《初等数论(闵嗣鹤)》课后习题解答2012修改版

合集下载

闵嗣鹤、严士健,初等数论第四章习题解答

闵嗣鹤、严士健,初等数论第四章习题解答

第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。

(ii )由(1215,2755)5=,5560,∴有5个不同的解。

解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。

《初等数论(闵嗣鹤)》课后习题解答2012修改版

《初等数论(闵嗣鹤)》课后习题解答2012修改版

q q , t a bs a b ,则有 2 2
b q q q 0 a bs t a b a b b t 2 2 2 2
若 b 0 则令 s , t a bs a
q 2
b q b ,则同样有 t 2 2
(ii ) 当 q 为奇数时,若 b 0 则令 s
ax0 by0 | (a, b). 又有 (a, b) | a , (a, b) | b
(a, b) | ax0 by0 故 ax0 by0 (a, b)
4.若 a,b 是任意二整数,且 b 0 ,证明:存在两个整数 s,t 使得
a bs t ,
| t |
|b| 2
则 r ( x x0 q)a ( y y0 q)b S ,由 ax0 by0 是 S 中的最小整数知 r 0
ax0 by0 | ax by ax0 by0 | ax by
( x, y 为任意整数) ax0 by0 | a, ax0 by0 | b
as bt 1
充分性。若存在整数 s,t 使 as+bt=1,则 a,b 不全为 0。 又因为 (a, b) | a,(a, b) | b ,所以 (a, b | as bt ) 又 (a, b) 0 , (a, b) 1 2.证明定理 3 定理 3 即 (a, b) |1 。
5 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
p p an ( )n an1 ( )n1 q q
an p n an1 p n1q
a1
p a0 0 q
(2)
a1 pq n1 a0 q n 0 a1 pq n1 a0 q n ,

初等数论(闵嗣鹤版)

初等数论(闵嗣鹤版)

近代初等数论的发展得益於费马、欧拉、拉格朗日、
勒让德和高斯等人的工作。1801年,德国数学家高斯集
中前人的大成,写了一本书叫做《算术探究》,开始了
现代数论的新纪元。高斯还提出:“数学是科学之王,
数论是数学之王”。
精选版ppt
3
由于自20世纪以来引进了抽象数学和高等分析的 巧妙工具,数论得到进一步的发展,从而开阔了新 的研究领域,出现了代数数论、解析数论、几何数 论等新分支。而且近年来初等数论在计算机科学、 组合数学、密码学、代数编码、计算方法等领域内 更得到了 广泛的应用,无疑同时也促进着数论的发 展。
下一个具有同样性质的数是28, 28=1+2+4+7+14. 接着是496和8128.他们称这类数为完美数.
欧几里德在大约公元前350-300年间证明了:
若 2n 1 是素数,则 2n1(2n1) 是完全数
注意以上谈到的完全数都是偶完全数,至今仍
然不知道有没有奇完全数。
精选版ppt
10
四、初等数论在中小学教育中的作用
精选版ppt
2
二 数论的发展
自古以来,数学家对于整数性质的研究一直十分重 视,初等数论的大部份内容早在古希腊欧几里德的《几 何原本》(公元前3世纪)中就已出现。欧几里得证明了 素数有无穷多个,他还给出求两个自然数的最大公约数 的方法,即所谓欧几里得算法。我国古代在数论方面亦 有杰出之贡献,现在一般数论书中的“中国剩余定理”, 正是我国古代《孙子算经》中的下卷第26题,我国称之 为孙子定理。
精选版ppt
4
• 我国近代:在解析数论、丢番图方程,一致分布 等方面有过重要贡献,出现了华罗庚、闵嗣鹤等 一流的数论专家,其中华罗庚在三角和估值、堆 砌素数论方面的研究享有盛名。

第三版课后习题解答3163243...

第三版课后习题解答3163243...

