=5x,∵3x=4,∴BE=5x=203,即⊙O的直径是203.分析:如图,连接BE.利用等腰三角形“三线合一”的性质得到BF=BD;然后根据圆周角定理推知∠FBA=∠ABC=∠C=∠E,BE是⊙O的直径.利用锐角三角函数的定义可以来求BE的长度.24.已知在△ABC中,AB=AC=10,BC=16,求△ABC外接圆的半径.答案:25 3解析:解答:过A作AD⊥BC于D,连接BO,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=10,BD=8∴AD=6,设⊙O的半径为x,Rt△OBD中,OB=x,OD=6-x根据勾股定理,得:,即:,解得:x=253,则△ABC外接圆的半径为:253.分析:已知△ABC是等腰三角形,根据等腰三角形的性质,若过A作底边BC的垂线,则AD必过圆心O,在Rt△OBD中,用半径表示出OD的长,即可用勾股定理求得半径的长.25.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,过A,C,D三点的圆与斜边AB 交于点E,连接DE.(1)求证:AC=AE;(2)若AC=6,CB=8,求△ACD外接圆的直径.答案:(1)略;(2)35解析:解答:(1)证明:∵Rt△ABC中,∠ACB=90°,∴AD为圆的直径,∴∠AED =90°,∵AD 是△BAC 的∠CAB 的角平分线,∴∠CAD =∠EAD ,Rt △ACD 与Rt △ADE 中,∠CAD =∠BAD , ∠ACB =∠AED ,AD =AD ,∴Rt △ACD ≌Rt △ADE (AAS ),∴AC =AE .(2)∵在Rt △ABC 中,∠ACB =90°,AC =6,CB =8,∴10AB = ∵由(1)知,AC =AE ,CD =DE ,∠ACD =∠AED =90°,∴设CD =x ,则BD =8-x ,BE =AB -AE =10-6=4,在Rt △BDE 中,222BE DE BD +=,即2224(8)x x +=-解得x =3.在Rt △ACD 中222AC CD AD +=即22263AD +=解得AD =分析:(1)由Rt △ABC 中,∠ACB =90°,可得AD 是直径,可得△ADE 为直角三角形,在两个直角三角形中,利用AAS 可得两三角形全等,得到答案;(2)先根据勾股定理求出AB 的长,由(1)知,AC =AE ,CD =DE ,设CD =x ,则BD =8-x ,在Rt △BDE 中,根据勾股定理求出x 的值,同理,在Rt ∠ACD 中求出AD 的长,进而可得出结论.。
2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)
2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画( )A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是( )A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm 和24 cm ,则这个三角形的外接圆的直径长为_____cm.7.已知圆的半径是6,则圆内接正三角形的边长是_____.8.已知直线l :y =x -4,点A(1,0),点B(0,2),设点P 为直线l 上一动点,则当点P 的坐标为_____时,过P ,A ,B 不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.B 组(中档题)10.如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是_____11.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.若BC =6,sin ∠BAC =35,则AC =_____,CD =_____12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是_____13.如图,已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:ACsinB=2R;(2)若在△ABC中,∠A=45°,∠B=60°,AC=3,求BC的长及sinC的值.14.已知:如图1,在△ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.C组(综合题)15.如图,在正方形ABCD中,AB=42,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG 的最小值为_____.参考答案2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画(C)A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是(B)A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是(B)A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是(A)A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm和24 cm,则这个三角形的外接圆的直径长为25cm.7.已知圆的半径是6,则圆内接正三角形的边长是8.已知直线l:y=x-4,点A(1,0),点B(0,2),设点P为直线l上一动点,则当点P的坐标为(2,-2)时,过P,A,B不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出AB,AC的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为花坛的位置,如图.(2)∵∠BAC=90°,AB=8米,AC=6米,∴BC=10米.∴△ABC外接圆的半径为5米.∴小明家圆形花坛的面积为25π平方米.B组(中档题)10.如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片311.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB于点D.若BC =6,sin ∠BAC =35,则AC CD =9013.12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是m ≤1或m ≥2.13.如图,已知锐角△ABC 的外接圆圆心为O ,半径为R. (1)求证:ACsinB=2R ;(2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sinC 的值.解:(1)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∵AD 为直径, ∴∠ACD =90°.在Rt △ACD 中,sin ∠ADC =AC AD =AC2R ,∵∠B =∠ADC ,∴sinB =AC2R .∴ACsinB=2R. (2)由(1)知AC sinB =2R ,同理可得AB sin ∠ACB =BC sin ∠BAC=2R. ∴2R =3sin60°=2.∴BC =2R ·sin ∠BAC =2sin45°= 2. 作CE ⊥AB ,垂足为E , ∴BE =BC ·cosB =2cos60°=22, AE =AC ·cos ∠BAC =3cos45°=62. ∴AB =AE +BE =62+22. ∴sin ∠ACB =AB 2R =6+24.14.已知:如图1,在△ABC 中,BA =BC ,D 是平面内不与A ,B ,C 重合的任意一点,∠ABC =∠DBE ,BD =BE.(1)求证:△ABD ≌△CBE ;(2)如图2,当点D 是△ABC 的外接圆圆心时,请判断四边形BECD 的形状,并证明你的结论.解:(1)证明:∵∠ABC =∠DBE , ∴∠ABD =∠CBE.又∵BA =BC ,BD =BE , ∴△ABD ≌△CBE(SAS). (2)四边形BECD 是菱形.证明:∵△ABD ≌△CBE ,∴AD =CE. ∵点D 是△ABC 的外接圆圆心, ∴AD =BD =CD.又∵BD =BE ,∴BD =BE =EC =CD. ∴四边形BECD 是菱形.C 组(综合题)15.如图,在正方形ABCD 中,AB =42,E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG ⊥EF 于点G ,连接DG ,则线段DG的最小值为。
《确定圆的条件》典型例题
《确定圆的条件》典型例题
例1如图,表示一块破碎的圆形木盖,确定它的圆心.
分析:根据不在同一直线上的三点确定一个圆”的原理可作出圆心. 作法:
(1)在弧上任取三点A、B、C;
⑵连接AC、BC;
(3)分别作AC、BC的中垂线MN、PQ,相交于点O,
点0即为所求圆心.
说明:此题是最基础的题目,主要培养学生的作图能力,学生必须落实.
例2、如图,在△ ABC中,BD、CEABC的中线,延长BD到F,使DF = BD.延长CE到G,EG=CE.求证:过A、G、F三点不能作圆.
分析:只要证明点G、A、F三点共线即可.
证明:连接AG、AF、BG、CF.
••• AD=DC、BD=DF,
•••四边形ABCF是平行四边形.故AF// BC.
同理AGBC是平行四边形,故AG / BC .
•••点G、A、F三点在同一直线上.
•••过点G、A、F不可能作圆.
说明:此题是小型一个综合题,主要培养学生的思维能力.
