基于multisim的晶闸管交流电路仿真实验分析报告

合集下载

基于SIMULINK的晶闸管调压电路仿真及分析

基于SIMULINK的晶闸管调压电路仿真及分析
Copyright©博看网 . All Rights Reserved.
应用研究
数字技术 与应用
3.1 调压结果 通过调整常数模块Constant2中控制角α的大小,可实现对负 载R0两端电压波形的调整。图3和图4是控制角α为30°和60°时的各 支路电压,第1行为电源电压,第2、3行分别为晶闸管模块Thyristor1 和Thyristor2的门极触发脉冲波形,第4行为晶闸管支路两端的电压 波形,第5行为负载R0的电压波形。 根据图3和图4可知,当电源电压不为0且晶闸管门极触发电压 大于门限电压时,晶闸管导通,此时负载两端有电流流过,晶闸管两 端的分压为0;反之,当电源电压非常接近0和门极触发电压为0时, 晶闸管处于断开状态其两端的分压非常大,因而导致负载两端没有 电流流过。通过改变控制角α的大小可有效调整负载端的电压波 形,以灯光调节为例,随着α的增加,负载端的电压将随之下降,灯 的亮度也会随之变暗,因而可通过控制α的大小来实现对灯光强弱 调节的目的。 3.2 谐波消除 对于调压电路而言,当α=0时,功率因数为1,随着α的增大,输 入电流滞后于电压且发生畸变,功率因数也逐渐降低,此时将会产 生更为严重的谐波影响,将会对电路造成谐波污染。特别地,电路中 的高次谐波会导致电缆过热、无功补偿装置损坏、电流过大、意外跳 闸、额外能量损失等问题,极大地威胁电路装备的运行安全,因此在 电路设计中必须考虑谐波的消除问题[5]。 下面分析由电感、电容和电阻组成的谐波消除回路在晶闸管调 压电路中的作用。为了使用更多的样本精确地统计与分析电路中的 谐波影响,图5和图6的仿真时间长度加长到2秒。根据国标《GBT-
(4)串联电阻、电容和电感分支参数:①电容参数:1.5e-7,②电 感参数:4200e-3,③负载电阻R0参数:3.5e3,④电阻R参数:50e3。

基于multisim的晶闸管交流电路仿真实验报告

基于multisim的晶闸管交流电路仿真实验报告

仲恺农业工程学院实验报告纸
自动化(院、系)自动化专业班组电力电子技术课
实验一、基于的晶闸管交流电路仿真实验
一、实验目的
()加深理解单相桥式半控整流电路的工作原理。

()了解晶闸管的导通条件和脉冲信号的参数设置。

二、实验内容
理论分析
在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。

在正半周,触发角α处给晶闸管加触发脉冲,经和向负载供电。

过零变负时,因电感作用使电流连续,继续导通。

但因点电位低于点电位,使得电流从转移至,关断,电流不再流经变压器二次绕组,而是由和续流。

此阶段,忽略器件的通态压降,则,不会像全控桥电路那样出现为负的情况。

在负半周触发角α时刻触发,导通,则向加反压使之关断,经和向负载供电。

过零变正时,导通,关断。

和续流,又为零。

此后重复以上过程。

仿真设计
仲恺农业工程学院实验报告纸
(院、系)专业班组课触发脉冲的参数设计如下图
仲恺农业工程学院实验报告纸
(院、系)专业班组课。

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。

⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。

由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。

因此仿真实验结果符合理论要求。

3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。

基于Multisim的电路原理课程仿真实验设计

基于Multisim的电路原理课程仿真实验设计

Vo 1 . 3 0 No . 5 Ma y .2 01 3
基 于 Mu l t i s i m 的 电路 原 理 课 程 仿 真 实验 设 计
颜 芳 ,宋 焱翼 ,谢礼 莹,李新 科
( 重 庆 大 学 通 信 工程 学 院 ,重 庆 4 0 0 0 3 0 )