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。

∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(1)n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=->而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t ==当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄,d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。

R《初等数论 闵嗣鹤 严士健 》第三版习题解答

R《初等数论 闵嗣鹤 严士健 》第三版习题解答

3.证明推论 3.3 并推广到 n 个正整数的情形.
推论 3.3 设 a,b 是任意两个正整数,且
a
p1 1
p2 2
pn n
,i
0,i
1, 2,, k

b
p 1 1
p2 2
p n n
, i
0,i
1, 2,, k

则 (a,b)
p1 1
p 2 2
p k k
,[a,b]
p1 1
p2 2
pk k

q
假设 2 为有理数, x 2, x2 2 0 ,次方程为整系数方程,则由上述结论,可知其
有有理根只能是
1, 2 ,这与 2 为其有理根矛盾。故 2 为无理数。
p 另证,设 2 为有理数 2 = , ( p, q) 1, q 1 ,则
q
2 p2 ,2q2 p2 ,( p2, q2 ) (2q2 , p2 ) q2 1 q2 但由 ( p, q) 1, q 1 知 ( p2 , q2 ) 1,矛盾,故 2 不是有理数。
则 r (x x0q)a ( y y0q)b S ,由 ax0 by0 是 S 中的最小整数知 r 0
ax0 by0 | ax by ax0 by0 | ax by ( x, y 为任意整数) ax0 by0 | a, ax0 by0 | b
ax0 by0 | (a, b). 又有 (a,b) | a , (a,b) | b
3 b 1 b 2 ( ), t1 , t1
2
2
222
§2 最大公因数与辗转相除法
1.证明推论 4.1
推论 4.1 a,b 的公因数与(a,b)的因数相同.
证:设 d 是 a,b 的任一公因数, d |a, d |b

《初等数论(闵嗣鹤、严士健)》习题解答2012完整版

《初等数论(闵嗣鹤、严士健)》习题解答2012完整版

r1 b
(a,b) rn
d | a bq1 r1 , d | b r1q2 r2 ,┄, d | rn2 rn1qn rn (a, b) ,
即 d 是 (a, b) 的因数。
反过来 (a, b) | a 且 (a, b) | b ,若 d | (a,b), 则 d | a, d | b ,所以 (a, b) 的因数都是 a, b 的公因数,从而
n(n 1)(n 2) (n 1)n(n 1) 又 n(n 1)(n 2) , (n 1)n(n 2) 是连续的三个整数 故 3 | n(n 1)(n 2), 3 | (n 1)n(n 1) 3 | n(n 1)(n 2) (n 1)n(n 1) 从而可知 3 | n(n 1)(2n 1) 3.若 ax0 by0 是形如 ax by (x,y 是任意整数,a,b 是两不全为零的整数)的数中最小整数,则 (ax0 by0 ) | (ax by) . 证: a, b 不全为 0
2
2
2
(ii) 当 q 为奇数时,若 b 0 则令 s q 1,t a bs a q 1b ,则有
2
Hale Waihona Puke 2b t a bs a q 1b a q 1 b 0 t b
2
2
2
2
若 b 0 ,则令 s q 1,t a bs a q 1b ,则同样有 t b 综上所述,存在性得证.
(a, b) (b, t) (t, t1) (t1, t2 ) (tn, tn1) (tn, 0) tn ,存在其求法为:
(a,b) (b, a bs) (a bs,b (a bs)s1)
(76501, 9719) (9719, 76501 9719 7) (8468,9719 8468) (1251,8468 1251 6) (3,1) 1

闵嗣鹤、严士健,初等数论第四章习题解答

闵嗣鹤、严士健,初等数论第四章习题解答

第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。

(ii )由(1215,2755)5=,5560,∴有5个不同的解。

解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。

闵嗣鹤、严士健,初等数论第三章习题解答

闵嗣鹤、严士健,初等数论第三章习题解答

第三章 同余§1习题(P53)1. 证明定理2及性质庚、壬 01定理2 若11(mod )k k A B m αααα≡(mod )i i x y m ≡ ,1,2,,i k =则1111k k kk A x x αααααα≡∑ 1111(mod )k k kk B y y m αααααα∑证:由(mod )i i x y m ≡ ⇒戊(mod )ii ii x y m αα≡11kkx x αα⇒≡戊11(mod )k k y y m αα111kk k A x x αααα⇒≡ 戊111(mod )k kk B y y m αααα1111kk kkA x x αααααα⇒∑≡ 丁1111(mod )k k kk B y y m αααααα∑02庚证:(i )(mod )a b m ≡∵ 由P48定理1m a b km ka kb ⇒−⇒−,0(mod )km ak bk mk >⇒≡ (ii )设1a a d =,1b b d =,1m m d =0m >∵,100d m >⇒>(mod )a b m ≡∵ 111()m a b dm d a b ⇒−⇒−111111(mod )(mod a b mm a b a b m d d d⇒−⇒≡⇒≡2. 设正整数101010nn a a a a =+++ 010i a <-,试证11/a 的充要条件是011(1)ni i i a =−∑。