学习要有三心:一信心;二决心;三恒心
知识+方法二能力,能力+勤奋二效率,效率x时间二成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
【单点训练】确定圆的条件
【单点训练】确定圆的条件【单点训练】确定圆的条件一、选择题(共15小题)1.下列命题中,正确的命题是()A.三点确定一个圆B.经过四点不能作一个圆C.三角形有一个且只有一个外接圆D.三角形外心在三角形的外面2.给定下列命题:①三点确定一个圆;②平分弦的直径垂直于该弦,并且平分该弦所对的两条弧;③对角线相等的四边形是矩形;④如果顺次连接梯形四条边中点所得的图形是菱形,那么这个梯形是等腰梯形.其中真命题的个数是()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆C.相等的圆心角所对弦相等D.直径为圆中最长的弦4.下列表述正确的是()A.三点确定一个圆B.等弧所对的圆周角相等C.等弦所对的圆周角相等D.相等的圆周角所对的弦相等5.下列命题是真命题的有()个.①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆.A.1个B.2个C.0个D.3个6.下列命题中错误的命题是()A.直径所对的圆周角是直角B.圆既是轴对称图形,又是中心对称图形C.三点确定一个圆D.在同圆中,相等的圆周角所对的弦相等7.下列给定的三点能确定一个圆的是()A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点8.(2003•岳阳)下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc9.考虑下面六个命题(1)任意三点确定一个圆;(2)平分弦的直径垂直于弦,且平分这条弦所对的弧;(3)90°的圆周角所对的弦是直径;(4)同弧或等弧所对的圆周角相等;(5)相等的圆周角所对的弧相等.其中正确的命题有()A.2个B.3个C.4个D.5个10.下列条件,可以画出圆的是()A.已知圆心B.已知半径C.已知不在同一直线上的三点D.已知直径11.下列语句中正确的个数是()①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A.1B.2C.3D.412.(2010•河北)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M13.(2002•内江)下列叙述中,正确的是()A.垂直于弦的直径平分这条弦B.三点确定一个圆C.两点之间的线段叫两点间的距离D.等腰三角形的高、角平分线、中线互相重合14.下列说法错误的是()A.过一点有无数多个圆B.过两点有无数多个圆C.过三点只能确定一个圆D.过直线上两点和直线外一点,可以确定一个圆15.(2007•上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块二、填空题(共1小题)(除非特别说明,请填准确值)16.(2011•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【单点训练】确定圆的条件参考答案与试题解析一、选择题(共15小题)1.下列命题中,正确的命题是()A.三点确定一个圆B.经过四点不能作一个圆C.三角形有一个且只有一个外接圆D.三角形外心在三角形的外面考点:确定圆的条件.分析:根据确定圆的条件知,只有三点不在一条直线上才能确定一个圆,三角形的外心可能在三角形内,也可能在三角形上,根据以上知识点选择正确选项.解答:解:A、不共线的三点可以确定一个圆,故该选项错误;B、若四点共线就不能确定一个圆,故该选项错误;C、三角形有一个且只有一个外接圆,该选项正确;D、三角形外心不一定在三角形的外面,还可能在三角形上,故该选项错误;故选C.点评:本题主要考查确定圆的条件的知识点,基础题,比较简单,需要同学们熟练掌握.2.给定下列命题:①三点确定一个圆;②平分弦的直径垂直于该弦,并且平分该弦所对的两条弧;③对角线相等的四边形是矩形;④如果顺次连接梯形四条边中点所得的图形是菱形,那么这个梯形是等腰梯形.其中真命题的个数是()A.0个B.1个C.2个D.3个考点:垂径定理;三角形中位线定理;菱形的判定;矩形的判定;等腰梯形的性质;确定圆的条件.专题:探究型.分析:分别根据确定圆的条件、垂径定理、矩形的判定定理、菱形及等腰梯形的判定定理进行解答即可.解答:解:①不在同一条直线上的三点确定一个圆,故本小题错误;②若两条弦均为直径,则此结论不成立,故本小题错误;③等腰梯形的对角线相等,故小题错误;④若顺次连接梯形四条边中点所得的图形是菱形,那么此梯形的对角线相等,此梯形是等腰梯形,故本小题正确.故选B.点评:本题考查的是确定圆的条件、垂径定理、矩形的判定定理、菱形及等腰梯形的判定定理,涉及面较广,难易适中.3.下列说法正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆C.相等的圆心角所对弦相等D.直径为圆中最长的弦考点:确定圆的条件;圆的认识;垂径定理;圆心角、弧、弦的关系.分析:画出反例图形即可判断A、C;根据当三点在同一直线上时,过三点不能做一个圆,即可判断B,根据弦和直径的定义即可判断D.解答:解:A、如图,AB为弦时,直径CD和AB不垂直,故本选项错误;B、不在同一条直线上三点确定一个圆,当三点在同一直线上时,过三点不能做一个圆,故本选项错误;C、如图,∠AOB=∠COD,但弦AB≠弦CD,故本选项错误;D、直径是圆中最长的弦,故本选项错误.故选D.点评:本题考查了确定圆的条件,圆的认识,垂径定理,圆心角、弧、弦之间的关系等知识点的运用,主要考查学生的辨析能力.4.下列表述正确的是()A.三点确定一个圆B.等弧所对的圆周角相等C.等弦所对的圆周角相等D.相等的圆周角所对的弦相等考点:圆周角定理;确定圆的条件.专题:探究型.分析:根据圆周角定理及确定圆的条件对各选项进行逐一分析即可.解答:解:A、不在同一条直线上的三点确定一个圆,故本选项错误;B、等弧所对的圆周角相等符合圆周角定理,故本选项正确;C、在同圆或等圆中同弧所对的圆周角相等,故本选项错误;D、再同圆或等圆中,相等的圆周角所对的弦相等,故本选项错误.故选B.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.下列命题是真命题的有()个.①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆.A.1个B.2个C.0个D.3个考点:确定圆的条件;垂径定理;圆周角定理.专题:推理填空题.分析:此题涉及知识点较多,根据相关知识逐一判断.解答:解:①垂直于弦的中点的直线必过圆心,故本选项错误;②同圆中,相等的圆心角所对的弧相等,故本选项错误;③弦的垂线平分线平分弦所对的弧,故本选项正确;④若圆的一弦长等于圆半径,则其所对的圆周角是30°,故本选项正确;⑤不在同一直线上的三点可以确定一个圆,故本选项错误.故选B.点评:本题考查了命题和定理,知识点有:垂径定理,圆周角定理.6.下列命题中错误的命题是()A.直径所对的圆周角是直角B.圆既是轴对称图形,又是中心对称图形C.三点确定一个圆D.在同圆中,相等的圆周角所对的弦相等考点:圆周角定理;圆的认识;确定圆的条件.专题:应用题.分析:A、根据圆周角定理判定;B、根据轴对称图形和中心对称图形的定义判定;C、根据三点的位置判定;D、根据圆周角定理判定;解答:解:A、根据圆周角定理,故本选项正确,不符合题意;B、根据轴对称图形和中心对称图形的定义,故本选项正确,不符合题意;C、当三点在同一直线上时,不能确定一个圆,故本选项错误,符合题意;D、根据圆周角定理,故本选项正确,不符合题意.故选C.点评:本题主要考查了圆的认识和圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,半圆(或直径)所对的圆周角是直角.7.下列给定的三点能确定一个圆的是()A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点考点:确定圆的条件.分析:三点在同一直线时,过三点不能确定一个圆,根据即可判断A、B、D,根据三角形确定三角形的三个顶点不在同一直线上,即过三角形的三个顶点可以作一个圆,且只有一个圆,即可判断C.解答:解:A、线段AB的端点A、B和线段AB的中点C不能确定一个圆,故本选项错误;B、当角的两边上的一个点或两个点和角的顶点重合时就不能确定一个圆,故本选项错误;C、经过三角形的三个顶点作圆,有且只有一个圆,故本选项正确;D、矩形的对角线交点及两个顶点,如果这三个点在一条直线上,就不能确定一个圆,故本选项错误;故选C.点评:本题考查了确定圆的条件的应用,注意:不在同一直线上的三个点确定一个圆.8.(2003•岳阳)下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc考点:确定圆的条件;不等式的性质;全等三角形的判定;平行四边形的判定.分析:根据平行四边形的判定定理,三角形全等的判定方法,确定圆的条件以及不等式的性质即可解决.解答:解:A、一组对边相等,另一组对边平行的四边形有可能是等腰梯形,故原命题错误;B、符合SSA的两个三角形不一定全等,故命题错误;C、不在同一直线上的三点确定一个圆,故错误;D、若a>b,c>0,则ac>bc,故正确.故选D.点评:本题综合考查了各个易错点,应在做题过程中熟练掌握.9.考虑下面六个命题(1)任意三点确定一个圆;(2)平分弦的直径垂直于弦,且平分这条弦所对的弧;(3)90°的圆周角所对的弦是直径;(4)同弧或等弧所对的圆周角相等;(5)相等的圆周角所对的弧相等.其中正确的命题有()A.2个B.3个C.4个D.5个考点:确定圆的条件;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:根据圆中的定理进行分析.确定圆的定理:不在同一条直线上的三个点确定一个圆;垂径定理的推论:平分弦(非直径)的直径垂直于弦,且平分这条弦所对的弧;圆周角定理的推论:在同圆或等圆中,相等的圆周角所对的弧相等,同弧或等弧所对的圆周角相等;90°的圆周角所对的弦是直径.解答:解:根据圆中的定理及其推论,知(1)当三点共线的时候不能确定一个圆,故错误;(2)当该弦是直径的时候,不一定能够垂直,故错误;(3)和(4)根据圆周角定理的推论,故正确;(5)必须在同圆或等圆中,故错误.故选A.点评:此题考查了圆中的重要定理及其推论.注意:因为等弧的概念已经强调了在同圆或等圆中,所以当等弧做为条件时,不用强调在同圆或等圆中.10.下列条件,可以画出圆的是()A.已知圆心B.已知半径C.已知不在同一直线上的三点D.已知直径考点:确定圆的条件.分析:已知不在一条直线上的三点就可以作出圆的圆心和半径,就可以作出唯一的圆.解答:解:不在同一条直线上的三个点确定一个圆.故选C.点评:本题主要考查了确定圆的条件.11.下列语句中正确的个数是()①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A.1B.2C.3D.4考点:确定圆的条件;平行四边形的性质;菱形的性质;矩形的性质;正方形的性质.分析:根据对角互补的四边形的四个顶点共圆,进行判断.解答:解:①矩形的四边中点组成的图形是菱形,对角不一定互补,错误;②菱形的四边中点组成的图形是矩形,对角互补,则四个点共圆,正确;③等腰梯形的四边中点组成的图形是菱形,对角不一定互补,则不共圆,错误;④平行四边形的四边中点组成的图形是平行四边形,对角不一定互补,则不共圆,错误.故选A.点评:掌握四点共圆的条件,能够迅速判断一个四边形的四个中点组成的图形的形状,进一步根据特殊四边形的性质进行判断.12.(2010•河北)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M考点:确定圆的条件.