浙江省台州市玉环县中考数学模拟试题(含解析)

合集下载

浙江省台州市玉环县市级名校2024届中考数学模拟预测题含解析

浙江省台州市玉环县市级名校2024届中考数学模拟预测题含解析

浙江省台州市玉环县市级名校2024学年中考数学模拟预测题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =kx的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣72.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.3.如图,在△ABC 中,∠C =90°,∠B =10°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论: ①AD 是∠BAC 的平分线; ②∠ADC =60°;③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:1. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④4.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.245.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO 缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)6.已知a-2b=-2,则4-2a+4b的值是()A.0 B.2 C.4 D.87.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1078.a的倒数是3,则a的值是()A.13B.﹣13C.3 D.﹣39.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定10.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).12.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.13.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于12AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.14.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________. 15.如果正比例函数y=(k-2)x 的函数值y 随x 的增大而减小,且它的图象与反比例函数y=kx的图象没有公共点,那么k 的取值范围是______. 16.若不等式组有解,则m 的取值范围是______.三、解答题(共8题,共72分)17.(8分)(1)如图1,在矩形ABCD 中,AB =2,BC =5,∠MPN =90°,且∠MPN 的直角顶点在BC 边上,BP =1.①特殊情形:若MP 过点A ,NP 过点D ,则PAPD= . ②类比探究:如图2,将∠MPN 绕点P 按逆时针方向旋转,使PM 交AB 边于点E ,PN 交AD 边于点F ,当点E 与点B 重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由. (2)拓展探究:在Rt △ABC 中,∠ABC =90°,AB =BC =2,AD ⊥AB ,⊙A 的半径为1,点E 是⊙A 上一动点,CF ⊥CE 交AD 于点F .请直接写出当△AEB 为直角三角形时ECFC的值. 18.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A 1,A 2,A 3区域分别对应9折8折和7折优惠,B 1,B 2,B 3,B 4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.19.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC 的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=13,求AE的长.20.(8分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.21.(8分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O 的方程;若不存在,说明理由.22.(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.23.(12分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.24.计算:230120.125200412-⎛⎫-⨯++-⎪⎝⎭参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14,故选B.2、C【解题分析】直接利用反比例函数的性质分别分析得出答案.【题目详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【题目点拨】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.3、D【解题分析】①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D 在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【题目详解】①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.【题目点拨】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.4、B【解题分析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【题目详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴1 169xx=+,解得:x=2,∴S△ABC=18,故选B.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.5、D【解题分析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD'=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.6、D【解题分析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.7、D【解题分析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数8、A【解题分析】根据倒数的定义进行解答即可.【题目详解】∵a的倒数是3,∴3a=1,解得:a=13.故选A.【题目点拨】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9、C【解题分析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.10、C【解题分析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.二、填空题(本大题共6个小题,每小题3分,共18分)11、AB=AD (答案不唯一).【解题分析】已知OA=OC ,OB=OD ,可得四边形ABCD 是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD 或BC=CD 或AC ⊥BD ,本题答案不唯一,符合条件即可.12、(15﹣【解题分析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【题目详解】∵P为A B的黄金分割点(AP>PB),∴AP AB×﹣5,∴PB=AB﹣PA=10﹣(5)=(15﹣cm.故答案为(15﹣.【题目点拨】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB.13、到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形【解题分析】先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形.