证:由101(mod 11)10(1)(mod 11)i i ≡−⇒≡−10(1)(mod 11)10(1)(mod 11)nni iii i i i i i i a a a a ==⇒≡−⇒≡−∑∑01110(1)nnii i i i i a a ==⇒−−∑∑于是11a 011(1)ni i i a =⇔−∑3. 找出整数能被37,101整除的判别条件来。

01 由10001(mod 37)≡ 及1010001000n n a a a a =+++ ,01000i a <-,由上面证明之方法得3737ni i a a =⇔∑02 由1001(mod 101)≡− 及10100100n n a a a a =+++ 0100i a <- 由上面证明之方法可得:101101(1)ni i i a a =⇔−∑4. 证明3264121+证:由7640251(mod 641)=×≡− 及4456252(mod 641)−=−≡3272577252122252(25)∴+≡×−×=−742173212(525)2(5)(521)≡−×−≡×−×+32173(521)(25)1≡×+≡×= 3(1)10(mod 641)≡−+≡3264121∴+5. 若a 是任一单数,则221(mod 2)nn a +≡(1)n . 证明:当n =1时,322/1a − 2(21)14(1)k k k +−=+∵ 假定2221nn a +−,则有1222222211()1(1)(1)n nn n na a a a a +⋅−=−=−=−+由2221nn a +−,221na +(∵a 是单数,∴21na +是双数)∴1321n n a a ++−,即1221(mod 2)n n a ++≡6. 应用检查因数的方法求出下列各数的标准分解式(i )1535625 (ii )1158066 解:(i )由215356252561425252457=×=×由3245718+++=,324573819391=×=× 由91713=×43153562553713∴=⋅⋅⋅(ii )由311586627+++++=,11580663386022=×33862221++++=,3860223128674=×由7128674546−+=,128674718382=×718382364−+=,1838272626=×262621313213101=×=×× 22115806637131012∴=⋅⋅⋅⋅§2习题(P57)1. 证明s t x u p v −=+,u =0,1,…,1s t p −−,v =0,1,…,1t p −,t s -,是模s p 的一个 完全剩余系。

初等数论(闵嗣鹤)课后复习题解答2012修改版

初等数论(闵嗣鹤)课后复习题解答2012修改版

数,从而 a,b 的公因数与 (a,b) 的因数相同。
2.证明:见本书 P2,P3 第 3 题证明。
3.应用§1 习题 4 证明任意两整数的最大公因数存在,并说明其求法,试用你的所说的求
法及辗转相除法实际算出(76501,9719).
解:有§1 习题 4 知:
a,b Z,b 0,s,t Z, 使 a bs t,| t | b 。, 2
an

假设 2 为有理数, x 2, x2 2 0 ,次方程为整系数方程,则由上述结论,可知其
有有理根只能是
1, 2 ,这与 2 为其有理根矛盾。故 2 为无理数。
另证,设 2 为有理数 2 = p , ( p, q) 1, q 1,则 q
2
p2 q2
, 2q 2
p2,( p2, q2 )
《初等数论》习题解答(修改版)(茂名学院 WeiXLI)
其中 i min(i , i ) ,i min(i , i ) , i 1, 2, , k
证: i min(i , i ) , 0 i i , 0 i i

p i i
|
p i i
,
pi i
|
pi i
又因为 (a,b) | a,(a,b) | b ,所以 (a,b | as bt) 即 (a,b) |1。
又 (a,b) 0 ,(a,b) 1
2.证明定理 3
定理 3 a1, a2 , an | a1 |,| a2 | ,| an |
证:设[a1, a2, , an ] m1 ,则 ai | m1(i 1, 2, , n) ∴| ai || m1(i 1, 2, , n) 又设[| a1 |,| a2 |, ,| an |] m2 则 m2 | m1 。反之若| ai || m2 ,则 ai | m2 ,m1 | m2 从而 m1 m2 ,即[a1, a2, , an ] =[| a1 |,| a2 |, ,| an |]2

闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)

闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)

闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)1.证明,0,1,,1,0,1,,1,s t s t t x u p v u p v p t s --=+=-=-≤是模s p 的一个完全剩余系。

证 易知,当0,1,,1,0,1,,1s t t u p v p -=-=- 时,s t x u p v -=+通过s p 个整数,下证这s p 个整数对模s p 两两部同余。

