《正多边形和圆》练习题
24.3 正多边形和圆》测试题
《24.3正多边形和圆》1.各条边______,并且各个______也都相等的多边形叫做正多边形.2. 把一个圆分成n (n ≥3)等份,依次连结各等分点所得的多边形是这个圆的______.3. 一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.4. 正n 边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角等于______________.5. 设正n 边形的半径为R ,边长为a n ,边心距为r n ,则它们之间的数量关系是______.这个正n 边形的面积S n =________.6. 正八边形的一个内角等于_______,它的中心角等于_______.7. 正六边形的边长a ,半径R ,边心距r 的比a ∶R ∶r =_______.8. 同一圆的内接正方形和正六边形的周长比为_______.9. 等边三角形的外接圆面积是内切圆面积的( ).a) A .3倍 B .5倍 C .4倍 D .2倍10. 已知正方形的周长为x ,它的外接圆半径为y ,则y 与x 的函数关系式是( ).a) A .x y 42= B .x y 82= b) C .x y 21=D .x y 22= 11. 有一个长为12cm 的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是( ).a) A .10cm B .12cm C .14cm D .16cm12. 已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A 8内接于半径为R 的⊙O .a) 求A 1A 3的长;(2)求四边形A 1A 2A 3O 的面积;(3)求此正八边形的面积S .13.14.已知:如图,⊙O的半径为R,正方形ABCD,A′B′C′D分别是⊙O的内接正方形和外切正方形.求二者的边长比AB∶A′B′和面积比S内∶S外.。
人教版九年级上册数学正多边形和圆测试题
人教版九年级数学考试题测试题人教版初中数学24.3 正多边形和圆1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4) 2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:1 4. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB BA 11的值为( )A .21B .22OBCD AEF EDCBAOC .41D .428.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A =∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
专题06正多边形和圆(3个考点六大类型)(原卷版)
专题06 正多边形和圆(3个考点六大类型)【题型1 正多边形与圆求角度】【题型2正多边形与圆求线段长度】【题型3正多边形与圆求半径】【题型4正多边形与圆求面积】【题型5正多边形与圆求周长】【题型6正多边形与直角坐标系综合】【题型1 正多边形与圆求角度】1.(2023•青羊区校级模拟)如图,正六边形ABCDEF内接于⊙O,∠ADB的度数是()A.20°B.30°C.45°D.60°2.(2023•荷塘区模拟)如图,以正五边形ABCDE的顶点A为圆心作⊙A分别与边AE、AB交于点F、G,点P是劣弧FG上一点,连接PF、PG,则∠FPG 的度数为()A.116°B.120°C.124°D.126°3.(2023•惠水县一模)如图,边长相等的正五边形、正六边形的一边重合,则∠1的度数为()A.10°B.12°C.20°D.22°4.(2023•渌口区二模)如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=96°,则∠FCD的大小为()A.38°B.42°C.48°D.58°5.(2022秋•曲周县期末)已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数等于()A.45°B.60°C.35°D.55°6.(2023•新市区校级一模)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为()A.150°B.144°C.135°D.120°7.(2023•泰兴市二模)如图,正六边形ABCDEF与⊙O相切于点C、F,则∠COF=°.8.(2023•南关区校级模拟)如图摆放着正五边形ABCDE和正△EFG,其中点A、B、F在同一直线上,EG∥BF,则∠DEG的度数是.9.(2023•天山区校级一模)如图,正五边形ABCDE内接于⊙O,则∠DAC的度数为.10.(2023•霍林郭勒市校级三模)如图,正五边形ABCDE内接于⊙O,则∠ADE 的度数是.11.(2023•陇南模拟)如图,正六边形ABCDEF内接于⊙O,连接BD,则∠CBD的度数是.12.(2022秋•南浔区期末)已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.13.(2023•子洲县校级一模)如图,在正六边形ABCDEF中,延长AB交EC 的延长线于点G,则∠G的度数为.【题型2正多边形与圆求线段长度】14.(2023春•鼓楼区校级期中)如图,A、B、C、D为一个正多边形的顶点,若∠ADB=15°,则该正多边形的边数为()A.9B.10C.11D.12 15.(2022秋•烟台期末)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.3C.D.16.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3D.2 17.(2023•苏州二模)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,过O作OM垂直AB,交AB于点M,则OM的长为.18.(2022秋•荔湾区校级期末)如图,已知正六边形的边心距OG为,则它的边长AB为.19.(2022秋•甘井子区校级期末)如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口,则边长a为mm.【题型3正多边形与圆求半径】20.(2022秋•铜山区期中)如图,圆内接正六边形ABCDEF的周长为12cm,则该正六边形的内切圆半径为()A.cm B.2cm C.2cm D.cm21.(2022秋•红桥区期末)若一个正六边形的边长为2,则其外接圆与内切圆的半径分别为()A.2,1B.2,C.,2D.,3 22.(2022秋•巩义市期末)如图,已知⊙O的内接正方形ABCD的边长为1,则⊙O的半径为()A.B.C.1D.23.(2022秋•东丽区期末)正方形边长为4,则其外接圆半径为()A.2B.C.4D.24.(2022秋•开封期末)正六边形ABCDEF内接于⊙O,正六边形的周长是24,则⊙O的半径是.【题型4正多边形与圆求面积】25.(2023•南山区二模)刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程中,作了一个如图所示的圆内接正八边形.若⊙O的半径为1,则这个圆内接正八边形的面积为()A.πB.2πC.D.26.(2023•济源一模)如图,正六边形ABCDEF,A(﹣2,0),D(2,0),点P从点A出发,沿A→B→C→D→E→F→A以每秒1个单位长度的速度运动,当运动到第2023秒时,△AOP的面积为()A.B.C.D.1 27.(2023•大冶市一模)如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为()A.4m2B.12m2C.24m2D.24m2 28.(2023•宁江区二模)如图,以直角三角形的三边为边向外作正五边形,若S1=13,S2=5,则S3的面积为()A.12B.25C.8D.18 29.(2023•高碑店市模拟)如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5B.6C.8D.10 30.(2023•惠山区校级模拟)如图,面积为6的正六边形ABCDEF中,点M,N分别为边BC,EF上的动点,则阴影部分面积为()A.2B.3C.4D.5 31.(2023•桓台县一模)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的面积为()A.B.C.D.32.(2023•温州二模)如图,菱形花坛ABCD的边长为9米,∠B=60°,其中由两个正六边形组成的部分种花,则种花部分的面积为米2.33.(2022秋•碑林区校级期末)如图,正六边形ABCDEF中,对角线BE长为4,则△BDE的面积为.【题型5正多边形与圆求周长】34.(2023春•余姚市期中)一个边长为1的正多边形的每个外角的度数是36°,则这个正多边形的周长是()A.1B.10C.5D.35.(2022秋•开封期末)一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是()A.12B.15C.18D.21 36.(2022秋•北辰区校级期末)边心距为3的正六边形的周长为()A.18B.C.D.37.(2022秋•南沙区校级期末)已知有一个亭子,它的地基是半径为4m的正六边形,则此地基的周长为()A.12m B.12m C.24m D.24m 38.(2023春•和平区校级月考)如图,已知正六边形的边心距为3,则它的周长是()A.6B.12C.D.39.(2022•新昌县校级模拟)一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8B.14C.16D.20 40.(2023•钦州一模)如图,若一个正六边形的对角线AB的长为10,则正六边形的周长()A.5B.6C.30D.36 41.(2023•鼓楼区模拟)下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最小的是()A.B.C.D.42.(2022秋•河西区期末)六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为10,求中间正六边形的周长.43.(2023•苏州模拟)已知正六边形的半径为,则它的周长=.44.(2023•青海模拟)等宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是相等的.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧则弧AB,弧BC弧AC组成的封闭图形就是“莱洛三角形”.莱洛三角形是“等宽曲线”,用莱洛三角形做横断面的滚子,能使载重物水平移动而不至于上下颠簸,若AB=3,则此“莱诺三角形”的周长为.【题型6正多边形与直角坐标系综合】45.(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为()A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)46.(2023•辉县市二模)我们知道,五边形具有不稳定性.正五边形OABCD 在平面直角坐标系中的位置如图(1)所示,A(﹣2,0).固定边AO,将正五边形向右推,使点A,B,C共线,且点C落在y轴上,如图(2)所示,则此时点D的坐标为()A.B.C.(1,2)D.47.(2023•宝应县二模)三个能够重合的正六边形的位置如图,已知A点的坐标是,则B点的坐标是.。
正多边形和圆练习题(复习)
hl r O 《24.3~24.4 正多边形和圆,弧长和扇形面积》复习一、知识回顾: 1.正多边形和圆:如图1,若正六边形的边长为4,那么正六边形的每一个内角是______度,每一个外角是______度,中心角是______度,半径是______,边心距是______,周长是______,面积是______. 2.弧长公式:如图2,弧AB 的长度l= .3.扇形面积公式:如图2,扇形OAB 的面积S 扇形= = .5.如图3,圆锥的侧面积S 锥侧= ;全面积S 锥全= . 6.如图4,圆柱的侧面积S 柱侧= ;全面积S 柱全= . 二、反馈练习,提高能力:1.下列说法正确的是 ( ) (A)正五边形的中心角是108°. (B)正十边形的每个外角是18°. (C)正五边形是中心对称图形. (D)正五边形的每个外角是72°.2.一个扇形的圆心角为120°,它的面积为3πcm 2,那么这个扇形的半径是 ( ) (A)3cm. (B)3cm. (C)6cm. (D)9cm.3.如图,圆柱的高线长为10cm,轴截面的面积为240cm 2,则圆柱的侧面积是 ( )(A)240cm 2. (B)240πcm 2. (C)480cm 2. (D)480πcm 2.4. 已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2,扇形的圆心角为____°. 5. 用圆心角为 120,半径为cm 6的扇形做成一个无底的圆锥侧面,则此圆锥的底面半径为cm ____. 6.如果圆锥的底面半径为3cm ,母线长为6cm ,那么它的侧面积等于 2cm 7.如图,AB 是⊙O 的直径,BC 是⊙O 的弦,半径OD ⊥BC,垂足为E ,若BC=63,DE=3. 求:(1) ⊙O 的半径;(2)弦AC 的长;(3)阴影部分的面积.A O B图2图3 图4 A B D C E FO图1正多边形和圆课后练习题一、选择题1.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若ABC ∠=120°,OC=3,则BC的长为( )A. πB. 2πC. 3πD. 5π2.如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为 ( )A .4πB .2πC .πD .2π33.如图,AB 是⊙O 的直径,点E 是BC 的中点,AB=4,∠BED=1200,则图中阴影部分的面积之和为( )A. 1B.23C. 3D. 32 4.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角是( )A .120°B .180°C .240°D .300° 5.如图,用邻边长为a,b(a <b )的矩形硬纸板截出以a 为直径的两个半圆,再截出与矩形的较边、两个半圆均相切的两个小圆,把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 关系式是( ) (A )b= 3 a (B)b=5+12 (C) 52(D) b= 2 a 6.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB相切于点D 的位置,则⊙O 自转了: ( ) A .2周 B .3周 C .4周 D .5周 7.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π3 8.如图,扇形DOE 的半径为3,边长为3的菱形OABC 的顶点A ,C ,B 分别在OD ,OE ,DE 上,若把扇形DOE 围成一个圆锥,则此圆锥的AB DCO图2ABCDE F (第7题)OABO D 第6题图高为( )A.21B. 22C.237D. 235 9.若一个圆锥的底面积为4πcm 2,圆锥的高为42cm ,则该圆锥的侧面展开图中圆心角的度数为( )A .4 0°B .80°C . 120°D .150°10.如图,半径为1cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A . πcm 2B .πcm 2C .cm 2D .cm 2二、填空题11.如图,将边长为cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O 经过的路线长是 cm .(结果保留π)12.如图,矩形OABC 内接于扇形MON ,当CN=CO 时,∠NMB 的度数是 .13.一个几何体由圆锥和圆柱组成,其尺寸如图,则该几何体的全面积(即表面积)为________(2012贵州黔西南州,15,3分)已知圆锥的底面半径为10cm ,它的展开图扇形的半径为30cm ,则这个扇形圆心角的度数是__________.14.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.面积是_________㎝215.如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 (结果保留π).16.如图1,正方形OCDE 的边长为1,阴影部分的面积记作S 1;如图2,最大圆半径r =1,阴影部分的面积记作S 2,则S 1 S 2(用“>”、“<”或“=”填) 三.简答题17.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数;(2)求证:AE 是⊙O 的切线;(3)当BC =4时,求劣弧AC 的长.18.如图在△ABC 中,BE 是它的角平分线,∠C=900,D 在AB 边上,以DB 为直径的半圆O 经过点E 交BC 于点F.(1)求证:AC 是⊙O 的切线;(2)已知∠A=300,⊙O 的半径为4,求图中阴影部分的面积.19.如图,在扇形OAB 中,∠AOB=90°,半径OA=6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.OA BC D E20.某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D 分别相切于点A、B,已知∠CO2D=600,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24厘米,设⊙O1的半径为x厘米.(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1、扇形O2CD两个区域的制作成本分别为0.45元/厘米2和0.06元/厘米2,当⊙O1的半径为多少时,该玩具的制作成本最小?0201FE DCB A。