【题目详解】解:由作法得EF垂直平分AC,则OA=OC,而OD=OB,所以四边形ABCD为平行四边形,而∠ABC=90°,所以四边形ABCD为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【解题分析】根据根的判别式计算即可.【题目详解】解:依题意得:∵关于x 的一元二次方程220--=x x k 有两个相等的实数根, ∴=24ac b - =4-4⨯1⨯(-k )=4+4k=0解得,k=-1.故答案为:-1.【题目点拨】本题考查了一元二次方程根的判别式,当=24ac b ->0时,方程有两个不相等的实数根;当=24ac b -=0时,方程有两个相等的实数根;当=24ac b -<0时,方程无实数根. 15、02k <<【解题分析】先根据正比例函数y=(k-1)x 的函数值y 随x 的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=k x 的图象没有公共点,说明反比例函数y=k x的图象经过一、三象限,k >0,从而可以求出k 的取值范围.【题目详解】∵y=(k-1)x 的函数值y 随x 的增大而减小,∴k-1<0∴k <1而y=(k-1)x 的图象与反比例函数y=k x的图象没有公共点,∴k >0综合以上可知:0<k <1.故答案为0<k <1.【题目点拨】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k 的意义是解决本题的关键.【解题分析】分析:解出不等式组的解集,然后根据解集的取值范围来确定m 的取值范围.解答:解:由1-x≤2得x≥-1又∵x >m根据同大取大的原则可知:若不等式组的解集为x≥-1时,则m≤-1若不等式组的解集为x≥m 时,则m≥-1.故填m≤-1或m≥-1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.三、解答题(共8题,共72分)17、 (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或31+【解题分析】(1)证明Rt ABP Rt CDP ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【题目详解】解:(1)APB DPC 90DPC PDC 90=,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴∽, 21512PA AB PD CP ∴===-, 故答案为12; (2)点E 与点B 重合时,四边形EBFA 为矩形, 则PE 1PF 2=为定值; (3)①当AEB 90∠︒=时,如图3,过点E 、F 分别作直线BC 的垂线交于点G ,H ,由(1)知:ECB CFH α==∠∠,AB 2AE 1ABE 30∠︒=,=,则=, EB ABcos303︒则==, 3cos 602GB EB ︒==,同理32EG =, 322cos cos 2GC EC FH AB αα+==== . 则FH 2cos cos FC αα==, 则314EC FC =+ ; ②当EAB 90∠︒=时,如图4,GB EA 1EG FH AB 2==,===,则BE 5GC 3=,=,22EG G 13EC C =+=EG 2tan tan GC 3EGC α∠===,则cos 13α=FH 13cos 4FC α==, 则4EC FC= , 故EC 4FC =或314+ . 【题目点拨】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏. 18、(1)12;(2)16. 【解题分析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【题目详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:2142=, 故答案为:12; (2)树状图如下图所示,则顾客享受折上折优惠的概率是:21346=⨯, 即顾客享受折上折优惠的概率是16. 【题目点拨】 本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.19、(1)证明见解析;(22.【解题分析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B ,然后由等腰三角形的性质可知∠B=∠OCB ,由对顶角的性质可知∠DCE=∠OCB ,故此可知∠DAC=∠DCE ;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得,于是可求得.【题目详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴DC DEAD DC=2ED=.解得:,∴AE=AD﹣.20、(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解题分析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B (0,3),C (0,﹣2),∴BC=1=OA ,在△OAC 和△BCD 中OA BC AOC DBC OC BD =⎧⎪∠=∠⎨⎪=⎩,∴△OAC ≌△BCD (SAS ),∴AC=CD , ∴∠OAC=∠BCD ,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC ⊥CD ;(3)∠BMC=41°.如图,连接AD ,∵AE=OC ,BD=OC ,AE=BD ,∴BD ∥x 轴,∴四边形AEBD 为平行四边形,∴AD ∥BM ,∴∠BMC=∠DAC ,∵△OAC ≌△BCD ,∴AC=CD ,∵AC ⊥CD ,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.21、问题拓展:(x ﹣a )1+(y ﹣b )1=r 1综合应用:①见解析②点Q 的坐标为(4,3),方程为(x ﹣4)1+(y ﹣3)1=15.【解题分析】试题分析:问题拓展:设A (x ,y )为⊙P 上任意一点,则有AP=r ,根据阅读材料中的两点之间距离公式即可求出⊙P 的方程;综合应用:①由PO=PA ,PD ⊥OA 可得∠OPD=∠APD ,从而可证到△POB ≌△PAB ,则有∠POB=∠PAB .由⊙P 与x 轴相切于原点O 可得∠POB=90°,即可得到∠PAB=90°,由此可得AB 是⊙P 的切线;②当点Q 在线段BP 中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ .易证∠OBP=∠POA ,则有tan ∠OBP==.由P 点坐标可求出OP 、OB .过点Q 作QH ⊥OB 于H ,易证△BHQ ∽△BOP ,根据相似三角形的性质可求出QH 、BH ,进而求出OH ,就可得到点Q 的坐标,然后运用问题拓展中的结论就可解决问题.试题解析:解:问题拓展:设A (x ,y )为⊙P 上任意一点,∵P(a,b),半径为r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案为(x﹣a)1+(y﹣b)1=r1;综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=3.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.22、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解题分析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【题目详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1) m≠1且m≠2-3;(2) m=-1或m=-2.【解题分析】(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;(2) 解方程,得:12x=m,2x=-3,由m为整数,且方程的两个根均为负整数可得m的值. 【题目详解】解:(1) △=2b-4ac=(3m-2)2+24m=(3m+2)2≥1∴当m≠1且m≠2-3时,方程有两个不相等实数根.(2)解方程,得:12x=m,2x=-3,m为整数,且方程的两个根均为负整数,∴m=-1或m=-2.∴m=-1或m=-2时,此方程的两个根都为负整数【题目点拨】本题主要考查利用一元二次方程根的情况求参数.24、5【解题分析】本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【题目详解】原式=4-8×0.125+1+1=4-1+2=5【题目点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.。