专题:网格型.分析:根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB和BC的垂直平分线,交点Q即为圆心.故选B.点评:此题主要是垂径定理的推论的运用.13.(2002•内江)下列叙述中,正确的是()A.垂直于弦的直径平分这条弦B.三点确定一个圆C.两点之间的线段叫两点间的距离D.等腰三角形的高、角平分线、中线互相重合考点:垂径定理;线段的性质:两点之间线段最短;等腰三角形的性质;确定圆的条件.分析:根据相关知识点逐一判断.注意:等腰三角形底边上的高线、中线及顶角的平分线三线合一.解答:解:A、正确,符合垂径定理;B、错误,不在同一直线上的三点确定一个圆;C、错误,两点之间线段的长叫两点间的距离;D、错误,等腰三角形底边上的高线、中线及顶角的平分线互相重合.故选A.点评:此题考查的是垂径定理,确定圆的条件,两点之间距离的定义及等腰三角形的性质,同学们需细心解答.14.下列说法错误的是()A.过一点有无数多个圆B.过两点有无数多个圆C.过三点只能确定一个圆D.过直线上两点和直线外一点,可以确定一个圆考点:确定圆的条件.分析:不在同一条直线上的三个点确定一个圆,而过在同一条直线上的三点的圆是不存在的.解答:解:A、正确;B、正确;C、要强调不在同一条直线上的三个点确定一个圆,错误;D、正确.故选C.点评:本题主要考查了确定圆的条件.15.(2007•上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块考点:确定圆的条件.专题:应用题.分析:要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.解答:解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选B.点评:解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.二、填空题(共1小题)(除非特别说明,请填准确值)16.(2011•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.考点:确定圆的条件;圆心角、弧、弦的关系.专题:证明题;几何综合题.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.解答:(1)证明:∵AD为直径,AD⊥BC,∴∴BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠BAD=∠CBD,又∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.点评:本题主要考查等弧对等弦,及确定一个圆的条件,此类题是中考的常考题,需要同学们牢固掌握.。
苏教版九年级数学上册第二章 2.3 确定圆的条件 练习题(含答案解析)
第二章 2.3 确定圆的条件一.选择题(共10小题)1.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.2.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心3.如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A.B.C.D.4.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△P AB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°6.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A.26°B.28°C.30°D.32°7.如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则O半径的最小值为()A.6B.C.2D.38.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=13,CD=5,AB=12,则⊙O的直径等于()A.B.15C.13D.179.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定10.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.C.2D.二.填空题(共5小题)11.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.12.(2019•衡阳)已知圆的半径是6,则圆内接正三角形的边长是.13.(2018•凉山州)如图,△ABC外接圆的圆心坐标是.14.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.15.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.三.解答题(共5小题)16.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.17.如图,已知△ABC及其外接圆,∠C=90°,AC=10.(1)若该圆的半径为5,求∠A的度数;(2)点M在AB边上(AM>BM),连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E.若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由.18.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l 交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长.19.如图,在△ABC中,BD平分∠ABC,交△ABC外接圆于另一点D.点E在BA延长线上,DE=DB.(1)求证:EA=BC;(2)若EB=8,BC=2,求ED2﹣CD2的值.20.如图,△ABC是⊙O的内接三角形,AC=BC,D为上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.答案与解析一.选择题(共10小题)1.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.【分析】根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质即可得到结论BC=OB=R,【解答】解:∵∠A=45°,∴∠BOC=90°,∵半径为R,∴OB=OC=R,∴BC=OB=R,故选:A.【点评】此题考查了三角形的外接圆与外心,圆周角定理、勾股定理,等腰直角三角形的性质,熟练正确圆周角定理是解决本题的关键.2.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心【分析】根据三角形的外心得出OA=OC=OA,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【解答】解:连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OA,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OE≠OD,即O不是△AED的外心,OA=OE=OB,即O是△AEB的外心,OA=OC=OE,即O是△ACE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:D.【点评】本题考查了正方形的性质和三角形的外心与外接圆,能熟记知识点的内容是解此题的关键,注意:三角形的外心到三个顶点的距离相等,正方形的四边都相等.3.如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A.B.C.D.【分析】连接AO并延长交⊙O于点M,过点O作OD⊥BM于点D,过点A作AN⊥BC 于点N,由垂径定理和圆周角定理可得∠ABM=90°,AP=PB=AB=2,由三角形中位线可得BM=2OP=2,OD=2,由锐角三角函数可得AN=2CN,由勾股定理可求AC 的长,由等腰三角形的性质可得BN=AN,即可求解.【解答】解:如图,连接AO并延长交⊙O于点M,过点O作OD⊥BM于点D,过点A 作AN⊥BC于点N,∵AM是直径∴∠ABM=90°∵OP⊥AB∴AP=PB=AB=2,且AO=OM∴BM=2OP=2∴点M与点P关于BC对称,∴∠CBA=∠CBM=45°∵OD⊥BM,∴BD=DM=1,且AO=OM∴OD=AB=2,∵∠C=∠M,∴tan∠C=tan∠M=∴设CN=a,则AN=2a,∴AC==a,∵AN⊥BC,∠ABC=45°∴AN=BN=2a,∴BC=3a,故选:B.【点评】本题考查了三角形的外接圆和外心,折叠的性质,圆的有关知识,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.4.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.【分析】根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.【点评】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△P AB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△P AB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A.26°B.28°C.30°D.32°【分析】根据圆周角定理得到∠ACD=90°,∠ADC=∠B=64°,然后利用互余计算∠DAC的度数.【解答】解:∵AD为直径,∴∠ACD=90°,∵∠ADC=∠B=64°,∴∠DAC=90°﹣64°=26°.故选:A.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.7.如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则O半径的最小值为()A.6B.C.2D.3【分析】分别作∠A与∠B角平分线,交点为P.由三线合一可知AP与BP为CD、CE垂直平分线;再由垂径定理可知圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点;连OC,若半径OC最短,则OC⊥AB,由△AOB为底边4,底角30°的等腰三角形,可求得OC=.【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=6,∴OA=OB,∴AC=BC=3,∴在直角△AOC中,OC=AC•tan∠OAC=3×tan30°=.故选:B.【点评】本题考查了三角形的外接圆与外心,需要掌握等边三角形的“三线合一”的性质,三角形的外接圆圆心为三角形的垂心,点到直线的距离垂线段最短以及解直角三角形等知识点.难度不大,注意数形结合数学思想的应用.8.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=13,CD=5,AB=12,则⊙O的直径等于()A.B.15C.13D.17【分析】作直径AE,连接BE,如图,先利用勾股定理计算出AD=12,根据圆周角定理得到∠ABE=90°,∠AEB=∠ACB,则可判断△ABE∽△ADC,然后利用相似比求出AE 即可.