2023年中考数学一轮专题练习 ——正多边形和圆(含解析)
2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。
正多边形与圆练习题
正多边形与圆练习题正多边形与圆练习题在数学中,正多边形与圆是常见的几何形状。
它们之间存在着一些有趣的关系和性质。
本文将通过一些练习题来探讨正多边形与圆的相关知识。
练习题一:正多边形的内角和首先,我们来考虑一个正五边形。
正五边形有五个内角,我们可以通过计算来求得这五个内角的和。
解答:正五边形的内角和等于180度乘以(五边形的边数-2)。
即:(5-2) × 180 = 540度。
所以,正五边形的内角和为540度。
类似地,正六边形的内角和为(6-2) × 180 = 720度;正七边形的内角和为(7-2)× 180 = 900度;以此类推。
练习题二:正多边形的外角和接下来,我们来考虑正多边形的外角和。
外角是指与内角相邻的角,它们的和等于360度。
解答:根据练习题一的解答,我们已经知道正五边形的内角和为540度。
那么正五边形的外角和为360度(外角和等于360度减去内角和)。
同样地,正六边形的外角和为360度;正七边形的外角和为360度;以此类推。
练习题三:正多边形的对角线数量对角线是指连接正多边形两个不相邻顶点的线段。
我们来考虑正五边形、正六边形和正七边形的对角线数量。
解答:正五边形有五个顶点,任意两个顶点之间可以连接一条对角线。
所以正五边形的对角线数量为5 × (5-3) / 2 = 5条。
同样地,正六边形的对角线数量为6 × (6-3) / 2 = 9条;正七边形的对角线数量为7 × (7-3) / 2 = 14条。
可以发现,正多边形的对角线数量随着边数的增加而增加。
练习题四:正多边形的内切圆和外接圆内切圆是指正多边形的内部切切正多边形的圆,而外接圆是指正多边形的外部切切正多边形的圆。
我们来考虑正五边形、正六边形和正七边形的内切圆和外接圆。
解答:正五边形的内切圆和外接圆都可以通过几何构造得到。
内切圆的圆心与正五边形的重心重合,而外接圆的圆心则与正五边形的顶点重合。
24.3正多边形和圆-人教版九年级数学上册练习
人教版九年级数学上册24.3正多边形和圆一.选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
0, 连接BD.则ZCDB 的度数是()3.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D. 一组对边平行,一组对角相等的四边形是平行四边形 4.正六边形的周长为6,则它的外接圆半径为()5.若一个正六边形的半径为2,则它的边心距等于()6.有一边长为2去的正三角形,则它的外接圆的而积为(二.填空题(共6小题)7. 如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么匕1=60° C. 45° D. 30°2.若一个圆内接正多边形的中心角是36’ ,则这个多边形是(A.正五边形B.正八边形C.正十边形D. 正十八边形A. 1B. 2C. 3D.A. 2B. 1c. VsD.2^3C. 4nD. 12n8.如图,将边长相等的正六边形和正五边形拼接在一起,则ZABC的度数为9.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.10.如果一个正〃边形的每个内角为108° ,那么这个正〃边形的边数为.11.正六边形的中心角为:当它的半径为1时,边心距为.12.已知。
过正方形ABCD顶点A、B,且与CO相切,若正方形边长为2,则圆的半径13.有一正六边形ABCDEF的内切圆半径为R,求R与这个正六边形ABCDEF的外接圆半径之比.14.如图,已知正六边形ABCDEF内接于。
,且边长为4.(1)求该正六边形的半径、边心距和中心角;(2)求该正六边形的外接圆的周长和面积.15.如图所示,在正五边形ABCDE中,A/是CD的中点,连接AC, BE, AM.求证:(1)AC=BE;(2)AMLCD.人教版九年级数学上册24.3正多边形和圆参考答案一. 选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)
24.3 正多边形和圆附参考答案一、正多边形的有关概念1.把圆分成n 等份,依次连接各分点所得的多边形是______________.2.正多边形__________________叫做正多边形的中心,______________________叫做正多边形的半径,中心到正多边形一边的距离叫做正多边形的_____________,正多边形的每一边所对的圆心角叫做正多边形的______________.问题1.圆内接正六边形一边所对的圆周角是( ) (A )30︒.(B )60︒.(C )150︒.(D )30︒或150︒. 二、正多边形的对称性3.正多边形都是______对称图形,正n 边形有_______条对称轴,每条对称轴都经过正n 边形的__________.4.若n 为偶数,正n 边形为_________对称图形,它的中心就是__________. 问题2.正n 边形的对称轴的总数是( ) (A )n 条.(B )2n条.(C )2n 条.(D )()2n -条. 三、正多边形的有关计算5.正n 边形的内角和为_______________,每个内角的度数为________________. 6.正n 边形有n 个相等的中心角,每个中心角的度数为____________,正n 边形有n 个相等的外角,每个外角的度数为____________,正n 边形的中心角和它的外角__________.问题3.要用圆形要板截出一个边长为3cm 的正方形桌面,则选用的圆形木板的直径至少应为_____________cm .要点探究探究1.正多边形的有关计算例1.如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积.解析:连接正六边形半径,把一个正六边形划分为六个全等的等边三角形,再利用每个三角形的面积求正六边形的面积.答案:正六边形的中心角为360︒÷6=60︒.∵OA =OF ,∠AOF =60︒,∴△AOF 是等边三角形,∴AF =OA =4.∴正六边形的周长为24.过O 作OG ⊥AF 于G ,∴∠AOG =30︒,∴AG =2,则OG 23=.∴△AOF 的面积为43,∴正六边形的面积为243.智慧背囊:正多边形边长的一半、半径、边心距构成了一个直角三角形,正多边形的有关计算都可以归结到这个直角三角形中.活学活用:已知正三角形、正方形、正六边形的半径都是R ,请你将各正多边形的边长、边心距、周长和面积值填在下表中.(用R 来表示)边长 边心距 周长 面积 正三角形 正方形 正六边形随堂尝试A 基础达标1.选择题(1)如图,将若干全等的正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要五边形( )(A )7个.(B )8个.(C )9个.(D )10个.ORQDCBA(第1(1)题) (第1(2)题)(2)如图,正方形ABCD 与等边△PRQ 内接于⊙O ,RQ ∥BC ,则∠AOP 等于( ) (A )45o .(B )60o .(C )30o .(D )55o .(3)下列图形中既是中心对称图形,又是轴对称图形的是( ) (A )正三角形.(B )正五边形.(C )正六边形.(D )正七边形.(4)若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是( ) (A )4.(B )6.(C )8.(D )12. 2.填空题(1)要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要____________cm.(2)如图,这是一个滚珠轴承的平面示意图,若该滚珠轴承的内外圆的半径分别为2和6,则在该轴承内最多能放___________颗半径为2的滚珠.F EDCBA A'HGA(第2(2)题)(第2(3)题)(第2(4)题)(3)如图,有一个边长为1.5cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为___________cm.(4)如图,将一块正六边形硬纸片,做成一个底面仍为正六边形且高相等的无盖的纸盒(侧面均垂直于底面),需在每一个顶点处剪去一个四边形,则∠GA/H为________度.3.已知两个正多边形的边数之比为2:1,而它们的内角和之比为8:3,求这两个正多边形的边数.4.如图,已知⊙O的两直径AB、CD互相垂直,弦MN垂直平分OB,交OB于点E;求证:MB与MC分别为该圆的内接正六边形和正十二边形的边长.B能力升级5.图①是“口子窖”酒的一个由铁片制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图②),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边长是3cm,每个内角都是120 ,六棱柱的高为3cm.现沿它的侧棱剪开展平,得到如图③的平面展开图.①②③④⑤(1)制作这种底盒时,可以按图④中虚线裁剪出如图③的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁片,请问能否按图④的裁剪方法制作这样的无盖底盒?并请说明理由;(2)如果用一块正三角形铁皮按图⑤中虚线剪出如图③的模片,那么这个正三角形的边长至少应为________________cm.(说明:以上裁剪不计接缝处损耗)C感受中考6.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是____________.7.如图①、②、③、④分别是⊙O的内接正三角形、正四边形、正五边形、…、正n边形,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数;(2)图②中,∠APN的度数是___________,图③中,∠APN的度数是___________;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案).图①图②图③图④课后实践从正五角星形的内角谈起我们常见到的五星红旗上的五角星形,不但给庄严的感觉,而且还给人一种和谐、对称、协调的美感,很容易得到它的一个内角为36︒.我们将圆周五等分,得五个分点1、2、3、4、5,如果按1→2→3→4→5相连,则得一个正五边形(如图①).如果按1→3→5→2→4→1相连,则得一个正五角星形(如图②).前者看成是5/1边形,后者则可以看成是5/2边形.所以每一个内角为55 18023622⎛⎫︒⨯-÷=︒⎪⎝⎭.图①图②图③图④以此类推,如图③、④将两个七角星形分别看成7/2边形和7/3边形,其内角分别为77540 1802227︒⎛⎫︒⨯-÷= ⎪⎝⎭,77180 1802337︒⎛⎫︒⨯-÷=⎪⎝⎭.有兴趣的同学不妨继续沿着这个思路研究下去,你一定会有很大的收获.参考答案基础准备问题1.D.问题2.A.问题3.要点探究活学活用:略.随堂尝试A基础达标1.(1)A (2)A (3)C (4)C2.(1)(2)6 (3)1.5 (4)60 3.两个正多边形的边数分别为10和5.4.连结MO.∵弦MN垂直平分OB,OE=BE=12OB=12OM,∠EMO=30︒,∴∠MOE=60︒.MB为圆内接六边形边长,CD⊥AB,∠MOC=30︒,∴MC为圆内接十二边形的边长.B能力升级5.(1)经计算所需的长方形铁片至少为(12+cm,宽至少为(6+cm,1217.5+<,616.5+<,能按图④裁剪方法制作无盖底盒;(2)约25.4cm.C感受中考6.7.(1)∠APN=60︒;(2)90︒,108︒;(3)∠APN=()2180 nn-.以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
正多边形与圆练习
正多边形与圆练习基础过关1.一个外角等于它的一个内角的正多边形是________.2.一个正多边形的中心角为20°,则它是正_____形.3.若正多边形的每个内角为144°,则它的中心角是_____.4.外角大于内角的正多边形是________.5.下列图形中,既是轴对称图形,又是中心对称图形的有()个.①正三角形;②正方形;③正五边形;④正六边形;⑤线段;⑥圆;⑦菱形;⑧平行四边形A.3B.4C.5D.66.正五边形绕其中心旋转下列各角度,所得正五边形与原正五边形不重合的是().A.226°B.144°C.120°D.72°7.下列命题正确的是().A.各边相等的多边形是正多边形B.各内角分别相等的多边形是正多边形C.既是轴对称图形又是中心对称图形的多边形是正多边形D.各边相等,各角也相等的多边形是正多边形8.已知正多边形的每个内角均为108°,则这个正多边形的边数为().A.3 B.4C.5D.69.若正三角形的外接圆半径为6cm,则此三角形的内切圆半径为_____cm.10.边心距为5cm的正四边形的面积为_______.11.同一个圆的内接正方形和外切正六边形的边长之比为_________.12.边长为a的正n边形的外接圆与内切圆围成的圆环的面积为_______.13.若正六边形的边长为8cm,则它的边心距为().A.8cm B.6cm C.4cm D.2cm 14.如图所示,木工师傅从一块边长为60cm的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长为().A.24cm B.22cm C.20cm D.18cm能力提升15.已知半径为R的⊙O,用多种工具、多种方法作出圆内接正三角形.16.试比较如图中两个几何图形的异同,分别写出它们的两个相同点和两个不同点.例如:相同点:正方形的对角线相等,正五边形的对角线也相等.不同点:正方形是中心对称图形,正多边形不是中心对称.相同点:(1)__________;(2)____________.不同点:(1)__________;(2)____________.聚沙成塔如图所示,图①,②,③,……,n,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中∠MON的度数是_______,图③中∠MON的度数是_______;(3)试探究∠MON的度数与正n边形边数n的关系.(直接写出答案)。
九年级数学上册《正多边形和圆》练习题及答案解析