设()mod ,s t s t s u p v u p v p --''''''+≡+ (1)其中01,01,01,01,s t s t t t u p u p v p v p --''''''≤≤-≤≤-≤≤-≤≤-则()()mod ,mod .s t s t s t s t u p v u p v p u u p ----'''''''''+≡+≡又因01,01s t s t u p u p --'''≤≤-≤≤-,故.u u '''=从而由(1)式得()()mod ,mod .s t s t s t p v p v p v v p --''''''≡≡又由01,01ttv p v p '''≤≤-≤≤-得.v v '''=故这sp 个整数对模sp 两两不同余,从而它们作成模sp 的完全剩余系。

2. 若12,,,k m m m 是k 个两两互质的正整数,12,,,k x x x 分别通过模12,,,km m m 的完全剩余系,则1122k k M x M x M x +++通过模12k m m m m = 的完全剩余系,其中,1,2,,.i i m m M i k == 。

闵嗣鹤、严士健,初等数论第四章习题解答

闵嗣鹤、严士健,初等数论第四章习题解答

第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。

(ii )由(1215,2755)5=,5560,∴有5个不同的解。

解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1, 2 ,这与 2 为其有理根矛盾。故 2 为无理数。
另证,设 2 为有理数 2 =
p , ( p, q) 1, q 1 ,则 q
p2 2 2 , 2q 2 p 2 , ( pቤተ መጻሕፍቲ ባይዱ2 , q 2 ) (2q 2 , p 2 ) q 2 1 q
但由 ( p, q) 1, q 1 知 ( p 2 , q 2 ) 1,矛盾,故 2 不是有理数。 § 4 质数· 算术基本定理 1.试造不超过 100 的质数表 解:用 Eratosthenes 筛选法 (1)算出 100 10 a (2)10 内的质数为:2,3,5,7
1 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
证:
a, b 不全为 0
在整数集合 S ax by | x, y Z 中存在正整数,因而有形如 ax by 的最小整数
ax0 by0
x, y Z ,由带余除法有 ax by (ax0 by0 )q r ,0 r ax0 by0
q q , t a bs a b ,则有 2 2
b q q q 0 a bs t a b a b b t 2 2 2 2
若 b 0 则令 s , t a bs a
q 2
b q b ,则同样有 t 2 2
(ii ) 当 q 为奇数时,若 b 0 则令 s
6 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
(3)划掉 2,3,5,7 的倍数,剩下的是 100 内的素数 将不超过 100 的正整数排列如下: 1 11 21 31 41 51 61 71 81 91 2 3 4 12 13 14 22 23 24 32 33 34 42 43 44 52 53 54 62 63 64 72 73 74 82 83 84 92 93 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 10 19 20 29 30 39 40 49 50 59 60 69 70 79 80 89 90 99 100
成立,并且当 b 是奇数时,s,t 是唯一存在的.当 b 是偶数时结果如何? 证:作序列
,
3b b b 3b , b , , 0, , b , , 2 2 2 2
q q 1 b a b 成立 2 2
则 a 必在此序列的某两项之间
即存在一个整数 q ,使
(i ) 当 q 为偶数时,若 b 0. 则令 s
a bq1 r1 , b r1q2 r2 , rn qn 1 , 0 rn 1 rn rn 1
(a, b) rn d | a bq1 r1 , d | b r1q2 r2 ,┄, d | rn2 rn1qn rn (a, b) ,
因为 p 整除上式的右端,所以 P | a0 q n , ( p, q) 1, q 1 ,所以 (q n , p) 1, 故(1)的有理根为
∴p | an
p ,且 p | a0 , q | an 。 q
假设 2 为有理数, x 2, x 2 2 0 ,次方程为整系数方程,则由上述结论,可知其 有有理根只能是
ax0 by0 | (a, b). 又有 (a, b) | a , (a, b) | b
(a, b) | ax0 by0 故 ax0 by0 (a, b)
4.若 a,b 是任意二整数,且 b 0 ,证明:存在两个整数 s,t 使得
a bs t ,
| t |
|b| 2
q 1 q 1 , t a bs a b ,则有 2 2
2 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)