【解答】解:作直径AE,连接BE,如图,∵AD⊥BC,∴∠ADC=90°,∴AD==12,∵AE为直径,∴∠ABE=90°,∴∠ABE=∠ADC,而∠AEB=∠ACB,∴△ABE∽△ADC,∴=,即=,∴AE=13,即⊙O的直径等于13.故选:C.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.9.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定【分析】直接根据点与圆的位置关系进行判断.【解答】解:∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.10.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.C.2D.【分析】如图,连接AC,取AC的中点H,连接EH,OH.利用三角形的中位线定理可得EH=1,推出点E的运动轨迹是以H为圆心半径为1的圆.【解答】解:如图,连接AC,取AC的中点H,连接EH,OH.∵CE=EP,CH=AH,∴EH=P A=1,∴点E的运动轨迹是以H为圆心半径为1的圆,∵C(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OE的最小值=OH﹣EH=2.5﹣1=1.5,故选:B.【点评】本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,正确寻找点E的运动轨迹,属于中考选择题中的压轴题.二.填空题(共5小题)11.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.12.(2019•衡阳)已知圆的半径是6,则圆内接正三角形的边长是6.【分析】易得正三角形的中心角为120°,那么中心角的一半为60°,利用60°的正弦值可得正三角形边长的一半,乘以2即为正三角形的边长.【解答】解:如图,圆半径为6,求AB长.∠AOB=360°÷3=120°连接OA,OB,作OC⊥AB于点C,∵OA=OB,∴AB=2AC,∠AOC=60°,∴AC=OA×sin60°=6×=3,∴AB=2AC=6,故答案为:6.【点评】本题考查的是三角形的外接圆与外心,先利用垂径定理和相应的三角函数知识得到AC的值是解决本题的关键.13.(2018•凉山州)如图,△ABC外接圆的圆心坐标是(4,6).【分析】因为BC是线段,AB是正方形的对角线,所以作AB、BC的垂直平分线,找到交点O即可.【解答】解:作线段BC的垂直平分线,作AB的垂直平分线,两条线相交于点O所以O的坐标为(4,6)故答案为:(4,6)【点评】本题考查了线段的垂直平分线及三角形的外心.三角形三边的垂直平分线的交点是三角形的外心.解决本题需仔细分析三条线段的特点.14.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.15.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.【分析】当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直于切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得.【解答】解:当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵过P的直线是⊙D的切线,∴DP垂直于切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故答案为:.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.三.解答题(共5小题)16.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.17.如图,已知△ABC及其外接圆,∠C=90°,AC=10.(1)若该圆的半径为5,求∠A的度数;(2)点M在AB边上(AM>BM),连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E.若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由.【分析】(1)先证明AB是⊙O的直径,根据半径可以求出AB,根据勾股定理求出BC,得出BC=AC,从而求出∠A的度数;(2)先根据题意作出图形,根据勾股定理求出BC,再证明∠A=∠CDE.由直角三角形ABC可以得出tan A===,可得tan∠CDE=tan A=.在Rt△CDE中,可以求出DE,从而求出BD=5=BC,由OC=OD得出OB⊥CD,即AB⊥CD.【解答】解:(1)∵∠C=90°,∴AB为△ABC外接圆的直径,∵该圆的半径为5,∴AB=10,∴在Rt△ABC中,AC2+BC2=AB2.∵AC=10∴102+BC2=(10)2.∴BC=10,∴AC=BC.∴∠A=∠B.∴∠A==45°;(2)AB与CD互相垂直,理由如下:由(1)得,AB为直径,取AB中点O,则点O为圆心,连接OC,OD.∵CE⊥DB,∴∠E=90°.∴在Rt△CBE中,BE2+CE2=BC2.即32+42=BC2.∴BC=5.∵,∴∠A=∠BOC,∠CDE=∠BOC.∴∠A=∠CDE.∵∠ACB=90°,∴在Rt△ACB中,tan A===.∴tan∠CDE=tan A=.又∵在Rt△CED中,tan∠CDE=,∴=.即=.∴DE=8.∴BD=DE﹣BE=8﹣3=5.∴BC=BD.∴∠BOC=∠BOD.∵OC=OD,∴OM⊥CD.即AB⊥CD.【点评】本题考查了三角形的外接圆,圆的有关性质和计算,锐角三角函数,勾股定理等知识,熟练掌握三角形和圆的有关知识是解题的关键.18.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l 交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长.【分析】(1)根据AB⊥CD,AB是⊙O的直径,得到=,∠ACD=∠B,由∠FPC =∠B,得到∠ACD=∠FPC,结论可得;(2)连接OP,由=,得到OP⊥AB,∠OPG=∠PDC,根据AB是⊙O的直径,得到∠ACB=90°,由于AC=2BC,于是得到tan∠CAB=tan∠DCB=,得到==,求得AE=4BE,通过△OPG∽△EDG,得到=,然后根据勾股定理即可得到结果.【解答】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠F AC=∠PDF,∴△P AC∽△PDF;(2)连接OP,则OA=OB=OP=AB=,∵=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=,∴==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴=,∴==,∴GE=,OG=,∴PG==,GD==,∴PD=PG+GD=.【点评】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.19.如图,在△ABC中,BD平分∠ABC,交△ABC外接圆于另一点D.点E在BA延长线上,DE=DB.(1)求证:EA=BC;(2)若EB=8,BC=2,求ED2﹣CD2的值.【分析】(1)连接AD,由等腰三角形的性质得到∠E=∠DBA,由角平分线的性质得到∠DBC=∠DBA,根据全等三角形的性质即可得到结论;(2)过D作DH⊥AB于H,于是得到EH=EB=4,根据勾股定理即可得到结论.【解答】(1)证明:连接AD,∵DE=DB,∴∠E=∠DBA,∵BD平分∠ABC,∴∠DBC=∠DBA,∴∠DBC=∠E,∵∠EAD=∠BCD,∴△DBC≌△DEA(AAS),∴EA=BC;(2)解:过D作DH⊥AB于H,∵DE=DB,DH⊥AB,∴EH=EB=4,∵EA=BC=2,∴AH=EH﹣EA=2,∵∠DBC=∠DBA,∴CD=AD,CD2=AD2,∵ED2=HD2+HE2=HD2+16,AD2=HD2+HA2=HD2+4,∴ED2﹣CD2=16﹣4=12.【点评】本题考查了三角形的外接圆和外心,圆周角定理,勾股定理,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20.如图,△ABC是⊙O的内接三角形,AC=BC,D为上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.【分析】(1)先证出△AEC≌△BDC,只要再找一对角相等就可以了,利用边相等,可得∠CAB=∠CBA,∠CEA=∠CDE,而∠CAB=∠CDB=∠CDE,故∠CEA=∠CDB,(CE=CD,∠CAE=∠CBD)再利用SAS可证出△AEC≌△BDC.(2)利用(1)中的全等,可得,AE=BD,∠ECA=∠DCB,那么就有∠ECD=∠ECA+∠ACD=90°,根据勾股定理得DE =CD,而DE=AD+AE=AD+BG,所以有AD+BD =CD.【解答】证明:(1)∵△ABC是⊙O的内接三角形,AC=BC,∴∠ABC=∠BAC,∵CE=CD,∴∠CDE=∠CED;又∵∠ABC=∠CDE,∴∠ABC=∠BAC=∠CDE=∠CED,(同弧上的圆周角相等)∴∠ACB=∠DCE,∴∠BCD=∠ACE,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD.(2)∵AC⊥BC,∴∠ACB=90°,∴∠DCE=90°;又∵CD=CE,∴△DCE为等腰直角三角形,∴DE =CD,又∵DE=AD+AE且AE=BD,∴AD+BD =CD.【点评】本题利用了同弧上的圆周角相等,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,还有圆内接四边形的外角等于其内对角等知识.21。
名师课堂--2.3确定圆的条件 一课一练 苏科版九年级 上册 数学
【解析】∵直径R=6cm,R<AB,
∴这样的圆不存在.
故选A.
6.D
【解析】解:根据垂径定理的推论,则
作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).
故选D.
7.B
【分析】
连接AC,作出AB、AC的垂直平分线,其交点即为圆心.
【解析】如图所示,
连接AC,作出AB、AC的垂直平分线,其交点即为圆心.
∵点A的坐标为(-2,3),
∴该圆弧所在圆的圆心坐标是(-3,0).
故选:B.
8.B
【解析】解:连接OB,OC,令M为OP中点,连接MA,MB,
∵B,C为切点,
∴∠OBP=∠OAP=90°,
∵OA=OB,OP=OP,
∴Rt△OPB≌Rt△OPA,
∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,
故答案为:16
14.线段MN的垂直平分线.
【解析】解:根据同圆的半径相等,则圆心应满足到点M和点N的距离相等,即经过已知点M和点N的圆的圆心的轨迹是线段MN的垂直平分线.
故答案为线段MN的垂直平分线.
15. 或 或 或
【解析】分三种情况讨论:(1)若四点共线,则过其中三点作圆,可作0个圆;
(2)若有三点共线,则过其中三点作圆,可作3圆;
A.(﹣1,1)B.(﹣3,0)C.(﹣3,1)D.(0,1)
8.如图, 、 为⊙O的切线,切点分别为A、B, 交 于点C, 的延长线交⊙O于点D.下列结论不一定成立的是()
A. 为等腰三角形B. 与 相互垂直平分
C.点A、B都在以 为直径的圆上D. 为 的边 上的中线
二、填空题
9.已知: ,求作 的外接圆,作法:①分别作线段BC,AC的垂直平分线EF和MN,它们交于点O;②以点O为圆心,OB的长为半径画弧,如图⊙O即为所求,以上作图用到的数学依据是___________________.