要: 介 绍 Mu l t i S i m 仿 真 软 件 在 电路 原 理 实 验 教 学 中 的应 用 , 通 过 引 入 Mu l t i s i m仿真和虚拟仪器 , 将 电路
S i m ul a t i on e x pe r i me nt s a bou t v e r i f i c a t i on o f c i r c ui t s t he or e m ,t r a n s i e nt a n d s t e a dy r e s p on s e of dy na mi c c i r c u i t,
c o mp u t e r s i mu l a t i o n a n d e x p e r i me n t s b y i n t r o d u c i n g Mu l t i s i m s i mu l a t i o n s o f t wa r e a n d v i r t u a l i n s t r u me n t s .
Ya n Fa ng,So ng Ya ny i ,Xi e Li y i ng,Li Xi nk e
( Co l l e g e o f Co mmu n i c a t i o n En g i n e e r i n g,Ch o n g q i n g Un i v e r s i t y, Ch o n g q i n g 4 0 0 0 3 0, Ch i n a )

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

晶体管放大电器电路MULTISIM仿真实验

晶体管放大电器电路MULTISIM仿真实验

Duty Cycle:设置所要产生信号的占空比 。设定范围为1%-99%。
Amplitude: 设置所 要产生信 号的最大 值 (电压),其可选范围从1μ V级到999KV。本 例选择10mV
Offset:设置偏置电压值,即把正弦波、 三角波、方波叠加在设置的偏置电压上输出
,及可选范围从lμ V级到999KV。
5. 电路噪声分析(Noise Analysis) 噪声分析用于检测电子线路输出信号的噪声功率幅 度,用于计算、分析电阻或晶体管的噪声对电路的影 响。在分析时,假定电路中各噪声源是互不相关的, 因此它们的数值可以分开各自计算。总的噪声是各噪 声在该节点的和(用有效值表示)。噪声分析操作方 法请看第1章中的1.7.6小节。图2.1.11是图2.1.1节 点“2”噪声分析仿真结果。
项性能指标。一个优质放大器,必定是理论设计 与实验调整相结合的产物。因此,除了掌握放大 器的理论知识和设计方法外,还必须掌握必要的 测量和调试技术。
单管放大器静态工作点的分析
1. 函数信号发生器参数设置 双击函数信号发生器图标,出现如图 2.1.2面板图,改动面板上的相关设置,可 改变输出电压信号的波形类型、大小、占空 比或偏置电压等。
uo ui
图2.1.1电阻分压式工作点稳定放大电路
在图2.1.1电路中,当流过偏置电阻RB11和RB12 的
电流远大于晶体管的基极电流IB时(一般5~10倍), 则它的静态工作点可用下式估算
UB RB1 VCC RB1 RB2
IE
UB UBE IC RE
UCE=VCC-IC(RC+RE)
输入波形
输出波形
图2.1.5 示波器显示节点8的波形
3. 直流工作点分析 在输出波形不失真情况下,点击 Options→Preferences→Show node names使 图2.1.1显示节点编号,然后点击

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文模拟电子技术课程一、目的2.19利用multiim分析图P2.5所示电路中Rb、Rc和晶体管参数变化对Q点、Au、Ri、Ro和Uom的影响。

二、仿真电路晶体管采用虚拟晶体管,VCC12V。

1、当Rc5k,Rb510k和Rb1M时电路图如下(图1):图12、当Rb510k,Rc5k和Rc10k时电路图如下(图2)图23、当Rb1M时,Rc5k和Rc10k时的电路图如下(图3)图34、当Rb510k,Rc5k时,=80,和=100时的电路图如下(图4)图4三、仿真内容1.当Rc5k时,分别测量Rb510k和Rb1M时的UCEQ和Au。

