臭氧-生物活性炭工艺
四川什邡市某水厂臭氧-生物活性炭深度处理工艺分析
・
能源 与环境 工程 ・
四川 什 邡 市 某 水 厂 臭 氧 一生 物 活 性 炭 深 度 处 理 工 艺 分 析
罗本福 , 宁海 燕 , 杨 曦
( 1 .西华 大学 能源与环境学 院 , 四川 成都 6 1 0 0 3 9 ; 2 . 成都大学 图书馆 , 四川 成都 6 1 0 1 0 6 )
ห้องสมุดไป่ตู้
降低微生物穿透滤层 的风险有利。
关键词 : 臭氧; 生物 活性 炭 ; 给水深度处理 ; 工艺设计
中图分类号 : X 5 2 文献标志码 : A 文章编号 : 1 6 7 3~1 5 9 X( 2 0 1 3 ) 0 4— 0 1 0 9— 0 4
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3— 1 5 9 X . 2 0 1 3 . 0 4 . 0 2 5
S h i f a n g S h i c h u a n C h i n a . T h i s p a p e r d i s c u s s e d t h e e x p e i r e n c e a n d me a s u r e s f o r 0 3 /B A C t e c h n o l o g y p r o j e c t .I f t h e t h e c h o l g y f o r s e p a r a - i r n g o x y g e n f r o m a i r w a s p r o v i d e d i n p r o j e c t l o c a t i o n, w h e n t h e o z o n e c o n s u m p t i o n Q 0 3 ≤6 0 k g o 3 / h, p u r c h a s e o f l i q u i d o x y g e n a s t h e
臭氧-生物活性炭工艺在废水处理中的研究与应用
ENVI ) R(NMENTAI R{TE P ) CTI) OF (l & (N )l GAS FI ) EI S I
臭氧一 物 活性 炭 工艺 生 在废 水 处理 中 的研 究 与 应用 六
刘栓祥 任 立鹏 崔 丽红 田艳 荣 秦 丽娟 王之峰 马 文 臣 李 菲
活 性 炭 吸 附 法 是 目前 污 水 深 度 处 理 的 一 种 成 熟
而有 效 的方法 。活性 炭有粒 状和 粉状 两 种类 型 , 颗粒
炭 的 粒 径 介 于 0 2 5 0mi 之 间 , 状 炭 的 粒 径 为 . ~ . l l 粉 0 0 ~ 0 1 . 5 . 5mm 。活 性 炭 具 有 极 大 的 比 表 面 积 , 中 其
研 究进 展 。
关 键 词 臭 氧一 物 活 性 炭 J. 生 2艺 中水 回 用 深 度 处 理
中 图分 类 号 :X7 3 0 .1 文 献 标 识 码 :A 文 章 编 号 :1 0 — 1 8 2 1 ) 40 1 -4 0 53 ( 0 1 0 0 0 5 7
( . 国 5 油兰 州 石 化 公 司 :2 1中 - I .北 京世 纪 华 扬 能 源 科 技 有 限 公司 )
摘 要 概述 活性炭 吸 附工 艺、 臭氧氧 化 工艺 以及 臭氧 生物 活 性 炭工 艺的 降解 机理 、 发展 及 应 用 ; 析 臭 分 氧~ 生物 活性 炭 工 艺在 国内外应 用的典 型案例 , 以及介 绍 该工 艺在 污水处理 、 污水深度 处理 以及 中水 回用方 面的
2 臭 氧技 术 的发 展 及 应 用
臭 氧在 常温 常压下是 一种 不稳 定 的淡 蓝 色气体 ,
内表 面积 约 占总面 积 的 9 以上 。活性 炭 对 有机 物 5 的去 除主要 靠微 孔 吸 附作 用 , 以物 理 吸 附 为 主 ( 德 范 华力 ) 但也 有 化学 吸 附 的 作 用 。通过 活性 炭 的吸 附 , 作用 , 不仅可 以去 除 溶 解性 有机 物 , 能够 去除 色 度 还
臭氧-生物活性炭工艺间歇性运行的生物量保持方法
第33卷第6期 Vol. 33 No. 6水资源保护W A T E R R E S O U R C E S P R O T E C T I O N2017年11月Nov. 2017DOI;10. 3880/j.issn. 1004-6933. 2017. 06. 17臭氧生物活性炭工艺间歇性运行的生物量保持方法缪刚1,鲍娟2,陈云霄2,林涛\陈卫1(1.河海大学环境学院,江苏南京210098;2.南京水务集团有限公司,江苏南京210002)摘要:研究臭氧-生物活性炭工艺在间歇性运行时炭层中生物量的保持方法以及不同保存方式 对该工艺重新运行净化效能的影响。
结果表明,臭氧-生物活性炭工艺在停止运行后对生物活 性炭柱采用浸泡保存时,活性炭层中的水质发生了很大的变化,活性炭层中的生物量发生了下 降。
同时周期性的换水能够延缓活性炭柱在浸泡保存时生物量的下降速度。
在臭氧-生物活性炭 工艺重新运行期间,周期换水减少生物量的下降虽然对浊度和uv254的去除效果影响不大,但是能 够使得臭氧-生物活性炭工艺在短时间内对COD-和NH3-N的去除率接近活性炭工艺在保存之前 对其的去除率。