2022年浙江省台州市玉环市中考数学一模试题及答案解析

2022年浙江省台州市玉环市中考数学一模试题及答案解析

2022年浙江省台州市玉环市中考数学一模试卷一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如果向东走5米记作+5米,那么−3米表示( )A. 向东走5米B. 向西走5米C. 向东走3米D. 向西走3米2. 如图是某几何体的三视图,则该几何体是( )A. B. C. D.3. 自从新冠疫情爆发以来,玉环市民积极参加防疫工作并接种新冠疫苗.截至2022年3月21日,全市共计接种新冠疫苗约1740000剂次,1740000用科学记数法表示为( )A. 1.74×106B. 174×104C. 17.4×105D. 1.74×1074. 若a>b,则下列式子一定成立的是( )A. a−2<b+2B. −5a>−5bC. 3a>3bD. a2<b25. 小明在学习《实数》这一章时,用两个面积为1的正方形以如图方式拼出一个面积为2的正方形,则这个面积为2的正方形的边长的值大约在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间6. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率7. 如图,在△ABC中,∠A=30°,∠ABC=100°.观察图中尺规作图的痕迹,可知∠BFC的度数为( )A. 130°B. 120°C. 110°D. 100°8. 如图,面积为18的正方形ABCD内接于⊙O,则AB⏜的长度为( )A. 9πB. 9π2C. 3π2D. 9π49. 小明和小亮期中考试的语文、数学成绩分别都是80分,m分,到了期末考时,小明期末考试的语文、数学两科成绩依次比期中考试增长了20%,10%.两科总成绩比期中增长的百分数为a.小亮期末考试的语文、数学两科成绩依次比期中考试增长了15%,10%.两科总成绩比期中增长的百分数为b.则( )A. a=bB. a>bC. a<bD. 4a=3b10. 如图,在菱形ABCD中,∠B=60°.△AEF的两顶点E,F分别落在边BC,CD上.从给出的四个条件中任选一个:①∠EAF=60°;②∠AEF=60°;③AE=AF,④EA=EF,能够推出△AEF为等边三角形的有( )A. ①②B. ②④C. ①②④D. ①③④二、填空题(本大题共6小题,共30.0分)11. 分解因式:x2+3x=______.12. 如图,直线a//b,将一块含30°角的直角三角板ABC按如图方式放置(∠CAB=30°),其中一条直角边的两顶点C.A分别落在直线a.b上.若∠1=30°,则∠2=______度.13. 一个不透明的布袋中有1个红球,2个黑球,这些球除颜色外无其他差别,先随机摸出一个小球,记下颜色后放回搅匀再摸出一个小球,则两次摸出的小球颜色相同的概率是______.14. 如图,反比例函数y=k的图象经过点A(−1.−1),则当函数值y≥1时,自变量x的取值x范围为______.15. 如图,已知⊙O内切于Rt△ABC,∠C=90°,BC边上切点为点D.作⊙O的直径DE,连结AE并延长AE交BC于点F,若∠AFC=45°,FD=2,则AB的长为______.16. 斜抛小球,小球触地后呈抛物线反弹,每次反弹后保持相同的抛物线形状(开口方向与开口大小前后一致),第一次反弹后的最大高度为ℎ1,第二次反弹后的最大高度为ℎ2.第二次反弹后,小球越过最高点落在垂直于地面的挡板C处,且离地高度BC=23ℎ1,若OB=90dm,OA=2AB.则ℎ2ℎ1为______.三、解答题(本大题共8小题,共80.0分。

2024年浙江省台州市中考一模数学试卷(数学参考答案)

2024年浙江省台州市中考一模数学试卷(数学参考答案)

