高斯列主元消元法解线性方程组

合集下载

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要....................................................................................... 错误!未定义书签。

第1章绪论 ......................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

Guass列选主元消去法和三角分解法

Guass列选主元消去法和三角分解法

Guass列选主元消去法和三⾓分解法 最近数值计算学了Guass列主消元法和三⾓分解法解线性⽅程组,具体原理如下:1、Guass列选主元消去法对于AX =B1)、消元过程:将(A|B)进⾏变换为,其中是上三⾓矩阵。

即:k从1到n-1a、列选主元选取第k列中绝对值最⼤元素作为主元。

b、换⾏c、归⼀化d、消元2)、回代过程:由解出。

2、三⾓分解法(Doolittle分解)将A分解为如下形式由矩阵乘法原理a、计算U的第⼀⾏,再计算L的第⼀列b、设已求出U的1⾄r-1⾏,L的1⾄r-1列。

先计算U的第r⾏,再计算L的第r列。

a)计算U的r⾏b)计算L的r列C#代码: 代码说明:Guass列主消元法部分将计算出来的根仍然储存在增⼴矩阵的最后⼀列,⽽Doolittle分解,将分解后的结果也储存⾄原来的数组中,这样可以节约空间。

using System;using System.Windows.Forms;namespace Test{public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Cannel_Button_Click(object sender, EventArgs e){this.textBox1.Clear();this.textBox2.Clear();this.textBox3.Clear();boBox1.SelectedIndex = -1;}public double[,] GetNum(string str, int n){string[] strnum = str.Split(' ');double[,] a = new double[n, n + 1];int k = 0;for (int i = 0; i < n; i++){for (int j = 0; j < strnum.Length / n; j++){a[i, j] = double.Parse((strnum[k]).ToString());k++;}}return a;}public void Gauss(double[,] a, int n){int i, j;SelectColE(a, n);for (i = n - 1; i >= 0; i--){for (j = i + 1; j < n; j++)a[i, n] -= a[i, j] * a[j, n];a[i, n] /= a[i, i];}}//选择列主元并进⾏消元public void SelectColE(double[,] a, int n){int i, j, k, maxRowE;double temp; //⽤于记录消元时的因数for (j = 0; j < n; j++){maxRowE = j;for (i = j; i < n; i++)if (System.Math.Abs(a[i, j]) > System.Math.Abs(a[maxRowE, j]))maxRowE = i;if (maxRowE != j)swapRow(a, j, maxRowE, n); //与最⼤主元所在⾏交换//消元for (i = j + 1; i < n; i++){temp = a[i, j] / a[j, j];for (k = j; k < n + 1; k++)a[i, k] -= a[j, k] * temp;}}return;}public void swapRow(double[,] a, int m, int maxRowE, int n){int k;double temp;for (k = m; k < n + 1; k++){temp = a[m, k];a[m, k] = a[maxRowE, k];a[maxRowE, k] = temp;}}public void Doolittle(double[,] a, int n){for (int i = 0; i < n; i++){if (i == 0){for (int j = i + 1; j < n; j++)a[j, 0] = a[j, 0] / a[0, 0];}else{double temp = 0, s = 0;for (int j = i; j < n; j++){for (int k = 0; k < i; k++){temp = temp + a[i, k] * a[k, j];}a[i, j] = a[i, j] - temp;}for (int j = i + 1; j < n; j++){for (int k = 0; k < i; k++){s = s + a[j, k] * a[k, i];}a[j, i] = (a[j, i] - s) / a[i, i];}}}}private void Exit_Button_Click(object sender, EventArgs e){this.Close();}private void Confirm_Button_Click(object sender, EventArgs e){if (this.textBox2.Text.Trim().ToString().Length == 0){this.textBox2.Text = this.textBox1.Text.Trim();}else{this.textBox2.Text = this.textBox2.Text + "\r\n" + this.textBox1.Text.Trim();}this.textBox1.Clear();}private void Calculate_Button_Click(object sender, EventArgs e){string str = this.textBox2.Text.Trim().ToString();string myString = str.Replace("\n", " ").Replace("\r", string.Empty);double[,] a = new double[this.textBox2.Lines.GetUpperBound(0) + 1, this.textBox2.Lines.GetUpperBound(0) + 2];a = GetNum(myString, this.textBox2.Lines.GetUpperBound(0) + 1);if (boBox1.Text == "Guass列主消元法"){Gauss(a, this.textBox2.Lines.GetUpperBound(0) + 1);for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++){this.textBox3.Text = this.textBox3.Text + "\r\nX" + (i + 1) + "=" + a[i, this.textBox2.Lines.GetUpperBound(0) + 1]; }}else if (boBox1.Text == "Doolittle三⾓分解法"){this.textBox3.Enabled = true;Doolittle(a, this.textBox2.Lines.GetUpperBound(0) + 1);bel3.Text = "分解后的结果:";this.textBox3.Clear();this.textBox3.Text += "L矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j < i){this.textBox3.Text += a[i, j].ToString() + "\t";}else if (i == j){this.textBox3.Text += "1\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}this.textBox3.Text += "\r\nU矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j >= i){this.textBox3.Text += a[i, j].ToString() + "\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}}}private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode == Keys.Enter){if (this.textBox1.Text.Trim().ToString().Length == 0){Calculate_Button_Click(sender, e);}else{Confirm_Button_Click(sender, e);}}}private void button1_Click(object sender, EventArgs e){this.textBox2.Enabled = true;}}} 运⾏截图: ⾄此完毕。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。

