八年级上册数学乘法公式
部编版八年级数学上册《乘法公式》教案及教学反思
部编版八年级数学上册《乘法公式》教案及教学反思一、教学背景本次教学针对的是八年级上册中的《乘法公式》这一部分内容。
这一章主要讲解乘法公式的应用,包括分配律、结合律、交换律等等。
在教学中,我着重强调了基本的概念理解,以及应用能力的训练。
二、教学目标1.知识目标•掌握乘法公式的定义,包括分配律、结合律、交换律等;•熟练掌握乘法公式的应用,能够行使乘法法则的各种运用;•能够根据所给的算式,灵活应用乘法公式的各种规则。
2.能力目标•能够独立解决类似问题;•培养学生的分析能力和创新意识;•培养学生的团队合作意识。
3.情感目标•培养学生的自学能力;•提高学生的自信心和实际动手能力。
三、教学过程1.自我介绍学生们对我并不陌生,在课堂上我的第一项任务就是与全班同学建立起良好的师生关系。
我自己先做一个简单的自我介绍,不仅有助于展示自己的风采,还可以激发学生们对课程的兴趣。
2.引入在一个新学期来临,作为数学老师,我需要为学生们介绍一下这个学期的内容。
首先,我询问了学生们对乘法公式的基本认识,借此引入新学期的学习内容。
3.教学(1)分配律分配律是乘法公式的核心;通过分配律的学习,可以深刻理解乘法公式的运用方法。
分配律定义为:乘数a和b与另一个数c相乘的积,等于乘数a与数c的积,再加上乘数b与数c的积。
即:a×(b+c)=a×b+a×c。
(2)交换律交换律是数学中一个非常基本的规律,说起来也很简单:两个数相乘的积等于这两个数颠倒顺序相乘积。
即:a×b=b×a。
(3)结合律结合律是指在同一个式子中改变其运算的顺序,结合律只适用于加法和乘法两个运算中的运算结合律。
即:a×b×c=(a×b)×c=a×(b×c)。
4.练习与巩固在教完分配律、交换律、结合律之后,我会通过给学生布置习题的方式巩固所学内容。
同时,我也会在课上为学生提供大量的练习题,让他们逐步掌握乘法公式的运用方法。
初二乘法公式
初二乘法公式
乘法公式是数学中的一种基本公式,用于计算两个数的乘积。
在初二数学中学习的乘法公式为:
乘法公式1:两个整数相乘
例如,如果要计算2和3的乘积,我们可以使用乘法公式1:
2 ×
3 = 6
乘法公式2:两个整数的积与它们的一部分相乘
例如,如果要计算3和5的积与2相乘,我们可以使用乘法公式2:(3 × 5) × 2 = 30
乘法公式3:两个整数和一个分数相乘
例如,如果要计算4和7以及1/2的乘积,我们可以使用乘法公式3:(4 × 7) × 1/2 = 14
乘法公式4:两个分数相乘
例如,如果要计算1/3和2/5的乘积,我们可以使用乘法公式4:
(1/3) × (2/5) = 2/15
以上是初二乘法公式的简单介绍,希望对你有帮助!。
八年级数学乘法公式3
2
平方差公式:
同樣的,我們也用代數的方式來證明一次
(a+b)(a-b) = a - ab + ba - b = a -b
現在我們四種 乘法公式都學 過啦, 一起複習一下 吧!
2
2
2
2
二項式乘積公式:
(a+b)(c+d)= ac + ad + bc + bd 和的完全平方公式:
(a+b) = a + 2ab +b 差的完全平方公式: 2 2 2 (a-b) = a - 2ab +b 平方差公式:
(a-b) = a - 2ab +b 2 2 這個公式是怎麼來的呢? a -ab +b -ab 讓我們用以下的圖形來說明: 2 2 2 (請注意看圖形中淺黃色部分的面積變化 =a -2ab )+b (a-b)
ab
2
2
b
2
a
b
ab
2
b
2
b
2
(a-b) = a - 2ab +b
2
差的(完全)平方公式:
(a+b)= a +2ab +b
ab
2
222b来自讓我們用左邊的 圖形來說明
b
和的(完全)平方公式:
我們可以用代數的方式得到同樣的結果
(a+b)(a+b) = a + ab + ba + b = a + 2ab + b
ab
2 b
2
2
2
2
a2 ab
=
a2
+
ab
ba
+
人教版八年级数学上册第14章2 乘法公式
知2-练
例 3 计算: (1)(x+7y)2; (2)(-4a+5b)2; (3)(-2m-n)2; (4)(2x+3y)(-2x-3y).