九年级数学上册《正多边形和圆》练习题及答案解析学校:___________姓名:___________班级:________________一、填空题1.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为_______,面积为_______.2.正十二边形的中心角是_____度.二、解答题3.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(2)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(3)如图①,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D的位置时,你能求出①A'、①D、①1与①2之间的数量关系吗?并说明理由.4.阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2,正五边形ABCDE 内接于①O ,AB =2,求对角线BD 的长.5.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.6.如图所示,正五边形的对角线AC 和BE 相交于点M .(1)求证:AC ①ED ;(2)求证:ME =AE .7.如图1,正五边形ABCDE 内接于①O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;①以F 为圆心,FO 为半径作圆弧,与①O 交于点M ,N ;①连接,,AM MN NA .(1)求ABC∠的度数.(2)AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在①O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.8.如图,ABC是等边三角形,点D、E、G分别在边AB、AC、BC上,且AD CE BG==,BE、CD、AG分别相交于点F、P、Q.求证:①PQF是等边三角形.9.如图,在圆内接正三角形ABC中,若①DOE保持120°角度不变,求证:当①DOE绕着O点旋转时,由两条半径和①ABC的两条边围成的图形,图中阴影部分的面积始终是①ABC的面积的13.10.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.三、单选题11.如图,已知①O 的半径为1,AB 是直径,分别以点A 、B 为圆心,以AB 的长为半径画弧.两弧相交于C 、D 两点,则图中阴影部分的面积是( )A .52π-B .56πC .53πD .83π-12.对于等边三角形的性质,下列说法不正确的是( )A .等边三角形的三条边都相等,三个内角也都相等;B .等边三角形的边都等于60,角都等于60°;C .等边三角形中线、高、角平分线都相等,而且都交于一点;D .等边三角形具有等腰三角形的所有性质;132,则这个多边形的内角和为( )A .720︒B .360︒C .240︒D .180︒14.如图,四边形ABCD 为⊙O 的内接正四边形,△AEF 为⊙O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.1215.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分①CHEC.整个图形不是中心对称图形D.CEH△是等边三角形参考答案及解析:1.1)a22)a【分析】设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可;利用正八边形的面积等于正方形的面积减去剪掉的四个等腰直角三角形的面积列式计算即可得解.【详解】解:正方形ABCD外接圆的直径就是它的对角线,∴正方形边长为a,如图所示,设正八边形的边长为x,在Rt AEL 中,LE x =,AE AL x ==,2x x a ∴+=,解得:1)x a =,即正八边形的边长为1)a .2222241)]2)AEL S S S a x a a a =-=-=-=正方形正八边形.故答案是:1)a ,22)a .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,解题的关键是读懂题目信息,根据正方形的边长列出方程.2.30 【分析】根据正多边形的中心角公式:360n计算即可 【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式3.(1)2①A =①1+①2;见解析;(2)2①A =①1﹣①2;见解析;(3)2(①A +①D )=①1+①2+360°,见解析【分析】(1)根据翻折的性质表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出①3、①4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,①3=EDA '∠=12(180-①1),①4=DEA '∠=12(180-①2),①①A +①3+①4=180°,①①A +12(180-①1)+12(180-①2)=180°,整理得,2①A =①1+①2;(2)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180+①2),①①A+①3+①4=180°,①①A+12(180-①1)+12(180+①2)=180°,整理得,2①A=①1-①2;(3)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180-①2),①①A+①D+①3+①4=360°,①①A+①D+12(180-①1)+12(180-①2)=360°,整理得,2(①A+①D)=①1+①2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.4.(1)AC BD AB CD AD BC ⋅=⋅+⋅;(2)1【分析】(1)由托勒密定理可直接求解;(2)连接,AD AC ,根据圆周角与弦的关系可得AD AC BD ==,设BD x =,在四边形ABCD 中,根据托勒密定理有,AC BD AB CD AD BC ⋅=⋅+⋅,建立方程即可求得BD 的长【详解】(1)由托勒密定理可得:AC BD AB CD AD BC ⋅=⋅+⋅故答案为:AC BD AB CD AD BC ⋅=⋅+⋅(2)如图,连接,AD AC ,五边形ABCDE 是正五边形,则E ABC BCD ∠=∠=∠,2AB BC CD ===AD AC BD ∴==设BD x =,AC BD AB CD AD BC ⋅=⋅+⋅即2222x x =⨯+解得1211x x ==1BD ∴=+【点睛】本题考查了托勒密定理,圆周角与弦的关系,解一元二次方程,理解题意添加辅助线是解题的关键.5.(1)点A在该反比例函数的图象上,理由见解析(2)3+【分析】(1)过点P作x轴垂线PG,连接BP,可得BP=4,G是CD的中点,所以P(4,;(2)易求D(6,0),E(8,,待定系数法求出DE的解析式为y﹣次函数即可求点Q.(1)解:点A在该反比例函数的图象上,理由如下:过点P作x轴垂线PG,连接BP,①P是正六边形ABCDEF的对称中心,CD=4,①BP=4,G是CD的中点,①sin604PG BO BC==⋅︒==①P(4,,①P在反比例函数y=kx(k>0,x>0)的图象上,①k=①反比例函数解析式为y由正六边形的性质可知,A(2,,①点A在反比例函数图象上;(2)解:由(1)得D (6,0),E (8,,设DE 的解析式为y =mx +b ,①608m b m b +=⎧⎪⎨+=⎪⎩①m b ⎧=⎪⎨=-⎪⎩①y﹣由方程y y ⎧=⎪⎨⎪=-⎩,解得x=3,①Q点横坐标为3+..【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.6.(1)见解析;(2)见解析【分析】(1)作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒,由①EAC 的度数等于EDC 的度数的一半,得到①EAC =1144722⨯︒=︒,同理,①AED =12×72°×3=108°,则 ①EAC +①AED =180°,即可证明ED∥AC ;(2)由①AEB 的度数等于AB 的度数的一半,得到①AEB =36°,则①EMA =180°-①AEB -①EAC =72°,可推出①EAM =①EMA =72°,即可证明 EA =EM .【详解】解:①正多边形必有外接圆,①作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒, ① ①EAC 的度数等于EDC 的度数的一半,① ①EAC =1144722⨯︒=︒, 同理,①AED =12×72°×3=108°,① ①EAC +①AED =180°,① ED∥AC ;(2)①①AEB 的度数等于AB 的度数的一半,①①AEB =36°,①①EMA =180°-①AEB -①EAC =72°,① ①EAM =①EMA =72°,① EA =EM .【点睛】本题主要考查了正多边形与圆,平行线的判定,等腰三角形的判定,解题的关键在于能够熟练掌握圆的相关知识.7.(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:①正五边形ABCDE .①BC CD DE AE AB ====, ①360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ①3AEC AE =,①AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ①1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,①ON OF =,①ON OF FN ==,①OFN △是正三角形,①60OFN ∠=︒,①60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,①60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,①AMN 是正三角形;(3)①AMN 是正三角形,①2120A N A N M O =∠=︒∠.①2AD AE =,①272144AOD ∠=⨯︒=︒,①DN AD AN =-,①14412024NOD∠=︒-︒=︒,①3601524n==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.8.见解析【分析】先根据“SAS”证明△ACD①△CBE,得到①ACD=①CBE,结合三角形外角的性质可证①BFD=①60°,进而可证△PQF是等边三角形.【详解】证明:①△ABC是等边三角形,①①A=①BCE=60°,AC=CB,又①AD=CE,①△ACD①△CBE(SAS);①①ACD=①CBE,①①ACB=①ACD+①BCF=60°,①①BFD=①CBE+①BCF=①ACD+①BCF =60°,同理可得,①APE=60°,①△PQF是等边三角形.【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及三角形外角的性质,综合运用各知识点是解答本题的关键.9.见解析【分析】连接OA、OB、OC,由正多边形和圆的性质可得:①OAB①①OBC①①OCA.则①1=①2,再证明①OAG①①OCF,即可求解.【详解】如图:连接OA、OB、OC,由正多边形和圆的性质可得①OAB①①OBC①①OCA.①①1=①2.设OD 交BC 于F ,OE 交AC 于G ,则①AOC =①3+①4=120°,①DOE =①5+①4=120°,① ①3=①5.∴在①OAG 和①OCF 中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,① ①OAG ①①OCF .① ΔAOC ΔABC 13OFCG S S S ==四边形. 【点睛】本题考查了正多形和圆的性质,全等三角形的判定和性质,将阴影部分的面积转化为固定的三角形面积是解题关键.10.(1)2(3)-【分析】(1)根据题意可得GE DC ∥,根据平行线分线段成比例即可求解;(2)根据(1)的结论,可得AG AD AE AC ==根据旋转的性质可得DAG CAE ∠=∠,进而证明GAD EAC ∽,根据相似三角形的性质即可求解;(3)分两种情况画出图形,证明①ADG ①①ACE ,根据相似三角形的判定和性质以及勾股定理即可得出答案.(1) 解:正方形AFEG 与正方形ABCD 有公共点A ,点G 在AD 上,F 在AB 上,GE DC ∴∥AG AE DG EC ∴= EC AE DG AG∴= 四边形AFEG 是正方形 ∴AE =∴2DG AGE === (2)解:如图,连接AE ,正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,DAG CAE ∴∠=∠AG AD AE AC ==GAD EAC ∴∽∴AC CE DG AD= (3) 解:①如图,AB =AG AD =,AD AB ∴==8AG ==,16AC ==, ,,G E C 三点共线,Rt AGC △中,GC ==8CE GC GE ∴=-=,由(2)可知GAD EAC ∽,∴CE AC DG DA==()816DA CE DG AC ⋅∴==4==. ①如图:由(2)知△ADG ①①ACE ,①DG AD CE AC ==,①DG , ①四边形ABCD 是正方形,①AD =BC ,AC 16,①AG ,①AG =8, ①四边形AFEG 是正方形,①①AGE =90°,GE =AG =8,①C ,G ,E 三点共线.①①AGC =90°①CG①CE =CG +EG,①DG =综上,当C ,G ,E 三点共线时,DG 的长度为-【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.11.A【分析】连接AC 、BC ,如图,先判断△ACB 为等边三角形,则①BAC =60°,由于S 弓形BC =S 扇形BAC ﹣S △ABC ,所以图中阴影部分的面积=4S 弓形BC +2S △ABC ﹣S ⊙O ,然后利用扇形的面积公式、等边三角形的面积公式和圆的面积公式计算.【详解】解:连接BC ,如图,由作法可知AC =BC =AB =2,①①ACB 为等边三角形,①①BAC =60°,①S 弓形BC =S 扇形BAC ﹣S △ABC ,①S 阴=4S 弓形BC +2S △ABC ﹣S ⊙O=4(S 扇形BAC ﹣S △ABC )+2S △ABC ﹣S ⊙O=4S 扇形BAC ﹣2S △ABC ﹣S ⊙O=42602360π⨯⨯-222﹣π×12 53=π﹣ 故选:A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了扇形的面积公式.12.B【分析】根据等边三角形的性质逐项分析判断即可求解.【详解】解:A . 等边三角形的三条边都相等,三个内角也都相等,故该选项正确,不符合题意;B . 等边三角形的三个角都等于60°,三条边都相等,不一定等于60,故该选项不正确,符合题意;C . 等边三角形中线、高、角平分线都相等,而且都交于一点,故该选项正确,不符合题意;D . 等边三角形具有等腰三角形的所有性质,故该选项正确,不符合题意;故选B .【点睛】本题考查了等边三角形的性质,掌握等边三角形的性质是解题的关键.13.A【分析】设AB 是正多边形的一边,OC①AB ,在直角①AOC 中,利用三角函数求得①AOC 的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,求出边数,根据内角和公式即可求出多边形的内角和.【详解】如图:①2,①2,设AB 是正多边形的一边,OC①AB , 2OC OA OB k ===,,在直角①AOC 中,OC cos AOC AO ∠== ①①AOC=30°,①①AOB=60°, 则正多边形边数是:360660︒︒=, ①多边形的内角和为:()62180720-⨯︒=︒,故选:A .【点睛】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.14.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒, DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.15.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A .① 根据正八边形的性质, 四边形ABCH 与四边形EFGH 能够完全重合,即四边形ABCH 与四边形EFGH 全等①四边形ABCH 与四边形EFGH 的周长相等,故选项正确,不符合题意;B .连接DH ,如图1,① 正八边形是轴对称图形,直线HD 是对称轴,① HD 平分①CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.①八边形ABCDEFGH是正八边形,① B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,①DOE=360=45 8︒︒①OE=OH①①OEH=①OHE=12①DOE=22.5°①①CHE=2①OHE=45°①①HCE=①HEC=12(180°-①CHE)=67.5°①CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.。
正多边形和圆(3个考点6大类型)(题型专练)(原卷版)