该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。

首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。

2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。

在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。

通过选取列主元,可以避免数值稳定性问题,提高计算精度。

3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。

首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。

最后通过回代求解出方程组的解。

4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。

追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。

5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。

该方法的基本思想是通过不断迭代求解出方程组的解。

首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。

6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。

该方法在每一次迭代时,使用已经更新的解来计算新的解。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。

该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。

可以通过选择合适的松弛因子来加快迭代速度。

以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。

在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。

列主元高斯消去法和列主元三角分解法解线性方程

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)二、原理及步骤分析设nn ij R a A ⨯∈=][)1(,nn Rb b b b ∈=],,,[)1()2(2)1(1 。

若约化主元素),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。

如果在消元过程中发现某个约化主元0)(=k kk a , 则第K 次消元就无法进行。

此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。

为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。

相应过程为:(1)选主元:在子块的第一列中选择一个元)(k k i k a 使)(max k ik ni k kk i a a k ≤≤=并将第k 行元与第k i 行元互换。

用高斯列主元消元法解线性方程分析解析

用高斯列主元消元法解线性方程分析解析

沈阳航空工业学院课程设计学号2008040201105班级84020103姓名李荣飞指导教师尹航2009年9月11日沈阳航空工业学院课程设计任务书电子信息工程学院电子信息工程专业84020103班学号2008040201105一、课程设计题目:用高斯列主元消元法解线性方程二、课程设计工作自2009年9月6日起至2009年9月11日止三、课程设计内容:运用所学的C语言知识,编制和调试程序,拥有以下功能:请用高斯列主元消元法解以下方程组:2x12x25x3 53x14x27x3 6x13x23x3 5四、课程设计要求:程序质量:贯彻构造化程序设计思想。

用户界面友善,功能明确,操作方便;能够加以其余功能或修饰。

用户界面中的菜单起码应包含“输入数据”、“开始计算”、“退出”3项。

代码应适合缩进,并给出必需的说明,以加强程序的可读性。

课程设计说明书:课程结束后,上交课程设计说明书(打印稿和电子稿),其内容以下:封面课程设计任务书目录需求剖析(剖析题目的要求)程序流程图(整体流程图和主要功能模块流程图)中心技术的实现说明及相应程序段个人总结参照资料源程序及适合的说明指导教师:________学生署名:________目录一、需求剖析1二、程序流程图2三、中心技术的实现说明及相应程序段8四、个人总结11五、参照文件11六、源程序 (11)沈阳航院设计用纸一、需求剖析经过对程序设计题目的剖析可知,整个程序的设计实现大概分为三个模块,分别是:输入方程组,计算方程组,持续运算/退出。