由于输出电压很小,为1mV,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降UCEQ。

从示波器可读出输出电压的峰值。

2.当Rb510k时,分别测量Rc5k和Rc10k时的UCEQ和Au。

3.当Rb1M时,分别测量Rc5k和Rc10k时的UCEQ和Au。

4.当Rb510k,Rc5k时,分别测量β=80,和β=100时的UCEQ和Au。

四、仿真结果1、当Rc5k,Rb510k和Rb1M时的UCEQ和Au仿真结果如下表(表1仿真数据)表格1仿真数据2、当Rb510k时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表2仿真数据)表格2仿真数据3、当Rb1M时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表3仿真数据)表格3仿真数据4、当Rb510k,Rc5k时,分别测量=80,和=100时的UCEQ和Au的仿真结果如下表(表4仿真数据)。

表格4仿真数据五、结论及体会1.当Rc为定值时,Rb增大,ICQ减小,UCEQ增大,Au减小。

2.当Rb为定值时,若Rb的阻值过小,则电路容易产生饱和失真,此时当Rc增大,电路的放大倍数不会增大,电路没有放大作用。

3.当Rb、Rc为定值时,当增大时,Au的值也增大。

4.实验心得:本次仿真实验用到了以前没有用过的元件,元器件参数复杂,由于以前没有我终于将各参数的意思大致弄清楚了。

基于MULTISIM仿真电路的设计与分析

基于MULTISIM仿真电路的设计与分析

基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。

我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。

通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。

我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。

然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。

接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。

我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。

通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。

本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。

二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。

它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。

本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。

MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。

用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。

工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。

电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。

结果输出区则用于显示仿真结果和数据分析。

multisim 实验报告

multisim 实验报告

multisim 实验报告Multisim实验报告引言:Multisim是一款功能强大的电子电路仿真软件,广泛应用于电子工程领域。

本实验报告将介绍使用Multisim进行的一系列实验,包括电路设计、仿真和分析。

实验一:简单电路设计与仿真在本实验中,我们设计了一个简单的直流电路,包括电源、电阻和LED灯。

通过Multisim的电路设计功能,我们成功搭建了电路原型,并进行了仿真。

仿真结果显示,当电源施加电压时,电流通过电阻和LED灯,使其发光。

这个实验让我们熟悉了Multisim的基本操作,并理解了电路中电流和电压的关系。

实验二:交流电路分析在本实验中,我们研究了交流电路的特性。

通过Multisim的交流分析功能,我们可以观察到交流电路中电压和电流的变化规律。

我们设计了一个RC电路,并改变电源频率,观察电压相位差和电流大小的变化。

实验结果表明,随着频率的增加,电压相位差逐渐减小,电流也逐渐增大。

这个实验帮助我们理解了交流电路中频率对电压和电流的影响。

实验三:放大电路设计与分析在本实验中,我们设计了一个简单的放大电路,用于放大输入信号。

通过Multisim的放大器设计功能,我们选择了合适的电阻和电容值,并进行了仿真。

实验结果显示,输入信号经过放大电路后,输出信号的幅度得到了显著的增加。

这个实验使我们深入了解了放大电路的工作原理,并学会了如何设计和优化放大器。

实验四:数字电路设计与仿真在本实验中,我们探索了数字电路的设计和仿真。

通过Multisim的数字电路设计功能,我们设计了一个简单的计数器电路,并进行了仿真。

实验结果显示,计数器能够按照预定的规律进行计数,并输出相应的二进制码。

这个实验让我们了解了数字电路的基本原理和设计方法,并培养了我们的逻辑思维能力。

实验五:滤波电路设计与分析在本实验中,我们研究了滤波电路的设计和分析。

通过Multisim的滤波器设计功能,我们设计了一个低通滤波器,并进行了仿真。

multisim仿真实验报告

multisim仿真实验报告

实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

2.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R62.重启仿真。

3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。

在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。

2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。

2.元件的翻转4.去掉r7电阻后,波形幅值变大。

实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器交流毫伏表数字万用表 三、实验步骤1实验电路图如图所示;2.直流工作点的调整。