专题06正多边形和圆(3个考点6大类型)【题型1 正多边形与圆求角度】【题型2正多边形与圆求线段长度】【题型3正多边形与圆求半径】【题型4正多边形与圆求面积】【题型5正多边形与圆求周长】【题型6正多边形与直角坐标系综合】【题型1 正多边形与圆求角度】1.(2022秋•仙居县期末)如图,正五边形ABCDE中,点F是CD的中点,连接AC,AF,则∠CAF的度数为()A.15°B.18°C.22.5°D.30°2.(2023•湖里区校级模拟)如图,在正六边形ABCDEF中,∠ACF的度数为()A.30°B.35°C.20°D.25°3.(2023•泗水县三模)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.40°B.50°C.60°D.70°4.(2023•三明模拟)正八边形的中心角的度数是()A.30°B.45°C.60°D.90°5.(2022秋•余姚市期末)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.36°B.45°C.60°D.75°6.(2022秋•河西区校级期末)如图,四边形ABCD为⊙O的内接正方形,点P 为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是()A.120°B.130°C.135°D.150°7.(2023•海淀区校级四模)如图,AB是⊙O内接正五边形的一条边,点P在优弧AB上,则∠APB的度数为°.8.(2023•修文县模拟)如图,正五边形ABCDE内接于⊙O,点P在AE上,则∠CPB的度数为.9.(2023•上杭县模拟)如图摆放着正五边形ABCDE和正△EFG,其中点A、B、F在同一直线上,EG∥BF,则∠DEG的度数是.10.(2023•鼓楼区校级三模)如图,将边长相等的正六边形ABCDEF和正五边形ABGHK的AB边重合叠放在一起,则∠GBC的度数是.【题型2正多边形与圆求线段长度】11.(2023春•罗定市校级期中)如图,正六边形ABCDEF内接于⊙O,若⊙O 的周长是12π,则正六边形的边长是()A.B.3C.6D.12.(2023•玉屏县模拟)如图,正六边形ABCDEF的顶点A,F分别在正方形BMGH的边BH,GH上.若正方形的边长为6,则正六边形的边长为()A.2B.4C.4.5D.5 13.(2022秋•易县期末)如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.14.(2022秋•柘城县期中)一个圆的半径为2,则该圆的内接正方形的边长为()A.B.2C.D.2 15.(2023•尤溪县校级模拟)已知正六边形的半径是2,则这个正六边形的边长是.16.(2023•南京三模)如图,在正六边形ABCDEF中,⊙O经过点E,且与AB,BC相切.若⊙O的半径为4,则正六边形的边长为.17.(2023•绥化模拟)如图,在正五边形ABCDE中,若边长AB=2,则AC的长为.18.(2023•南关区一模)如图,点O为正六边形ABCDEF对角线AC上一点,阴影部分的面积和为,则正六边形的边长是.【题型3正多边形与圆求半径】19.(2022•博白县校级一模)边长为2的正方形内接于⊙M,则⊙M的半径是()A.1B.2C.D.20.(2022秋•浙江月考)如图所示,正六边形ABCDEF内接于⊙O,若边心距,则⊙O的半径为()A.B.2C.1D.4 21.(2022秋•昌平区期末)如图,面积为18的正方形ABCD内接于⊙O,则⊙O 的半径为()A.B.C.3D.22.(2023春•宿豫区期末)一枚圆形古钱币的中间是一个边长为1cm的正方形孔,圆面积是正方形面积的9倍,则圆的半径为cm.23.(2023•湟中区校级开学)已知一个正六边形的边心距2cm,则该正六边形的半径为cm.24.(2022秋•城西区校级期末)已知正三角形ABC的边心距为cm,则正三角形的半径为cm.【题型4正多边形与圆求面积】25.(2023•南岗区校级模拟)已知正六边形的半径为.则此正六边形的面积为()A.B.C.3D.4 26.(2023•梧州二模)剪纸艺术是我国非物质文化遗产,如图是一幅包含了圆,正八边形等图形设计成的剪纸作品,已知圆的半径是2,此作品的阴影部分面积是()A.B.πC.2πD.4π27.(2023•阜城县校级模拟)如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A.3B.4C.D.2 28.(2023•迁安市二模)如图,以正六边形ABCDEF的对角线BD为边,向右作等边△BDG,若四边形BCDG(图中阴影部分)的面积为6,则五边形ABDEF 的面积为()A.15B.12C.8D.629.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:5 30.(2022秋•裕华区校级期末)如图,点O是正六边形ABCDEF的中心,边心距OH=,则正六边形的面积为()A.6B.C.D.8 31.(2022•石家庄三模)如图,边长相等的正八边形和正方形部分重叠摆放在一起,已知正方形面积是2,那么非阴影部分面积是()A.6B.C.D.8 32.(2022秋•襄汾县月考)如图,⊙O为正方形ABCD的外接圆,若BC=2,则⊙O的面积为()A.2πB.3πC.4πD.8π33.(2023•榆阳区一模)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O的半径为2,则⊙O的内接正六边形ABCDEF的面积为6.【题型5正多边形与圆求周长】34.(2021秋•卫辉市期末)如图,⊙O的外切正六边形ABCDEF的边心距的长度为,那么正六边形ABCDEF的周长为()A.2B.6C.12D.6 35.(2022•定州市二模)如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.9 36.(2023春•青羊区校级期末)一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是.37.(2023•雁塔区校级四模)如图,已知圆内接正六边形ABCDEF的边心距OG等于,则⊙O的周长等于.38.(2022秋•同心县期末)如图,正六边形ABCDEF内接于⊙O,连接OC、OD,若OC长为2cm,则正六形ABCDEF的周长为cm.39.(2022•新城区模拟)如图,AC、AD为正六边形ABCDEF的两条对角线,若该正六边形的边长为2,则△ACD的周长为.【题型6正多边形与直角坐标系综合】40.(2023•二七区校级开学)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重台,AB∥x轴,交y轴于点P.将△OAP绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,1)D.(1,)41.(2023•浉河区校级三模)如图,在平面直角坐标系中,正六边形ABCDEF 的边AB在x轴上,点F在y轴上,将正六边形ABCDEF沿x轴正方向每次以一个单位长度无滑动滚动,若AB=1,在第2023次滚动后,点F的坐标为()A.B.()C.D.42.(2022秋•泗洪县期中)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n =2022时,顶点C2022的坐标是()A.B.C.(1,﹣2)D.43.(2021秋•凤山县期末)如图,将正六边形ABCDEF放在平面直角坐标系中,中心与坐标原点重合,若AB=2,则点D的坐标是()A.(1,0)B.(2,0)C.D.(3,0)44.(2023•缙云县二模)如图,正六边形ABCDEF放置在平面直角坐标系内,若点A的坐标为(1,0),则点D的坐标为.。
秋季初三正多边形与圆15题
2017秋季初三正多边形与圆(15题)一.选择题(共9小题)1.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形2.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.23.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.4.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.55.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm6.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4 B.2 C.D.7.如图,我们把先作正方形ABCD的内切圆,再作这个内切圆的内接正方形A1B1C1D1.称为第一次数学操作,解下列,作正方形A1B1C1D1的内切圆,再作这个内切圆的内接正方形A2B2C2D2,称为第二次数学操作,按此规律如此下去,…,当完成第n次数学操作后,得到正方形A n B n C n D n,则的值为()A.()n B.()n C.()n D.()n8.若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是()A.S1=S2=S3 B.S1>S2>S3C.S1<S2<S3D.S2>S3>S19.如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则=()A.3 B.4 C.5 D.6二.填空题(共4小题)10.正六边形的边长为8cm,则它的面积为cm2.11.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).12.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ=.13.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=°.三.解答题(共2小题)14.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.15.教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:(1)如果设正三角形ABC的边长为a,那么CO=(用含a的式子表示);(2)根据折叠性质可以知道△CDE的形状为三角形;(3)请同学们利用(1)、(2)的结论,证明六边形KHGFED是一个六边形.2017秋季初三正多边形与圆(15题)参考答案与试题解析一.选择题(共9小题)1.(2017•株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.【点评】本题考查了正多边形与圆,熟练掌握正多边形的中心角的定义是解题的关键.2.(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O 的半径是()A.B.2 C.2 D.2【分析】连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.【解答】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.3.(2017•达州)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角三角形,∴该三角形的面积是:×1×=.故选:A.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.4.(2017•河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5【分析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,由此即可判断.【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,故选C.【点评】本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.5.(2017•安次区二模)如图,正六边形螺帽的边长是2cm,这个扳手的开口a 的值应是()A.cm B.cm C.cm D.1cm【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.【点评】此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.6.(2017•和平区三模)如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4 B.2 C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,∴S=×4×6=12,△ABC∴S=×2×3=3,△DEF∴==4.故选A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.7.(2017•江西模拟)如图,我们把先作正方形ABCD的内切圆,再作这个内切圆的内接正方形A1B1C1D1.称为第一次数学操作,解下列,作正方形A1B1C1D1的内切圆,再作这个内切圆的内接正方形A2B2C2D2,称为第二次数学操作,按此规律如此下去,…,当完成第n次数学操作后,得到正方形A n B n C n D n,则的值为()A.()n B.()n C.()n D.()n【分析】根据正多边形的特点,构建直角三角形来解决.【解答】解:图形中正方形A1B1C1D1和正方形ABCD一定相似,OF,OC1分别是两个正方形的边心距,△OC1F是等腰直角三角形,因而OF:OC1=,则的值为,当完成第n次数学操作后,得到正方形A n B n C n D n,则的值为()n.故选A.【点评】此题考查了正多边形和圆的知识,边数相同的正多边形一定相似,边心距的比,半径的比都等于相似比.8.(2016•太谷县校级模拟)若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是()A.S1=S2=S3 B.S1>S2>S3C.S1<S2<S3D.S2>S3>S1【分析】根据三角形、正方形、正六边形的周长相等可设出三角形的边长,再求出S1,S2,S3,的值进行比较即可.【解答】解:设正三角形的边长为a,则正方形的边长为,正六边形的边长为;∵正三角形的边长为a,∴其高为,∴S1=a×=;S2=()2=;∵正六边形的边长为,∴把正六边形分成六个三角形,其高为,∴S3=6×××=.∵S1==,S3==,<<,∴S1<S2<S3.故选C.【点评】此题考查的是正三角形、正方形、正六边形面积的求法,属中等难度题目.9.(2016•盘锦一模)如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则=()A.3 B.4 C.5 D.6【分析】先求得两个三角形的面积,再求出正六边形的面积,求比值即可.【解答】解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S2=a•a=a2,∵AB=a,∴OC=a,∴S=6×a•a=a2,正六边形∴S1=S正六边形﹣S空白=a2﹣a2=a2,∴==5.故选C.【点评】本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.二.填空题(共4小题)10.(2017•毕节市)正六边形的边长为8cm,则它的面积为96cm2.【分析】先根据题意画出图形,作出辅助线,根据∠COD的度数判断出其形状,求出小三角形的面积即可解答.【解答】解:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD==60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=×=4cm,∴S△OCD=CD•OE=×8×4=16cm2.∴S正六边形=6S△OCD=6×16=96cm2.【点评】此题比较简单,解答此题的关键是根据题意画出图形,把正六边形的面积化为求三角形的面积解答.11.(2017•吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为π+1(结果保留π).【分析】由五边形ABCDE可得出,AB=BC=CD=DE=EA=1、∠A=∠D=108°,利用弧长公式可求出、的长度,再根据周长的定义,即可求出阴影部分图形的周长.【解答】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=π,∴C阴影=++BC=π+1.故答案为:π+1.【点评】本题考查了正多边形和圆、弧长公式以及周长的定义,利用弧长公式求出、的长度是解题的关键.12.(2017•凉山州)如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ=72°.【分析】连接OA、OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.【解答】解:连接OA、OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.【点评】本题考查的是正多边形和圆、全等三角形的判定和性质,掌握正多边形的中心角的求法、全等三角形的判定定理是解题的关键.13.