b b q 1 q 1 t a bs a ba b 0 t 2 2 2 2
若 b 0 ,则令 s
b q 1 q 1 综上所述,存在性 , t a bs a b ,则同样有 t 2 , 2 2
由 (2) an p n an1 p n1q
所以 q 整除上式的右端,所以 q | an p n ,又 ( p, q) 1, q 1 , 所以 (q, p n ) 1, q | an ; 又由(2)有 an p n an1 p n1q
a1 pq n1 a0q n
且 | tn |
|t | b , 2 22
, 如此类推知:
| tn 1 | | tn2 | 2 2 2

|t | |b| 2n 2n1
而 b 是一个有限数,n N , 使 tn 1 0
(a, b) (b, t ) (t , t1 ) (t1 , t2 )
a, b Z , b 0, s, t Z , 使 a bs t ,| t |
b 。 , 2
s1 , t1 ,使 b s1t t1 ,| t1 |
sn , tn , tn2 tn1sn tn ; sn1 , tn1 , tn1 tn sn1 tn1;
即 d 是 (a, b) 的因数。
3 / 63
, rn 2
rn 1qn rn , rn 1 r1 b
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
反过来 (a, b) | a 且 (a, b) | b ,若 d |(a, b), 则 d | a, d | b ,所以 (a, b) 的因数都是 a, b 的公因 数,从而 a, b 的公因数与 (a, b) 的因数相同。 2.证明:见本书 P2,P3 第 3 题证明。 3.应用§ 1 习题 4 证明任意两整数的最大公因数存在,并说明其求法,试用你的所说的求 法及辗转相除法实际算出(76501,9719) . 解:有§ 1 习题 4 知:
5 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
p p an ( )n an1 ( )n1 q q
an p n an1 p n1q
a1
p a0 0 q
(2)
a1 pq n1 a0 q n 0 a1 pq n1 a0 q n ,
, an ] = [| a1 |,| a2 |,
a1 x a0
,| an |]2
(1)
是一个整数系数多项式且 a0 ,an 都不是零,则(1)的根只能是以 a0 的因数作分子以 an 为 分母的既约分数,并由此推出 2 不是有理数. 证:设(1)的任一有理根为
p , ( p, q) 1, q 1 。则 q
得证. 下证唯一性 当 b 为奇数时,设 a bs t bs1 t1 则 t t1 b(s1 s) b 而t
b b , t1 t t1 t t1 b 矛盾 故 s s1 , t t1 2 2
b 为整数 2
当 b 为偶数时, s, t 不唯一,举例如下:此时
a1, a2
, an | a1 |,| a2 |
,| an |
, n)
证:设 [a1 , a2 ,
, an ] m1 ,则 ai | m1 (i 1, 2,
, n) 又设 [| a1 |,| a2 |,
∴ | ai || m1 (i 1, 2,
,| an |] m2
则 m2 | m1 。反之若 | ai || m2 ,则 ai | m2 , m1 | m2 从而 m1 m2 ,即 [a1 , a2 , 3.设 an x n an1 x n1
(tn , tn1 ) (tn ,0) tn ,存在其求法为:
(a, b) (b, a bs) (a bs, b (a bs)s1 )
(76501,9719) (9719, 76501 9719 7) (8468,9719 8468) (1251,8468 1251 6) (3,1) 1
n l o g 2b
log b log b ,即 n log 2 log 2
§ 3 整除的进一步性质及最小公倍数 1.证明两整数 a,b 互质的充分与必要条件是:存在两个整数 s,t 满足条件 ax bt 1 . 证明 必要性。若 (a, b) 1 ,则由推论 1.1 知存在两个整数 s,t 满足: as bt (a, b) ,
则 r ( x x0 q)a ( y y0 q)b S ,由 ax0 by0 是 S 中的最小整数知 r 0
ax0 by0 | ax by ax0 by0 | ax by
( x, y 为任意整数) ax0 by0 | a, ax0 by0 | b
4.证明本节(1)式中的 n
log b log 2
4 / 63
《初等数论》习题解答(修改版) (茂名学院
WeiXLI)
证:由 P3§ 1 习题 4 知在(1)式中有
0 rn1 rn
1
rn1 rn2 2 2 2

r1 b n ,而 rn1 n 1 2 2
b n , 2 b, 2n
a1 , a2
, an 都是 m 的倍数。
pn 使 a1 p1m, a2 p2 m,
存在 n 个整数 p1 , p2 ,
又 q1 , q2 ,
, an pn m
, qn 是任意 n 个整数 qn an qn pn m qn pn )m qn an 是 m 的整数
相关文档
最新文档