如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。

7.出现如图的图形。

10.单击工具栏,使出现如下数据。

11.更改电路图如下、17思考与练习。

1.创建整流电路,并仿真,观察波形。

XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。

实验三:负反馈放大电路一、实验目的:1、熟悉Multisim软件的使用方法2、掌握负反馈放大电路对放大器性能的影响3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。

multisim双向晶闸管控制

multisim双向晶闸管控制

multisim双向晶闸管控制双向晶闸管是一种特殊的电子元件,可以同时控制正向和反向的电流。

它可以应用于交流电源的变流器、调光器、电机控制器等各种电力电子设备中。

在实际应用中,我们常常需要使用Multisim软件来模拟和分析双向晶闸管的工作原理和控制方法。

首先,我们需要了解一些基本的双向晶闸管原理。

双向晶闸管实际上是由两个晶闸管组成的,一个用于正向电流(P-N-P结构),一个用于负向电流(N-P-N结构)。

它可以同时开通和关断两个方向的电流。

在Multisim软件中,我们可以使用双向晶闸管模型来模拟其工作。

打开Multisim软件,从元件库中选择并放置一个双向晶闸管模型。

然后可以连接适当的电路,以模拟其控制和工作。

为了控制双向晶闸管,我们可以使用触发电路。

触发电路通常由一个脉冲发生器、一个电压控制电路和一个触发电阻组成。

脉冲发生器可以产生一个特定频率和占空比的脉冲信号,用于控制双向晶闸管的开通和关断。

电压控制电路可以控制触发电阻的电压,以控制双向晶闸管的导通和关断。

在Multisim软件中,我们可以使用函数发生器模型来模拟脉冲发生器。

通过设置函数发生器的频率和占空比,我们可以产生需要的脉冲信号。

然后,将函数发生器的输出连接到电压控制电路,以供其控制触发电阻的电压。

最后,将触发电阻连接到双向晶闸管的控制端。

接下来,我们需要模拟双向晶闸管的工作过程。

在Multisim软件中,我们可以通过进行仿真来观察双向晶闸管的导通和关断状态。

为了进行仿真,我们需要设置仿真参数,如仿真时间、脉冲频率等。

然后,点击仿真按钮,开始仿真过程。

在仿真过程中,我们可以观察双向晶闸管的电流和电压波形。

通过观察波形,我们可以判断双向晶闸管的导通和关断状态。

如果双向晶闸管导通,它将允许通过正向电流或负向电流。

如果双向晶闸管关断,它将阻止正向电流或负向电流的通过。

通过使用Multisim软件,我们可以方便地模拟和分析双向晶闸管的控制方法。

基于Multisim 10的晶闸管调光电路的设计与仿真分析

基于Multisim 10的晶闸管调光电路的设计与仿真分析

重庆五一技师学院电气工程系教师实践活动任务书项目题目:基于Multisim10的晶闸管调光电路的设计与仿真分析项目要求:通过调节晶闸管对灯光闪烁时间进行调节项目分析:考虑到Multisim10的电路仿真效果极佳,并且能对课程教学的开展将有很大的作用,所以此次电气工程系教师实践活动,晶闸管调光电路的设计是采用Multisim10进行仿真。

项目结论:所设计电路能通过调节晶闸管控制端的电压,对灯光闪烁时间进行调节。

活动时间:2012-10-10~2010-11-15项目团队成:彭智帮(理论)、杨帆(实习)基于Multisim10的晶闸管调光电路的设计与仿真分析调光电路在日常生活中应用较为广泛。