关键词:臭氧-生物活性炭工艺;间歇性运行;浸泡保存;周期换水;生物量;净化效能中图分类号:TU991 文献标志码:A文章编号=1004-6933 (2017)06-0109-05Biomass retention method for intermittent operation ofOzone Biological Activated Carbon processMIAO Gang1 ,BAO Juan 2, CHEN Yunxiao 2 ,LIN Tao 1, CHEN Wei 1(1. College of Environment, Hohai University, Nanjing 21009%, China;2.Nanjing Water Group Co. Ltd, Nanjing210002, China)Abstract ;This paper studied the biomass maintaining method of Ozone Biological Activated Carbon(03—BAC) process when intermittent operation was conducted as well as the influence of different storage way on the purifying effect of〇3—BAC process rerunning.The results shows that when storage with immersion was implemented after 〇3_BAC process stopped,water quality in the activated carbon layer has changed a lot,and biomass was decreasing.In the meantime,periodic water replacement could delay the decline of biomass when the activated carbon column was immersed in storage.When the 03—BAC process was rerun,the decline of biomassbrought about by the periodic water replacement had little influence on the removal efficiency of turbidity and UV254,but this operation could make the removal efficiency of C0DM n and ammonia nitrogen by the 03—BAC in a short time close to the same of the process before storage.Key words :Ozone Biological Activated Carbon process;intermittent operation;storage with immersion;periodic water replacement;biomass;purifying effect随着人们对饮用水水质要求的提高,常规处理 工艺的局限性逐渐显现[12],饮用水的深度处理工艺 被广泛应用。
臭氧—生物活性炭深度水处理工艺探究
2017年09月臭氧—生物活性炭深度水处理工艺探究曲鋆洋(大庆油田水务公司东风水厂,黑龙江大庆163000)摘要:现在全球淡水量越来越少,水污染越来越严重,因此,净化水成为现在人们关注的话题。
我国全国各地的水资源多少都会存在一些污染,为提高水的质量,会在原有的常规水处理的基础上增加净化水工艺,现在常用的是臭氧——生物活性炭深度水处理工艺,并且在一些地区取得良好的成绩。
本文笔者简要介绍臭氧——生物活性炭深度水处理工艺的原理和具体措施,便于人们了解和接受该工艺产出水。
关键词:净水原理;臭氧接触池;生物活性炭;反冲洗现在人们可用的淡水资源除了地下水以外,还有一部分来自于运河支流,人们生活涉及到各方各面,都会对地表淡水产生污染,水中的氨氮、色度、亚硝酸盐、耗氧量和铁的含量明显增多,人们直接饮用会对健康造成不利影响。
常规的水处理办法已经不能够将这些有害物质除去,并且还存在多种弊端,例如在净水过程中,向水中投入大量的氮会使水中的三氯甲烷和致癌物质明显增多,并且水中还残留一些难闻的气味,不能达到国家标准饮用水的要求,现在新出现的臭氧——生物活性炭深度水处理工艺在深度净水方面取得一定的成绩,并且其中氧化工艺比较适合大部分地区原水水处理,能明显降低水中氨氮的含量,提高水质量,并且相较于其他大型净水设备,该工艺成本低,能大面积快速净水,因此受到很多社会人士的推崇。
1臭氧——生物活性炭深度水处理工艺概述臭氧——生物活性炭深度水处理工艺又被人们称为第二代水净化工艺,该工艺主要是利用了臭氧和活性炭具有吸附能力的特点,臭氧能够吸附水中的一些小分子物质和离子物质,活性炭能够吸附水中悬浮物、胶体、色素等物质,将两者结合起来,对于净化水有双重叠加作用。
臭氧——生物活性炭深度水处理工艺在运行时,臭氧氧化在先,然后利用活性炭吸附水中的某些物质,因为活性炭具有强大的吸附能力,能够将微生物聚集起来,辅助清除水中更多的有机污染物,即清除能力用肉眼可见。