解题秘方:确定公式中的“a”和“b”,利用完全平方 公式进行计算.
(1)(x+7y)2;
知2-练
解:(x+7y)2=x2+2·x·(7y)+(7y)2 =x2+14xy+49y2;
知2-练
解:原式=4y2-4y+1; 原式=9a2+12ab+4b2; 原式=x2-4xy+4y2; 原式=4x2y2+4xy+1.
2
例4
计算:(1)9992;(2)
30
1 3
.
知2-练
解题秘方:将原数转化成符合完全平方公式的形式,再 利用完全平方公式展开计算即可.
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
增项变化 (a-b+c)(a-b-c)=(a-b)2-c2
连用公式 (a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
特别解读
知1-讲
公式的特征:
1. 等号左边是两个二项式相乘,这两个二项式中有一项完
全相同,另一项互为相反数.
2. 等号右边是乘式中两项的平方差,即相同项的平方减去
=1 000 000-2 000+1=998 001;
2
(2)
30
1 3
.
2
2
2
30
1 3
=
30+
1 3
=302+2×30×13+
1 3
=900+20+
19=920 19.
4-1. 运用完全平方公式进行简便计算:
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
人教版八年级数学上册《乘法公式》
二、探求新知
通过上面的研究,你能用语言叙述完全平方公式吗?
整式的乘除与因式分解
乘法公式
活动1 知识复习
多项式与多项式相乘的法则:多项式与多项式 相乘,先用一个多项式的每一项乘另一个多项式的 每一项,再把所得的积相加.
(a+b)(m+n)=am+an+bm+bn.
活动2 计算下列各题,你能发现什么规律?
(1) (x+1)(x-1); (3) (3-x)(3+x) ;
大家谈收获
(a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积等于 这两个数的平方差。
平方差公式中字母 a、b可代表一个数、一 个单项式或多项式。
拓展探究
再谢 谢见!!
人教版 ·数学 ·八年级(上)
乘法公式
—完全平方公式
一、情景引入
请同学们探究下列问题:一位老人非常喜欢孩子.每 当有孩子到他家做客时,老人都要拿出糖果招待他 们.来一个孩子,老人就给这个孩子一块糖,来两个 孩子,老人就给每个孩子两块塘,…(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这 些孩子多少块糖?(3)第三天这(a+b)个孩子一起 去看老人,老人一共给了这些孩子多少块糖?(4)这 些孩子第三天得到的糖果数与前两天他们得到的糖果 总数哪个多?多多少?为什么?
人教版八年级数学上册课件 14.2 乘法公式
三、研读课文
例2 计算:
知 识
(解:1)原(式y+2=)(yy-22)-(y2-12)-(y( +5y) 2 +4y-5) =y2 22 -y2 -4y+5
点
=1-4y
四 (2) 102×98
解:原式==1(100002+-222)(100-2)
=10000-4 =9996
归纳 :只有符合公式要求的乘法,才能运用公式简化 运算,其余的运算仍按照法则来进行.
4
4
x
2;1
三、研读课文
一般地,
知
(a+b)(a-b)=a2-b2.
识 点
两个数的 __和与这两个数的 __ 的差 __积___,等于这两个数的平方差.
二
这个公式叫做(乘法的)平方差公式.
温馨提示:应用公式的关键是确定a和b.
三、研读课文
思考
知
你能根据下面图形的面积说明平方差公式吗?
识
a
点
b
三
3、(2012哈尔滨)下列运算中,正确的是( )
a 3 a 4 a12
a 3 4 a12
A、 a a 4 a 5
B、 a ba b a2 b2
C、
D、
4ห้องสมุดไป่ตู้下列各式中,计算结果是 81 x 2的是( ) D
x 9x 9
A、
2 y 1 1 2 y
a bb
矩形面积=大正方形面积--小正方形面试
(a b)(a b)=a2 b2
即
三、研读课文
练一练 下面各式的计算对不对?若不对, 应当怎样改正?
知
人教版数学八年级上册-14.2--乘法公式
方法总结:对于平方差中的 a 和 b 可以是具体的数, 也可以是单项式或多项式,在探究整除性或倍数问 题时,一般先将整式化为最简,然后根据结果的特 征,判断其是否具有整除性或倍数关系.
