2018年中考数学第一轮复习---一次方程(组)

合集下载

年中考第1轮基础复习21:八(上)第七章:二元一次方程组试题

年中考第1轮基础复习21:八(上)第七章:二元一次方程组试题

第一部分:基础复习八年级数学(上)第七章:二元一次方程组一、中考要求:1.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.2.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.3.了解二元一次方程组的图象解法,初步体会方程与函数的关系.4.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.二、中考卷研究(一)中考对知识点的考查:、年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 方程组的整数解2%2 解方程组2%3 列方程组解实际问题 2.5~6%4 二元一次方程与一次函数3~7%本章多考查二元一次方程组的解法及应用等.另外本章还多考查方程思想和转化思想以及我们收集和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.三、中考命题趋势及复习对策本章中方程组是刻画现实世界的一个有效的数学模型,考查方程组的题目约占总分的10%左右,题型有填空、选择、解答.中考对数学思想方法的考查一方程组的实际应用将进一步提高,一大批具有较强的时代气息,格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握方程组的解法,还应在方程组的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题.★★★(I)考点突破★★★考点1:方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 55(1)3(5)x yy x-=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.二、经典考题剖析:【考题1-1】(、汉中)若2x+y+4+(x-2)=0则3x+2y=_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y=3×2+2×(-6)=-6【考题1-2】(、北碚,5分)解方程组:x-y=4 2x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解.三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-194x-5y=17⎧⎨⎩①②,用加减法消去x,得到的方程为()A、2y=-2 B.2y=-36 C. 12y=-2 D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是()A.11x=x=2x=73 C. D.19y=8y=3y=3x=3B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩3.若x=-2y=1⎧⎨⎩是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b)(a-b)的值为()A.-353B.353C.-16D.164.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=154x-by=-2⎧⎨⎩①②由于甲看错了方程①中的a得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a、b为计算,求原方程组的解x与y的差.6.若a+b4b 与3a+b 是同类二次根式,求a、b的值.7.已知关于x,y的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品()A.赚50%B.赔50%C.赔25%D.不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(、南山区正题3分)如图1-7-1,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩解::B 点拨:此题关键是找出等量关系AB⊥BC,隐含x+y=90°.【考题2-3】(、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。

中考数学第一轮考点系统复习第二章方程(组)与不等式(组)第8讲一元一次不等式(组)及其应用(练本)课

中考数学第一轮考点系统复习第二章方程(组)与不等式(组)第8讲一元一次不等式(组)及其应用(练本)课

4、享受阅读快乐,提高生活质量。下午12时36分6秒下午12时36分12:36:0622.3.11
谢谢观独具赏方为先
匠心可成锋 Y o u m a d e m y d a y !
我们,还在路上……
场最多能购买50个甲种奖品.
(2)学校计划购买甲、乙两种奖品共100个,且此次购买奖品的费用不超过2 000元.正逢商场促销,所有商品一律八折销售,求学校在商场最多能购买 多少个甲种奖品.
解:设学校在商场购买m个甲种奖品,则购买(100-m)个乙种奖品. 根据题意,得30×0.8m+20×0.8(100-m)≤2 000, 解得m≤50. 答:学校在商场最多能购买50个甲种奖品.
解:设购进电视机x台,则购进洗衣机(100-x)台.
根据题意,得
x
1 (100 x), 2
1800x 1500(100 x) 161800,
解得 33 1 x 39 1 .
3
3
∵x为整数,
∴x可以取34,35,36,37,38,39,
∴商店共有6种进货方案.
11.学校准备为“趣味数学”比赛购买奖品.已知在商场购买3个甲种奖品和2 个乙种奖品共需130元,购买6个甲种奖品和5个乙种奖品共需280元.
3倍,购进A,B两种风扇的总金额不超过1 170元.根据以上信息,小丹共
有哪些进货方案? 解:设购进A型风扇m台,则购进B型风扇(100-m)台.
根据题意,得
m 3(100 m),
10m
16(100
m)
解得71 2
1170,
3
m 75.
∵m为正整数,∴m可以取72,73,74,75,∴小丹共有4种进货方案:
12.(2020·德州)若关于x的不等式组

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

一元一次方程-中考数学一轮复习考点专题复习大全(全国通用)

一元一次方程-中考数学一轮复习考点专题复习大全(全国通用)