计算方程组模块对应三个函数,其函数名和功能以下:一、互换行的距函数(huanhang):主要实现线性代数高斯列主元消元法求解线性方程组中的初等行变换。

二、比较系数大小的函数(bijiao):实现比较系数大小的算法。

三、实现菜单项选择择的函数(caidan):使用户界面友善,操作方便。

除上边介绍的功能以外,程序还拥有“持续运算/退出”功能,能够在程序的一次运转中间循环履行全部的功能,并依据需要,停止程序的履行。

解线性方程组的方法

解线性方程组的方法

解线性方程组的方法线性方程组是数学中常见的一类方程组,它由一组线性方程组成,常用形式为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ = b₂⋮aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, …, a₁ₙ, a₂₁, a₂₂, …, aₙₙ为已知系数,b₁,b₂, …, bₙ为已知常数,x₁, x₂, …, xₙ为未知数。

解线性方程组的方法有多种,下面将详细介绍其中的几种常用方法。

1. 列主元高斯消元法列主元高斯消元法是一种经典的解线性方程组的方法。

它的基本思想是通过消元将线性方程组转化为三角形式,然后逐步回代求解未知数。

具体步骤如下:(1)将系数矩阵按列选择主元,即选取每一列中绝对值最大的元素作为主元;(2)对系数矩阵进行初等行变换,使主元所在列下方的元素全部变为零;(3)重复上述步骤,直到将系数矩阵化为上三角矩阵;(4)从最后一行开始,逐步回代求解未知数。

2. Cramer法则Cramer法则是一种基于行列式的解线性方程组的方法。

它利用克拉默法则,通过求解线性方程组的系数矩阵的行列式和各个未知数对应的代数余子式的乘积,进而得到方程组的解。

具体步骤如下:(1)计算线性方程组的系数矩阵的行列式,若行列式为零,则方程组无解,否则进行下一步;(2)分别将每个未知数对应的列替换为常数向量,并计算替换后的系数矩阵的行列式;(3)将第二步计算得到的行列式除以第一步计算得到的行列式,得到各个未知数的解。

需要注意的是,Cramer法则只适用于系数矩阵为非奇异矩阵的情况。

3. 矩阵求逆法矩阵求逆法是一种利用矩阵求逆运算解线性方程组的方法。

它将线性方程组转化为矩阵形式,通过求解系数矩阵的逆矩阵,然后与常数向量相乘得到未知数向量。

具体步骤如下:(1)将线性方程组的系数矩阵记为A,常数向量记为b,未知数向量记为x;(2)判断A是否可逆,若A可逆,则进行下一步,否则方程组无解;(3)求解系数矩阵的逆矩阵A⁻¹;(4)计算未知数向量x = A⁻¹b。

Gauss消元法解解线性方程组

Gauss消元法解解线性方程组

摘要本文叙述了Gauss 顺序消元法解线性方程的算法思想以及其求解过程,同时简要叙述了Gauss 主元素消元法以及Gauss 全主元消元法。

紧接着给出了Gauss Seidel -迭代法的算法思想,本文给出了这三个消元方法以及一个迭代法的算法流程图,由于全主元消元法是前两个算法的基础上改进而来,故本文采用第三种方法进行编程计算,前两种方法不再重复编程,然后给出一个实例的计算结果,运行时间,在文章最后分析该实例的计算结果,针对同一实例,又采用Gauss Seidel -方法编程实现,然后对结果进行分析和对比。

最后给出了本人在编程时遇到的一些问题和解决办法。

关键词:Gauss 顺序消元法 Gauss 主元素消元法 Gauss 全主元消元法一、算法的简要描述1.1Gauss 顺序消元法Gauss 消元法在中学里已经学习过,其方法实质,就是运用初等变换,将线性方程组Ax b =转化为同解的上三角矩阵方程组1Ux L b -=(1.1.1)其中,U 为上三角矩阵,L 为下三角矩阵。