例5 王大伯家把一块边长为 a 米的正方形土地租给了 邻居李大妈.今年王大伯对李大妈说:“我把这块地 一边减少 4 米,另外一边增加 4 米,继续原价租给你, 你看如何?”李大妈一听,就答应了.你认为李大妈 吃亏了吗?为什么? 解:李大妈吃亏了.理由如下:原正方形的面积为 a2,
(3) 通过以上规律请你进行下面的探索: ① (a-b)(a+b)=_a_2_-__b_2_; ② (a-b)(a2+ab+b2)=__a_3-__b_3__; ③ (a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.
内容
两个数的和与这两个数的差的积, 等于这两个数的平方差
平方差 公式
a−b b
a−b (a−b)2 b(a−b) a
b
ab
a (a − b)2 = a2 − ab − b(a − b) = a2 − 2ab + b2 差的完全平方公式: (a - b)2 = a2 - 2ab + b2 .
问题 观察下面两个完全平方式,比一比,回答下列问题:
(a + b)2 = a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2.
1. 字母表示:(a + b)(a-b) = a2-b2
注意
2. 紧紧抓住 “一同一反”这一特征, 在应用时,只有两个二项式的积才有 可能应用平方差公式;不能直接应用 公式的,要经过适当变形才可以应用
人教版数学八年级上册
人教版初中数学八年级上册14.2乘法公式(教案)示例
此外,我发现学生们在解决具体问题时,对于何时使用平方差公式和立方和差公式还不够自信。这可能是因为他们在公式选择和应用上缺乏足够的练习。因此,我计划在下一节课中增加更多针对性的练习,特别是那些涉及公式选择和综合应用的题目。
2.培养学生的数学运算能力,使学生能够熟练运用乘法公式进行简便计算,解决实际问题,增强数学运算的准确性。
3.培养学生的空间想象力和抽象思维能力,通过乘法公式的学习,引导学生从具体实例中提炼出数学规律,提升对数学概念的理解。
4.培养学生的团队协作和交流表达能力,课堂上鼓励学生进行小组讨论,分享乘法公式的发现与应用,提高学生的沟通能力。
-灵活运用乘法公式:学生在解决问题时,可能难以判断何时使用哪个乘法公式,需要通过大量练习和讲解,让学生掌握乘法公式的应用场景。
-识别并分解问题中的乘法结构:学生在面对复杂问题时,可能难以识别其中的乘法结构,需要教师指导如何分解问题,找到适用的乘法公式。
举例:
-难点突破:通过展开(a+b)²和(a-b)²,让学生观察并发现完全平方公式的规律,理解平方差公式的来源。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘法公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,我观察到学生们在讨论乘法公式在日常生活中的应用时,能够提出一些很有创意的想法。这表明他们能够将学到的知识应用到实际问题中。然而,我也发现有些小组在讨论时,成员之间的交流并不充分,导致部分学生的参与度不高。在未来的教学中,我需要更加注重引导学生之间的互动,确保每个学生都能积极参与讨论。
人教版八年级数学上册课件 14.2 乘法公式(付,156)
(1)在运用平方差公式之前,一定要看是否具备公式 的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;
(3)总结规律:一般地,“第一个数”a 的符号相同, “第二个数”b 的符号相反;
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(3) 51×49;
(4)(3x+ 4)(3 x- 4)-(2 x+3)(2 x-3).
课堂小结
(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么?
布置作业
教科书习题14.2第1题.
八年级 上册
14.2 乘法公式 (第2课时)
课件说明
• 本课是在学生已经学习了平方差公式的基础上,研 究第二个乘法公式,它是具有特殊形式的两个多项 式相乘得到的一种特殊形式,也是后续学习因式分 解、分式运算的重要基础.
判定正误
练习 下面各式的计算是否正确?如果不正确,应 当怎样改正? (1)(x+y)2 =x2+y2; (2)(x-y)2 =x2 -y2; (3)(x-y)2 =x2+2xy+y2; (4)(x+y)2 =x2+xy+y2.
课件说明
• 学习目标: 1.理解完全平方公式,能用公式进行计算. 2.经历探索完全平方公式的过程,进而感受特殊 到一般、数形结合思想,发展符号意识和几何 直观观念.
• 学习重点: 完全平方公式.
导入新知
问题1 计算下列各式: (1)(p+1)2 =______;(m+2)2 =______; (2)(p-1)2 =______;(m-2)2 =______.
12.3 乘法公式 华东师大版八年级上册数学导学课件
感悟新知
解:(1)(5m-3n)(5m+3n)=(5m)2-(3n)2=25m2-9n2.