台州市2024年九年级教学质量评估试题数学参考答案和评分细则一、选择题(本题共10小题,每小题3分,共30分)题号12345678910答案BDACCD DACC二、填空题(本题共6小题,每小题4分,共24分)11.2(答案不唯一)12.x (x -2y )13.3114.13215.27°16.a1三、解答题(本题共8小题,第17~19题每小题6分,第20,21题每小题8分,第22,23题每小题10分,第24题12分,共66分)17.(1)计算:2)2(163-+--=3−4+4…………………………(3项计算,错一项扣1分)=3;…………………………3分(2)解不等式组:⎩⎨⎧>+>-.21;813x x 解不等式①得:x >3;…………………………1分解不等式②得:x >1;…………………………1分⸫不等式组的解集为:x >3.…………………………1分18.作法如图所示.(说明:尺规作图作出AC 的中点O 得4分,连接BO 得2分,共6分.其它合理作法均给分.)…………………………6分19.在Rt △OBD 中,cos20°=OBOD,…………………………3分⸫OB ≈940.OD≈10.6cm.…………………………3分答:折射光线OB 长约为10.6cm.20.(1)解:设线段BC 的解析式为:v =kt +b .…………………………1分把B (230,40),C (270,0)代入解析式得:⎩⎨⎧=+=+027040230b k b k ,…………………………1分解得:⎩⎨⎧==2701-b k .…………………………1分∴v =−t +270.…………………………1分(2)设线段OA 的解析式为:v =k 't .把A (90,40)代入,得k '=94.∴49v t =.…………………………1分把30v =代入v =-t +270得240t =.…………………………1分把30v =代入49v t =得1352t =.…………………………1分∴列车速度不低于30米/秒的行驶时间为:13534524022-=(秒).……………1分21.(1)解:∵△BCE 是等边三角形,∴∠BCE =60︒,在正方形ABCD 中,∠BCD =90︒,∴∠DCE =BCD BCE ∠-∠=30︒,………………………2分又∵EC =BC =CD ,∴∠DEC =(180°−∠DCE )÷2=(180°−30°)÷2=75°.………………………2分(2)证明:∵CE =CD ,∴∠DEC =∠CDE =75°,………………………1分∴BD 是正方形的对角线,∴∠CDF =45°,∴∠DFE =∠DCE+∠CDF=30°+45°=75°,…………………………1分∴∠DFE =∠CDE ,又∵∠DEF =∠CED ,∴△EDF ∽△ECD ,…………………………1分∴DE EFEC DE=,即:2DE EF EC =⋅.…………………………1分22.解:(1)解法一:1号饲料效果较好,理由如下:13.4106.37.35.49.47.36.33.57.38.35.4=+++++++++=A x (kg ),……2分71.3102.33.36.35.44.39.37.34.45.36.3=+++++++++=B x (kg ),……2分A 水池样本平均重量大于B 水池样本平均重量,因此,1号饲料效果较好.……1分解法二:如果学生用中位数判断饲料效果,且计算正确,结论正确,扣2分,因为中位数不能准确判断饲料的喂养效果.具体得分点如下:1号饲料效果较好,理由如下:A 水池样本重量的中位数为3.75kg ,……………………1分B 水池样本重量的中位数为3.6kg.……………………1分A 水池样本重量的中位数大于B 水池样本重量的中位数,因此,1号饲料效果较好.……………………1分(2)A 水池符合出售标准的条数为:200104⨯=80(条).……………………2分B 水池符合出售标准的条数为:160102⨯=32(条).……………………2分80+32=112(条).根据样本估计总体得:估计此时这360条鱼中符合出售标准的鱼大约有112条.………………1分23.(1)解:当p =10时,C 坐标为(10,40),由对称得点A 坐标为(-10,40),…………………………1分∴抛物线AB 的解析式为:()211040.20y x =-++…………………………2分(2)①解:根据题意,设)3511y E ,(,)3022y E ,(.∵21L L <,∴213035y y +<+,即:35+()21355020p p ⎡⎤--+-⎢⎥⎣⎦<30+()21305020p p ⎡⎤--+-⎢⎥⎣⎦,……………2分化简得:65-2p >20,∴245<p ,…………………………1分∴2458<≤p .…………………………1分②解:设EF −AC =2d ,三段塑料管总长度为L .根据题意可得:),(p d d p E -+-+502012,∴)(p d d p L -+-++=502012222,化简得:110101012+--=)(d L ,…………………………1分当d =10时,L 有最大值110.∴当EF 与AC 的差为20m 时,三段塑料管总长度最大,最大值为110m.……2分24.(1)解:设和美角的度数为x .根据题意可得:x +90°+x +x =180°,…………1分解得:x =30°,∴和美角的度数为30°.……………2分(2)证明:如图1,作BD ⊥AB 交AC 于D ,∴∠ABD =90°,∵△ABC 是和美三角形,∠ABC 是钝角,∠A 是和美角,∴∠ABC =∠ABD +∠DBC=90°+∠DBC =90°+∠A ,∴∠DBC =∠A ,又∵∠C =∠C ,∴△ABC ∽△BDC ,……………………2分∴A ABBDAC BC tan ==.……………………1分(如图2,作CD ⊥AC 交AB 延长线于D ,也可证.其它证法,合理均给分.)(3)①如图3,当∠EAC 为和美角时,由(2)得:ACBCAC CE BAC ==∠tan ,∴CE =BC =5,∵∠CEB =∠AED ,∠ADE =∠ABC ,∴AD =AE ,作CF ⊥AB 于F ,图1图2∴∠ACB =∠CFB ,∴△ABC ∽△CBF ,∴EF =FB =13252=AB BC ,∴AD =AE =13-EB =13119.……………………2分如图4,当∠ACE 为和美角时,∵△AEC ∽△DEB ,∴∠EBD 为和美角,由(2)得:DBADDB DE ABD ==∠tan ,∴AD =DE ,∴∠DAE =∠AED=∠CEB =∠DCB ,∴BE =BC =5,作DH ⊥AB 于H ,∴AH =HE =42513=-,由△ADH ∽△ABD ,∴522=⋅=AB AH AD ,∴AD =13252=.……………………2分②22或215-.……………………2分解析:设∠CAB =a.图5图6图7图8ⅰ.如图5,若∠CAB 与∠CDB 是和美角,则∠ACD =∠BCD =45°,CE =CB ,a =22.5°.所以22==OD CG ED CE .ⅱ.如图6,若∠CAB 与∠DCB 是和美角,则∠CEA =90°+a ,∠ACE =90−2a ,∠DCB =2a ,∠CBD =90°+2a ,由△BDC 内角和可得a =18°.所以215-==ED OE ED CE .ⅲ.如图7,若∠ACD 与∠CDB 是和美角,则∠CEA =135°−0.5a ,∠ACE =45°−0.5a ,∠DCB =45°+0.5a ,∠CBD =90°+a ,由△BDC 内角和可得a =18°.所以215-==ED GE ED CE .ⅳ.如图8,若∠ACE 与∠DCB 是和美角,则∠CEA =135°−0.5a ,∠ACE =45°-0.5a ,∠DCB =45°−0.5a ,由∠ACB =90°可得a =0°,这种情形不存在.图4。