浅谈臭氧,臭氧活性炭的技术应用
浅谈臭氧-生物活性炭深度水处理工艺摘要主要探讨臭氧—生物活性炭深度水处理工艺的优缺点,总结工艺设计的要点,并介绍了它们的一些具体运用,为臭氧-生物活性炭深度水处理工艺的进一步推广提供技术支持。
关键词臭氧活性炭城市供水工艺设计1臭氧-生物活性炭深度水处理工艺(O3-BAC) 概述臭氧-生物活性炭深度水处理技术被称为饮用水净化的第二代净水技术,臭氧-生物活性炭技术采用臭氧氧化和生物活性炭滤池联用的方法,将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附和生物氧化降解四种技术合为一体。
其主要目的是在常规处理之后进一步去除水中有机污染物、氯消毒副产物的前体物以及氨氮,降低出水中的BDOC和AOC,保证净水工艺出水的化学稳定性和生物稳定性。
臭氧是氧的同素异性体,分子式为O3,常态呈气体,淡蓝色,有特殊气味;臭氧是自然界最强的氧化剂之一,具有广谱杀微生物作用,其杀菌速度高于氯气。
臭氧投加在水中以后,主要有三个作用,一方面直接降解有机物,减少进入活性炭池中的有机负荷;一方面把大分子有机物降解为小分子有机物,改变水中有机物的分子量分布,提高水中有机物的可生化性,从而有利于强化后续活性炭工艺对于中小分子量有机物的吸附降解;最后一个作用就是为后续活性炭工艺充氧,有利于活性炭好氧微生物的生长。
活性炭几乎可以用含有碳的任何物质做原材料来制造,这包括木材、锯末、煤、泥炭、果壳、果核、蔗渣、骨、石油脚、皮革废物、纸厂废物等等,近来有的国家倾向于用天然煤和焦炭制造粒状活性炭。
活性炭的主要特征是比表面积大和带孔隙的构造,因而显示出良好的吸附性能。
活性炭分粉末活性炭和颗粒活性炭两种,两者不同之处是颗粒大小不同,其吸附性能没有本质上的区别。
活性炭作为一种多孔物质,能够吸附水中浓度较低、其它方法难以去除的物质,同时,还可以去除水中的浊度、嗅味、色度,改善水的口感,而且能够有效地吸附合成洗涤剂、阴离子表面活性剂等活性物质;活性炭还具有催化作用,催化氧化臭氧为羟基自由基,最终生成氧气,增加水中的溶解氧(DO)的浓度。
【臭氧-生物活性炭工艺】的设计与运行管理
【臭氧- -生物活性炭工艺】的设计与运行管理臭氧- 生物活性炭工艺的设计与运行管理张金松, 范洁, 乔铁军(深圳市水务〈集团〉有限公司, 深圳518031)摘要: 针对臭氧—生物活性炭工艺设计和运行管理的重点问题,首先对工艺设计中的活性炭滤料选择、活性炭滤层结构设计、活性炭池型选择、臭氧系统选择、臭氧接触池优化设计和复合预氧化设计等内容进行了研究和总结,并且对工艺运行管理中存在的微生物安全、大型微生物控制、活性炭滤池初滤水管理及pH控制、预臭氧和主臭氧工艺的运行管理等问题,提出了相应的解决方案,以及今后应用中应重点注意的若干问题。
关键词: 臭氧活性炭; 设计; 运行管理; 微生物安全; 标准深水集团所属梅林水厂和笔架山水厂的臭氧—生物活性炭工艺分别于2005 年和2006 年投入运行,对水厂进一步提高有机物、氨氮的去除效果,降低嗅味,全面改善水质发挥了重要作用。
但在实际运行中,也陆续发现了一些国内外文献未曾报道过的新问题,如生物活性炭导致pH值大幅降低,出水有剑水蚤、线虫等微型动物检出等水质问题。
因此,如何通过更好的设计和运行管理,从技术上解决这些问题,无论在理论上还是在实践中均具有非常重要的意义。
1工艺设计1.1活性炭性能指标的选择标准根据制造原料不同,活性炭可分为木质炭、果壳炭和煤质炭等,其中煤质活性炭因其具有多孔性和高硬度的优点,且来源稳定和价格较低,在大规模水处理工程中得到广泛应用。
在水处理工程中,国外多采用不定型炭(主要是压块破碎炭) ,而国内柱状炭的应用最为广泛。
近些年来,不定型炭(主要是柱状破碎炭)在国内得到越来越多的关注,并已经被应用在一些新建水厂中。
研究结果表明,活性炭滤池出水水质与活性炭性能指标之间具有某种相关性。
根据分析结果和实际运行情况,并参考国内外活性炭选择的标准,制定了适合于我国南方地区饮用水中活性炭选择的性能指标,如表1所示。
1.2活性炭滤层结构活性炭滤层厚度一般不低于1. 2 m,根据要去除的不同污染物,接触时间在6~30 min之间,但在一些应用中可高于或低于这个范围。
臭氧-生物活性炭工艺
臭氧-生物活性炭工艺臭氧-生物活性炭工艺结合了臭氧工艺和生物活性炭工艺,净水前通过臭氧预氧化,对于无机物,臭氧在水中可以有效地将其中的溶解性铁,锰等无机离子转化成难溶解性氧化物从水中沉淀出来,从而在混凝沉淀与过滤中去除。
而对于有机物,臭氧分子与有机污染物间的直接氧化作用缓慢且有明显的选择性反应。
另一种是臭氧被分解后产生羟基自由基间接地与水中的有机物作用。
在臭氧后氧化中增加水中的溶解氧,有利于后继生物活性炭上好氧微生物的生长。
生物活性炭滤池位于臭氧接触池之后,活性炭因其内部具有发达的孔隙结构和巨大的比表面积从而用微孔吸附的方法去除有机物,活性炭的吸附性也可经济有效的去除嗅,味,色度,农药,放射性有机物及其其它人工合成有机物。
由于活性炭是一种兼有吸附,触媒和化学反应活性的多功能载体。