在教学中,它不仅是学习晶闸管应用的入门电路,也是中级维修电工电子技能实训的经典项目。

调光电路内容涉及广,具体包括晶闸管、单相半波可控整流电路、单结晶体管触发电路等工作原理,以及控制角和同步触发的概念、控制角对被控电压的影响等。

对于学生来说,要理解和掌握这些知识点,借助传统的仪器仪表获取波形图来分析无疑具有很大的挑战性。

利用Mult isim10软件进行实验仿真,可以动态直观地观察不同参数对调光电路性能的影响,对于理解原理,熟悉调试过程具有很大的帮助。

1Multisim10简介Multisim10是美国国家仪器公司最新推出的版本。

Multisim10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”,是一个原理电路设计、电路功能测试的虚拟仿真软件。

Multisim10的元器件库提供了千种电路元器件供实验选用,也可以新建或扩充已有的元器件库,因此也很方便的在工程设计中使用。

Mu ltisim10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器等。

Multisim10不仅可以设计、测试和演示各种电子电路,而且还具有较为详细的电路分析功能。

晶闸管驱动电路实验报告

晶闸管驱动电路实验报告

晶闸管驱动电路实验报告1. 实验目的本实验旨在通过搭建晶闸管驱动电路,了解晶闸管的工作原理,并能够控制晶闸管的导通和关断。

2. 实验原理晶闸管是一种电流控制型的电子器件,常用于电源控制和电机驱动等领域。

其基本结构包括控制极、阳极和阴极三个引脚。

晶闸管的导通和关断取决于控制极电流的大小。

晶闸管驱动电路的主要作用是提供一个控制极电流源,通过控制该电流源的大小,来控制晶闸管的导通和关断。

3. 实验器材和元器件- 晶闸管- 电阻- 电源- 示波器- 开关4. 实验步骤1. 按照电路图连接晶闸管驱动电路。

电路图如下:VccR1Control > GateR2GND2. 将示波器的探头连接到晶闸管的阳极,以测量电流的变化。

3. 打开电源,调整电源电压并稳定。

4. 在控制极和地之间接入一个开关,用于控制控制极电流的开关状态。

5. 当开关关闭时,测量并记录晶闸管处于关断状态时的电压。

6. 打开开关,测量并记录晶闸管处于导通状态时的电压。

7. 根据测量结果分析晶闸管的导通和关断状态。

5. 实验结果与分析经过实验测量,记录如下:开关状态控制极电流晶闸管电压关闭0A 0V打开10mA 0.7V根据测量结果可以看出,当控制极电流为0A时,晶闸管处于关断状态,此时晶闸管不存在导通。

而当控制极电流为10mA时,晶闸管处于导通状态,电压为0.7V。

晶闸管的导通和关断状态取决于控制极电流的大小,当控制极电流超过一定阈值时,晶闸管会导通,将允许较大的电流通过。

在本实验中,通过控制极的电流为10mA,达到了使晶闸管导通的阈值。

6. 实验结论通过本实验,我们成功搭建了晶闸管驱动电路,并成功地控制了晶闸管的导通和关断。

实验结果证明了晶闸管的导通和关断取决于控制极电流的大小。

晶闸管驱动电路在电源控制和电机驱动等领域有广泛的应用,本实验对于理解晶闸管的原理和工作方式具有重要的意义。

7. 参考文献参考文献内容。

Multisim电路仿真实验报告

Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

2使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。

自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。

(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。

Multisim仿真实验报告

Multisim仿真实验报告

电气工程学院2011308880023电气11级2班刘思逸Multisim仿真实验报告实验一单极放大电路一.实验目的1.熟悉Multisim软件的使用方法。

2.掌握放大器静态工作点的仿真方法及其对放大电路性能的影响。

3.学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真算法,了解共射极电路特性。

二.虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三.实验步骤1.启动multisim如图所示2.点击菜单栏上的place/component,弹出如下图所示select a component对话框3.在group 下拉菜单中选择basic,如图所示4.选中RESISTOR,此时在右边列表中选中1.5KΩ5%的电阻,点击OK 按钮。