考向09 一元一次方程【考点梳理】1.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).2.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.【题型探究】题型一:一元一次方程定义1.(2021·全国·九年级专题练习)关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .52.(2022·广东·九年级专题练习)已知关于x 的方程()()22426k x k x k -+-=+是一元一次方程,则方程的解为( )A .-2B .2C .-6D .-13.(2019·福建漳州·校联考中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ).A .-8B .-4C .8D .4题型二:一元一次方程方程的解法4.(2022·贵州黔西·统考中考真题)小明解方程12123x x +--=的步骤如下:解:方程两边同乘6,得()()31122x x +-=-①去括号,得33122x x +-=-②移项,得32231x x -=--+③合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.(2023·河北·九年级专题练习)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是( ) A .① B .② C .③ D .④6.(2022·重庆南岸·统考一模)解一元一次方程()()11151753x x +=--的过程如下. 解:去分母,得()()3151557x x +=--. ①去括号,得3451557x x +=-+. ②移项、合并同类项,得823x =-. ③化未知数系数为1,得823x =-. ④ 以上步骤中,开始出错的一步是( )A .①B .②C .③D .④题型三:配套 工程和销售问题7.(2022·广西南宁·南宁二中校考三模)用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x 张彩纸制作圆柱侧面,则方程可列为( )A .6020(200)x x =-B .20260(200)x x =⨯-C .26020(200)x x ⨯=-D .22060(200)x x ⨯=-8.(2021·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考三模)某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .101012025x ++=B .101012520x ++=C .101012520x -+=D .101012520x -+= 9.(2022·贵州遵义·统考二模)如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()A .72.2元B .78元C .80元D .96.8元题型四:比赛 积分和数字问题10.(2022·贵州铜仁·统考中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1711.(2022·福建·模拟预测)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x 间客房,则所列方程为( )A .7x-7=9x+9B .7x +9=9x+7C .7x +7=9x ﹣9D .7x-7=9x ﹣912.(2022·湖南长沙·模拟预测)《九章算术》一书中记载了一道题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.则买鸡的人数和鸡的价钱各是( )A .8人,61文B .9人,70文C .10人,79文D .11人,110文题型五:几何 和差倍和水电问题13.(2022·江苏南通·统考模拟预测)如图,矩形ABCD 中,8cm AB =,4cm BC =,动点E 和F 同时从点A 出发,点E 以每秒2cm 的速度沿A D →的方向运动,到达点D 时停止,点F 以每秒4cm 的速度沿A B C D →→→的方向运动,到达点D 时停止.设点F 运动x (秒)时,AEF △的面积为()2cm y ,则y 关于x 的函数的图象大致为( )A .B .C .D .14.(2022·福建南平·统考模拟预测)中国一本著名数学文献《九章算术》,书中出现了一个“共买鸡问题”,原文是:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、物价各几何?其题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价钱各是多少?设买鸡的人数为x ,则下面符合题意的方程是( )A .9+11616x x =-B .9+61611x x =+C .9+11616x x =+D .911616x x =+-15.(2018·四川绵阳·校联考中考模拟)滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目里程费 时长费 远途费 单价 1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟题型六:行程 比例和行程问题16.(2022·重庆璧山·统考一模)小明和爸爸从家里出发,沿同一路线到图书馆,小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店买水花费了5分钟,从商店出来后,爸爸的骑车速度比他之前的骑车速度增加60米/分钟,结果与小明同时到达图书馆.小明和爸爸两人离开家的路程s (米)与小明出发的时间t (分钟)之间的函数图像如图所示,则下列说法错误的是( )A .17a =B .小明的速度是150米/分钟C .爸爸从家到商店的速度是200米/分钟D .9t =时,爸爸追上小明17.(2023·福建泉州·泉州五中校考三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B .7x +4 = 9x -8C .4879x x +-=D .4879x x -+= 18.(2019·湖北荆州·统考一模)在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .75题型七:一元一次方程的综合19.(2019·重庆·统考中考真题)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 20.(2020·江苏盐城·统考中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .621.(2022·湖北宜昌·统考中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【必刷基础】一、 单选题22.(2022·重庆沙坪坝·统考一模)若关于x 的方程25x a +=的解是2x =,则a 的值为( )A .9-B .9C .1-D .123.(2022·辽宁营口·统考中考真题)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯24.(2022·江苏苏州·统考中考真题)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=-B.60100100x x=+C.10010060x x=+D.10010060x x=-25.(2022·云南昆明·云南师范大学实验中学校考三模)若整数a使关于x的方程21x a+=的解为负数,且使关于的不等式组()122113x axx⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a的值之和是()A.6 B.7 C.9 D.1026.(2022·湖南长沙·长沙市湘郡培粹实验中学校考三模)周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是()A.15 B.14 C.13 D.1227.(2022·山东济宁·济宁市第十三中学校考一模)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只;(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).28.(2022·宁夏吴忠·校考一模)2020年,一场突如其来的疫情席卷全国,给人民生命、财产造成巨大损失,但英勇的中国人民不畏艰难,众志成城,最终取得了抗击疫情的阶段性胜利,疫情防控初期,某药店库存医用外科口罩10000副,进价2元/副,由于市民疯狂抢购,量价齐升,5天销售一空,通过5天的销售情况进行统计,得到数据如下:(1)求该药店这5天销售口罩的平均利润.(2)通过对上面表格分析,发现销售量y (副)与单价x (元/副)存在函数关系,求y 与x 的函数关系式.(3)该药店购进第二批口罩20000副,进价2.5元/副,虽然畅销,但被物价部门限价,每副口罩销售价为m 元,销售一半后,该药店响应国家号召,将剩余口罩全部捐献给了抗疫定点医院,若在两批口罩销售中,药店不亏也不赚,则m 的值是多少?【必刷培优】一、单选题29.(2022·云南德宏·统考模拟预测)若关于x 的方程()6324x k -=-的解为非负整数,且关于x 的不等式组()23432x x k x x ⎧-+≤-⎪⎨-≤⎪⎩无解,则符合条件的整数k 的值可以为( ) A .0 B .3 C .4 D .630.(2023·全国·九年级专题练习)解方程2233522x x x x x--+=--,以下去分母正确的是( ) A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-31.(2022·广西钦州·统考模拟预测)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有人共买鹅,人出九,盈十一;人出六,不足十六,人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.设买鹅的人数有x 人,可列方程为( )A .911616x x -=-B .911616x x -=+C .911616x x +=+D .911616x x +=-32.(2022·河北·统考二模)数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确二、填空题33.(2022·山东济南·山东师范大学第二附属中学校考模拟预测)已知224x x +=,且224120ax ax +-=,则22a a +的值为______.34.(2022·江苏扬州·校考二模)我国古代名著《九章算术》中有一问题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”假设经过x 天相逢,则可列方程为_____.35.(2022·重庆大渡口·重庆市第三十七中学校校考二模)青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的15,则水果青团销量将达到4月份总销量的13,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为_____________.36.