(2)(-2a2+5b)(-2a2-5b)=(-2a2)2-(5b)2=4a4-25b2.
(3)
1 4
x+y
-
1 4
x+y
=
y+ 1 4
x
y 2-
1 4
x
2
y2- 1 16
x2.
(4)(-3y-4x)(3y-4x)=(-4x-3y)( -4x+3y)=(-4x)2-
感悟新知
(6)ab=
1 2
[(a+b)2-(a2+b2)]=
1 4[(a+b源自2-(a-b)2];(7)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(8)a2+b2+c2+ab+ac+bc= 1[(a+b)2+(b+c)2+(a+c)2 ]
2
感悟新知
特别解读 1. 弄清公式的特征:公式的左边是一个二项式的平方,
感悟新知
1-3. 计算:
(1)(2-3b)(2a+3b);
(2)(-2a-1)(-1+2a);
(3)
m-
1 2
n
-m-
1 2
n
;
(4)(1+a)(1-a)+a(a-2).
感悟新知
解:(1)原式=(2a)2-(3b)2=4a2-9b2. (2)原式=(-1-2a)(-1+2a)=(-1)2-(2a)2=1-4a2. (3)原式=-12n+m-12n-m=-12n2-m2=14n2-m2. (4)原式=1-a2+a2-2a=1-2a.
八年级数学上册《乘法公式》教案、教学设计
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。
最新人教版八年级数学上册第十四章《乘法公式》教材梳理
庖丁巧解牛知识·巧学·升华一、乘法公式把具有特殊形式的多项式相乘的式子及其结果写成公式的形式,就是乘法公式.在多项式乘以多项式时,有一些问题形式固定、结果固定,因此我们把它归纳为乘法公式,利用乘法公式计算比利用多项式乘法法则计算简便得多.二、平方差公式(a+b)(a-b)=a2-b21.语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.例如:(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b22.特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方),而不要认为是前项的平方减去后项的平方,这和项的位置无关,应该首先分清相同项和相反项.3.公式中的字母a、b可以表示数,也可以表示单项式、多项式.某些式子,可以通过添加括号,变成平方差公式再应用.如果是单项式或多项式运用平方差公式,平方时,应把单项式或多项式加上括号.例如:(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b-c)(b-c)=a2-(b2-2bc+c2)=a2-b2+2bc-c2三、完全平方差公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b21.语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.例如:(a+3b)2=a2+2×a×3b+(3b)2=a2+6ab+9b2(2x-3)2=(2x)2-2×2x×3+32=4x2-12x+9记忆要诀简记为“首平方,末平方,积的2倍放中央”.2.特征:左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.3.公式中的a、b可以表示数,也可以表示单项式或多项式.4.有些问题要用到添括号法则、运算律或幂的有关性质.如(-a-b)2=[-(a+b)]2=(a+b)2;(-a+b)2=(b-a)2.5.两个完全公式之间的关系:(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2-4ab.四、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号.a+b+c=a+(b+c),a-b-c=a-(b+c)注意:(1)括号内的项是指哪些项;(2)括号前是正号还是负号.(3)逆用乘法分配律也具有添括号的作用.如-10x+5y+15z=-5(2x-y-3z).问题·思路·探究问题 在一次数学课外活动中,四个同学进行比赛,其计算的题目和过程如下: A :98×102=(100-2)(100+2)=1002-22=9 996;B :(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=12-2x 2=1-2x 2;C :2 0042-1 9962=(2 004+1 996)(2 004-1 996)=32 000;D :(2a +b )(3a-b )=(2a )2-b 2=4a 2-b 2.谁对谁错,请你当评委.思路:该问题主要是对平方差公式 (a +b )(a-b )=a 2-b 2的运用及其逆用.平方差公式实质上进行的是特殊形式的多项式乘法,运用平方差公式及其逆用往往使计算更简便.如(a-b +c )2-(a +b-c )2=[(a-b +c )+(a +b-c )][(a-b +c )-(a +b-c )]=-4ab +4ac.此外,平方差公式有如下的几何意义.如图15-3-1,平方差公式表示从边长为a 的大正方形面积中去掉边长为b 的小正方形后的阴影部分的面积.图15-3-1探究:98×102=(100-2)(100+2)=1002-22=9 996,故A 对;(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=1-4x 2,故B 错,他们都是利用平方差公式进行计算.2 0042-19962=(2 004+1 996)(2 004-1 996)=32 000,是逆用平方差公式,故C 对;而(2a +b )(3a-b )不符合平方差公式的特征不能用平方差公式,只能根据多项式乘法法则计算,结果为6a 2+ab-b 2,故D 错.