玉环中考一模数学试卷

玉环中考一模数学试卷

考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 已知等差数列{an}中,a1=3,公差d=2,则第10项a10的值为:A. 21B. 22C. 23D. 242. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为B,则点B的坐标为:A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)3. 下列函数中,在其定义域内是单调递增的是:A. y = -2x + 1B. y = x^2 - 4x + 3C. y = 2^xD. y = log2(x - 1)4. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为:A. 75°B. 105°C. 120°D. 135°5. 已知等比数列{an}中,a1=2,公比q=3,则第4项a4的值为:B. 27C. 81D. 1626. 若等差数列{an}的前n项和为Sn,且S10=100,S20=200,则a15的值为:A. 10B. 15C. 20D. 257. 在平面直角坐标系中,点P(3,4)关于原点的对称点为Q,则点Q的坐标为:A.(-3,-4)B.(3,-4)C.(-3,4)D.(3,4)8. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a、b、c的关系为:A. a > 0, b = 0, c = 0B. a < 0, b = 0, c = 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 09. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为:A. 45°B. 60°C. 75°10. 已知等比数列{an}中,a1=5,公比q=1/2,则第5项a5的值为:A. 5B. 2.5C. 1.25D. 0.625二、填空题(每小题4分,共20分)11. 若等差数列{an}中,a1=1,公差d=2,则第n项an的表达式为______。