(2017•张店区一模)如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=54°.【分析】找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.【解答】解:如图,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=×360°=108°,∴∠A4A1A7=×108°=54°.故答案为:54.【点评】本题考查的是正多边形和圆,根据题意作出辅助线,构造出圆周角是解答此题的关键.三.解答题(共2小题)14.(2015•铁西区一模)如图,点G,H分别是正六边形ABCDEF的边BC,CD 上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.【分析】(1)根据正六边形的性质得到AB=BC,∠ABC=∠C=120°,由三角形全等的判定定理SAS即可证出△ABG≌△BCH;(2)由△ABG≌△BCH,得到∠BAG=∠HBC,然后根据三角形的内角和和对顶角的性质即可得到结果.【解答】(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)解:由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.【点评】本题考查了正多边形的计算及全等三角形的判定及性质,解题的关键是正确地利用正六边形中相等的元素.15.(2015秋•镇海区期末)教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:(1)如果设正三角形ABC的边长为a,那么CO=a(用含a的式子表示);(2)根据折叠性质可以知道△CDE的形状为等边三角形;(3)请同学们利用(1)、(2)的结论,证明六边形KHGFED是一个六边形.【分析】(1)根据折叠的性质即可得到结论;(2)根据折叠的性质即可得到结论;(3)由(2)知△CDE为等边三角形,根据等边三角形的性质得到CD=CE=DE=CO÷cos30°=a,求得∠ADE=∠BED=120°,同理可得,AH=AK=KH=a,BG=BF=GF=a,∠CKH=∠BHK=120°,由于AB=BC=AC=a,于是得到结论.【解答】解:(1)∵正三角形ABC的边长为a,由折叠的性质可知,点O是三角形的重心,∴CO=a;故答案为:a;(2)△CDE为等边三角形;故答案为:等边;(3)由(2)知△CDE为等边三角形,∴CD=CE=DE=CO÷cos30°=a,∠ADE=∠BED=120°,同理可得,AH=AK=KH=a,BG=BF=GF=a,∠CKH=∠BHK=120°,∵AB=BC=AC=a,∴DE=DK=KH=HG=GF=FE=a,∠ADE=∠BED=∠CKH=∠BHK=∠CFG=∠AGF=120°,∴六边形KHGFED是一个正六边形.【点评】本题考查了正多形与圆,折叠的性质,三角形的重心的性质,等边三角形的性质,熟练掌握各定理是解题的关键.。
【练习题】2020春华师大版数学九下274正多边形和圆练习题一
【关键字】练习题27.4正多边形和圆农安县合隆中学徐亚惠一.选择题(共8小题)1.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D.52.圆内接正六边形的周长为24,则该圆的内接正三角形的周长为()A.12 B.6 C.12 D.63.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A. B.2 C. D.34.半径为8cm的圆的内接正三角形的边长为()A.8cm B.4cm C.8cm D.4cm5.正六边形内切圆面积与外接圆面积之比为()A. B. C. D.6.正六边形的边长等于2,则这个正六边形的面积等于()A.4 B.6 C.7 D.87.⊙O的半径等于3,则⊙O的内接正方形的边长等于()A.3 B.2 C.3 D.68.同圆的内接正三角形与内接正方形的边长的比是()A. B. C. D.二.填空题(共6小题)9.正六边形的中心角等于_________度.10.正n边形的边长与半径的夹角为75°,那么n=_________.11.已知正六边形的半径为2cm,那么这个正六边形的边心距为_________cm.12.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_________cm2.(结果保留π)13.半径为1的圆内接正三角形的边心距为_________.14.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于_________.三.解答题(共6小题)15.如图,正五边形ABCD中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.16.如图,正六边形ABCDEF中,点M在AB边上,∠FMH=120°,MH与六边形外角的平分线BQ交于点H.(1)当点M不与点A、B重合时,求证:∠AFM=∠BMH.(2)当点M在正六边形ABCDEF一边AB上运动(点M不与点B重合)时,猜想FM与MH的数量关系,并对猜想的结果加以证明.17.如图,分别求出半径为R的圆内接正三角形圆内接正方形的周长和面积.18.正六边形的边长为8,则阴影部分的面积是多少?19.如图,把一根圆柱形的木头锯成正方体形的柱子,使截面正方形的四个顶点均在圆上.(1)正方形的对角线与圆的直径有什么关系?(2)设圆O的半径为2,求圆中阴影部分的面积之和.20.如图,某圆形场地内有一个内接于⊙O的正方形中心场地,若⊙O的半径为10米,求图中所画的一块草地的面积.(计算结果保留π)27.4正多边形和圆参考答案与试题解析一.选择题(共8小题)1.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D. 5考点:正多边形和圆.分析:设这个正多边形的边数是n,再根据正多边形的中心角是36°求出n的值即可.解答:解:设这个正多边形的边数是n,∵正多边形的中心角是36°,∴=36°,解得n=10.故选A.点评:本题考查的是正多边形和圆,熟知正多边形每一边所对的圆心角叫做正多边形的中心角是解答此题的关键.2.圆内接正六边形的周长为24,则该圆的内接正三角形的周长为()A.12B.6C.12 D. 6考点:正多边形和圆.分析:根据题意画出图形,求出正六边形的边长,再由正多边形及直角三角形的性质求解即可.解答:解:∵圆内接正六边形的周长为24,∴圆内接正六边形的边长为4,∴圆的半径为4,如图,连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=4×=2,∴BC=2BD=4;∴该圆的内接正三角形的周长为12,故选A.点评:本题考查了正多边形和圆,以及圆内接正三角形及正六边形的性质,根据题意画出图形,作出辅助线构造出直角三角形是解答此题的关键.3.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A.B.2C.D.3考点:正多边形和圆.分析:延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故选:B.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.4.半径为8cm的圆的内接正三角形的边长为()A.8cm B.4cm C.8cm D.4cm考点:正多边形和圆.分析:欲求△ABC的边长,把△ABC中BC边当弦,作BC的垂线,在Rt△BOD 中,求BD的长;根据垂径定理知:BC=2BD,从而求正三角形的边长.解答:解:如图所示:∵半径为8cm的圆的内接正三角形,∴在Rt△BOD中,OB=8cm,∠OBD=30°,∴BD=cos30°×OB=×8=4(cm),∵BD=CD,∴BC=2BD=8cm.故它的内接正三角形的边长为8cm.故选:A.点评:本题主要考查了正多边形和圆,根据正三角形的性质得出,∠OBD=30°是解题关键.5.正六边形内切圆面积与外接圆面积之比为()A.B.C.D.考点:正多边形和圆.分析:作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形.解直角三角形即可.解答:解:正六边形可以分六个全等等边三角形,则这样的等边三角形的一边上的高为原正六边形的内切圆的半径;因为等边三角形的边长为正六边形的外接圆的半径,所以内切圆面积与外接圆面积之比=(sin60°)2=.故选:D.点评:本题考查了正多边形和圆,利用正六边形可以分六个全等等边三角形进而得出是解题关键.6.正六边形的边长等于2,则这个正六边形的面积等于()A.4B.6C.7D.8考点:正多边形和圆.分析:边长为2的正六边形可以分成六个边长为2的正三角形,计算出正六边形的面积即可.解答:解:连接正六变形的中心O和两个顶点D、E,得到△ODE,∵∠DOE=360°×=60°,又∵OD=OE,∴∠ODE=∠OED=(180°﹣60°)÷2=60°,则△ODE为正三角形,∴OD=OE=DE=2,∴S△ODE=OD•OM=OD•OE•sin60°=×2×2×=.正六边形的面积为6×=6,故选B.点评:本题考查了正多边形的计算,理解正六边形倍半径分成六个全等的等边三角形是关键,此题难度不大.7.⊙O的半径等于3,则⊙O的内接正方形的边长等于()A. 3 B.2 C 3D. 6考点:正多边形和圆.分析:根据正方形与圆的性质得出AB=BC,以及AB2+BC2=AC2,进而得出正方形的边长即可.解答:解:如图所示:⊙O的半径为3,∵四边形ABCD是正方形,∠B=90°,∴AC是⊙O的直径,∴AC=2×3=6,∵AB2+BC2=AC2,AB=BC,∴AB2+BC2=36,解得:AB=3,即⊙O的内接正方形的边长等于3,故选C.点评:此题主要考查了正方形与它的外接圆的性质,根据已知得出AB2+BC2=AC2是解题关键,此题难度一般.8.同圆的内接正三角形与内接正方形的边长的比是()A.B.C.D.考点:正多边形和圆.分析:根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.解答:解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=R,故BC=2BD=R;如图(二),连接OB、OC,过O作OE⊥BC于E则△OBE是等腰直角三角形,2BE2=OB2,即BE=R,故BC=R;故圆内接正三角形、正方形的边长之比为R:R=:=:2.故选:A.点评:本题考查的是圆内接正三角形、正方形的性质,根据题意画出图形,作出辅助线构造出直角三角形是解答此题的关键.二.填空题(共6小题)9.正六边形的中心角等于60度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.10.正n边形的边长与半径的夹角为75°,那么n=12.考点:正多边形和圆.分析:先根据正n边形的边长与半径的夹角为75°求出一个内角的度数,再根据正多边形的各角都相等可列出关于n的方程,求出n的值即可.解答:解:∵正n边形的边长与半径的夹角为75°,∴一个内角的度数=150°,即=150°.解得n=12.故答案为:12.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.已知正六边形的半径为2cm,那么这个正六边形的边心距为cm.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,∵OA=2cm,∠AOG=30°,∴OG=OA•cos 30°=2×=(cm).故答案为:.点评:本题考查的是正多边形和圆,根据题意画出图形,利用数形结合求解是解答此题的关键.12如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)考点:正多边形和圆.专题:计算题.分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.13.半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.专题:几何图形问题.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴O B平分∠ABC,则∠OBD=30°;∵OD⊥BC,OB=1∴OD=.故答案为:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径14.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.考点:正多边形和圆;扇形面积的计算.专题:压轴题.分析:先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.解答:解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD 于Z,∵六边形ABCDEF是正六边形,∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,∵在Rt△BMO中,OB=4,∠BOM=60°,∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,在Rt△CZO中,OC=4,OZ=OC×sin60°=2,∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.点评:本题考查了正多边形与圆及扇形的面积的计算的应用,解题的关键是求出两个弓形和两个三角形面积,题目比较好,难度适中.三.解答题(共6小题)15.如图,正五边形ABCD中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.考点:正多边形和圆;全等三角形的判定与性质.专题:综合题.分析:(1)利用正五边形的相等的角和相等的边得到证明全等三角形的条件后证明全等即可;(2)将∠AHG的度数转化为正五边形的内角的度数求解.解答:(1)证明:∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD,(2分)∵F、G分别是BC、CD的中点,∴BF=CG,(4分)在△ABF和BCG中,AB=BC,∠ABC=∠BCD,BF=CG,(5分)∴△ABF≌△BCG;(6分)(2)解:由(1)知∠GBC=∠FAB,∵∠AHG=∠FAB+∠ABH=∠GBC+∠ABH=∠ABC(,7分)∵正五边形的内角为108°,∴∠AHG=108°.(9分)(注:本小题直接正确写出∠AHG=108°不扣分)点评:本题考查了正多边形的计算及全等三角形的判定及性质,解题的关键是正确地利用正五边形中相等的元素.16.如图,正六边形ABCDEF中,点M在AB边上,∠FMH=120°,MH与六边形外角的平分线BQ交于点H.(1)当点M不与点A、B重合时,求证:∠AFM=∠BMH.(2)当点M在正六边形ABCDEF一边AB上运动(点M不与点B重合)时,猜想FM与MH的数量关系,并对猜想的结果加以证明.考点:正多边形和圆;全等三角形的判定与性质.专题:探究型.分析:(1)先有正多边形的内角和定理得出六边形ABCDEF内角的度数,再根据∠FMH=120°,A、M、B在一条直线上,再根据三角形内角和定理即可得出结论(2)①当点M与点A重合时,∠FMB=120°,MB与BQ的交点H与点B重合,故可直接得出结论;②当点M与点A不重合时,连接FB并延长到G,使BG=BH,连接MG,由全等三角形的判定定理可得出△MBH≌△MBG,再根据全等三角形的性质即可得出结论.解答:(1)证明:∵六边形ABCDEF为正六边形,∴每个内角均为120°.∵∠FMH=120°,A、M、B在一条直线上,∴∠AFM+∠FMA=∠FMA+∠BMH=60°,∴∠AFM=∠BMH.(2)解:猜想:FM=MH.证明:①当点M与点A重合时,∠FMB=120°,MB与BQ的交点H与点B重合,有FM=MH.②当点M与点A不重合时,证法一:如图1,连接FB并延长到G,使BG=BH,连接MG.∵∠BAF=120°,AF=AB,∴∠ABF=30°,∴∠ABG=180°﹣30°=150°.∵MH与六边形外角的平分线BQ交于点H,∴∠CBQ=×60°=30°,∴∠MBH=∠ABC+∠CBQ=120°+30°=150°,∴∠MBH=∠MBG=150°∵,∴△MBH≌△MBG,∴∠MHB=∠MGB,MH=MG,∵∠AFM=∠BMH,∠HMB+∠MHB=30°,∴∠AFM+∠MGB=30°,∵∠AFM+∠MFB=30°,∴∠MFB=∠MGB.∴FM=MG=MH.证法二:如图2,在AF上截取FP=MB,连接PM.∵AF=AB,FP=MB,∴PA=AM∵∠A=120°,∴∠APM=×(180°﹣120°)=30°,有∠FPM=150°,∵BQ平分∠CBN,∴∠MBQ=120°+30°=150°,∴∠FPM=∠MBH,由(1)知∠PFM=∠HMB,∴△FPM≌△MBH.∴FM=MH.