好氧微生物群落可以分散在炭段表面,也可以成膜覆盖在整个炭粒外表面,形成生物活性炭,这样可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质,并能处理那些采用单纯生化处理或活性炭吸附法所不能去除的污染物质。
影响臭氧-生物活性炭工艺主要因素1、微生物生命活动对水温、pH值等因素的变化很敏感,容易导致炭床中生物降解效率发生波动。
当温度低于5℃时,水处理效果极差。
2、活性炭柱承担着吸附和生物降解有机物的双重作用,延长水与活性炭柱的接触时间对去除有机物有利;而反冲洗条件对保护某些菌落很重要。
3、为了维持活性炭的生物平衡和避免高于微生物生命形式的发展,活性炭定期冲洗是维护生命活动的重要手段。
活性炭冲洗一般采用水洗、气洗、气水同时冲洗等几种方式。
反冲后重新启动时水质一般较差,将持续10-20min,以使扰乱的炭层复原到正常过滤状态。
工程实践证明,反冲效果的好坏直接影响处理水质。
4、臭氧-生物活性炭工艺一般设置在砂滤之后,去除有机物的效果取决于水中有机物的性质、活性炭的特性、操作条件、温度等。
5、在臭氧-生物活性炭工艺中,臭氧的重要作用是将大分子有机物降解为小分子有机物,提高原水的可生化性。
臭氧活性炭工艺原理
臭氧活性炭工艺原理
臭氧活性炭工艺原理是利用臭氧对活性炭进行氧化反应的过程。
活性炭是一种具有大表面积、孔隙结构和吸附能力的吸附剂。
而臭氧是一种强氧化剂,具有良好的氧化性能。
臭氧活性炭工艺将臭氧引入活性炭床,通过氧化反应降解和去除有机污染物。
臭氧活性炭工艺的过程可分为以下几个步骤:
1. 产生臭氧:通过臭氧发生器产生臭氧气体。
臭氧发生器通常使用电解法或紫外线法产生臭氧。
2. 混合臭氧与活性炭:将产生的臭氧气体与活性炭充分混合,使臭氧与活性炭接触。
3. 氧化反应:臭氧与活性炭表面上的有机污染物发生氧化反应。
臭氧氧化过程中产生高活性自由基,能够有效降解有机污染物。
4. 吸附:同时,活性炭的孔隙结构吸附有机物分子,使其从气相转移到固相中,从而实现高效去除有机污染物。
5. 冲洗和再生:经过吸附和氧化反应的活性炭在饱和后需要进行冲洗和再生。
冲洗可用水或其他溶剂进行,以清除活性炭表面的附着物。
再生则可以通过热解、蒸汽脱附等方法进行,将吸附在活性炭上的有机污染物从活性炭上脱附出来,使活性炭重新得到吸附能力。
通过臭氧活性炭工艺,可以将有机污染物有效地降解和去除,
提高水质或空气质量。
同时,臭氧活性炭工艺具有高效、经济、环保等优点,逐渐被广泛应用于水处理、大气污染治理等领域。
臭氧—生物活性炭(O3—BAC)
臭氧—生物活性炭(O3—BAC)臭氧—生物活性炭(O3—BAC)一、臭氧—生物活性炭工艺原理臭氧—生物活性炭(O3—BAC)深度处理工艺由两部分组成:臭氧氧化和生物活性炭的物理吸附、生物降解。
臭氧具有极强的氧化能力,其在水中的氧化还原电位仅次于氟而第二位。
利用臭氧氧化作用,初步氧化分解水中的一部分简单的有机物及其还原性物质,使之变为CO2和H2O,以降低生物活性炭滤池的有机负荷。
提高活性炭处理能力;同时臭氧氧化能使水中难以生物降解的大分子有机物,如天然有机物(NOM)断链、开环、氧化成短链的小分子有机物或分子的某些基团被改变从而使原来不能生物降解的有机物转化成可降解的有机物,减少大分子极性污染物BOD浓度得到提高,所以提高了处理水的可生化性,同时使个别有机物(POC)转化为(DOC),如腐植酸等,分解后的小分子有机物的极性和亲水性得到了提高,更容易被活性炭吸附和附着在活性炭上的细菌生物降解;臭氧氧化可有效去除水中的酚、氰、硫、铁、锰,并能脱色、除嗅和味、杀藻以及杀菌消除病毒等;臭氧氧化还能有效地减少UV254的吸收。
臭氧氧化后会生成氧气和臭氧混合气体中含有的大量氧气以及剩余臭氧会迅速转化为氧气,不产生二次污染,又可增加水中溶解氧,使生物活性炭滤池有充足的溶解氧(DO),因此促使好氧微生物在活性炭上繁殖。
提高了微生物增长潜力,加快生物氧化和硝化作用,延长了活性炭使用寿命,加快有机物的生物降解,从而提高了其对有机物的去除效果;同时臭氧能氧化水中的溶解性的铁和锰,生成难溶性的氧化物。
通过过虑,铁、锰的去除率增加,提高过滤速度50%,延长过滤工作周期,降低了过滤反冲洗水量。
臭氧氧化也是减少溴酸化合物形成的有效方法,加强了活性炭对溴酸化合物的高效去除。
由于臭氧的强氧化性,在去除水中其它水处理工艺难以去除物质的同时,可以减小反应设备或构筑物的体积;臭氧化还有助于絮凝,改善沉淀效果。
因此,臭氧化技术在欧洲、美国、加拿大等国家普遍应用。
臭氧-生物活性炭机理
饮用水处理中臭氧-生物活性炭工艺机理臭氧-生物活性炭工艺对许多水质指标都有很好的改善作用, 包括浊度、色度、嗅味、铁、锰、有机质( 以COD、BOD 计) 、氨氮、亚硝酸盐氮、硝酸盐氮。
1.臭氧-生物活性炭的除污机理1.1 浊度当水中存在有机物时易吸附在颗粒表面引起空间位阻稳定( steric stabilizat ion) , 臭氧能氧化分解这些有机物, 从而诱导颗粒脱稳。
采用预臭氧化通常可以提高混凝过滤过程对颗粒和浊度的去除效率,与此同时却常常降低了混凝过程对DOC的去除。
混凝单元去除的是大分子的有机物, 而臭氧化将产生分子质量小、极性强的小分子, 因而影响混凝的效果。
但是,臭氧化后的小分子有机物通常要比臭氧化前的大分子有机物具有更好的可生化性, 另外小分子也更容易被生物吸收, 因此DOC的去除转由生物活性炭单元去完成。