确定圆的条件(2种题型)-2023年新九年级数学(苏科版)(解析版)
确定圆的条件(2种题型)1.了解三角形的外接圆与外心相关概念,2.探索如何过一点、两点和不在同一直线上的三点作圆;一.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.二.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.一.确定圆的条件(共5小题)1.(2022秋•盐都区期中)下列说法正确的是()A.等弧所对的圆心角相等B.在等圆中,如果弦相等,那么它们所对的弧也相等C.过三点可以画一个圆D.平分弦的直径,平分这条弦所对的弧【分析】根据确定圆的条件,弧,圆心角,弦之间的关系,垂径定理的判定进行一一判断即可.【解答】解:A、等弧所对的圆心角相等,说法正确,本选项符合题意;B、在等圆中,如果弦相等,但它们所对的弧不一定相等,本选项不符合题意;C、过不在同一直线上的三点可以画一个圆,说法不正确,本选项不符合题意;D、平分弦(非直径)的直径,平分这条弦所对的弧,说法不正确,本选项不符合题意.故选:A.【点评】本题考查确定圆的条件,弧,圆心角,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2016秋•太仓市校级期末)小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.3.(2021春•射阳县校级期末)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3)确定一个圆(填“能”或“不能”).【分析】根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.【解答】解:∵B(0,﹣3)、C(2,﹣3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,﹣3)、C(2,﹣3)能确定一个圆.故答案为:能.【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.4.(2022秋•江宁区校级月考)下列说法:①长度相等的弧是等弧;②相等的圆心角所对的弧相等;③直径是圆中最长的弦;④经过不在同一直线上的三个点A、B、C只能作一个圆.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用等弧的定义、圆周角定理、圆的有关定义及确定圆的条件分别判断后即可确定正确的选项.【解答】解:①长度相等的弧不一定是等弧,故原命题错误,不符合题意;②同圆或等圆中,相等的圆心角所对的弧相等,故原命题错误,不符合题意;③直径是圆中最长的弦,正确,符合题意;④经过不在同一直线上的三个点A、B、C只能作一个圆,正确,符合题意,正确的有2个,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解等弧的定义、圆周角定理、圆的有关定义及确定圆的条件,难度不大.5.(2022春•射阳县校级期中)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为.【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).【点评】本题考查了确定圆的条件,坐标与图形性质,垂径定理等知识点,能找出圆弧的圆心Q的位置是解此题的关键.二.三角形的外接圆与外心(共20小题)6.(2022秋•广陵区校级期末)如图,点A(0,3),B(2,1),C在平面直角坐标系中,则△ABC的外心在()A.第四象限B.第三象限C.原点O处D.y轴上【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC 的垂线,两垂线的交点即为△ABC的外心.【解答】解:如图,根据网格点O′即为所求.∵△ABC的外心即是三角形三边垂直平分线的交点,∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:B.【点评】此题考查了三角形的外接圆与外心,坐标与图形性质.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.7.(2023•姑苏区校级二模)如图,E为正方形ABCD的边CD上一点(不与C、D重合),将△BCE沿直线BE翻折到△BFE,延长EF交AE于点G,点O是过B、E、G三点的圆劣弧EG上一点,则∠EOG=°.【分析】连接BG,由折叠的性质得出BC=BF,∠CBE=∠FBE,∠BCE=∠BFE,由正方形的性质得出AB=BC,∠A=∠C=∠ABC=90°,证明Rt△ABG≌Rt△FBG(HL),证出∠ABG=∠FBG,求出∠GBE =∠ABC=45°,则可得出答案.【解答】解:连接BG,∵将△BCE沿直线BE翻折到△BFE,∴BC=BF,∠CBE=∠FBE,∠=∠BFE,∵四边形ABCD为正方形,∴AB=BC,∠A=∠C=∠ABC=90°,∴AB=BF,∵BG=BG,∴Rt△ABG≌Rt△FBG(HL),∴∠ABG=∠FBG,∴∠ABG=∠FBG,∴∠GBE=∠ABC=45°,∵四边形GBEO为圆内接四边形,∴∠EBG+∠EOG=180°,∴∠EOG=180°﹣∠EBG=135°,故答案为:135.【点评】本题考查了正方形的性质,折叠的性质,圆内接四边形的性质,全等三角形的判定与性质,熟练掌握以上知识点是解题的关键.8.(2022秋•江阴市校级月考)(1)如图1,请只用无刻度直尺找出△ABC的外心点O;并直接写出其外接圆半径;(2)如图2,请用直尺和圆规将图中的弧补成圆;并标记圆心P.【分析】(1)根据三角形的外心是三边垂直平分线的交点作出点O;(2)在弧上任取三点A,C,C,连接AB,BC,分别作弦AB,BC的垂直平分线,两垂直平分线的交点即为圆心P,于是得到结论.【解答】解:(1)如图(1)所示,点O即为所求;外接圆半径==;故答案为:;(2)如图(2)所示:⊙P【点评】本题考查了三角形外接圆与外心,勾股定理,正确地作出图形是解题的关键.9.(2023•无锡二模)在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子游戏,要在他们之间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放在△ABC的()A.三条高的交点B.内心C.外心D.重心【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.即凳子应放在△ABC的外心上.故选:C.【点评】本题主要考查了线段垂直平分线的性质的应用;掌握线段垂直平分线上的点到线段两端的距离相等是解答本题的关键.10.(2022秋•鼓楼区期中)如图,正方形ABCD、等边三角形AEF内接于同一个圆,则的度数为()A.15°B.20°C.25°D.30°【分析】由∠BAD=90°,∠EAF=60°,已知图形是以正方形ABCD的对角线AC所在直线为对称轴的轴对称图形,求得∠BAE=15°,则所对的圆心角等于30°,所以的度数为30°.【解答】解:∵四边形ABCD是正方形,△AEF是等边三角形,∴∠BAD=90°,∠EAF=60°,∵已知图形是以正方形ABCD的对角线AC所在直线为对称轴的轴对称图形,∴∠BAE=∠DAF=×(90°﹣60°)=15°,∵∠BAE是所对的圆周角,∴所对的圆心角等于2×15°=30°,∴的度数为30°,故选:D.【点评】此题重点考查正多边形与圆、正方形及等边三角形的性质、圆周角定理、弧的度数等知识,根据圆周角定理求出所对的圆心角的度数是解题的关键.11.(2022秋•太仓市校级月考)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=3,BD为⊙O的直径,则AD的值为()A.6B.C.3D.【分析】先根据“等边对等角”得出∠C的度数,再根据“同弧所对的圆周角相等”得出∠D的度数,从而得出直径BD的长度,最后根据勾股定理求解即可.【解答】解:∵∠BAC=120°,AB=AC=3,∴,∴∠D=∠C=30°,∵BD为⊙O的直径,∴∠BAD=90°,∴BD=2AB=6,在Rt△ABD中,根据勾股定理得:.故选:D.【点评】本题主要考查了“等边对等角”,“同弧所对的圆周角相等”,“直径所对的圆周角为直角”,“在直角三角形中,30°角所对的边为斜边的一半”,勾股定理,熟练掌握相关内容是解题的关键.12.(2022秋•梁溪区校级期中)三角形的外心具有的性质是()A.外心在三角形外B.外心在三角形内C.外心到三角形三边距离相等D.外心到三角形三个顶点距离相等【分析】三角形三条边垂直平分线的交点,叫做三角形的外心,根据线段垂直平分线的性质即可确定.【解答】解:根据三角形外心的定义,可知三角形外心到三角形三个顶点的距离相等,故选:D.【点评】本题考查了三角形的外心,线段垂直平分线的性质,熟练掌握这些知识是解题的关键.13.(2023•邗江区校级二模)如图,⊙O的直径为m,△ABC是⊙O的内接三角形,AB的长为x,AC的长为y,且x+y=6,AD⊥BC于点D,AD=1,则m的最大值为.【分析】过点A作⊙O的直径AE,连接CE,根据圆周角定理,可证得△ABD∽△AEC,根据相似三角形的性质,可得m=xy,再由x+y=6,即可得m=﹣(x﹣3)2+9,根据二次函数的性质,即可求解.【解答】解:如图:过点A作⊙O的直径AE,连接CE,则AE=m,∠ACE=90°,∠ABD=∠AEC,∵AD⊥BC,∴∠ADB=∠ACE=90°,∴△ABD∽△AEC,∴,∴,∴m=xy,∵x+y=6,∴y=6﹣x,∴m=x(6﹣x)=﹣x2+6x=﹣(x﹣3)2+9,∵﹣1<0,∴当x=3时,m取最大值,最大值为9,故答案为:9.【点评】本题考查了圆周角定理,相似三角形的判定与性质,二次函数的性质,得到m关于x或y的二次函数关系式是解决本题的关键.14.