然后对式(1.1.1)进行回代求解,即得方程组的解。

手算的过程是非常清楚的,现在需回答的是计算机求解,如何实现上述计算过程。

设线性方程组为1111221331121122223322112233n n n n n n n nn n na x a x a x a xb a x a x a x a x b a x a x a x a x b +++⋅⋅⋅+=⎧⎪+++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪+++⋅⋅⋅+=⎩ 写成矩阵形式为1112111212222221222m m m n n a a a x b aa a xb a a a x b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(1.1.2)设线性方程组如上式所示,记(1)A A =,(1)b b =,与是增广矩阵具有形式(1)(1)[][]A b A b =,此时方程组为(1)(1)A x b =。

作业一 高斯消元法和列主元消元法

作业一 高斯消元法和列主元消元法

用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。

⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。

线性方程组的8种解法专题讲解

线性方程组的8种解法专题讲解

线性方程组的8种解法专题讲解线性方程组是数学中常见的问题之一,解决线性方程组可以帮助我们求出方程组的解,从而解决实际问题。

本文将介绍线性方程组的8种常见解法。

1. 列主元消去法列主元消去法是解决线性方程组的常用方法。

该方法通过将方程组转化为阶梯型矩阵,然后进行回代求解,得到方程组的解。

这一方法适用于任意维度的线性方程组。

2. 高斯消元法高斯消元法是解决线性方程组的经典方法之一。

该方法将方程组转化为阶梯型矩阵,并通过变换矩阵的方式使得主元为1,然后进行回代求解,得到方程组的解。

高斯消元法适用于任意维度的线性方程组。

3. 高斯-约当消元法高斯-约当消元法是对高斯消元法的改进。

该方法在高斯消元法的基础上,通过变换矩阵的方式使得主元为0,然后进行回代求解,得到方程组的解。

高斯-约当消元法适用于任意维度的线性方程组。

4. 矩阵分解法矩阵分解法是一种将线性方程组转化为矩阵分解形式,从而求解线性方程组的方法。

常见的矩阵分解方法有LU分解、QR分解等。

这些方法可以有效地降低求解线性方程组的计算复杂度。

5. 特征值分解法特征值分解法是一种将线性方程组转化为特征值和特征向量的形式,从而求解线性方程组的方法。

通过求解方程组的特征值和特征向量,可以得到方程组的解。

特征值分解法适用于具有特殊结构的线性方程组。

6. 奇异值分解法奇异值分解法是一种将线性方程组转化为奇异值分解形式,从而求解线性方程组的方法。

通过奇异值分解,可以得到方程组的解。

奇异值分解法适用于具有特殊结构的线性方程组。

7. 迭代法迭代法是一种通过逐步逼近方程组的解来求解线性方程组的方法。

常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法等。

迭代法的优点是可以适应各种规模的线性方程组。

8. 数值求解法数值求解法是一种通过数值计算的方式来求解线性方程组的方法。

常见的数值求解法有牛顿法、梯度下降法等。

数值求解法可以处理复杂的线性方程组。

以上是线性方程组的8种常见解法。

解线性方程组的列主元素高斯消去法和lu分解法

解线性方程组的列主元素高斯消去法和lu分解法

数值试验报告分析一、实验名称:解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的及要求:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、算法描述:本次试验采用的是高斯列主元消去法和LU分解法求解线性方程组的解。

其中,高斯消去法的基本思想是避免接近于零的数作分母;能进行到底的条件: 当A可逆时,列主元Gauss(高斯)消去法一定能进行到底。

优点: 具有很好的数值稳定性;具有与顺序Gauss 消去法相同的计算量。

列主元Gauss(高斯)消去法的精度显著高于顺序Gauss(高斯)消去法。

注意:省去换列的步骤,每次仅选一列中最大的元。

矩阵的三角分解法是A=LU,L 是下三角阵,U是上三角阵,Doolittle 分解:L 是单位下三角阵,U是上三角阵;Crout 分解:L 是下三角阵,U是单位上三角阵。

矩阵三角分解的条件是矩阵 A 有唯一的Doolittle 分解的充要条件是 A 的前n-1 顺序主子式非零;矩阵A有唯一的Crout 分解的充要条件是 A 的前n-1 顺序主子式非零。