1.2 色度臭氧有突出的脱色能力,天然水中的色度来源于腐殖酸的分解物, 通常分解物中存在的不饱和部分是这些物质显色的原因, 称之为发色团。
臭氧可以使C=C双键断裂, 生成酮类、醛类或羧酸类物质。
一旦这种共轭部分通过氧化被破坏, 颜色就随之而去,但这并不意味着引起色度的有机物能够被彻底氧化为CO2 和H2O,只是发色团受到了破坏而已。
O3/ BAC 去除色度效果好, 主要是归因于臭氧化作用、活性炭表面的吸附作用和生物降解作用。
需要指出的是, 对色度去除的总效果还包括臭氧化后水中有机物可吸附性和可生化性的改变。
1.3 嗅和味引起水中嗅和味的有机化合物一般都是在有机物的厌氧分解过程中产生的。
臭氧去除水中嗅和味的效率非常高, 起作用的不仅是臭氧本身, 还有其自我分解产物——氢氧自由基臭氧对引起嗅和味的物质的作用在于它能破坏引起嗅和味的不饱和键。
混凝沉淀后加臭氧氧化可使土臭素( Geosmin)和甲基异冰片( MIB ) 等异、嗅味物质的浓度降低85% 左右, 再加上生物活性炭处理就可以达到100%的去除率。
臭氧生物活性炭技术11
A
17 饮用水深度处理应用效果
常规处理水厂氨氮处理效果
常规水处理工艺中混凝 沉淀对氨氮有一定的去 除作用,但主要靠砂滤 池微生A 物作用去除
18
饮用水深度处理应用效果
三卤甲烷生成潜能比较
预臭氧后三卤甲烷总量有所增加。
整个工艺去除三卤甲烷生成潜能的最关键部分是生物活性炭滤 池,其对三卤甲烷生成潜能的去除率达到52.9%,出水后三卤甲烷生 成潜能仅为519μg·L-1,大大降低了消毒出水中过量消毒副产物产 生的风险。
与过滤配合使用——生物活性炭前需设过滤,不能将生物活性 炭作为过滤器来运行。一般生物活性炭进水的浊度<5NTU。
换炭再生——使用一定时间后必须更换新炭,饱和炭进行就地再 A生或是外运委托再生,否则将影响出水水质。
10
工艺应用条件与设计参数
设计参数:
吸附容量(qe);高出单纯活性炭4~20倍 通水倍数(n):根据水质确定 空塔速度(LV):4-5m/h,满足足够的接触时间,微生物降解 炭层高度(Hc):一般1~2m,不宜过高 气水比:炭层内应有足够溶解氧(>1mg/L),4~6:较为合
炼油废水
隔油 浮选 生物曝气 后浮选 生物活性炭工艺。生物活性炭的吸 附容量已达到2.52 gCOD/kg炭。
A
22
其他应用——生活污水深度处理
宝钢厂采用SBR 生物活性炭工艺,分别在各厂区陆续建成十多套 800 m3/d的综合污水处理及再生装置。
A
23
已连续运行2年以上,没有更换过新炭,处理出水达到中水水质标 试验
臭氧氧化一生物活性炭的第一次联合使用是1961年在德国 Dusseldorf(杜塞尔多夫)市Amstaad水厂中开始的,它的成 功引起了德国以及西欧水处理工程界的重视。
臭氧-生物活性炭-砂滤组合工艺运行效果分析
臭氧-生物活性炭-砂滤组合工艺运行效果分析刘建广;李芳;李世俊;王逸群;刘海勇【摘要】介绍某水厂采用“臭氧-生物活性炭-砂滤”深度处理组合工艺处理引黄水库水,考察了不同进水浑浊度对组合工艺长期运行效果的影响,同时对组合工艺各单元的有机物种类及分子量分布的变化进行了分析.长期运行结果表明:(1)组合工艺对不同水质条件下的有机物指标有较高的去除效果,较高的温度有利于水中有机污染物的去除.(2)臭氧的主要作用在于将大分子量的有机物氧化为小分子量有机物,故臭氧—生物活性炭工艺对CODMn、UV254和DOC有良好的去除作用.整个工艺对氨氮的去除率在40%~50%,对亚硝酸盐氮的去除率在80%~ 90%.(3)臭氧—活性炭工艺对可生物降解有机物有较好的去除效果,砂滤工艺主要去除DOCD&A.(4)上向流BAC柱活性炭颗粒间空隙率较大,降低了对浊度的机械截留,其后置的砂滤池可起到稳定出水浊度,保证出水微生物安全性的作用.%Combined processes of "ozone-biological activated carbon-sand filtration" applied in a WTP with reservoir raw water of Yellow River is introduced.And the effect of different influent turbidity on the long term operation of the combined process are investigated.At the same time,changes of organic species and molecular weight distribution of each unit of the combined process are analyzed.Long term operation results show as follows:(1) Combination process has high removal efficiency of organic matter indexes under different water quality conditions.Higher temperature is conducive to the removal of organic pollutants in water.