(2022秋•阜宁县期末)如图,⊙O是△ABC的外接圆,∠A=60°,BC=4,则⊙O的半径是.【分析】作直径CD,如图,连接BD,根据圆周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三边的关系求出CD,从而得到⊙O的半径.【解答】解:作直径CD,如图,连接BD,∵CD为直径,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×4=4,∴CD=2BD=8,∴OC=4,即⊙O的半径是4.故答案为:4.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.15.(2021秋•海州区校级月考)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则⊙O的直径长等于.【分析】连接BO并延长交⊙O于D,连接CD,得到∠BCD=90°,根据圆周角定理得到∠D=∠BAC=30°,根据含30°角直角三角形的性质即可得到结论.【解答】解:连接BO并延长交⊙O于D,连接CD,则∠BCD=90°,∵∠BAC=30°,∴∠D=∠BAC=30°,∵BC=2,∴BD=2BC=4,故答案为:4.【点评】本题考查了三角形的外接圆与外心,含30°角的直角三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.16.(2022•亭湖区校级模拟)如图1,它是一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=4,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在x轴上由点O开始向右滑动,点B在y轴上也随之向点O滑动(如图3),并且保持点O在⊙G上,当点B滑动至与点O 重合时运动结束、在整个运动过程中,点C运动的路程是.【分析】由于在运动过程中,原点O始终在⊙G上,则弧AC的长保持不变,弧AC所对应的圆周角∠AOC 保持不变,等于∠XOC,故点C在与x轴夹角为∠ABC的射线上运动.顶点C的运动轨迹应是一条线段,且点C移动到图中C2位置最远,然后又慢慢移动到C3结束,点C经过的路程应是线段C1C2+C2C3.【解答】解:如图3,连接OG.∵∠AOB是直角,G为AB中点,∴GO=AB=半径,∴原点O始终在⊙G上.∵∠ACB=90°,AB=4,AC=2,∴BC=,连接OC,则∠AOC=∠ABC,∴tan∠AOC=,∴点C在与x轴夹角为∠AOC如图4,C1C2=OC2﹣OC1=4﹣2=2;如图5,C2C3=OC2﹣OC3=;∴总路径为:C1C2+C2C3==,【点评】此题主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.17.(2022秋•宿城区期中)如图,BD,CE是△ABC的高,BD,CE相交于点F,M是BC的中点,⊙O 是△ABC的外接圆.(1)点B,C,D,E是否在以点M为圆心的同一个圆上?请说明理由.(2)若AB=8,CF=6,求△ABC外接圆的半径长.【分析】(1)连接EM,DM,根据垂直定义可得∠BDC=∠BEC=90°,然后利用直角三角形斜边上的中线性质可得EM=BM=BC,DM=CM=BC,从而可得EM=BM=DM=CM,即可解答;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF=AH=6,最后在Rt △BAH【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=BC,DM=CM=BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH===10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.18.(2022秋•海州区校级月考)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值.解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,所以t=±9,因为2m2+n2≥0,所以2m2+n2=9.这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题.222222(2)已知Rt△ACB的三边为a、b、c(c为斜边),其中a、b满足(a2+b2﹣1)(a2+b2﹣4)=5(a2+b2)(a2+b2﹣4),求Rt△ACB外接圆的半径.【分析】(1)设2x2+2y2=t,解一元二次方程得到t=±6,根据2x2+2y2≥0,得到2x2+2y2=6,进而求出x2+y2=3;(2)设a2+b2=t,解一元二次方程得到a2+b2=4,根据勾股定理求出c,求出Rt△ACB外接圆的半径为1.【解答】解:(1)设2x2+2y2=t,则原方程变形为(t+3)(t﹣3)=27,整理得:t2=36,解得,t=±6,∵2x2+2y2≥0,∴2x2+2y2=6,∴x2+y2=3;(2)设a2+b2=t,则原方程变形为(t﹣1)(t﹣4)=5t(t﹣4),整理得,4t2﹣15t﹣4=0,解得:t=4或﹣,∵a2+b2≥0,∴a2+b2=4,∴c==2,∴Rt△ACB外接圆的半径为1.【点评】本题考查的是三角形的外心、一元二次方程的解法,掌握换元法解一元二次方程的一般步骤是解题的关键.19.(2022秋•秦淮区期中)以下列三边长度作出的三角形中,其外接圆半径最小的是()A.8,8,8B.4,10,10C.4,8,10D.6,8,10【分析】分别求出各三角形的外接圆半径,比较即可.【解答】解:A、∵△ABC是等边三角形,设O是外心,∴BF=CF=4,AF⊥BC,BE平分∠ABC,∴∠OBF=∠ABC=30°,∴OB===,∴△ABC的外接圆的半径为;B、∵△ABC是等腰三角形,过A作AD⊥BC于D,延长AD交⊙O于E,∵AB=AC=10,∴=,BD=CD=BC=2,∴AE是⊙O的直径,AD===4,∴∠ABE=∠ADB=90°,∵∠BAD=∠EAB,∴△ADB∽△ABE,∴=,∴=,∴AE=,∴外接圆半径为;C、作AD⊥BC于点D,作直径AE,连接CE,在Rt△ABD中,AB2﹣BD2=AD2,在Rt△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,即42﹣BD2=82﹣(10﹣BD)2,解得BD=,由勾股定理得,AD==,∵AE为圆的直径,∴∠ACE=90°,∴∠ADB=∠ACE,又∠B=∠E,∴△ADB∽△ACE,∴=,即=,解得AE=,则外接圆半径=,D、∵62+82=102,∴此三角形是直角三角形,∴此三角形外接圆的半径为5,∴其外接圆半径最小的是A故选:A.【点评】本题考查的是三角形的外接圆与外心、相似三角形的判定和性质、勾股定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.(2023•秦淮区模拟)如图,△ABC是⊙O的内接三角形,,把△ABC绕点O按逆时针方向旋转90°得到△BED,则对应点C,D之间的距离为.【分析】连接OC,OB,OD,根据圆周角定理得到△OCB是等边三角形,根据旋转的性质得到∠COD=90°,根据勾股定理得到.【解答】解:连接OC,OB,OD,CD,∵∠BOC=2∠A=60°,OC=OB,∴△OCB是等边三角形,∴,∵△ABC绕点O按逆时针方向旋转90°得到△BED,∴∠COD=90°,根据勾股定理.故答案为:2.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,圆周角定理,旋转的性质,正确地作出辅助线是解题的关键.21.(2019秋•新北区校级期中)如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD =°.【分析】根据直径所对圆周角是直角和同弧所对圆周角相等即可求出∠ACD的度数.【解答】解:如图,连接BD,∵∠BAD=50°,∴∠ABD=90°﹣50°=40°,∴∠ACD=∠ABD=40°.故答案为:40.【点评】本题考查了三角形的外接圆与外心,解决本题的关键是掌握三角形的外接圆与外心.22.(2022秋•涟水县校级月考)定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,△ABC是等边三角形,点O是△ABC的外心,求证∠ABO=30°(2)如图②,△ABC是等边三角形,分别延长等边三角形ABC的边AB、BC、CA到点D、E、F,使BD =CE=AF,连接DE,EF,DF.若点O为△ABC的外心,求证:点O也是△DEF的外心.【分析】(1)ABC=60°,AB=AC=BC,根据全等三角形的性质得到∠ABO =∠OBC,于是得到结论;(2)连接OF,OD,OE,由(1)得,∠ABO=30°,推出∠FAO=∠DBO,根据全等三角形的性质即可得到结论.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=BC,∵点O是△ABC的外心,∴OA=OB=OC,在△AOB与△COB中,,∵∠ABO+∠OBC=∠ABC=60°,∴∠ABO=30°;(2)连接OF,OD,OE,由(1)得,∠ABO=30°,∵点O为△ABC的外心,∴OA=OB,∴∠OAB=∠ABO=30°,∴∠OAC=60°﹣30°=30°,∴180°﹣∠OAC=180°﹣∠ABO,∴∠FAO=∠DBO,在△FAD与△DBO中,,∴△FAD≌△DBO(SAS),∴OF=OD,同理,OF=OE,∴OF=OE=OD,∴点O也是△DEF的外心.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等边三角形的性质,正确地作出辅助线是解题的关键.23.