(2022·四川攀枝花·统考中考真题)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程1103x -=是关于x 的不等式组2220x n n x -≤⎧⎨-<⎩的关联方程,则n 的取值范围是 ___________.37.(2022·北京西城·校考模拟预测)我校学生会正在策划一次儿童福利院的慰问活动.为了筹集到600元活动资金,学生会计划定制一批穿校服的毛绒小熊和带有校徽图案的钥匙扣,表格中有这两种商品的进价和售价.另外,若将一个小熊和一个钥匙扣组成一份套装出售,则将售价打九折.为了更好的制定进货方案,学生会利用抽样调查的方式统计了校内学生对商品购买意向的百分比情况(见表格),若按照这个百分比情况定制商品,至少定制小熊______个和钥匙扣______个,才能筹集到600元资金(即获得600元利润).38.(2022·广西·统考中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.三、解答题39.(2022·福建泉州·校考三模)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000(180%)60260⨯-+=(元).(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(1250)x >的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(1250)x >的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为______元.40.(2022·河北邯郸·校考三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a、c的值,;②求代数式222+-的值;a c ac(2)若将数轴折叠,使得点A与点C重合,求与点B重合的点表示的数;(3)请在数轴上确定一点D,使得AD=2BD,则D表示的数是.41.(2022·江苏镇江·统考中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:车速(km/h)40 41 42 43 44 45频数 6 8 15 a 3 2其中车速为40、43(单位:km/h)的车辆数分别占监测的车辆总数的12%、32%.(1)求出表格中a的值;(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.42.(2022·广西玉林·统考二模)疫情期间,消毒液、口罩成为了咱们的生活必需品.淘宝某医用器械药房推出2种口罩进行销售,医用一次性口罩2.5元/个,医用外科口翠3元/个.(1)某地某学校购进两种口罩25000个,共花费70000元,请问学校购买医用外科口罩多少个?(2)因为4月份疫情逐渐过去,但口罩的市场需求盘依旧旺盛,该药房决定用320000元再次购进一批口罩进行销售.医用一次性口罩100个/盒,每盒120元,医用外科口罩50个/盒,每盒100元.要求购进的医用外科口罩个数不超过医用一次性口罩的2.6倍,但不低于医用一次性口罩的1.9倍.若这批口罩全部销售完毕,为使获利最大,该药房应如何进货?最大获利为多少元?43.(2021·贵州遵义·校考模拟预测)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是______千米/小时;轿车的速度是______千米/小时.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)求货车出发多长时间两车相距90千米.参考答案:1.C【分析】先根据一元一次方程的定义可得出a 的值,再根据一元一次方程的解定义可求出m 的值,然后代入求值即可. 【详解】方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,故选:C .【点睛】本题考查了一元一次方程的定义、以及解定义,掌握理解一元一次方程的定义是解题关键.2.D【分析】利用一元一次方程的定义确定出k 的值,进而求出k 的值即可.【详解】解:∵方程()()22426k x k x k -+-=+是关于x 的一元一次方程,∴24020k k ⎧-=⎨-≠⎩, 解得:k =-2,方程为-4x =-2+6,解得:x =-1,故选:D .【点睛】此题考查了解一元一次方程,以及一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.B【分析】根据已知条件与两个方程的关系,可知2a- 2= b ,即可求出3b-6a 的值,整体代入求值即可.【详解】把x=2代入ax -2=b ,得2a- 2= b .所以3b-6a=-6.所以,3b -6a +2=-6+2=-4.故选B .【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4.A【分析】按照解一元一次方程的一般步骤进行检查,即可得出答案.【详解】解:方程两边同乘6,得()()31622x x +-=-①∴开始出错的一步是①,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.5.B【分析】解决此题应先去括号,再移项,移项时要注意符号的变化.【详解】在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.6.B【分析】检查解一元一次方程的解题过程,根据去分母,去括号,移项,合并同类项,系数华为1,找出出错的步骤,以及出错的原因.【详解】第②步出现错误,3451557x x +=-+. ②错误的原因是去括号时出现错误,应该改为:34515535x x +=-+.故选:B【点睛】此题考查了解一元一次方程,解方程去括号时,要注意不要漏乘括号里的每一项.7.D【分析】根据题意列出一元一次方程求解即可.【详解】解:设把x 张彩纸制作圆柱侧面,则有(200-x )张纸作圆柱底面,根据题意可得:22060(200)x x ⨯=-故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键.8.D【分析】设甲、乙一共用x 天完成,根据题意,列出方程,即可求解.【详解】解:设甲、乙一共用x 天完成,根据题意得:101012520x -+=. 故选:D【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.9.C【分析】根据原价和售价的关系,列方程计算即可.【详解】解:设原价为x 元,由题意,得(1+10%)×95%·x =83.6,解得:x =80.故选:C .【点睛】此题考查了一元一次方程的应用—打折销售,解题的关键是确定等量关系列方程求解.10.B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.【详解】解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.11.C【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】设该店有x 间客房,则7x+7=9x-9,故选:C.【点睛】本题考查了一元一次方程的应用,熟练掌握一元一次方程的解题方法是解题的关键.12.B【分析】买鸡的人数为x 人,根据“如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.”列出方程,即可求解.【详解】解:买鸡的人数为x 人,根据题意得:911616x x -=+ ,解得:9x = ,∴鸡的价钱为911991170x -=⨯-= ,答:买鸡的人数为9人,鸡的价钱为70文.故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.13.B【分析】由点的运动,可知点E 从点A 运动到点D ,用时2s ,点F 从点A 到点B ,用时2s ,从点B 运动到点C ,用时1s,从点C运动到点D,用时2s,y与x的函数图象分三段:①当0≤x≤2时,②当2<x≤3时,③当3<x≤5时,根据每种情况求出△AEF的面积.【详解】解:点E从点A运动到点D,用时2s,点F从点A到点B,用时2s,从点B运动到点C,用时1s,从点C 运动到点D,用时2s,∴y与x的函数图象分三段:①当0≤x≤2时,AE=2x,AF=4x,•2x•4x=4x2,∴y=12这一段函数图象为抛物线,且开口向上,由此可排除选项A和选项D;②当2<x≤3时,点F在线段BC上,AE=4,×4×8=16,此时y=12③当3<x≤5时,×4×(4+8+4−4x)=32−8x,由此可排除选项C.y=12故选:B.【点睛】本题考查了动点问题的函数图象,二次函数图象,三角形的面积,矩形的性质,根据题意理清动点的时间分段,并根据三角形的面积公式列出函数关系式是解题的关键,难度不大.14.D【分析】设买鸡的人数为x,根据鸡的价格不变,建立等量关系,列出相关方程即可.【详解】解:设买鸡的人数为x,则由题意有:-,=+x x911616故选:D.【点睛】本题考查了一元一次方程的实际应用,准确找到等量关系是解题的关键.15.D【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.16.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程求解即可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程求解可知D .【详解】解:A .12517a +==,故A 正确,不合题意;B .小明的速度为330022150÷=米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,()()1225603300x x -++=,解得200x =米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设y 分爸爸追上小明,()1502200y y +=,解得:6y =,故9t =时,爸爸追上小明,选项不正确,符合题意故选:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.17.B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.18.B【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x ,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x ,因而这三个数的和一定是3的倍数.【详解】设中间的数是x ,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x ,因而这三个数的和一定是3的倍数,则,这三个数的和都为3的倍数,观察只有51与75是3的倍数,但75÷3=25,25+7=32不符合题意,所以这三个数的和可能为51,故选B .。