(2) The main effect of ozone is the oxidation of organic compounds with large molecular weight to small molecular weight organic compounds.The removal rate of ammonianitrogen in the whole process is between 40%~ 50%,the removal rate of nitritenitrogen is between 80%~ 90%.(3) Ozone activated carbon process has a good effect on the removal of biodegradable organic compounds.Sand filtration process removes DOCD & A mainly.(4) The upper flow BAC activated carbon particles column with a larger porosity gives low removal efficiency of turbidity,the rear sand filter can play a stable effluent turbidity to ensure the safety of the role of water effluent.【期刊名称】《净水技术》【年(卷),期】2017(000)008【总页数】8页(P72-79)【关键词】饮用水;臭氧;生物活性炭;砂滤;组合工艺;深度处理【作者】刘建广;李芳;李世俊;王逸群;刘海勇【作者单位】山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101;济南水务集团有限公司,山东济南250012;山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101【正文语种】中文【中图分类】TU991.2Keywordsdrinking water ozone biological activated carbon(BAC) sand filtration combined processes advanced treatment虽然活性炭具有很强的吸附性能,但是由于活性炭的再生成本高、技术要求高[1],使得活性炭吸附使用周期较短,通常将臭氧氧化法与活性炭吸附联用[2],称作臭氧-生物活性炭法。
浅谈臭氧-生物活性炭工艺及应用
浅谈臭氧-生物活性炭工艺及应用摘要:臭氧-生物活性炭工艺是一种先进的饮用水深度净化工艺,它将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体。
关键词:臭氧-生物活性炭;深度处理前言臭氧-生物活性炭工艺一般设在砂滤之后,砂滤水经臭氧氧化后,其中一小部分有机物被彻底氧化为水和二氧化碳,大部分有机物转化为臭氧化中间产物,使原来不能被生物降解的有机物变为可生物降解的有机物,提高水的可生化性;臭氧在水中可以自动分解为氧,使活性炭床处于富氧状态,增强了活性炭表面好氧微生物的活性,形成生物膜,降解吸附在活性炭中的有机物,使活性炭得到更高程度的使用[1]。
1 臭氧-生物活性炭工艺机理该工艺将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体,它们互相促进,取得多重效应[2]。
(1).臭氧预氧化。
臭氧初步氧化分解水中的有机物及其他还原性物质,降低生物活性炭滤池的有机负荷,同时使水中难以生物降解的有机物断链、开环,将大分子有机物氧化为小分子有机物,提高其可生化性和可吸附性,使其能够被生物降解。
同时氧化水中溶解性的锰和铁,生成难溶性的氧化物,提高砂过滤的效果,提高锰、铁的去除率。
臭氧在水中分解生成氧气,使生物活性炭滤池有充足的溶解氧(DO),使好氧微生物活性增强,提高了微生物增长潜力,加快了生物的氧化和硝化作用,延长了活性炭的使用寿命,加快了有机物的生物降解,从而提高了对有机物的去除效果[3]。
(2).生物活性炭处理。
主要发挥以下几种作用:①破坏水中残余臭氧;②通过吸附去除化合物或臭氧副产物;③通过活性炭表面细菌的生物活动降解有机物;④吸附水中浓度较低、其他方法难以去除的有臭味或异味的物质;⑤附着的硝化菌还可以降低水中氨氮的浓度[4]。
(3).臭氧后氧化。
破坏细菌体上的脱氢酶,干扰细菌的呼吸作用,导致细菌死亡;氧化有机物,如杀虫剂、清洁剂、苯酚等;去除DOC;氧化分解螯合物,如EDTA和NTA等[5]。
臭氧活性炭工艺单元简介
1.1.臭氧氧化单元臭氧既是一种强氧化剂,也是一种有效的消毒剂。
通过臭氧氧化可以去除水中的嗅、味,提高和改善水的感官性状;降低高锰酸盐指数,使难降解的高分子有机物得到氧化、降解;通过诱导微粒脱稳作用,诱导水中的胶体脱稳;杀灭水中的病毒、细菌与致病微生物。
与活性炭滤池联用,可以增加活性炭的生物作用,延长活性炭再生周期。
1.1.1.气源选择气源制备一般可采用空气处理、液态纯氧蒸发和现场纯氧制备等方法。
当采用空气作气源时,包括无油空气压缩机、冷却器、冷冻、冷凝装置,过滤净化及稳压、减压装置、空气吸附、干燥及干燥剂再生装置等。