点评:本题考查的是正多边形和圆,涉及到正多边形的内角和定理、全等三角形的判定与性质、三角形内角和定理,涉及面较广,难度较大.17.如图,分别求出半径为R的圆内接正三角形圆内接正方形的周长和面积.考点:正多边形和圆.分析:如图1,连接OB、OC,过O作OD⊥AB于D,求出中心角AOB,解直角三角形求出AD和OD,根据垂径定理求出AB,即可得出答案;连接OA、OB、OC,求出中心角COD,根据勾股定理求出CD,即可得出答案.解答:解:如图1,连接OB、OC,过O作OD⊥AB于D,∵⊙O是正三角形ABC的外接圆,∴∠AOB==120°,∵OA=OB,∴∠AOD=∠BOD=60°,在Rt△ADO中,AO=R,AD=R×sin60°=R,OD=Rcos60°=R,∵OD⊥AB,∴AB=2AD=R,∴正△ABC的周长是3AB=3R;面积是3×AB×OD=3××R×R=R2;如图2,连接OA、OB、OD,∵⊙O是正方形ABCD的外接圆,∴∠COD==90°,∵OD=OC=R,由勾股定理得;CD==R,∴正方形ABCD的周长为4×R=4R,面积为R×R=2R2.点评:本题考查了正多边形和圆,解直角三角形,正多边形的性质的应用,解此题的关键是求出正多边形的边长,主要考查学生的计算能力,难度适中.18.正六边形的边长为8,则阴影部分的面积是多少?考点:正多边形和圆.分析:如图,作辅助线;首先证明△OAB、△OAC均为等边三角形,得到∠BAO=∠CAO=60°,借助扇形的面积公式和三角形的面积公式即可解决问题.解答:解:如图,连接OA、OB、OC;由题意知:∠BOA=∠COA==60°,∵OA=OB=OC,∴△OAB、△OAC均为等边三角形,∴∠BAO=∠CAO=60°,=;=32,∴阴影部分的面积=3×=64π﹣96.点评:该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了一定的要求.19.如图,把一根圆柱形的木头锯成正方体形的柱子,使截面正方形的四个顶点均在圆上.(1)正方形的对角线与圆的直径有什么关系?(2)设圆O的半径为2,求圆中阴影部分的面积之和.考点:正多边形和圆.分析:(1)直接根据圆周角定理即可得出结论;(2)先根据勾股定理求出AD的长,再根据S阴影=S⊙O﹣S正方形ABCD即可得出结论.解答:解:(1)连接AC,∵∠D=90°,点D在⊙O上,∴正方形的对角线是圆的直径;(2)∵四边形ABCD是正方形,∴AD=CD.∵圆O的半径为2,∴2AD2=AC2,即2AD2=42,解得AD=2,∴S阴影=S⊙O﹣S正方形ABCD=π×22﹣(2)2=4π﹣8.点评:本题考查的是正多边形和圆,熟知正方形的性质是解答此题的关键.20.如图,某圆形场地内有一个内接于⊙O的正方形中心场地,若⊙O的半径为10米,求图中所画的一块草地的面积.(计算结果保留π)考点:正多边形和圆.专题:计算题.分析:连接AC,可得AC为直径,根据勾股定理可求出A B的长,而阴影部分的面积为圆面积减去正方形面积的四分之一.解答:解:连AC,则AC为直径,即AC=20,∵正方形ABCD中,AB=BC,∠B=90°,∴在Rt△ABC中,AB2+BC2=AC2,2AB2=202,∴AB2=200,==(25π﹣50)米2.点评:本题考查了正多边形和圆,注:90°的圆周角所对的弦是直径.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
正多边形与圆(基础篇)(专项练习)
专题2.11 正多边形与圆(基础篇)(专项练习)一、单选题1.一个正多边形的半径与边长相等,则这个正多边形的边数为()A.4B.5C.6D.82.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为()A.4B.5C.6D.73.如图,五边形ABCDE是O的内接正五边形,则正五边形的中心角COD的度数是()A.72°B.60°C.48°D.36°4.如图,边AB是⊙O内接正六边形的一边,点C在AB上,且BC是⊙O内接正八边形的一边,若AC是⊙O内接正n边形的一边,则n的值是()A.6B.12C.24D.485.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,则∠CAD 与∠B的关系是()A.∠CAD=2∠B B.∠CAD+∠B =120°C.∠CAD+∠B =180°D.无法确定6.如图,正五边形ABCDE内接于⊙O,连接AC,则∠ACD的度数是()A .72°B .70°C .60°D .45°7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为( )A .2mmB .C .D .4mm8.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“A ∠还应有另一个不同的值.”,下列判断正确的是( )A .淇淇说的对,且A ∠的另一个值是115°B .淇淇说的不对,A ∠就得65°C .嘉嘉求的结果不对,A ∠应得50°D .两人都不对,A ∠应有3个不同值9.设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确...的是( )A .h R r =+B .2R r =C .r =D .R =10.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD =130°,则∠A 的度数为( )A .50°B .65°C .115°D .130°二、填空题11.如图,若以AB 为边长作⊙O 的内接正多边形,则这个多边形是正______边形.12.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =32°,则∠B+∠E =_____°.13.如图,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为_________.14.如图,正六边形ABCDEF内接于⊙O,连接OC、OD,若OC长为2cm,则正六形ABCDEF的周长为______cm.15.如图,正五边形ABCDE内接于⊙O,点P是劣弧BC上一点(点P不与点C重合),则∠CPD=________.16.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠=︒,则这个正多边形的边数为_______.ADB1817.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为cm.18.六个带30角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.三、解答题19.如图,ABCDE是O的内接正五边形.求证:AE BD.20.已知正六边形ABCDEF内接于O,图中阴影部分的面积为O的半径为多少?21.如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE,DE,DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.22.完成下表中有关正多边形的计算:23.如图,O 为正五边形ABCDE 的外接圆,已知13CF BC =,请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1) 在图1中的边DE 上求作点G ,使DG CF =; (2) 在图2中的边DE 上求作点H ,使EH CF =.24.如图,已知O . 求作:O 的内接等边ABC . 小丽同学的作法及证明过程如下: 作法:①作直径AD ;②作半径OD 的垂直平分线,垂足为E ,交O 于B C 、两点; ③连接AB ,AC .所以ABC 即为O 的内接等边三角形. ∵在O 中,BC 垂直平分OD ∴CD CO =,BE CE = ∵OD BC ∴AB AC =(①) ∵CD OC OD == ∴ODC △为等边三角形 ∴60ODC ∠=︒∴60B ODC ∠=∠=︒(②) ∴ABC 为O 的内接等边三角形.(1)在小丽同学的证明过程中,①、②两处的推理依据分别是 ; .(2)请你再给出一种作图方法.(尺规作图,保留作图痕迹)参考答案1.C 【分析】如图(见分析),先根据等边三角形的判定与性质可得60AOB ∠=︒,再根据正多边形的中心角与边数的关系即可得.解:如图,由题意得:OA OB AB ==,AOB ∴是等边三角形,60AOB ∴∠=︒,则这个正多边形的边数为360606︒÷︒=, 故选:C .【点拨】本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.2.C【分析】根据题意,内接正n边形的边长与⊙O的半径相等,则正n边形的中心角为60︒,由36060︒÷︒可得结果.解:内接正n边形的边长与⊙O的半径相等,∴正n边形的中心角为60︒,360606︒÷︒=,∴n的值为6,故选:C.【点拨】本题考查了正n边形中心角的定义,熟记并理解正n边形中心角的定义是解决本题的关键.3.A【分析】360 n ︒计算即可.解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360725︒=︒,故选:A.【点拨】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360n︒是解题的关键.4.C【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,可得∠AOC=15°,然后根据边数n=360°÷中心角即可求得答案.解:连接OC,∵AB 是⊙O 内接正六边形的一边, ∴∠AOB =360°÷6=60°,∵BC 是⊙O 内接正八边形的一边, ∴∠BOC =360°÷8=45°,∴∠AOC =∠AOB -∠BOC =60°-45°=15° ∴n =360°÷15°=24. 故选:C .【点拨】本题考查了正多边形和圆、正六边形的性质、正八边形、正二十四边形的性质;根据题意求出中心角的度数是解题的关键. 5.C 【分析】还原点A 折叠前的位置,然后利用圆的内接四边形对角互补的性质得到结论. 解:如图,点A '为点A 折叠前的位置, ∵折叠,∴CAD CA D '∠=∠,∵四边形A CBD '是O 的内接四边形, ∴180CA D B '∠+∠=︒, ∴180CAD B ∠+∠=︒. 故选:C .【点拨】本题考查圆的内接四边形的性质,解题的关键是掌握圆的内接四边形对角互补的性质. 6.A【分析】由正五边形的性质可知△ABC是等腰三角形,求出∠B,ACB∠的度数即可解决问题.解:在正五边形ABCDE中,∠B=∠BCD=15×(5-2)×180=108°,AB=BC,∴∠BCA=∠BAC=12(180°-108°)=36°,∴∠ACD=∠BCD-∠ACB=108°-36°=72°.故选:A.【点拨】本题主要考查了正多边形与圆,多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.7.D【分析】如图,连接CF与AD交于点O,易证△COD为等边三角形,从而CD=OC=OD=12AD,即可得到答案.解:连接CF与AD交于点O,∵ABCDEF为正六边形,∴∠COD= 3606︒=60°,CO=DO,AO=DO=12AD=4mm,∴△COD为等边三角形,∴CD=CO=DO=4mm,即正六边形ABCDEF的边长为4mm故选:D.【点拨】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.8.A【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°.故选:A .【点拨】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.9.C【分析】将图形标记各点,即可从图中看出长度关系证明A 正确,再由构造的直角三角形和30°特殊角证明B 正确,利用勾股定理求出r 和R,即可判断C 、D .解: 如图所示,标上各点,AO 为R ,OB 为r ,AB 为h ,从图象可以得出AB=AO+OB ,即h R r =+,A 正确;∵三角形为等边三角形,∴∠CAO=30°,根据垂径定理可知∠ACO=90°,∴AO=2OC ,即R=2r ,B 正确;在Rt △ACO 中,利用勾股定理可得:AO 2=AC 2+OC 2,即22212R a r ⎛⎫=+ ⎪⎝⎭,由B 中关系可得:()222122r a r ⎛⎫=+ ⎪⎝⎭,解得=r ,则R =, 所以C 错误,D 正确;【点拨】本题考查圆与正三角形的性质结合,关键在于巧妙利用半径和构建直角三角形. 10.C【分析】先根据圆周角定理求出BCD ∠的度数,再根据圆的内接四边形对角互补的性质求出结果. 解:∵130BOD ∠=︒, ∴1652BCD BOD ∠=∠=︒, ∵四边形ABCD 是⊙O 的内接四边形,∴180A BCD ∠+∠=︒,∴115A ∠=︒.故选:C .【点拨】本题考查圆的内接四边形的性质,解题的关键是掌握圆的内接四边形对角互补的性质.11.六【分析】根据题意可得OA AB OB ==,进而证明OAB 是等边三角形,得到60AOB ∠=︒,即可证明出这个多边形是正六边形.解:如图,连接OB ,∵OA AB OB ==,∴OAB 是等边三角形,∴60AOB ∠=︒,∴360606︒÷︒=,∴这个多边形是正六边形.故答案为:六.【点拨】此题考查了等边三角形的性质和判定,圆内接正多边形的性质,解题的关键是根据题意求出60AOB ∠=︒.12.212连接CE,先根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD=32°,然后求解即可.解:如图,连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=32°,∴∠B+∠E=∠B+∠AEC +∠CED =180°+32°=212°.故答案为:212.【点拨】本题考查圆内接四边形的性质以及圆周角定理.作出辅助线,构造出圆内接四边形是解题的关键.13.12【分析】连接OA、OB、OC,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算36030︒︒即可得到n的值.解:连接OA、OD、OF,如图,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD=3604︒=90°,∠AOF=3603︒=120°,∴∠DOF=∠AOF-∠AOD=30°,∴n=36030︒︒=12,即DF恰好是同圆内接一个正十二边形的一边.故选:C.【点拨】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.14.12【分析】连接OC,OD,证出△COD是等边三角形即可求得答案.解:∵多边形ABCDEF为正六边形,∴∠COD=360°×16=60°,∵OC=OD,∴△OCD是等边三角形,∵OC长为2cm,∴CD=2cm,∴正六形ABCDEF的周长为2×6=12(cm),故答案为:12.【点拨】本题考查的是正六边形和圆,等边三角形的判定与性质,熟练掌握正六边形的性质是本题的关键.15.36°##36度【分析】连接OC、OD,求出∠COD的度数,再根据圆周角定理解答即可.解:连接OC、OD,正五边形ABCDE内接于⊙O,360725COD,1362CPD COD,故答案为:36°.【点拨】本题考查了正多边形和圆,圆周角定理,准确作出辅助线并熟练掌握知识点是解题的关键.16.10【分析】连接AO,BO ,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解. 解:如图,连接AO,BO ,∴∠AOB=2∠ADB=36° ∴这个正多边形的边数为36036=10 故答案为:10.【点拨】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.17.【分析】圆心为A ,设半径为R ,大正方形边长是2x ,根据图形可得AE =BC =x ,CE =2x ,EF =DF =4,利用勾股定理列出方程求解,然后代入勾股定理计算即可得出结果. 解:如图所示,圆心为A ,设半径为R ,大正方形边长是2x∵正方形的两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE =BC =x ,CE =2x ,∵小正方形的面积为16cm 2,∴小正方形的边长为EF =DF =4,由勾股定理得:22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得:x =4,R ∴=故答案为:【点拨】题目主要考查圆的基本性质及勾股定理解三角形,正方形的性质,熟练掌握运用这些知识点是解题关键.18 【分析】由六个带30角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE 、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EF A =120︒,AB =BC = CD =DE = EF =F A =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠F AE =∠FEA =30︒,∴BG =DI = FH =12,∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =∴由勾股定理得:AI=32,∴S =111332222⨯+=【点拨】本题主要考查了含30 度角的直角三角形的性质、正多边形形与圆以及等边三角形的性质,关键在于知识点:在直角三角形中,30度角所对的直角边等于斜边的一半的应用.19.