中考数学一轮复习考点知识专项训练15--- 一次函数(含答案)

中考数学一轮复习考点知识专项训练15--- 一次函数(含答案)

中考数学一轮复习考点知识专项训练一次函数命题点1一次函数的图象与性质1.(2020·浙江嘉兴)一次函数y=2x-1的图象大致是( )2.(2020·湖南益阳)一次函数y=kx+b的图象如图所示,则下列结论正确的是( )A.k<0B.b=-1C.y随x的增大而减小D.当x>2时,kx+b<03.(2019·山东临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是( ) A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>-bk时,y>04.(2020·上海)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的增大而________(填“增大”或“减小”).5.(2020·山东东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,-1),B(-1,3)两点,则k______0(填“>”或“<”).命题点2一次函数表达式的确定6.(2019·山东枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是( )A.y=-x+4 B.y=x+4C.y=x+8 D.y=-x+87.(2020·贵州黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的表达式是_______.8.(2020·江苏南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的表达式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.9.(2019·江西)如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的表达式.10.(2020·江苏南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________________.11.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值都大于一次函数y=kx+b的值,直接写出m的取值范围.能力点1 一次函数与方程(组)、不等式的关系12.(2018·辽宁辽阳)如图,直线y =ax +b (a ≠0)过点A (0,4),B (-3,0),则方程ax +b =0的解是( )A .x =-3B .x =4C .x =-43D .x =-3413.(2020·贵州遵义)如图,直线y =kx +b (k ,b 是常数,k ≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx +b <2的解集为______________.14.(2019·贵州贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组⎩⎨⎧y -k 1x =b 1,y -k 2x =b 2的解是____________.能力点2 一次函数的实际应用15.(2019·广东深圳)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少发1 800度电.(1)求焚烧1吨垃圾A和B发电厂各发电多少度;(2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A发电厂和B发电厂总发电量的最大值.16.(2019·吉林)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B 地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=________,n=________;(2)求乙车距B地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.17.(2020·浙江衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图①所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20 km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图②所示(游轮在停靠前后的行驶速度不变).(1)写出图②中点C的横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12 km?图①图②18.(2020·湖北荆州)为了抗击新型冠状病毒肺炎疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨):(1)(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨的运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m的最小值.19.(2020·浙江绍兴)我国传统的计重工具——秤的应用,方便了人们的生活.如图①,可以用秤砣到秤纽的水平距离来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据:(1)在上表哪一对是错误的;(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?图①图②20.(2017·江西)如图所示的是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为x cm,双层部分的长度为y cm,经测量,得到如下数据:(1)(2)根据小敏的身高和习惯,挎带的长度为120 cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为l cm,求l的取值范围.参考答案1.B 2.B 3.D4.减小 5.< 6.A 7.y =-2x8.解:(1)把x =1代入y =x +3中,得y =4, ∴C (1,4).设直线l 2的表达式为y =kx +b ,将A ,C 两点的坐标分别代入, 得⎩⎨⎧k +b =4,3k +b =0,解得⎩⎨⎧k =-2,b =6, ∴直线l 2的表达式为y =-2x +6.(2)在y =x +3中,令y =0,解得x =-3,∴B (-3,0). 设M (a ,a +3),由MN ∥y 轴,得N (a ,-2a +6), ∴MN =|a +3-(-2a +6)|=AB =3-(-3)=6, 解得a =3或a =-1, ∴M (3,6)或(-1,2).9.