三角分解的实现是通过(1)Doolittle 分解的实现;(2)Doolittle 分解的缺点:条件苛刻,且不具有数值稳定性。

(3)用Doolittle 分解求解方程组: AX=b LUX=b LY=bA=LU UX=Y ;四、实验内容:解下列两个线性方程组3.01 6.03 1.99 x1 11) 1.27 4.16 1.23 x2 10.987 4.81 9.34 x3 110 7 0 1 x1 83 2.099999 6 2 x2 5.9000012) 5 1 5 1x3 52 1 0 2 x4 1a、用你熟悉的算法语言编写程序用列主元高斯消去法和LU分解求解上述两个方程组,输出Ax=b 中矩阵 A 及向量b, A=LU 分解的L 及U,detA 及解向量x.b、将方程组(1)中系数 3.01 改为 3.00 ,0.987 改为0.990 ,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。

计算方法实验报告2

计算方法实验报告2

实验报告2:解线性方程组的直接法姓名:杜娟学号:08012324 班级:勘查08-3班一.上机题目用高斯列主元消去法和LU分解法解线性方程组二.目的要求掌握用高斯列主元消去法和LU分解法设计程序,从而实现解线性方程组。

三.方法原理1.如果在一列中选取按模最大的元素,将其调到主干方程位置再做消元,则称为列主元消元法。

调换方程组的次序是为了使运算中做分母量的绝对值尽量地大,减少舍入误差的影响。

2.由高斯消元法得到启发,对消元的过程相当于将分解为一个上三角矩阵和一个下三角矩阵的过程。

如果直接分解得到和,。

这时方程化为,令,由解出;再由,解出。

这就是直接分解法。

四.算法步骤列主元消元法算法1.输入:方程组阶数n,方程组系数矩阵A和常数向量项b。

2.for k=1 to n-1 //选主元的消元过程{//选择{s=|a kk|,m=kfor u=k+1 to nif |a uk|>s then{m=u,s=| a uk|}for v=k to n //交换第k行和第m行{t=a kv; a kv=a mv; a mv=t}t=b k;b k=b m;b m=t}for i=k+1 to n{t=a ik/a kkfor j=k+1 to n{a ij=a ij-t*a kj}b i=b i-t*a kj}}3.for i:=n TO 1 //回代求解4.输出方程组的解 x i, i=1,2,…,n。

如果对于第k步,从k行至n行和从k列至n列中选取按模最大的,对第行和第行交换,对第列和第v列交换,这就是全主元消元法。

在k列和第v列交换时,还要记录下v的序号,以便恢复未知量xk和xv的位置。

LU分解法1计算的第一行元素要计算,则列出式(3.20)等号两边的第1行第1列元素的关系式:故。

一般地,由的第一行元素的关系式得到2计算的第一列元素要计算,则列出式(3.20)等号两边的第2行第1列元素的关系式:故。

用列主元消去法解下列方程组

用列主元消去法解下列方程组

用列主元消去法解下列方程组列主元消去法是一种求解线性方程组的方法,也称为高斯消元法。

它的基本思想是通过一系列的行变换将增广矩阵化为阶梯形矩阵,然后通过回代求解出未知数的值。

下面我们来详细介绍一下列主元消去法的具体步骤。

首先,我们将线性方程组的系数矩阵和常数向量组成增广矩阵,即:$$\left[\begin{matrix}a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\\vdots & \vdots & \ddots & \vdots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} & b_n\end{matrix}\right]$$然后,我们选择第一列中绝对值最大的元素作为主元素,并将其所在的行交换到第一行。