证明见分析【分析】根据正五边形的性质求出108A ABC C ∠==∠=∠,根据三角形的内角和定理,可得∠CBD 的度数,进而可得出∠ABD 的度数,然后根据同旁内角互补,两直线平行可证得结论.证明:∵ABCDE 是正五边形,∴()521801085A ABC C -⋅∠===∠=∠.又∵BC CD =, ∴180108362CBD CDB -∠=∠==, ∴1083672ABD ∠=-=,∴10872180A ABD ∠+∠=+=,∴AE BD .【点拨】本题考查的是正多边形和圆,熟知正五边形的性质是解答此题的关键. 20.半径4OD =【分析】先根据三角形的面积求出它的边长,再根据正多边形与圆的关系即可求出.解:连接DO 并延长,交BF 于点G .∵正六边形ABCDEF 内接于⊙O ,∴阴影部分为正三角形,设边长是a ,则FG=12a ,,则面积是12解得则∴半径OD=23DG=6×23=4.【点拨】本题考查正多边形和圆,熟知正六边形的性质,得出阴影部分三角形的边长是解题的关键.21.(1)详见分析;(2)110°.【分析】(1)连接AD,利用直径所对的圆周角为直角,可得AD⊥BC,再根据CD=BD,故AD 垂直平分BC,根据垂直平分线上的点到线段两个端点的距离相等,可得:AB=AC,再根据等边对等角和同弧所对的圆周角相等即可得到∠E=∠C;(2)根据内接四边形的性质:四边形的外角等于它的内对角,可得∠CFD=∠E=55°,再利用外角的性质即可求出∠BDF.(1)证明:连接AD,如图所示:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【点拨】此题考查的是(1)直径所对的圆周角是直角、垂直平分线的性质和同弧所对的圆周角相等;(2)内接四边形的性质.22.填表见分析.【分析】首先根据题意画出图形,然后利用勾股定理等知识进行逐一求解即可. 解:如图(1)所示:中心角3601203BOC ==∠,内角∠A =60°∵1=302OBD ABC =∠∠,90ODB ∠=,BC =∴2BO OD =,222OB OD BD =+,12BD BC ==∴2243OD OD =+,∴1OD =,∴2OB =,∴周长为:3⨯132OD BC ⨯⋅=如图(2)所示:中心角360904BOC ==∠, 内角∠A =90° 由题意可得△BOC 和△OBE 都是等腰直角三角形,∵边心距为1∴22BC OE ==,OB =∴边长为2,半径为 ,∴周长为8,面积为4;如图(3)所示:内角为120°,中心角360606AOB ==∠, ∴△OAB 是等边三角形,∴∠AOM =30°,AM =BM ,∴AO =2AM∴OM∵222AO AM OM =+,∴2243AM AM =+,∴1AM =,∴==2AO AB ,∴半径为2,边长为2,∴周长为12,面积162AB OM ⨯⋅=,故答案为:609090120【点拨】本题主要考查了正多边形和圆,解题的关键在于能够熟练掌握相关知识进行求解.23.【分析】(1)连接AO并延长与CD相交,连接EF交AO延长线于M,连接BM与DE的交点即为所求作;(2)在(1)的基础上,连接BO并延长与DE相交,连接AG交BO延长线于N,连接CN并延长即可.(1)连接AO并延长与CD相交,连接EF交AO延长线于M,连接BM交DE于点G,则点G为所求作,如图1所示;理由:∵⊙O为正五边形的外接圆,∴直线AO是正五边形ABCDE的一条对称轴,点B与点E、点C与点D分别是一对对称点.∵点M在直线AO上,∴射线BM与射线EF关于直线AO对称,从而点F与点G关于直线AO对称,∴CF与DG关于直线AO对称.∴DG=CF.(2)在(1)的基础上,连接BO并延长与DE相交,连接AG交BO延长线于N,连接CN,如图2所示;【点拨】本题考查了作图:无刻度直尺作图,考查了正五边形的对称性质,掌握正五边形的性质是解题的关键.24.(1)垂直平分线的性质;同弧所对圆周角相等;(2)见分析【分析】(1)根据前面的证明条件以及结论可以求得所用的推理依据;(2)以圆周上一点为圆心,以圆的半径长为半径画圆弧,交圆于一点,再以此点为圆心,继续画圆弧,以此类推,将圆周六等分,连接不相邻的两个交点即可.解:(1)OD BC ,BE CE =,∴OD 为BC 的垂直平分线,因此AB AC =,理论依据为:垂直平分线的性质;ABC ∠和ODC ∠都是弦AC 所对的圆周角,因此ABC ODC ∠=∠,理论依据为:同弧所对的圆周角相等;(2)以圆周上一点D 为圆心,以圆的半径长为半径画圆弧,交圆于一点C ,再以点C 为圆心,保持半径不变,继续画圆弧,交圆于点E ,以此类推,依次得到点B F A 、、,则ABC ∆即为所求,如下图:【点拨】此题考查了圆的有关性质,涉及了同弧所对的圆周角相等,熟练掌握并应用圆的有关性质是解题的关键.。
九年级数学下册 27.4 正多边形和圆课时练习(含解析)(新版)华东师大版
第27章 第4节 正多边形和圆课时练习一、单选题(共15小题)1.已知圆的半径是,则该圆的内接正六边形的面积是( )A .B .C .D .答案:C解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是,高为3,因而等边三角形的面积是∴正六边形的面积, 故选C .分析:掌握正六边形的特点,它被半径分成六个全等的等边三角形.2.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 的长分别为( )A . 2,3πB . ,πC .23πD . ,43π 答案:D解析:解答:如图所示:连接OB,∵OB=4,∴BM=2,∴,BC= 604180π⨯=43π,故选D.分析:正六边形的边长与外接圆的半径相等,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解.3.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. R2﹣r2=a2B.a=2Rsin36°C.a=2r tan36°D.r=Rc os36°答案:A解析:解答:如图所示:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=15×360°=72°,∴∠1=12∠BOC=12×72°=36°,R2﹣r2=(12a)2=14a2,12a=Rsin36°,a=2Rsin36°;12a=r tan36°,a=2r tan36°,cos36°=rR,r=Rcos36°,所以,关系式错误的是R2﹣r2=a2.故选A.分析:由圆内接正五边形的性质求∠BOC,再由垂径定理求出∠1后利用勾股定理和解直角三角形对各选项分析判断即可.4.一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A. 5:4 B.5:2 C. 2 D.答案:A解析:解答:如左图所示:连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:52π;如右图所示: 连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形, ∴∠BMC=90°,MB=MC , ∴∠MCB=∠MBC=45°, ∵BC=2,∴,∴⊙M 的面积是π)2=2π, ∴扇形和圆形纸板的面积比是52π÷(2π)=54. 故选:A .分析:求出扇形和圆的半径,根据扇形和圆的面积公式求出面积,最后求出比值. 5.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上,点B 在反比例函数ky x=位于第一象限的图象上,则k 的值为( )A .B .C .D .答案:B解析:解答:如图所示:连接OB ,过B 作BG ⊥OA 于G , ∵ABCDEF 是正六边形, ∴∠AOB=60°, ∵OB=OA ,∴△AOB 是等边三角形, ∴OB=OA=AB=6, ∵BG ⊥OA , ∴∠BGO=90°, ∴∠OBG=30°,∴OG=12OB=3,由勾股定理得:,即B 的坐标是(3,, ∵B 点在反比例函数ky x上,∴k , 故选B .分析:连接OB ,过B 作BG ⊥OA 于G ,得出等边三角形OBA ,求出OB ,求出OG 、BG ,得出B 的坐标,即可.6.正八边形的中心角是( ) A . 45° B . 135°C . 360°D . 1080°答案:A解析:解答:正八边形的中心角等于360°÷8=45°; 故选A分析:中心角是正多边形相邻的两个半径的夹角.7.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于( )A .B . 20C . 18D .答案:B解析:解答:如图所示:作出正方形ABCD .△AEF 中,AE=x ,则AF=x ,x x .则正方形的边长是()x .x ()x =20,解得:x 2﹣1). 则阴影部分的面积是:2[x ()x ﹣2×12x 2]=2+1)x 2=2+1﹣1)=20. 故选B .分析:设直角△AEF 中,AE=x ,则AF=x ,x x .根据空白部分的面积是20即可列方程求得x 的值,利用矩形和三角形的面积求解.8.如图,已知边长为2cm 的正六边形ABCDEF ,点A 1,B 1,C 1,D 1,E 1,F 1分别为所在各边的中点,则图中阴影部分的总面积是( )A .B .C .D . 答案:A解析:解答:如图所示:边长是2cm 的正六边形ABCDEF 的面积是:6×12×sin60°×22cm 2. 作出连接中心O ,连接OD 1,OC . 在直角△OCD 1中,∠O=30°,CD 1=12CD=1(cm ).则OD 1CD 1,OG=12OD 1,C 1D 1则A 1B 1C 1D 1E 1F 1的面积是:6×12)2cm 2.则图中阴影部分的总面积是12().故选A .分析:六边形ABCDEF 和A 1B 1C 1D 1E 1F 1都是正多边形,两个多边形的面积的差的一半就是阴影部分的面积.9.如图,在正八边形ABCDEFGH 中,连接AC ,AE ,则AEAC的值是( )A . 1B .C . 2D .答案:B解析:解答:如图所示:连接AG 、GE 、EC ,则四边形ACEG 为正方形,故AEAC. 故选B .分析:连接AG 、GE 、EC ,四边形ACEG 为正方形,根据正方形的性质求解. 10.边长为1的正六边形的内切圆的半径为( )A . 2B . 1C . 12D . 答案:D解析:解答:如图所示:连接OA 、OB ,OG ;∵六边形ABCDEF 是边长为1的正六边形, ∴△OAB 是等边三角形, ∴OA=AB=1,,∴边长为a.故选D.分析:利用正六边形中的等边三角形的性质求解.11.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是()A.30°B.60°C.90°D.120°答案:B解析:解答:∵正多边形的一个外角为60°,∴正多边形的边数为36060=6,其中心角为3606=60°.故选B.分析:由正多边形的外角和是360°求出正多边形的边数,再求出中心角.12.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为()A.30°B.45°C.50°D.60°答案:B解析:解答:∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°﹣90°﹣120°=150°,∵AB=AE,∴∠BEA=12×(180°﹣150°)=15°,∵∠DAE=120°,AD=AE,∴∠AED=1801202︒-︒=30°, ∴∠BED=15°+30°=45°. 故选B .分析:由正六边形的内角为120°,正方形的内角为90°可得∠BEA=30°,∠AED=30°后求解.13.如图,边长为a 的正六边形,里面有一菱形,边长也为a ,空白部分面积为S 1,阴影部分面积为S 2,则12S S =( )A . 12 B . 13C .D .答案:A解析:解答:如图所示:连接BC ,找到正六边形的中心D ,作△DEF ,∵正六边形边长为a ,菱形边长为a 且有一角为60°, ∴S △DEF =S △ABC , ∴S 1=2S △ABC ,S 2=6S △ABC ﹣2S △ABC =4S △ABC ; ∴12S S =24ABC ABCS S=12. 故选A .分析:连接BC,找到正六边形的中心D,作△DEF,求出S1=2S△ABC,S2=6S△ABC﹣2S△ABC=4S△ABC;再求比值.14.正多边形的中心角是36°,那么这个正多边形的边数为()A. 10 B.8 C.6 D.5答案:A解析:解答:设这个正多边形的边数是n,∵正多边形的中心角是36°,∴360n=36°,解得n=10.故选A.分析:设正多边形的边数是n,根据正多边形的中心角是36°求出这个正多边形的边数.152,则此正多边形的边数是()A.八B.六C.四D.三答案:B解析:解答:根据勾股定理得:22)2=1,∴正多边形的边长为2,∴正多边形的中心角为60°,∴此正多边形是正六边形,故选B.分析:由正多边形的内切圆的半径,外接圆的半径,正多边形的边长的一半构成直角三角形,可得出正多边形的中心角,从而得出正多边形的边数.二、填空题(共5小题)16.已知正六边形ABCDEF,则正六边形的半径为cm.答案:2解析:解答:如图所示:连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OA D=60°,∴OD=OA•sin∠,解得:AO=2.故答案为:2.分析:画出图形,连接OA、OB,过O作OD⊥AB,根据正六边形的性质及锐角三角函数的定义求解.17.如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.答案:8解析:解答:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF 共有8个.故答案是:8.分析:在正六边形的六个顶点是圆的六等分点,可求得图中每个角的度数,即可判断等边三角形的个数.18,则这个正六边形的边长为.答案:2解析:解答:如图所示:,∴,∠OAB=60°,∴AB= tan 60OB =1, ∴AC=2AB=2.故答案为:2分析:用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理求解.19.如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(﹣1,0),则点C 的坐标为 .答案:(12) 解析:解答:如图所示:连接OE ,由正六边形是轴对称图形知:在R t △OEG 中,∠GOE=30°,OE=1.∴GE=12,.∴A (﹣1,0),B (﹣12),C (12)D (1,0),E (12),F (﹣12,).故答案为:(12) 分析:连接OE ,由正六边形是轴对称图形,设EF 交Y 轴于G ,则∠GOE=30°;在R t △GOE中,则GE=12,.可求得E 的坐标,和E 关于Y 轴对称的F 点的坐标,其他坐标类似.20.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .答案:54°解析:解答:如图所示:连接OB ,则OB=OA ,∴∠BAO=∠ABO ,∵点O 是正五边形ABCDE 的中心,∴∠AOB=3605=72°, ∴∠BAO=12(180°﹣72°)=54°; 故答案为:54°.分析:连接OB ,则OB=OA ,得出∠BAO=∠ABO ,再求出正五边形ABCDE 的中心角∠AOB 的度数,由等腰三角形的性质和内角和定理即可得出结果.三、解答题(共5小题)21.如图:⊙O的内接正方形ABCD,E为边CD上一点,且DE=CE,延长BE交⊙O于F,连结FC,若正方形边长为1,求弦FC的长.答案:解答:如图所示:连接BD.∵CE= 12×1=12,∴,在R t△ABD中,,∵∠DBE=∠FCE,∠CFE=∠BDE,∴△DEB∽△FEC,∴FC CEBD BE=,,∴.解析:分析:连接BD,构造△DBE,然后证出△DBE∽△FCE,列出FC CEBD BE=,计算FC.22.已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.答案:解答:如图所示:作AF⊥BC,垂足为F,并延长AF交DE于H点.