(2022秋•惠山区校级月考)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值.解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,所以t=±9,因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x、y,满足(2x2+2y2+3)(2x2+2y2﹣3)=27,求x2+y2的值;(2)已知Rt△ACB的三边为a、b、c(c为斜边),其中a、b满足(a2+b2)(a2+b2﹣4)=5,求Rt△ACB 外接圆的半径.【分析】(1)利用换元法解方程即可解决问题;(2)利用换元法解方程可得c=,再根据直角三角形外接圆的半径等于斜边的一半即可解决问题.【解答】解:(1)设2x2+2y2=t,则原方程可变为(t+3)(t﹣3)=27,解得t=±6,∵2x2+2y2≥0,∴2x2+2y2=6,∴x2+y2=3;(2)设a2+b2=t,则原方程可变为t(t﹣4)=5,即t2﹣4t﹣5=0,解得t1=5,t2=﹣1,∵a2+b2≥0,∴a2+b2=5,∴c2=5,∴c=,∴Rt△ACB外接圆的半径为.【点评】本题考查了三角形的外接圆与外心,代数式求值,高次方程,勾股定理,一元二次方程,解决本题的关键是掌握直角三角形的外心.24.(2023•建邺区一模)如图,在△ABC中,AC=BC.D是AB上一点,⊙O经过点A,C,D交BC于点E.过点D作DF∥BC,分别交AC于点G,⊙O于点F.(1)求证AC=DF;(2)若AC=10,AB=12,CF=3,求BE的长.【分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF =∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可得出平行四边形DBCF,继而得出BC=DF,又由AC=BC,即可得答案;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可得出AF=EF,再证△ACF≌△FDE(SAS),得出CF=DE=BD=3,再证△ABC∽△EBD,得出=,即可得答案.【解答】(1)证明:∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形,∴BC=DF,∵AC=BC,∴AC=DF;(2)解:连接AE,AF,DE,EF,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF,∵DF∥BC,∴∠DFE=∠FEC,∵∠FAC=∠FEC,∴∠FAC=∠DFE,∵AC=DF,∴△ACF≌△FDE(SAS),∴CF=DE,∴DE=BD=3,∴∠B=∠DEB,∵AC=BC,∴∠B=∠CAB,∴∠B=∠CAB=∠DEB,∴△ABC∽△EBD,∴=,∴=,∴BE=3.6.【点评】本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.(2022秋•溧阳市期中)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值.解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,所以t=±9,因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x、y满足(2x2+2y2+3)(2x2+2y2﹣3)=27,求x2+y2的值;(2)已知Rt△ABC的三边为a、b、c(c为斜边),且a、b满足(a2+b2)(a2+b2﹣4)=5,求Rt△ACB 外接圆的半径.【分析】(1)设2x2+2y2=t,解一元二次方程得到t=±6,根据2x2+2y2≥0,得到2x2+2y2=6,进而求出x2+y2=3;(2)设a2+b2=t,解一元二次方程得到a2+b2=4,根据勾股定理求出c,求出Rt△ACB外接圆的半径为1.【解答】解:(1)设2x2+2y2=t,则原方程变形为(t+3)(t﹣3)=27,整理得:t2=36,解得,t=±6,∵2x2+2y2≥0,∴2x2+2y2=6,∴x2+y2=3;(2)设a2+b2=t,则原方程变形为t(t﹣4)=5,整理得t2﹣4t﹣5=0,解得:t=5或﹣1,∵a2+b2≥0,∴a2+b2=5,∴c==,∴Rt△ACB外接圆的半径为.【点评】本题考查的是三角形的外心、一元二次方程的解法,掌握换元法解一元二次方程的一般步骤是解题的关键.一、单选题1.(2022秋·江苏镇江·九年级统考期中)下列说法正确的是()A.弧长相等的弧是等弧B.直径是最长的弦C.三点确定一个圆D.平分弦的直径垂直于弦【答案】B【分析】根据等弧的概念、弦的概念、确定圆的条件以及垂径定理判断即可.【详解】A、能够重合的弧是等弧,弧长相等的弧不一定是等弧,故本选项说法错误,不符合题意;B、直径是最长的弦,本选项说法正确,符合题意;C、不在同一直线上的三点确定一个圆,故本选项说法错误,不符合题意;D、平分弦(不是直径的弦)的直径垂直于弦,故本选项说法错误,不符合题意;故选:B.【点睛】本题考查的是圆的概念和有关性质,熟记等弧的概念、弦的概念、确定圆的条件以及垂径定理是解题的关键.【答案】A【分析】根据确定圆的条件,弧,圆心角,弦之间的关系,垂径定理的判定进行一一判断即可.【详解】解:A、等弧所对的圆心角相等,说法正确,本选项符合题意;B、在等圆中,如果弦相等,但它们所对的弧不一定相等,本选项不符合题意;C、过不在同一直线上的三点可以画一个圆,说法不正确,本选项不符合题意;D、平分弦(非直径)的直径,平分这条弦所对的弧,说法不正确,本选项不符合题意.故选:A.【点睛】本题考查确定圆的条件,弧,圆心角,弦之间的关系,垂径定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2022秋·江苏徐州·九年级校考期末)下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心【答案】D【分析】根据圆的确定,垂径定理,弦,圆心角的关系,逐一进行判断即可.【详解】解:A、同圆或等圆中,圆心角相等,所对的弦的弦心距相等,选项说法错误,不符合题意;B、不在同一直线上的三点确定一个圆,选项说法错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,选项说法错误,不符合题意;D、弦的垂直平分线必经过圆心,选项说法正确,符合题意;故选D.【点睛】本题考查判断命题的真假.熟练掌握圆的确定,垂径定理,弦,圆心角的关系,是解题的关键.在平面直角坐标系中,则ABC的外【答案】B【分析】根据直角坐标系的特点作AB、BC的垂直平分线即可求解.【详解】如图,作AB、BC的垂直平分线,交点在第三象限,故选B.【点睛】此题主要考查三角形的外心的定义,解题的关键是根据题意作出垂直平分线求解.5.(2021秋·江苏泰州·九年级统考期中)下列命题中真命题的是( )A .长度相等的弧是等弧B .相等的圆心角所对的弦相等C .任意三点确定一个圆D .外心在三角形的一条边上的三角形是直角三角形【答案】D【分析】根据等弧、圆心角与弦的关系、确定圆的条件、直角三角形的外心等知识一一判断即可.【详解】解:A 、在同圆或等圆中,长度相等的弧是等弧,故A 中命题是假命题,不符合题意;B 、在同圆或等圆中,相等的圆心角所对的弦相等,故B 中命题是假命题,不符合题意;C 、不共线的三点确定一个圆,故C 中命题是假命题,不符合题意;D 、外心在三角形的一条边上的三角形是直角三角形,是真命题,本选项符合题意.故选:D .【点睛】本题考查判断命题的真假,涉及等弧、圆心与弦的关系、确定圆的条件、直角三角形的外心等知识,熟知它们的前提条件是解答的关键.6.(2022秋·江苏南京·九年级统考期中)以下列三边长度作出的三角形中,其外接圆半径最小的是( ) A .8,8,8B .4,10,10C .4,8,10D .6,8,10 【答案】A【分析】分别求出各三角形的外接圆半径,比较即可.【详解】A 、∵ABC 是等边三角形,设O 是外心,∴4,BF CF AF BC ==⊥,BE 平分ABC ∠,∴1302OBF ABC ∠=∠=︒, ∴cos30BF OB ==︒,∴ABC 的外接圆的半径为,。
第五章5确定圆的条件第2课时 圆内接四边形的性质
C )
B.60°
C.45°或 135° D.60°或 120°
12.(2021 新泰一模)如图所示,已知☉O 为四边形 ABCD 的外接圆,O 为圆心,若∠BCD=120°,AB=AD=2,
则☉O 的半径长为( D
A.3
B.
C.2
D.
)
数学
13.如图所示,四边形 ABCD 内接于☉O,AE⊥CB 交 CB 的延长线于点 E,若 BA 平分∠DBE,AD=5,CE= ,
(3)解:如图所示,连接 EF,
∵四边形 ABCD 为圆的内接四边形,
∴∠ECD=∠A.
∵∠ECD=∠1+∠2,
∴∠A=∠1+∠2.
∵∠A+∠1+∠2+∠DEC+∠BFC=180°,
+
∴2∠A+α+β=180°,∴∠A=90°-
.
数学
C.100°
D.95°
数学
3.(2021 高青二模)如图所示,四边形 ABCD 内接于☉O,点 C 是的中点,∠A=50°,则∠CBD 的度数为
( B
)
A.20°
B.25°
C.30°
D.35°
4.(2022 寒亭模拟)如图所示,四边形 ABCD 内接于☉O,连接 BD.若=,∠BDC=50°,则∠ADB 的度数
∴AD⊥BC,∴D 是 BC 的中点.
∵点 F 为 CE 的中点,
∴FD 为△CEB 的中位线,
∴DF= =4.
数学
15.如图所示,☉O的内接四边形ABCD的两组对边的延长线分别交于点E,F.
(1)若∠E=∠F时,求证:∠ADC=∠ABC.