解:(1)如图,过点B 作BD ⊥x 轴于点D ,∵点A 的坐标为(-32,0),点B 的坐标为(32,1),∴AD =3,BD =1,∴由勾股定理得AB =AD 2+BD 2=(3)2+12=2, ∴sin ∠BAD =BD AB =12,∴∠BAD =30°. 又∵△ABC 是等边三角形, ∴∠CAB =60°,AC =AB =2, ∴∠CAD =90°,∴点C 的坐标为(-32,2).(2)设线段BC 所在直线的表达式为y =kx +b ,将点B (32,1),C (-32,2)分别代入,得 ⎩⎪⎨⎪⎧32k +b =1,-32k +b =2,解得⎩⎪⎨⎪⎧k =-33,b =32, ∴线段BC 所在直线的表达式为y =-33x +32.10.y =12x +211.解:(1)∵一次函数y =kx +b (k ≠0)的图象由y =x 的图象平移得到, ∴k =1.将点(1,2)代入y =x +b ,可得2=1+b ,解得b =1, ∴这个一次函数的表达式为y =x +1.(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值都大于一次函数y =x +1的值,即其图象在一次函数y =x +1图象的上方,由下图可知.临界值为当x =1时,两条直线都过点(1,2),∴当x >1,m ≥2时,y =mx (m ≠0)的值都大于y =x +1的值, ∴m 的取值范围为m ≥2. 12.A 13.x <4 14.⎩⎨⎧x =2y =115.解:(1)设焚烧1吨垃圾A 发电厂发电a 度,B 发电厂发电b 度,根据题意,得⎩⎨⎧a -b =40,30b -20a =1 800,解得⎩⎨⎧a =300,b =260.答:焚烧1吨垃圾A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾.设两厂的总发电量为y 度,则y =300x +260(90-x )=40x +23 400,∵⎩⎨⎧0≤x ,0≤90-x ,x≤2(90-x ),∴0≤x ≤60.∵y 随x 的增大而增大,∴当x =60时,y 有最大值,且最大值为40×60+23 400=25 800.答:A 发电厂和B 发电厂总发电量的最大值是25 800度.16.解:(1)4 120(2)当0≤x ≤2时,设乙车距离B 地的路程y 关于x 的函数表达式为y =kx ,∵图象过点(2,120),∴2k =120,解得k =60,∴此时y 关于x 的函数表达式为y =60x (0≤x ≤2);当2<x ≤4时,设乙车距离B 地的路程y 关于x 的函数表达式为y =k 1x +b ,∵图象过(2,120),(4,0)两点,∴⎩⎨⎧2k 1+b =120,4k 1+b =0,解得⎩⎨⎧k 1=-60,b =240, ∴此时y 关于x 的函数表达式为y =-60x +240(2<x ≤4).综上所述,乙车距B 地的路程y 关于x 的函数表达式为y =⎩⎨⎧60x (0≤x≤2),-60x +240(2<x≤4).(3)当x =3.5时,y =-60×3.5+240=30.∴当甲车到达B 地时,乙车距B 地的路程为30 km .17.解:(1)点C 横坐标的实际意义是游轮从杭州出发前往衢州共用了23 h , ∴游轮在“七里扬帆”停靠的时长=23-(420÷20)=23-21=2(h ).(2)①280÷20=14(h ),14+2=16(h ),∴点A (14,280),点B (16,280),点D (14,0).∵36÷60=0.6(h ),23-0.6=22.4(h ),∴点E (22.4,420).设直线BC 的表达式为s =kt +b ,把B (16,280),C (23,420)两点的坐标分别代入,得⎩⎨⎧280=16k +b ,420=23k +b ,解得⎩⎨⎧k =20,b =-40,∴线段BC 的表达式为s =20t -40(16≤t ≤23).同理由D (14,0),E (22.4,420)两点可得线段DE 的表达式为s =50t -700(14≤t ≤22.4), 由题意,得20t -40=50t -700,解得t =22.∵22-14=8(h ),∴货轮出发后8 h 追上游轮.②当相遇之前相距12 km 时,20t -40-(50t -700)=12,解得t =21.6;当相遇之后相距12 km 时,50t -700-(20t -40)=12,解得t =22.4,∴游轮行驶21.6 h 或22.4 h 时游轮与货轮相距12 km .18.解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎨⎧a +b =500,2a -b =100,解得⎩⎨⎧a =200,b =300. ∴这批防疫物资甲厂生产了200吨,乙厂生产了300吨.(2)由题意,得y =20(240-x )+25[260-(300-x )]+15x +24(300-x )=-4x +11 000,由题意,得⎩⎨⎧x≥0,240-x≥0,300-x≥0,260-(300-x )≥0,解得40≤x ≤240, ∵-4<0,∴y 随x 的增大而减小,∴当x =240时,y 有最小值,∴使总运费最少的调运方案为甲厂的200吨物资全部运往B 地,乙厂运往A 地240吨,运往B 地60吨.(3)由题意,得y =-4x +11 000-500m ,当x =240时,y 最小=-4×240+11 000-500m =10 040-500m ,由题意,得10 040-500m ≤5 200,解得m ≥9.68.又∵0<m ≤15且m 为整数,∴m 的最小值为10.【核心素养提升】19.解:(1)描点连线如下图:观察图象可知,x =7,y =2.75这组数据错误.(2)设y 与x 之间的函数表达式为y =kx +b (x >0),把x =1,y =0.75,x =2,y =1代入可得⎩⎨⎧k +b =0.75,2k +b =1,解得⎩⎪⎨⎪⎧k =14,b =12,∴y =14x +12.当x =16时,y =14×16+12=4.5,∴秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.20.解:(1)70 0y 关于x 的函数表达式为y =-0.5x +75(0≤x ≤150).(2)根据题意,得⎩⎨⎧x +y =120,y =-0.5x +75,解得⎩⎨⎧x =90,y =30.答:此时单层部分的长度为90 cm .(3)根据题意,得l =x +y =0.5x +75,∵0≤x ≤150,∴75≤l ≤150.答:l 的取值范围为75≤l ≤150.。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点04 一次方程(组)与其应用一元一次方程与二元一次方程组在初中数学中因为未知数的最高次数都是一次,且都是整式方程,所以常放在一起统称为“一次方程”,而在数学中考中,对于这两个方程的解法及其应用一直都有考察,其中对于两个方程的解法以及注意事项是必须掌握的,而在其应用上也是中考代数部分结合型较强的一类考点,需要考生在一轮复习中把该考点熟练掌握。