如果第一列中所有元素的绝对值都为0,则选择第二列中绝对值最大的元素作为主元素,并将其所在的行交换到第一行。

以此类推,直到所有列都处理完毕。

接下来,我们将第一行的主元素除以它的系数,然后用第一行的主元素消去第二行、第三行、……、第n行的主元素。

具体地,我们将第二行的第一列元素除以第一行的主元素,然后将第一行乘以这个数并减去第二行,使得第二行的第一列元素变为0。

同样地,我们将第三行、第四行、……、第n行的第一列元素都消去。

然后,我们选择第二列中绝对值最大的元素作为主元素,并将其所在的行交换到第二行。

然后,我们将第二行的主元素除以它的系数,然后用第二行的主元素消去第三行、第四行、……、第n行的主元素。

以此类推,直到所有列都处理完毕。

最后,我们得到一个阶梯形矩阵,即:$$\left[\begin{matrix}a_{11}^{'} & a_{12}^{'} & \cdots & a_{1n}^{'} & b_1^{'} \\0 & a_{22}^{'} & \cdots & a_{2n}^{'} & b_2^{'} \\\vdots & \vdots & \ddots & \vdots & \vdots \\0 & 0 & \cdots & a_{nn}^{'} & b_n^{'}\end{matrix}\right]$$其中,$a_{ii}^{'}$表示第$i$行第$i$列的主元素,$b_i^{'}$表示第$i$行的常数项。

计算方法实验报告_列主元高斯消去法

计算方法实验报告_列主元高斯消去法
double row_first; //行首元素 //主对角元素单位化 for(int i=0;i<n;i++) {
row_first=A[i][i]; for(int j=0;j<n+1;j++)
计算方法实验报告
{ A[i][j]=A[i][j]/row_first;
} }
for(int k=n-1;k>0;k--) {
for(int i=0;i<N;i++) {
for(int j=0;j<N;j++) {
A_B[i][j]=A[i][j]; } A_B[i][N]=B[i][0]; } return A_B; }
3
//输出矩阵 A 的 row x col 个元素 void Show_Matrix(double **A,int row,int col) {
for(int i=0;i<N;i++)
{
int row=Choose_Colum_Main_Element(N,A_B,i);
if(Main_Element<=e) goto A_0;
Exchange(A_B,N+1,row,i);
Elimination(N,A_B,i);
cout<<"选取列主元后第"<<i+1<<"次消元:"<<endl;
double factor; for(int i=start+1;i<n;i++) {
factor=A[i][start]/A[start][start]; for(int j=start;j<n+1;j++) {

(完整版)2.3高斯列主元消去法

(完整版)2.3高斯列主元消去法

2.3高斯列主元消去法解线性方程组一:问题的提出我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。

就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。

实际运算的时候因为只能有限小数去计算,因此只能得到近似值。

在实际运算的时候,我们很多时候也常用高斯消去法。

但是高斯消去法在计算机中运算的时候常会碰到两个问题。

1.一旦遇到某个主元等于0,消元过程便无法进行下去。

2.在长期使用中还发现,即使消元过程能进行下去,但是当某个主元的绝对值很小时,求解出的结果与真实结果相差甚远。

为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。

其中又可以分为列选主元和全面选主元两种方法。

目前计算机上常用的按列选主元的方法。

因此我在这里做的也是列选主元高斯消去法。

二、算法的基本思想大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。

我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。

然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。

高斯消元法的目的就是把一般线性方程组简化成上三角方程组。

于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程组化为上三角形方程组,继而通过回代过程求解线性方程组。

三、算法的描述1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭K M OM L1n x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭M =1n b b ⎛⎫ ⎪ ⎪ ⎪⎝⎭M 2、 第一步:如果a 11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1a (1)21 a (1)22 . . . a (1)2n x 2b (1)2. . . . . . . = .a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1b (1)n-1a (1)n1 a (1)n2 . . . a (1)nn x nb (1)n简记为:A (2) x = b (2)其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb(2)I = b(1)I– l i1 * b(1)1 , I = 2,3,...,n第二步:如果a(2)22 != 0,令l i2= a(2)i2/a(2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11a(1)12 . . . a(1)1n x1b(1)10 a(1)22 . . . a(1)2n x2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n x n-1b(n-1)n-10 0 . . . a(n)nn x n b(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:X n = b(n) / a(n)nnX i = ( b(k)k - a(k)kj x j ) / a(k)kk以上为高斯消去法的基本过程。