圆3
5、确定圆的条件【知识要点】1、确定圆的条件:不在同一直线上的三点确定一个圆.【典型例题】1. 判断题.(1)经过三个点一定可以作圆.()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆.()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形.()(4)三角形的外心到三角形各顶点的距离相等.()2. 如图,已知一条直线L和直线L外两定点A、B,且AB在l两旁,则经过A、B两点且圆心在直线L上面的圆有()A.0个B.1个C.无数个D.0个或1个或无数个3. 如图,A,B,C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求作供水站的位置。
2、三角形的外接圆及外心(1)三角形的三个顶点确实一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.(2)锐角三角形的外心在这个锐角三角形的内部,直角三角形的外心就是这个直角三角形的斜边的中点,钝角三角形的外心在这个钝角三角形的外部.【典型例题】1. 某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(保留作图痕迹)2. 你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?3. 已知等腰三角形ABC的底边BC的长为10cm,顶角为120,求它的外接圆直径.【课堂练习】1. 判断题.经过三个点一定可以作圆()三角形的外心到三角形各顶点的距离都相等()任意一个三角形一定有一个外接圆,并且只有一个外接圆()任意一个圆一定有一个内接三角形,并且只有一个内接三角形()2. 三角形的外心是()(A)三条边中线的交点(B)三条边高的交点(C)三条边垂直平分线的交点(D)三条角平分线的交点3. 在同一个圆中画两条直径,依次连接四个端点得到的四边形是()(A ) 菱形 (B ) 等腰梯形 (C ) 正方形 (D )矩形 4. 如图,P 为正三角形ABC 外接圆上一点,则∠APB 等于( )(A )150° (B )135° (C )115° (D )120°5. 若△ABC 的外接圆的圆心在△ABC 的外部,则△ABC 是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定 6. 下列命题中,正确的是( )A. 三点可确定一个圆B. 三角形的外心是三角形三边中线的交点C. 一个三角形有且只有一个外接圆D. 三角形的外心必在三角形的内部或外部 7. 等腰直角三角形的外接圆的半径为 ( )A. 腰长B. 腰长的2倍 C. 底边长的2倍 D. 腰上的高 8. Rt △ABC 中,∠C =90°,BC =5 ,AC =12 则其外接圆半径为 9. 若直角三角形的两直角边长分别为6,8,则这个三角形的外接圆直径是10. 等腰三角形ABC 内接于半径为5cm 的⊙O 中,若底边BC =8cm ,则△ABC 的面积是 11. 在Rt △ABC 中,如果两条直角边的长分别为3、4,那么Rt △ABC 的外接圆的面积为 12. 等边三角形的边长为4,则此三角形外接圆的半径为13. 已知:如图,在△ABC 中,∠BAC =120°,AB =AC ,BC =43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论.ABC14.如图,⊙O 的半径为4 cm ,点P 是⊙O 外一点,OP =6 cm ,求:(1)以P 为圆心作⊙P 与⊙O 外切,小圆⊙P 的半径是多少? (2)以P 为圆心作⊙P 与⊙O 内切,大圆⊙P 的半径是多少? (分别作出图形,并解答)6、直线与圆的位置关系命题人:陈汝佳审题人:【知识要点】1、直线与圆的位置关系【典型例题】1. 在ΔABC中,∠C为直角,AC=6 cm,BC=8cm,以C为圆心,4 cm长为半径的圆与斜边AB的位置关系为()A、相切B、相交且交点在BC的延长线上C、相离D、相交且交点在BC边上2、切线的性质(1)当直线与圆相切时,圆的切线垂直于过切点的直径.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点,③直线与圆的切线垂直.“见切点,连半径,见垂直”3、切线的判断:常用判断方法(1)圆心到直线的距离等于半径,这条直线是圆的切线(2)经过半径的外端且垂直于半径的直线是圆的切线“切线必须满足两个条件:①经过半径的外端;②垂直于这条半径”【典型例题】1. 如图所示,OA、OB是⊙O的半径,OA⊥OB,点C是OB延长线上一点,过点C作⊙O的切线,点D是切点,连结AD交OB于点E。
北师版数学下册3.5确定圆的条件(练习题课件)
3.5 确定圆的条件
第三章 圆
提示:点击 进入习题
1D 2A 3B 4B
5C 6B 7A 8B
答案显示
提示:点击 进入习题
9B 10 见习题 11 C 12 见习题 13 见习题
14 见习题 15 见习题
答案显示
1.给定下列条件可以确定一个圆的是( D ) A.已知圆心 B.已知半径长 C.已知直径长 D.不在同一条直线上的三点
证明:∵AD 平分∠BAC,BE 平分∠ABC, ∴∠BAE=∠CAD,∠ABE=∠CBE, ∴∠DBC=∠BAE. ∵∠DBE=∠CBE+∠DBC, ∠DEB=∠ABE+∠BAE, ∴∠DBE=∠DEB,∴DE=DB.
(2)若∠BAC=90°,BD=4,求△ ABC 的外接圆的半径.
解:连接 CD,如图所示.∵AD 平分∠BAC, ∴∠BAD=∠CAD, ∴CD=BD=4.∵∠BAC=90°,∴BC 是直径, ∴∠BDC=90°,∴BC= BD2+CD2=4 2, ∴△ABC 的外接圆的半径=12×4 2=2 2.
A.淇淇说的对,且∠A 的另一个值是 115° B.淇淇说的不对,∠A 就得 65° C.嘉嘉求的结果不对,∠A 应得 50° D.两人都不对,∠A 应有 3 个不同值 【答案】A
8.【2020·陕西】如图,△ ABC 内接于⊙O,∠A=50°.E 是边 BC 的中点,连接 OE 并延长,交⊙O 于点 D,连接 BD,则∠D 的大小为( B ) A.55° B.65° C.60° D.75°
证明:∵△ABC 为正三角形, ∴∠ABC=∠BAC=60°.∴∠APC=∠BPC=60°. ∵PC 为⊙O 的直径,∴∠PAC=∠PBC=90°. ∴∠ACP=∠BCP=30°.∴AP=BP=12PC. ∴AP+BP=PC.
新北师大版九下数学3.5确定圆条件
A B
C O
如图,已知一个圆,请用两种 不同的方法找出圆心。
A
O C
B
注意
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆! (3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。 (4)不在同一直线上的三个点确定一个圆。 (5)外接圆,外心的概念。
⊙O即为所求。
B
C O
三角形与圆的位置关系
• 因此,三角形的三个顶点确定一
个圆,这圆叫做三角形的外接圆.
这个三角形叫做圆的内接三角形
.
A
外接圆的圆心是三角形
三边垂直平分线的的交
点,叫做三角形的外心.
●O
B
C
老师提示: 多边形的顶点与圆的位置关系称为接.
画出以下三角形的外接圆
A
A
A
O ●
B
C
(图一)
一个圆.
在上面的作图过程中.
F ●A
∵直线DE和FG只有一个 E
交点O,并且点O到 A,B,
●B
┏ ●O
●C
D
∴C经三过个点点A,的B,距C离三相点等可,
以作一个圆,并且只
G
能作一个圆.
定理 不在同一条直线上的三个点确定一个圆.
现在你知道了吗? 根据这个定理怎样确定一个圆?
只要有不在同一条直线上的三点, 就可以确定一个圆。
●C
经过. 三点A,B,C的圆的圆心应该这两条
垂直平分线的交点O的位置.
• 请你作圆,使它过已知点A,B,C(A,B,C不共线). • 作法:1.连接AB,BC. 2.分别作线段AB,BC的垂直平分线DE和
确定圆的条件
确定圆的条件
例题1、已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是()
例题2、△ABC内接于圆O,AB=AC,D为弧BC上任意一点,AD=6,BD=5,CD=3,求DE 长
例题3、PA是圆O的直径,PC是圆O的弦,过弦AC的中点H作PC的垂涎交PC 的延长线于B,HB=6,BC=4,圆O直径是多少
例题4、如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC,
(Ⅰ)求证:FB=FC;
(Ⅱ)求证:FB2=FA·FD;
(Ⅲ)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长。
例题5、如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长线BC至点D,使CD=AC,连接AD交圆O于点E,连接BE,CE与AC交于点F(1)求证:△AB C≌△CDE(2)若AE=6,DE=9,求EF的长。
例题6、如图,已知BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD对角线AC,BD交于E.
(1)求证:△ABE∽△DBC;
(2)已知BC=5/2,CD=√5/2,求sin∠AEB的值;
(3)在(2)的条件下,求弦AB的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《确定圆的条件》典型例题
例1、如图,表示一块破碎的圆形木盖,确定它的圆心.
分析:根据“不在同一直线上的三点确定一个圆”的原理可作出圆心.
作法:
(1)在弧上任取三点A、B、C;
(2)连接AC、BC;
(3)分别作AC、BC的中垂线MN、PQ,相交于点O,
点O即为所求圆心.
说明:此题是最基础的题目,主要培养学生的作图能力,学生必须落实.
例2、如图,在△ABC中,BD、CE为△ABC的中线,延长BD到F,使DF=BD.延长CE到G,EG=CE.求证:过A、G、F三点不能作圆.
分析:只要证明点G、A、F三点共线即可.
证明:连接AG、AF、BG、CF.
∵AD=DC、BD=DF,
∴四边形ABCF是平行四边形.故AF∥BC.
同理AGBC是平行四边形,故AG∥BC.
∴点G、A、F三点在同一直线上.
∴过点G、A、F不可能作圆.
说明:此题是小型一个综合题,主要培养学生的思维能力.。