考向一·等式的基本性质考向二·一元一次方程的解法考向三·二元一次方程组的解法考向四·一次方程(组)的简单应用考向一:等式的基本性质等式的基本性质【易错警示】1.下列判断错误的是( )A .如果a =b ,那么a +c =b +c B .如果ac =bc ,那么a =b C .如果a =b ,那么ac =bcD .如果a =b ,那么=(c ≠0)2.已知3a =2b +5,下列等式不一定成立的是( )A .3ab =2b 2+5b B .3a +1=2b +6C .=+D .a =b +3.若,则x 与y 的等量关系是 (结果不含a ,b ).4.规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)= ,= ,(﹣2,﹣32)= .(2)令(2,6)=x ,(2,7)=y ,(2,42)=z ,试说明下列等式成立的理由:(2,6)+(2,7)=(2,42).5.(1)观察下面的点阵图与等式的关系,并填空:(2)通过猜想,写出第n 个点阵相对应的等式: .,那么考向二:一元一次方程的解法1.一元一次方程的概念:只含有1个未知数(元),未知数的最高次数是1次的整式方程叫做一元一次方程。

2.一元一次方程解法:上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;解方程时,一定要先认真观察方程的形式,再选择步骤和方法;去分母①不含分母的项也要乘以最小公倍数;②分子是多项式的一定要先用括号括起来去括号括号外是负因数时,一是要注意变号,二是要注意各项都不要漏乘公因数移项移项要变号步骤名 称方 法1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)2去括号去括号法则(可先分配再去括号)3移项把未知项移到议程的一边(左边),常数项移到另一边(右边)4合并同类项分别将未知项的系数相加、常数项相加5系数化为“1”在方程两边同时除以未知数的系数(即方程两边同时乘以未知数系数的倒数)*6检根x =a方法:把x =a 分别代入原方程的两边,分别计算出结果。

中考数学一轮复习课件一次方程与方程组

中考数学一轮复习课件一次方程与方程组

二元一次方程的解与二元一次方程组的解是不同的概念,前者一般有无数个,后者一般只有唯一一个,不能混为一谈.另外,在验证或作结论时,一定要正确把握关键词,往往一词之差,意义就大不相同了,如“一个解”与“唯一解”的区别等.
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
第6课 一次方程与方程组 主讲:吴倩
等式及其性质 用等号“=”来表示相等关系的式子,叫做等式.
考点一 等式及方程的有关概念
等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.
温馨提示: 在等式两边都除以同一个代数式时,一定要保证这个代数式的值__不为0
要点梳理
1.定义: (1)含有未知数的 叫做方程; (2)只含有 未知数,且未知数的次数是 ,这样的 整式方程叫做一元一次方程; (3)将两个或两个以上的方程合在一起,就构成了一个方程 组.总共含有 ,且未知数的次数是 , 这样的方程组叫做二元一次方程组.
B
3.(2011·江津)已知3是关于x的方程2x-a=1的解,则a的值是( ) A.-5 B.5 C.7 D.2 解析:∵x=3是方程的解,∴2×3-a=1,a=5.
B
4.(2011·肇庆)方程组 的解是( ) A. B. C. D. 解析:当 时,x-y=2-0=2,2x+y=2×2+0=4, 可知是方程组的公共解.
2.灵活选用代入法或加减法解二元一次方程组
衬底1
基础自测
1.(2011·邵阳)请写出一个解为x=2的一元一次方程:________. 答案:x=2,x-2=0 ,2x-3=1……,答案不唯一. 2.(2011·益阳)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( ) A. B. C. D. 解析:当 时,左边x-2y=1-2×1=-1≠右边.

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是

考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4

人教版中考数学专题课件:一次方程(组)

人教版中考数学专题课件:一次方程(组)

皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组) 考点3
定义
一元一次方程的定义及解法
一 个未知数,且未知数的最高次数是________ 一 次的整 只含有______
式方程,叫做一元一次方程.
+b=0(a≠0) 一般形式 ax ______________.
最小公倍数 ; 1.去分母:在方程两边都乘以各分母的____________
方程 2x+a-9=0 得 4+a-9=0,解得 a=5.故选 D.
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
根据方程的解的概念,用代入法把方程的解代入方程建 立关于字母系数的方程,通过解关于字母系数的方程求解.
皖考解读
考点பைடு நூலகம்焦
皖考探究
当堂检测
一次方程(组)
1.1-4x 1.3-3x 5x-0.4 例 3 [教材母题] 解方程: - = . 0.6 0.2 0.3
2.去括号:运用去括号法则和乘法分配律; 解一元一 次方程的 一般步骤 3.移项: 把含有未知数的项移到方程的一边, 其他项移到另一边,
符号 ; 注意移项要改变________
4.合并同类项:把方程化成 ax=b(a≠0)的形式;
系数 ,得到方程 5.系数化为 1:方程两边同除以未知数 x 的________
二元一次 方程 二元次方 程组的解 二元一次 方程组的 解法
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
考点5 一次方程(组)的应用 1.审 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为 x ,并注意单 列方程 2.设 位.对于含有两个未知数的问题,需要设两个未 (组)解 知数. 应用题 3.列 根据题意寻找等量关系列方程. 的一般 4.解 解方程(组). 步骤 5.验 检验方程(组)的解是否符合题意. 6.答 写出答案(包括单位). 1.基本关系:路程=速度×时间; 常见 行 2.相遇问题: 全路程=甲走的路程+乙走的路程; 重要 程 3.追及问题:若甲为快者,则被追路程=甲走的 关系 问 路程-乙走的路程; 式 题 4.水上航行问题:v 顺=v 静+v 水;v 逆=v 静-v 水.

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
返回
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8

中考数学决胜一轮复习第2章方程组与不等式组第1节一次方程(组)及其应用

中考数学决胜一轮复习第2章方程组与不等式组第1节一次方程(组)及其应用
→ _合__并__(hé_bì_ng_)同__类__项__ →系__数__(xì_sh_ù)_化_为__1.
●考点四 二元一次方程组的解法 解二元一次方程组的基本思想是:“__消__元____”,即将二元一次方 程 组 转 化 为 一 元 一 次 方 程 . 常 见 方 法 有 : “___代_入____ 消 元 法 ” 和 “___加_减____消元法”.
+120(50-m)≤5 500,解得 m≥25.所以,至少购买 25 个篮球,则最多
购买 25 个足球.
12/8/2021
第二十一页,共三十九页。
12/8/2021
中考真题汇编
第二十二页,共三十九页。
1.(2018·安徽)《孙子算经》中有这样一道题,原文如下:今有 百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?
12/8/2021
第二十六页,共三十九页。
4.(2018·东营)小岩打算购买气球装扮学校“毕业典礼”活动会
∴打折后购买这批粽子比不打折节省了 3 640 元. 【点拨】 本题考查了列一次方程(组)解实际问题的运用,解答的
关键是抓住“总价=单价×数量”以及读懂生活中销售(xiāoshòu)商品时“打
折”的实际含义. 12/8/2021
第十七页,共三十九页。
1.若关于于 x,y 的二元一次方程 3x-ay=1 有一个解是xy==23,, 则 a=____4___.
12/8/2021
第二十页,共三十九页。
解 : (1) 设 每 个 篮 球 和 每 个 足 球 的 售 价 分 别 是 x , y 元 , 则 有
2x+y=320, 3x+2y=540,
解方程组,得xy==112000,,
即每个篮

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。

备考2023年中考数学一轮复习-函数_一次函数_一次函数与不等式(组)的综合应用-单选题专训及答案

备考2023年中考数学一轮复习-函数_一次函数_一次函数与不等式(组)的综合应用-单选题专训及答案

备考2023年中考数学一轮复习-函数_一次函数_一次函数与不等式(组)的综合应用-单选题专训及答案一次函数与不等式(组)的综合应用单选题专训1、(2012盘锦.中考真卷) 如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A . x≥4B . x≤4C . x≥mD . x≤12、(2015徐州.中考真卷) 若函数y=kx﹣b的图象如图所示,则关于x的不等式k (x﹣3)﹣b>0的解集为()A . x<2B . x>2C . x<5D . x>53、(2016保定.中考模拟) 如图,函数y=2x和y=ax+3(a≠0)的图象相交于点A(m,2),则不等式0<ax+3<2x的解集为()A . x<1B . x>1C . 0<x<1D . 1<x<34、(2017大连.中考模拟) 如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A . x>﹣3B . x<﹣3C . x>2D . x<25、(2017潍城.中考模拟) 如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A . 2<a<4B . 1<a<3C . 1<a<2D . 0<a<26、(2018镇江.中考模拟) 如图,一次函数()的图像与正比例函数()的图像相交于点,已知点的横坐标为1,则关于的不等式的解集为()A .B .C .D .7、(2017连云港.中考模拟) 已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A . x>﹣2B . x<﹣2C . x>2D . x<38、(2019义乌.中考模拟) 如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A . x>2B . 0<x<4C . ﹣1<x<4D . x<﹣1或x>49、(2019.中考模拟) 从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,若两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有()A . 12组B . 10组C . 6组D . 5组10、(2017青岛.中考模拟) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .11、(2017曹.中考模拟) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<312、(2017菏泽.中考真卷) 如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A . x>2B . x<2C . x>﹣1D . x<﹣113、(2016济南.中考真卷) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<314、(2018深圳.中考模拟) 一次函数y=-x+1(0≤x≤10)与反比例函数y= (-10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1, y1),(x2, y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A . - ≤x≤1B . - ≤x≤C . - ≤x≤D . 1≤x≤15、(2017陕西.中考模拟) 若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A . ab>0B . a﹣b>0C . a2+b>0D . a+b>016、(2020铁岭.中考模拟) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .17、(2016百色.中考真卷) 直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A . x≤3B . x≥3C . x≥﹣3D . x≤018、(2015桂林.中考真卷) 如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A . ﹣1≤k<0B . 1≤k≤3C . k≥1D . k≥319、(2019云南.中考模拟) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y =kx交于点B(2,4),则不等式kx≤ax+b的解集为()A . x≤2B . x≥2C . 0<x≤2D . 2≤x≤620、(2019张掖.中考模拟) 如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A . x<﹣2B . ﹣2<x<﹣1C . x<﹣1D . x>﹣121、(2017乌鲁木齐.中考真卷) 一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A . x<2B . x<0C . x>0D . x>222、(2019路南.中考模拟) 如图,在平面直角坐标系中,己知点A(1,3)、B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A . 1B . 2C . 3D . 423、(2020范.中考模拟) 同一直角坐标系中,一次函数与正比例函数的图象如图所示,则满足的x取值范围是()A .B .C .D .24、(2020长春.中考模拟) 如图,在平面直角坐标系中,直线y=-2x和y=ax+4相交于点A(m,3),则不等式-2x<ax+4的解集为()A . x<B . x<3C . x>D . x>325、(2020湘潭.中考真卷) 如图,直线经过点,当时,则x的取值范围为()A .B .C .D .26、(2021中.中考模拟) 已知一次函数y =(2m+1)x+m-3的图像不经过第二象限,则m的取值范围()A . m>-B . m<3C . - <m<3D . - <m≤327、(2020朝阳.中考模拟) 某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:会员卡类型办卡费用/元有效期优惠方式A类40 1年每杯打九折B类80 1年每杯打八折C类130 1年一次性购买2杯,第二杯半价例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A . 购买A类会员卡B . 购买B类会员卡C . 购买C类会员卡D . 不购买会员卡28、(2021资阳.中考模拟) 如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A . x>2B . x>0C . x>1D . x<129、如图,一次函数y=-x的图象与反比例函数y=-图象交于A和B两点,则不等式-x>-的解集是()A . x<-2B . x<2C . -2<x<2D . 0<x<2或x<-230、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A . x≥2B . x≤2C . x≥3D . x≤3一次函数与不等式(组)的综合应用单选题答案1.答案:D2.答案:C3.答案:D4.答案:A5.答案:B6.答案:A7.答案:B8.答案:C9.答案:D10.答案:B11.答案:C12.答案:D13.答案:C14.答案:B15.答案:C16.答案:B17.答案:A18.答案:C19.答案:A20.答案:C21.答案:A22.答案:A23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