高斯消元法和列主元消元法

高斯消元法和列主元消元法

用第二列的3、4行除以 k22得
- 25 - 5 = 11 = k 32 90 18 11
k
42
=
3 1 9 1
2 1 = 0 1
16 45
第三行减去第二行乘以 k 3 2 , 第四行减去第二行乘以k 4 2 。
由以上可得:
骣 1 5 ç11 ç ç 32 ç 0 19 ç ç 11 11 ç ç ç ç 1870 ç0 0 ç ç 198 ç ç ç ç 0 0 - 1727 ç ç 桫 495 - 4 25 11 1133 198 8195 495 13 ÷ ÷ ÷ 147 ÷ ÷ ÷ 11 ÷ ÷ ÷ ÷ 3003 ÷ ÷ ÷ ÷ 198 ÷ ÷ ÷ 6468 ÷ ÷ ÷ ÷ 495 ÷
- 4 25 11 1133 198 3421705518 183278700
÷ ÷ ÷ ÷ 147 ÷ ÷ ÷ 11 ÷ ÷ ÷ ÷ 3003 ÷ ÷ ÷ ÷ 198 ÷ ÷ 3421705518 ÷ ÷ ÷ ÷ 183278700 ÷
13
回代过程可得:
X 4 = 1; X 3 = 1; X 2 = 1; X 1 = 1;
1 k 41 = 11
第二行减去第一行乘以 k 21 , 第三行减去第一行乘以 第四行减去第一行乘以
k k
31


41
由此上可得:
骣 1 ç11 ç ç 90 ç0 ç ç 11 ç ç ç ç ç 0 - 25 ç ç 11 ç ç ç 32 ç0 ç ç 桫 11 5 - 4 13 ÷ ÷ ÷ 32 25 147 ÷ ÷ ÷ 11 11 11 ÷ ÷ ÷ ÷ 95 56 126 ÷ ÷ ÷ ÷ 11 11 11 ÷ ÷ ÷ - 27 191 196 ÷ ÷ ÷ ÷ 11 11 11

解线性方程组实验

解线性方程组实验

实验报告专用纸实验项目名称解线性方程组的直接法课程名称数值方法教师评语及成绩:实验成绩:教师签字:(请按照实验报告的有关要求书写。

一般必须包括:1、实验目的;2、实验内容;3、实验步骤与方法;4、实验数据与程序清单;5、出现的问题与解决方法;6、实验结果、结果分析与体会等内容)1、实验目的(1)掌握Gauss消元法及Gauss列主元消去法,能用这两种方法求解线性方程组;(2)掌握平方根法与追赶法;(3)掌握相应数值算法的程序编写;(4)理解方程组的性态、条件数及误差分析。

2、实验内容1.应用高斯消元法和高斯列主元素法解线性方程组Ax=b。

2.解线性方程组Ax=b的LU分解法。

用熟悉的算法语言编写程序,用高斯消去法和高斯列主元消去法求解方程组,输出Ax=b 中矩阵A、b、解向量x及detA。

3、实验步骤和方法(1)要求上机实验前先编写出程序代码;(2)编辑录入程序;(3)调试程序并记录调试过程中出现的问题及修改程序的过程;(4)经反复调试后,运行程序并验证程序运行是否正确;(5)记录运行时的输入和输出;(6)对程序的运行结果进行分析;(7)根据实验情况和结果撰写并提交实验报告。

4、实验原理(1)实验结果图1Gauss消元法图2Gauss消元法近似为0(2)结果分析在Gauss消元法中,可以看到3的值是一个非常接近于0的数,如果将消元后的系数矩阵打印出来,可以看到消元后的系数矩阵并不是一个真正的上三角矩阵,下三角部分有几处是绝对值极小的值,这是由于计算机的浮点计算造成的,浮点在计算机中本身就不是一个精确的数,在消元的过程中,一些浮点运算有误差,最后得到的是近似值而不是0。