供臭氧发生器的气源可以是空气,也可以是纯氧。
纯氧可以在现场制备,也可以购买液态氧通过蒸发取得。
三种气源的特点如下:1、干燥纯净压缩空气(CDA):效率较低,能耗较高,空气源易取得。
2、液态纯氧(LOC):效率高,具灵活性,适应小水厂。
3、现场制氧气(V-GOC):效率高,可靠性好,适应大中型水厂。
结合本工程的实际情况及经济因素考虑,选用空气为气源。
1.1.2.臭氧需量计算臭氧接触装置是保证臭氧氧化处理效果的关键环节,为了保证接触装置的设计合理、可靠,应通过模拟实验取得设计数据。
由于在三级处理中使用臭氧更侧重于对有机物的氧化功能,且介质中的有机物浓度和细菌总数较高,因此,在设计中应按三级处理的水质条件来确定臭氧投加量和接触时间,并根据这一特点来选择适宜的接触装置。
臭氧的消耗不仅取决于COD的降解幅度,而且与COD的组分有密切关系。
所以对不同的原水,臭氧的消耗量也不同。
在没有模拟实验条件和项目前期设计时,三级处理的臭氧氧化单元可参考下述经验参数设计手册第五册设计:降解1mg/LCOD消耗4mg/LO3(臭氧化气)接触时间15~60min。
本设计中,前处理构筑物对COD的去除效率如下表:表2-1 COD 的去除效率SBR 池出水COD 仍高于排放标准,故本单元设计去除COD 浓度按40mg/L 计算,则臭氧投加量:L mg C C /16040==则需臭氧量:d QC Q O /kg 96016060003=⨯==1.1.3.空气气量计算干空气量:αC Q V 1000=干空气 式中 V 干空气——干空气气量,(Nm 3/h );Q ——根据水处理要求计算出来的臭氧产量(kg/h );C ——单位体积空气产出的臭氧量,根据发生器而定(g/m 3);α——系数,本设计取0.92;本设计中,参考经验值C 取10g/m 3,代入得h Nm V /43472492.010********≈⨯⨯⨯=干空气总干空气量: (1.2 1.5)V V -总干空气=公式中的系数1.2~1.5,是考虑增加再生干燥剂的用气量,本设计取1.5。
臭氧生物活性炭技术PPT幻灯片
促使砂粒表面的生物生长。也可能与传统工艺水中较高的氯浓度
的抑制作用有关
16
饮用水深度处理应用效果
氨氮去除率比较
传统工艺:沉淀池对NH+4-N的去除率较大,均值为58.9%.滤池 对NH+4-N的去除率为2.6%.
组合工艺:澄清后氨氮质量浓度仍比原水高1.2倍,砂滤池出水 的NH+4-N相对原水去除率为80%左右,后续的深度处理后,氨氮 的质量浓度低于检测限
7
作用原理——生物活性炭技术
活性炭吸附与微生物降解的协同作用
——生物活性炭胞外酶再生假说:一部分水解酶扩散进入活性炭 微孔,与吸附质反应,活性炭的吸附能力得以再生。
——微生物的降解作用改变了活性炭的物理吸附平衡,使生物活性 炭得以再生。
8
作用原理——生物活性炭技术
炭表面生长的微生物是否会影响炭的正常吸附过程? 活性炭的吸附速率主要取决于中孔或微孔的吸附速率,炭表面
17 饮用水深度处理应用效果
常规处理水厂氨氮处理效果
常规水处理工艺中混凝 沉淀对氨氮有一定的去 除作用,但主要靠砂滤 池微生物作用去除
18
饮用水深度处理应用效果
三卤甲烷生成潜能比较
适 反冲洗强度:10~15L/(s.㎡),10~20min 工作周期:生物活性炭的使用周期按1年设计
11
工艺应用条件与设计参数
构筑物形式:
饮用水深度处理:
目前,国内活性炭滤池已建成水厂多采用普通快滤池、虹吸滤池、 V型滤池、翻板滤池等池型,其中以V型滤池和翻板滤池更具代表 性。
工业废水处理:
活性炭塔
12
饮用水深度处理应用效果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生作用
结果: 增多吸附容量,延长活性炭滤池的工作周期
2.2 生物再生步骤
活性炭吸附有机物,液相中有机物含量减低 水中细菌附着在活性炭表面 细菌选择水中的生物易降解有机物分解,并不断繁殖;易 生物降解有机物含量下降,难降解有机物含量不受影响
2.2 生物再生步骤
伴随液相生物易降解有机物含量下降,吸附的有机物发生 解吸;解吸的有机物中易降解有机物在液相中扩散,被细菌 降解 解吸后空出活性炭表面的吸附点有可吸附有机物,起到生 物再生
微生物
去除小分子的亲 水性有机物
2 生物再生
影响因素
作用机理
优缺点 工程应用
生物再生
对水中有机物的吸附和微生物的氧化
分解是相继发生的,微生物的氧化分解作用陆
续空出了吸附位,使活性炭的吸附能力得到恢
复;而活性炭的吸附作用又使微生物获得丰富
的养料和氧气,二者相互促进,起到了生物再
始运行。
深圳水库是深圳市的主要供水水源,属南方地
区典型的低浊、高藻、微污染类水质。虽然东深供
水生物预处理工程(处理能力为400*104m3/d)的实施
在一定程度上改善了深圳水库的水质,但是原水中的
嗅味、藻类和有机物等污染物质的浓度仍然维持在
一个较高的水平,采用常规工艺处理时出水水质得不
到保证。
工艺流程图
臭氧-生物活性炭工艺
内容
1
作用机理
2
生物再生
3
影响因素
4
优缺点
5
工程应用
1 作用机理
影响因素
生物再生
优缺点 工程应用
作用机理
1.1 活性炭的空隙特性
大孔
直径 100~10000nm 比表面积占1%
中孔
直径2~100nm 比表面积占5%.