2018年中考数学真题知识分类练习试卷:方程(含答案)

2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学第一轮复习--- 一元一次方程与二元一次方程组
【复习目标】
1. 了解一元一次方程及二元一次方程(组)的有关概念,会解一元一次方程及二元一次
方程组。

2. 进一步掌握用一元一次方程及二元一次方程组解决实际问题。

【复习回顾】
考点一 一元一次方程
1. 叫方程。

是方程的解。

2.一元一次方程是指含有一个_______,并且未知数的最高次数是______次的整式方程.
3.等式的基本性质一:等式两边同加(或同减)同一个数(或同一个整式),所得结果仍为________.
等式的基本性质二:等式两边同乘(或同除)同一个数(或同一个整式),其中除数(或除式)不为零,所得结果仍为________.
3.解一元一次方程的依据是________________.
4.解一元一次方程的基本步骤是________________________________.
例1.(2014•滨州,第19题)解方程:2﹣ =
例2.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 巩固练习:
1、已知2x+5y =3,用含y 的代数式表示x ,则x=________;当y=1时,x=________.
2、当k=_______时,方程5x -k=3x +8的解是-2
3、已知关于x 的方程432x m -=的解是x m =,则m 的值是______________。

4、当 x 为何值时,代数式
x +12的值比5-x 3
的值大1.
考点二 二元一次方程及二元一次方程组
1.二元一次方程是指含有_______个未知数,并且_______的最高次数为_______次的整式方程.
2. 二元一次方程组求解的基本思想是_________,常用方法有_________消元法和_________消元法.
例1.(2014•孝感)已知是二元一次方程组的解,则m ﹣n 的值是( ) A . 1 B . 2 C . 3 D . 4
例2、若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k
y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为( )
A.43
- B.43 C.34
D.34
-
例3.(2014•毕节地区)若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n 的值是( ) A . 2 B . 0 C . ﹣1 D . 1
例5.解方程组:(1)x +23+y -1
2=3x +23+1-y 2=1 (2)⎪⎩⎪
⎨⎧=++=++=++392334
3226
32z y x z y x z y x
巩固练习
1、如果|21||25|0x y x y -++--=,求x y +的值
2、(2014•襄阳)若方程mx +ny =6的两个解是,,则m ,n 的值为(

A . 4,2
B . 2,4
C . ﹣4,﹣2
D . ﹣2,﹣4
3、(2014·台湾)若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,
y =15
x 的解为x =a ,y =b ,则a +b 之值为何?( )
A .5
4 B .7513 C .312
5 D .2925
4.(2014年山东泰安)方程5x +2y =﹣9与下列方程构成的方程组的解为
的是( )
A .x +2y =1
B . 3x +2y =﹣8
C . 5x +4y =﹣3
D . 3x ﹣4y =﹣8
5.解方程组:(2014•滨州,第19题3分)解方程组:

考点三 实际应用: 例1 .(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.
(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?
(2)若用餐的人数有90人,则这样的餐桌需要多少张?
例2.(2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
巩固练习:
1、一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润______元.
3. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.
【作业】
1.(2017年湖南省长沙市第14题)方程组⎩
⎨⎧=-=+331y x y x 的解是 . 2.(2017年湖北省荆州市第19题)(本题满分10分)(1)解方程组:23328
y x x y =-⎧⎨+=⎩
3.(2017年山东省东营市第23题)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元.
(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?
(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有
哪几种改扩建方案?。

相关文档
最新文档