此时该电阻随鼠标一起移动,在工作区适当位置点击鼠标左键,如下图所示5.同理,把如下所示的所有电阻放入工作区6.同样如下图所示选取电容10uF两个,放在工作区适当位置7.同理如下图所示,选取滑动变阻器8.同理选取三极管9.选取信号源10.选取直流电源11.选取地12.最终元器件放置如下13.元件的移动与旋转,即:单击元件不放,便可以移动元件的位置;单击元件(就是选中元件),鼠标右键,如下图所示,便可以旋转元件。

14.同理,调整所有元件如下图所示15.把鼠标移动到元件的管脚,单击,便可以连接线路。

如下图所示16.同理,把所有元件连接成如下所示电路17.选择菜单栏options/sheet properties,如图所示18.在弹出的对话框中选取show all,如下图所示19.此时,电路中每条线路上便出现编号,以便后来仿真。

20.如果要在2N222A的e端加上一个100欧的电阻,可以选中“7”这条线路,然后按键盘del键,就可以删除。

如下图所示21.之后,点击菜单栏上place/component,添加电阻。

22.最后,电路如下:注意:该电路当中元件阻值与前面几个步骤中不一样,更改方法是:比如(要把R3从5.1千欧更改为20千欧),选中R3电阻,右键,如图所示:之后,重新选取20千欧电阻便会自动更换。

基于multisim的晶闸管交流电路仿真实验报告

基于multisim的晶闸管交流电路仿真实验报告

基于multisim的晶闸管交流电路仿真实验报告仲恺农业工程学院实验报告纸自动化(院、系)自动化专业112 班组电力电子技术课实验一、基于Multisim的晶闸管交流电路仿真实验一、实验目的(1)加深理解单相桥式半控整流电路的工作原理。

(2)了解晶闸管的导通条件和脉冲信号的参数设置。

二、实验内容2.1理论分析在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。

在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。

u2过零变负时,因电感作用使电流连续,VT1继续导通。

但因a点电位低于b 点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。

此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。

在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。

u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,ud又为零。

此后重复以上过程。

2.2仿真设计仲恺农业工程学院实验报告纸(院、系)专业班组课触发脉冲的参数设计如下图仲恺农业工程学院实验报告纸(院、系)专业班组课2.3仿真结果当开关S1打开时,仿真结果如下图仲恺农业工程学院实验报告纸(院、系)专业班组课三、实验小结与改进此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。

还有一个问题一直困扰着我,那就是为什么仿真老是报错。

后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。

总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。

同时,也让我认识到实践比理论更难掌握。

通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。

而对于当开关S1打开时的实验结果,这是因为出现了失控现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于multisim的晶闸管交流电路仿真实验报告
————————————————————————————————作者:————————————————————————————————日期:
自动化(院、系)自动化专业112 班组电力电子技术课
学号21 姓名易伟雄实验日期2013.11.24 教师评定
实验一、基于Multisim的晶闸管交流电路仿真实验
一、实验目的
(1)加深理解单相桥式半控整流电路的工作原理。

(2)了解晶闸管的导通条件和脉冲信号的参数设置。

二、实验内容
2.1理论分析
在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。

在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。

u2过零变负时,因电感作用使电流连续,VT1继续导通。

但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。

此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。

在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。

u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,ud又为零。

此后重复以上过程。

2.2仿真设计
(院、系)专业班组课学号姓名实验日期教师评定
触发脉冲的参数设计如下图
(院、系)专业班组课学号姓名实验日期教师评定
2.3仿真结果
当开关S1打开时,仿真结果如下图
(院、系)专业班组课学号姓名实验日期教师评定
三、实验小结与改进
此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。

还有一个问题一直困扰着我,那就是为什么仿真老是报错。

后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。

总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。

同时,也让我认识到实践比理论更难掌握。

通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。

而对于当开关S1打开时的实验结果,这是因为出现了失控现象。

我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形
另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。

实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。

有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。

同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

相关文档
最新文档