典题·新题·热题例1计算:(1)5012;(2)99.82;(3)6031×5932;(4)2 0062-2 005×2 007. 思路解析:本题是利用平方差公式和完全平方公式进行简便运算,关键是写成公式的形式.解:(1)5012=(500+1)2=5002+2×500×1+12=250 000+1 000+1=251 001.(2)99.82=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.(3)6031×5932=(60+31)(60-31)=602-(31)2=3 600-91=3 59998. (4)原式=2 0062-(2 006-1)×(2 006+1)=2 0062-(2 0062-1)=1.深化升华 利用公式可以简便运算,应观察每个题的特征,找到符合公式的特征,利用公式,达到简便运算的目的.例2大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x (x +y )=2x 2+2xy 就可以用图15-3-2(1)的面积表示.图15-3-2(1)请写出图15-3-2(2)所表示的代数恒等式:________________;(2)请写出图15-3-2(3)所表示的代数恒等式:________________;(3)试画出一个几何图形,使它的面积能表示(x +y )(x +3y )=x 2+4xy +3y 2. 思路解析:本题是图形的拼接问题,可以看成是一种图形的两种面积表示方法,所以它们是相等的.计算面积时,列出的是整式的乘法式.解:(1)(x +y )(2x +y )=2x 2+3xy +y 2.(2)(2x +y )(x +2y )=2x 2+5xy +2y 2.(3)答案不唯一,如图15-3-3.图15-3-3例3已知(a +b )2=7,(a-b )2=4,求a 2+b 2和ab 的值.思路解析:由于(a +b )2和(a-b )2的展开式中都只含有a 2+b 2和ab ,所以把(a +b )2和(a-b )2展开,已知的两个等式可看成是关于a 2+b 2和ab 的二元一次方程组,可求a 2+b 2和ab 的值.解:由(a +b )2=7,得________ a 2+2ab +b 2=7.①由(a-b )2=4,得a 2-2ab +b 2=4.②①+②得________2(a 2+b 2)=11,________∴a 2+b 2=211. ①-②得4ab =3,∴ab =43. 深化升华 完全平方和、完全平方差与平方和之间的关系是整式变形的基础: (a +b )2-(a-b )2=4ab ,(a +b )2=(a 2+b 2)+2ab ,(a-b )2=(a 2+b 2)-2ab.例4已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.思路解析:式子a2+b2+c2-ab-bc-ac=0体现了三角形三边a、b、c的关系,从形式上看与完全平方式相仿,但差着2ab中的2倍,因此可以对等式两边都扩大2倍,从而得到结论.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0,即(a2-2ab+b2)+(b2-2bc+c2)+(c2+a2-2bc)=0.∴a-b=0,b-c=0,c-a=0,即a=b=c,所以△ABC是等边三角形.深化升华和例3一样,当式子中有平方和时,经常“凑”乘积的2倍,构造完全平方和,构造出非负数的和为0的情况.。
八年级数学乘法公式3
(a+b)(c+d) = ac + ad + bc+ bd
ac
bc
ac
ad
bc bd
ad
bd
和的(完全)平方公式:
a b 若將二項式成績公式中的 c用a代換,d用b代換 我們可以得到以下的結果 d + bc a+ d b)= a c a + ab a + bd b (a+b)( c 2 2 = a + ab + ba + b a2 ab a
2
平方差公式:
同樣的,我們也用代數的方式來證明一次
(a+b)(a-b) = a - ab + ba - b = a -b
現在我們四種 乘法公式都學 過啦, 一起複習一下 吧!
2
2
2
2
二項式乘積公式:
(a+b)(c+d)= ac + ad + bc + bd 和的完全平方公式:
(a+b) = a + 2ab +b 差的完全平方公式: 2 2 2 (a-b) = a - 2ab +b 平方差公式:
乘法公式
二項式乘積公式:
(a+b)(c+d)= ac + ad + bc + bd 和的完全平方公式:
(a+b) = a + 2ab +b 差的完全平方公式: 2 2 2 (a-b) = a - 2ab +b 平方差公式:
2
2
2
(a+b)(a-b) = a - b
2
2
二項式乘積公式:
(a+b)(c+d)= ac + ad + bc + bd a b 我們可以用兩種方式來 這個公式是怎麼來的呢? 表示大長方形的面積: 讓我們用以下的圖形來說明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法
一、单项式乘以多项式
例1:(-2a²)·(3ab²-5ab3)
对应练习:1、计算
(1)2(a+b-c) (2)(-2a)(2a+1) (3) 2m(3m²n-8n)+2(mn+1)
2、要使(2x²+ax+1)(-3x²)展开式中不含x³项,求a的值是多少?