小孔
直径 <2nm 比表面积占94%
1.2 生物活性炭的作用机理
水中反应物通过GAC外液 膜层输送到炭粒表面 反应物从炭粒表面传送到 GAC空隙中 反应物被吸附在GAC的内 表面上(大、中、微孔)
1.2 生物活性炭的作用机理
高浓度AOC,促使微生物在GAC 空隙中生长,并被生物降解为CO2 和H2O 产生的CO2从活性炭的内表面脱 吸 CO2从空隙中输送到GAC外表面 CO2通过炭粒外的液膜层进入水 体
费用和备用液氧费用),设备折旧费为0.0636元/
m3(不包括新增设备的维护费用)
3 影响因素
生物再生
作用机理
优缺点 工程应用
影响因素
影响因素
活性炭
性质和颗粒 大小
空床接触 时间
水质的影 响
滤速的影 响
4 优缺点
生物再生
作用机理
影响因素 工程应用
优缺点
4.1 O3-BAC优点
Ames致突变实验结果为阴性,常规加氯工艺为阳性 有机物去除的去除率为50%以上,比常规处理提高15-20% 水中氨氮和亚硝酸氨可被生物氧化为硝酸盐,从而越少了后氯化的投加量,降
5 工程应用
生物再生
作用机理
优缺点 影响因素
工程应用
工程应用
德国缪尔霍姆水厂 梅林水厂 北京田村山水厂
上海周家渡水厂 广州南洲水厂 杭州市南星水厂
5.1 梅林水厂
梅林水厂处理能力为60*104/d,该水厂始建于
1994年,常规处理工艺为混凝、沉淀和砂滤,深度处
理工艺于2003年8月开始建设,2004年12月建成并开
5.5 O3用量比较
臭氧 完全氧化有机物的剂量 为15mgO3/mgDOC
O3-BAC 2~3mgO3/mgDOC,接触 10 min,
<1mgO3/mgDOC
5.6 运行成本分析
经计算,臭氧-生物活性炭深度处理工艺投
运后增加的制水成本为0.106元/m3,其中电费为
0.02元/ m3,氧气费为0.0132元/ m3(包括现场制氧
低了三卤甲烷的生成量
延长了活性炭的运行寿命,可以达到3年(约6倍),减少了运行费用 提高对铁、锰的去除率
4.2 缺 点
挂膜时间长 进水水质的pH限制 浊度对生物活性炭的影响 冲击负荷对运行效果影响 生物泄露问题 反消化的碳源不足
问题
O3-BAC主要由于什么样的水源水处理?
5.1 梅林水厂
梅林水厂(深度处理)
5.2 上海周家渡水厂
周家渡水厂(ZJD)于1999年起进行了深度处理改造工程,2001年完工。改造 后水厂采用黄浦江上游原水,制水能力为10000m3/d,处理工艺分为2条处理流程。
5.2 上海周家渡水厂
5.2 上海周家渡水厂
5.2 上海周家渡水厂
5.2 上海周家渡水厂
5.1 梅林水厂
预臭氧接触池:2组,接触时间 为4min,水深为6.0m,臭氧通过 水射器投加
主臭氧接触池:采用6廊道,流 量为15*104m3/d,尺寸 L*W*H=68.60m*32.90m* 6.0m,接触时间10.6min,采用微 孔曝气器投加臭氧
生物活性炭滤池:共分为2组, 每组12格,单格过滤面积为 96m2,接触时间、滤速及滤层 厚度分别为11.3min、10.9m/h 和1.85m
5.3 北京田村山水厂
我国第一 座有臭氧、 活性炭联合 深度处理的 较大型水厂
5.4 广州南洲水厂
南洲水厂, 2003年5月 进入全面规模建设,于2004 年9月23日竣工投产,是广州 市首间采用“O3-BAC”的饮 用净水厂,处理量为100*104 吨/天,是国内供水规模最大 的饮用净水厂。 主要净水工艺流程:预 臭氧+高效网格反应+平流沉 淀+V型滤池过滤+主臭氧消毒 +生物活性炭过滤
速率控制
扩散时,经过孔隙的输送是最慢的一步,
因此是确定生物活性炭过滤整体速率的关键
1.2 生物活性炭作用机理
生物活性炭
生物降解
颗粒表面、 大空隙
吸附作用 中、微孔隙.
1.3 O3-BAC工艺流程
1.4 各部分去除对象
臭氧氧化
主要对象是大分 子的憎水性有机物
活性碳吸附
主要对象是中间 分子量的有机物