4-线性方程组的解法

4-线性方程组的解法

17
定理 1 矩阵 A 可以三角分解的条件如下:
1. 若矩阵 A 的所有顺序主子式不等于零; 2. 若矩阵 A 对称正定; 3. 若矩阵 A 严格对角占优,即:
akk akj , k 1, 2, n 。
j k
18
2 2 1 A 4 5 4 例 3 已知矩阵 ,检验 A 是否满足三角分解的条件, 2 4 3
n n n n a11 a1 a b k 1n 1 n n n akk akn bk n n ann bn
7
消元公式:
(0) aij aij , bi(0) bi , ( i , j 1, 2, ..., n) For k 1, 2, ..., n 1 (k ) ( k 1) ( k 1) aij aij lik akj b( k ) b( k 1) l b( k 1) i i ik k ( k 1) ( k 1) akk ; i , j k 1, ..., n lik aik
利用增广矩阵的初等行变换法表示为:
1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 1 3 2 1 3 2 A b 4 1 2 1 3 6 7 3 1
k 1
1
ai1 lik uk1 li1u11 ,
k 1
1
即: li1 ai1 u11 i 2, 3,, n .
这是 U 的第一行和 L 的第一列。
22
设: U 的前 m 1 行和 L 前 m 1 列均已算出,那么:
amj lmk ukj lmk ukj lmmumj ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯列主元消元法解线性方程组
一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,
A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)
二、原理及步骤分析

n
n ij R a A ⨯∈=][)1(,n
n R
b b b b ∈=],,,[)1()2(2)1(1 。

若约化主元素
),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。

如果在消元过程中发现某个约化主元0)
(=k kk a , 则第K 次消元就无法进行。

此外,即
使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。

为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。

相应过程为:
(1)选主元:在子块的第一列中选择一个元)
(k k i k a 使)
(max k ik n
i k k
k i a a k ≤≤=
并将第k 行元与第k i 行元互换。

(2)消元计算:对k=1,2,……n-1依次计算
()()()⎪⎪
⎪⎩
⎪⎪⎪⎨⎧++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj
ik k ij k ij k kk
k ik
k ik ,,2,1,,2,1,,,2,1)
()()1()
()()1()()
()( (3)回代求解
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-==∑+=)
(1)
()()()
(i ii n i j j i ij i i
i n nn
n n
n a x a b x a b x
()1,,2,1 --=n n i
三. 流程图
四、源程序
高斯列主元消元法程序
#include<>
#include<>
#define N 6
main()
{
float A[N][N+1]={{,,,,,,},{,,,,,,},{,,,,,,},{,,,,,,},{,,,,,,},{,,,,,,}}, total,x[6];
int i,j,k,m,n;
printf("方程的增广矩阵:\n");
for(i=0;i<N;i++)
{
for(j=0;j<N+1;j++)
printf(" % ",A[i][j]);
printf("\n");
}
for(j=0;j<N-1;j++) /*di j bu xiao yuan */
{
k=j; /*最大行号赋给k*/
for(i=j+1;i<N;i++)
{
if(fabs(A[i][j])>fabs(A[k][j]))
k=i;
}
if(k==j)
for(i=j+1;i<N;i++)
for(m=j+1;m<N+1;m++)
{
A[i][m]=A[i][m]-A[j][m]*A[i][j]/A[j][j]; }
else
{
for(n=0;n<N+1;n++)
{
A[N][n]=A[k][n]; /*换行 */
A[k][n]=A[j][n];
A[j][n]=A[N][n];
}
for(i=j+1;i<N;i++)
for(m=j+1;m<N+1;m++)
{
A[i][m]=A[i][m]-A[j][m]*A[i][j]/A[j][j]; }
}
}
printf("消元後的结果:\n");
for(i=0;i<N;i++)
{
for(j=0;j<N+1;j++)
printf(" % ",A[i][j]); printf("\n");
}
x[N-1]=A[N-1][N]/A[N-1][N-1]; for(i=N-2;i>=0;i--)
{
total=A[i][N];
for(j=N-1;j>i;j--)
total=total-x[j]*A[i][j];
x[i]=total/A[i][i];
}
printf("方程的解:\n");
for(i=0;i<N;i++)
printf("x1=%f\n",x[i]);
}
五、结果显示
六、结果分析:
消元必须从主元的下一行下一列开始,否则,不会得到正确结果。

从结果运行情况看,消元后不会得到三角阵,但回带求解时,程序只关心上三角阵,不会影响最终计算结果。

若从主元这一列开始,消元后会得到一个三角阵,但该三角阵并不准确。

由不准确的三角阵到的结果也不正确。

相关文档
最新文档