3、化简求值:3xy(xy-xy²+x²y)- xy²(2x²-3xy+2x),其中x=2 , y=3.
4、达标检测
1、计算:(1)2xy(xy-x+y) (2) (-2a) (2a²b+3a²-b²) (3)
2、解方程:-2(1-2x)-10=1+10(-2x+5)
二、多项式与多项式相乘
1.例题:(3x-1)(4x+5)=__________.(-4x-y)(-5x+2y)=__________.对应练习
1.若(x+a)(x+b)=x2-kx+ab,则k的值为()
A.a+b B.-a-b C.a-b D.b-a
2.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()
A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 3.(x2-px+3)(x-q)的乘积中不含x2项,则()
A.p=q B.p=±q C.p=-q D.无法确定
4.若0<x<1,那么代数式(1-x)(2+x)的值是()
A.一定为正B.一定为负C.一定为非负数D.不能确定5.方程(x+4)(x-5)=x2-20的解是()
A.x=0 B.x=-4 C.x=5 D.x=40
6.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()
A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1
C.a=2,b=1,c=-2 D.a=2,b=-1,c=2
7.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()
A.36 B.15 C.19 D.21
8.(x+1)(x-1)与(x4+x2+1)的积是()
A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1
9.(x+3)(x+4)-(x-1)(x-2)=__________.
10.(y-1)(y-2)(y-3)=__________.
11.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.
12.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.
13.若a2+a+1=2,则(5-a)(6+a)=__________.
14.当k=__________时,多项式x-1与2-kx的乘积不含一次项.
15.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.
16.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.
17、计算下列各式
(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)
(3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y)
18、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.
19、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-5
2y),其中x=-1,y=2.
20、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.
21、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题
(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)
22、请你来计算:若1+x+x2+x3=0,求x+x2+x3+…+x2000的值.
三、乘法公式
平方差公式:
(m+n)(m-n)= ;(x+y)(x-y)= ; (a+b)(a-b)=
例题:计算:1、(2x2+5)( 2x2-5) 2、(-2x2+5)(-2x2-5)
练习:1.下列多项式乘法,能用平方差公式进行计算的是( )
A.(x+y)(-x-y)
B.(2x+3y)(2x-3z)
C.(-a-b)(a-b)
D.(m-n)(n-m)
2.下列计算正确的是( )
A.(2x+3)(2x-3)=2x2-9
B.(x+4)(x-4)=x2-4
C.(5+x)(x-6)=x2-30
D.(-1+4b)(-1-4b)=1-16b2
3.下列各式运算结果是x 2-25y 2的是( )
A.(x+5y)(-x+5y)
B.(-x -5y)(-x+5y)
C.(x -y)(x+25y)
D.(x -5y)(5y -x)
4. 计算:a(a -5)-(a+6)(a -6) ( x+y)( x -y)( x 2+y 2)
3. 9982-4
4.))(())(())((a c a c c b c b b a b a +-++-++-
完全平方公式
()2n m += ; ()2y x += ;()2b a + = ;
例题:(1)(3y+2x)2 (2) 232x 21--⎪⎭
⎫ ⎝⎛+y
练习1.填空题
(1)a 2-4ab+( )=(a-2b)2 (2)(a+b)2-( )=(a-b)2
(3)(3x+2y)2-(3x-2y)2= (4)(3a 2-2a+1)(3a 2+2a+1)=
(5)( )-24a 2c 2+( )=( -4c 2)2
1.下列等式能成立的是( ).
A.(a-b)2=a 2-ab+b 2
B.(a+3b)2=a 2+9b 2
C.(a+b)2=a 2+2ab+b 2
D.(x+9)(x-9)=x 2-9
2.(a+3b)2-(3a+b)2计算的结果是( ).
A.8(a-b)2
B.8(a+b)2
C.8b 2-8a 2
D.8a 2-8b 2
3.在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+
(4)ab ab ab a b b a =-=--23)2)(3(中错误的有( )
A.1个
B.2个
C.3个
D.4个 4.计算 (5x+2y)(5x-2y) ()2
32-x
5.先化简再求值:b)-2b)(a (a -2b)-b)(a (a ++,其中1,2-==b a。