∵△ABC为等边三角形,∴AF垂直平分BC,∵四边形BDEC为正方形,∴AH垂直平分正方形的边DE.又∵DE是圆的弦,∴AH必过圆心,记圆心为O点,并设⊙O的半径为r.在R t△ABF中,∵∠BAF=30°,.∴OH=AF+FH﹣+2﹣r.在R t△ODH中,OH2+DH2=OD2.∴(﹣r)2+12=r2.解得r=2.∴该圆的半径长为2.解析:分析:作AF⊥BC,垂足为F,并延长交DE于H点.根据轴对称,则圆心必定在AH 上.设其圆心是O,连接OD,OE.根据等边三角形的性质和正方形的性质,可求AH,DH,设圆的半径是r.Rt BOH中,根据勾股定理列方程求解.23.如图,四边形ABCD内接于大圆O,且各边与小圆相切于点E,F,G,H.求证:四边形ABCD是正方形.答案:解答:证明:连结OE、OF、OG、OH.∵四边形ABCD与小圆分别切于点E、F、G、H,∴OE=OF=OG=OH,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD.∴AB=BC=CD=DA.∴A、B、C、D是大圆O的四等分点.∴四边形ABCD是正方形.解析:分析:连结OE、OF、OG、OH,利用切线的性质以及弦心距相等则弦相等可证明A、B、C、D是大圆O的四等分点,进而可证明四边形ABCD是正方形.24.已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F.证明:五边形AEBCF是⊙O的内接正五边形.答案:解答:证明:如图所示:连接BF,CE,∵AB=AC,∴∠ABC=∠ACB,又∵∠BAC=36°,∴∠ABC=∠ACB=72°.又∵AB、AC的中垂线分别交⊙O于点E、F,∴AF=CF,AE=BE,∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,====,∴AE AF BE BC FC∴AE=AF=BE=BC=FC,∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.∴五边形AEBCD为正五边形.解析:分析:要求证五边形是正五边形,就是证明这个五边形的五条边所对的弧相等.25.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.(1)求这个镶嵌图案中一个正三角形的面积;答案:解答:如图所示:过A作AD⊥BC于D,∵△ABC是等边三角形,BC=2,∴BD=CD=12BC=1,在△BDA 中由勾股定理得:,∴△ABC 的面积是12BC•AD=12,(2)如果在这个镶嵌图案中随机确定一个点O ,那么点O 落在镶嵌图案中的正方形区域的概率为多少?(结果保留二位小数)答案:解答:由图形可知:由10个正三角形,11个正方形,2个正六边形,正方形的面积是2×2=4,连接OA 、OB ,∵图形是正六边形,∴△OAB 是等边三角形,且边长是2,,∴正六边形的面积是=6∴点O 落在镶嵌图案中的正方形区域的概率是:≈0.54, 答:点O 落在镶嵌图案中的正方形区域的概率约为0.54.解析:分析:(1)过A 作AD ⊥BC 于D ,根据等边△ABC ,得到BD ,由勾股定理求出AD ,根据△ABC 的面积即可求出答案;(2)由图形得到由10个正三角形,11个正方形,2个正六边形,分别求出三个图形的面积,即可求出点O 落在镶嵌图案中的正方形区域的概率.。
人教版九年级数学上册圆一章正多边形和圆练习题及答案
初中数学试卷金戈铁骑整理制作九年级数学圆一章正多边形和圆练习题及答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 3.正五边形共有__________条对称轴,正六边形共有__________条对称轴. 4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________. 二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 2.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.343.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.332.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a , 所以AD ∶OA ∶OD=3∶2∶1. 答案:A3.正五边形共有__________条对称轴,正六边形共有__________条对称轴.思路解析:正n 边形的对称轴与它的边数相同. 答案:5 64.中心角是45°的正多边形的边数是__________.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n︒360,所以n=8.答案:85.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.思路解析:由切线长定理及三角形周长可得. 答案:6二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 思路解析:因为正n 边形的外角为n ︒360,一个内角为nn ︒•-180)2(,所以由题意得n ︒360=32·nn ︒•-180)2(,解这个方程得n=5. 答案:52.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.34思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A. 答案:A3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 思路解析:周长相等的正多边形的面积是边数越多面积越大. 答案:B4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法: ①作直径AC; ②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点, 四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点. 六边形AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结OE 、DE. ∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°. ∴DE 为⊙O 的内接正十二边形的一边. 三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.33思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33. 答案:D2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 思路解析:将问题转化为直角三角形,由直角边的比知应选B. 答案:B3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长.答案:184.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.答案:144.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-2思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3. 6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.思路分析:由正多边形的内角与外角公式可求. 解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-3思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思路解析:如图,设正三角形的边长为a ,则高 AD=
3
思路解析:因为正 n 边形的中心角为 360︒ 3 4
24.3 正多边形和圆
5 分钟训练(预习类训练,可用于课前)
1.圆的半径扩大一倍,则它的相应的圆内接正 n 边形的边长与半径之比( ) A.扩大了一倍 B.扩大了两倍 C.扩大了四倍 D.没有变化
思路解析:由题意知 圆的半径扩大一倍,则相应的圆内接正 n 边形的边长也扩大一倍,所 以相应的圆内接正 n 边形的边长与半径之比没有变化. 答案:D
2.正三角形的高、外接圆半径、边心距之比为( ) A.3∶2∶1 B.4∶3∶2 C.4∶2∶1 D.6∶4∶3
3 a ,外接圆半径 OA=
a ,边心距
2
3
OD=
3 6
a ,
所以 AD ∶OA ∶OD=3∶2∶1. 答案:A
3.正 五边形共有__________条对称轴,正六边形共有__________条对称轴. 思路解析:正 n 边形的对称轴与它的边数相同. 答案:5 6
4.中心角是 45°的正多边形的边数是__________.
360︒
,所以 45°= ,所以 n=8.
n n
答案:8
5.(2010 上海静安检测△)已知 ABC 的周长为 20,△ABC 的内切圆与边 AB 相切于点 D,AD=4, 那么 BC=__________.
思路解析:由切线长定理及三角形周长可得. 答案:6 10 分钟训练(强化类训练,可用于课中)
1.若正 n 边形的一个外角是一个内角的 2 3
时,此时该正 n 边形有_________条对称轴.
360︒ (n - 2) • 180︒
思路解析:因为正 n 边形的外角为
,一个内角为
,
n
n
360︒ 2 (n - 2) • 180︒
所以由题意得 = · ,解这个方程得 n=5.
n 3 n
答案:5
2.同圆的内接正三角 形与内接正方形的边长的比是(
)
A. 6 6
B. C. D.
2 3
4 3
思路解析:画图分析,分别求出正三角形、正方形的边长,知应选 A.
答案:A
3.周长相等的正三角形、正四边形、正六边形的面积 S 3、S 4、S 6 之间的大小关系是(
)
. ∵∠AOD = 360︒
A.S 3>S 4>S 6
B.S 6>S 4>S 3
C.S 6>S 3>S 4
D.S 4>S 6>S 3
思路解析:周长相等的正多边形的面积是边数越多面积越大. 答案:B
4.已知⊙O 和⊙O 上的一点 A(如图 24-3-1).
(1)作⊙O 的内接正方形 ABCD 和内接正六边形 AEFCGH ;
(2)在(1)题的作图中,如果点 E 在弧 AD 上,求证:DE 是⊙O 内接正十二边形的一边.
图 24-3-1
思路分析:求作⊙O 的内接正六 边形和正方形,依据定理应将⊙O 的圆周六等分、四等分, 而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分 要证明 DE 是 ⊙O 内接正十二边形的一边,由定理知,只需证明 DE 所对圆心角等于 360°÷12=30°.
(1)作法:
①作直径 AC;
②作直径 BD ⊥AC;
③依次连结 A 、B 、C 、D 四点,
四边形 ABCD 即为⊙O 的内接正方形;
④分别以 A 、C 为圆心,OA 长为半径作弧,交⊙O 于 E 、H 、F 、G; ⑤顺次连结 A 、E 、F 、C 、G 、H 各点.
六边形 AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结 OE 、DE.
360︒
=90°,∠AOE = =60°,
4 6
∴∠DOE =∠AOD -∠AOE =30°.
∴DE 为⊙O 的内接正十二边形的一边. 快乐时光
有一位爱鸟人士,他特别喜欢鹦鹉 ,有一天,他经过一间鸟店发现里面正在拍卖一只鹦鹉 , 他见那只鹦鹉毛色很好决定要买,于是他喊道:“我愿意出 10 美金买下这只鹦鹉!”
接着有人喊价:“我愿意出 20 美金!”那位爱鸟人士不愿把那只鹦鹉拱手让人, 于是他又 喊了 30 美金.可是另一个声音像在跟他作对,一直到那位爱鸟人士叫了 200 美金时才停.
那人买到鹦鹉很高兴 ,可是他突然想到 :我花了那么多钱才买到这鹦鹉 ,如果它不会说话 那我不就亏大了吗?于是他就去问老板:“老板,你这只鹦鹉会不会说话啊?”
接着他听到鹦鹉大叫:“不会说话?!你以为刚刚是谁在跟你喊价啊?!” 30 分钟训练(巩固类训练,可用于课后)
1. 正六边形的两条平行边之间的距离为 1,则它的边长为( )
A.
3
4
解:设此正多边形的边数为 n ,则各内角为 (n - 2) • 180︒
3
3 2 3 3 B.
C.
D.
6
3 3
思路解析:正六边形的两条平行边之间的距离为 1,所以边心距为 0.5,则边长为
答案:D
2.已知正多边形的边心距与边长的比为
1
,则此正多边形为( )
2
3
3
.
A.正三角形
B.正方形
C.正六边形
D.正十二边形
思路解析:将问题转化为直角三角形,由直角边的比知应选 B. 答案:B
3.已知正六边形的半径为 3 cm ,则这个正六边形的周长为__________ cm.
思路解析:转化为直角三角形求出正六边形的边长,然后用 P 6=6a n 求出周长.
答案:18
4.(2010 上海浦东新区模拟)正多边形的一个中 心角为 36 度,那么这个正多边形的一个内角等 于____ _______度. 答案:144.
5.如图 24-3-2,两相交圆的公共弦 AB 为 2 3 ,在⊙O 1 中为内接正三角形的一边,在⊙O 2
中为内接正六边形的一边,求这两圆的面积之比.
图 24-3-2
思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径 R 3 与 R 6 的平方比即可.
解:设正三角形外接圆⊙ O 1 的半径为 R 3,正六边形外接 圆⊙O 2 的半径为 R 6,由题意得
R 3= 3
AB ,R 6=AB ,∴R 3∶R 6= 3 ∶3.∴⊙O 1 的面积∶⊙O 2 的面积=1∶3.
6.某正多边形的每个内角比其外角大 100°,求这个正多边形的边数. 思路分析:由正多边形的内角与外角公式可求. 360︒
,外角为 ,依题意得
n n
(n - 2) • 180︒ 360︒
-
=100°.解得 n =9.
n
n
7.如图 24-3-3,在桌面上有半径为 2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三
个圆完全覆盖,求这个大圆片的半径最小应为多少?
则正 △O 1O 2O 3 外接圆的半径为 4 3
O O O O
图 24-3-3
思路分析:设三个圆的圆心为 O 1、O 2、O 3,连结 O 1O 2、O 2O 3、O 3O 1,可得边长为 4 cm 的 正 △O 1O 2O 3,设大圆的圆心为 O ,则点 O 是正 △O 1O 2O 3 的中心,求出这个正 △O 1O 2O 3 外 接圆的半径,再加上⊙O 1 的半径即为所求. 解:设三个圆的圆心为 O 1、 2、 3,连结 O 1O 2、 2O 3、 3O 1,可得边长为 4 cm 的正 △O 1O 2O 3,
4 3 4 3 6 cm ,所以大圆的半径为 +2= (cm).
3 3 3
8.如图 24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之 间参与交流、评价).
图 24-3-4
答案:略.
9.用等分圆周的方法画出下列图案:
图 24-3-5
作法:(1)分别以圆的 4 等分点为圆心,以圆的半径为半径,画 4 个圆; (2)分别以圆的 6 等分点为圆心,以圆的半径画弧.
10.(辽宁大连模拟)如图 24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M 、N 分别是⊙O 的内接正三角形 ABC 、正方形 ABCD 、正五边形 ABCDE 、…、正 n 边形 ABCDE …的边 AB 、BC 上的点,且 BM=CN ,连结 OM 、ON.
图 24-3-6
(1)求图 24-3-6(1)中∠MON 的度数;
(2)图 24-3-6(2)中∠MON 的度数是_________,图 24-3-6(3)中∠MON 的度数是_________; (3)试探究∠MON 的度数与正 n 边形边数 n 的关系(直接写出答案). 答案:(1)方法一:连结 OB 、OC. ∵正△ABC 内接于⊙O , ∴∠OBM=∠OCN =30°, ∠ BOC=120°.
又∵BM=CN ,OB=OC , ∴△OBM ≌△OCN. ∴∠BOM =∠CON.
∴∠MON=∠BOC=120°. 方法二:连结 OA 、OB. ∵正△ABC 内接于⊙O ,
∴AB=AC ,∠OAM=∠OBN=30°, ∠AOB=120°. 又∵BM =CN , ∴AM=BN. 又∵OA=OB,
∴△AOM ≌△BON. ∴∠AOM=∠BON.
∴∠MON=∠AOB=120°. (2)90° 72°
(3)∠MON=
360
n
.。