2022年浙江省台州玉环重点中学中考数学最后一模试卷含解析

2022年浙江省台州玉环重点中学中考数学最后一模试卷含解析

2022年浙江省台州玉环重点中学中考数学最后一模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.函数2(0)y x x =->的图像位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6π C .2sin20°+29π D .23π 3.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×1054.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a |>|b |D .b +c >05.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15 B .12 C .9 D .66.已知a+b =4,c ﹣d =﹣3,则(b+c)﹣(d ﹣a)的值为( )A .7B .﹣7C .1D .﹣17.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO =60°,BC 交y 轴于点D ,DB :DC =3:1.若函数(k >0,x >0)的图象经过点C ,则k 的值为( )A .B .C .D .8.如图,不等式组1010x x +⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .9.计算23(1)x -﹣23(1)x x -的结果为( ) A .31x - B .31x - C .23(1)x - D .23(1)x - 10.估计19﹣1的值为( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间二、填空题(本大题共6个小题,每小题3分,共18分)11.比较大小:45_____54.(填“<“,“=“,“>“)12.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB=2, AD=1,点E 的坐标为(0,2).点F (x ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2:1两部分,则x 的值为__.13.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角α为60时,两梯角之间的距离BC 的长为3m.周日亮亮帮助妈妈整理换季衣服,先使α为60,后又调整α为45,则梯子顶端离地面的高度AD 下降了______m(结果保留根号).14.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+222b bc c-++3|a﹣b|=_____.15.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.16.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.三、解答题(共8题,共72分)17.(8分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是 .(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A ,B ,C ,D 四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.18.(8分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.19.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 3≈1.7)20.(8分)计算:(π﹣3.14)0+|2﹣1|﹣2sin45°+(﹣1)1. 21.(8分)已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;22.(10分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t 分钟),将调查统计的结果分为四个等级:Ⅰ级(020)t ≤≤、Ⅱ级(2040)t ≤≤、Ⅲ级(4060)t ≤≤、Ⅳ级(60)y >.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在__________级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?23.(12分)如图,现有一块钢板余料ABCED ,它是矩形缺了一角,90,6,10,A B D AB dm AD dm ∠=∠=∠=︒==4,2BC dm ED dm ==.王师傅准备从这块余料中裁出一个矩形AFPQ (P 为线段CE 上一动点).设AF x =,矩形AFPQ 的面积为y .(1)求y 与x 之间的函数关系式,并注明x 的取值范围;(2)x 为何值时,y 取最大值?最大值是多少?24.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据反比例函数中k y x =,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大,进而得出答案.【详解】解:函数2(0)y x x=->的图象位于第四象限. 故选:D .【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.2、A【解析】连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.【详解】连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=12OC=1,S阴影=S△AOC+S扇形OCB=12OA•CH+2302360π⨯=1+3π,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.3、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、C【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键5、A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A6、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故选A .考点:代数式的求值;整体思想.7、D【解析】解:∵四边形ABCD 是平行四边形,点A 的坐标为(﹣4,0),∴BC =4,∵DB :DC =3:1,∴B (﹣3,OD ),C (1,OD ),∵∠BAO =60°,∴∠COD =30°,∴OD =,∴C (1,),∴k =,故选D .点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键. 8、B【解析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x >-1;解第二个不等式得:x≤1, 在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.9、A【解析】根据分式的运算法则即可【详解】 解:原式=23(1)3(1)1x x x-=--, 故选A.【点睛】本题主要考查分式的运算。

2022届浙江省台州市玉环县市级名校中考一模数学试题含解析

2022届浙江省台州市玉环县市级名校中考一模数学试题含解析

2022届浙江省台州市玉环县市级名校中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.不解方程,判别方程2x 2﹣32x =3的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .有一个实数根D .无实数根2.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与33.下列运算正确的是 ( ) A .22a +a=33a B .()32m =5mC .()222x y x y +=+D .63a a ÷=3a4.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( ) A .m≠±2B .m=2C .m=–2D .m≠25.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去6.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p ,而在另一个瓶子中是1:q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( ) A .2P q+ B .2P qPq+ C .2+2p q P q Pq+++D .2+2p q pqP q +++7.下列运算正确的是( ) A .a 2•a 3=a 6B .(12)﹣1=﹣2 C 16=±4D .|﹣6|=68.如图,有一矩形纸片ABCD ,AB=6,AD=8,将纸片折叠使AB 落在AD 边上,折痕为AE ,再将△ABE 以BE 为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.149.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补10.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.5 11.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b212.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.14.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.15.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C',再将所折得的图形沿EF折叠,使得点D和点A重合.若AB3=,BC4=,则折痕EF的长为______.16.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.17.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=kx(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为499,则k= .18.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x (min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.20.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)21.(6分)如图,在△ABC中,BC=62,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.(1)请判断四边形AEA′F的形状,并说明理由;(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.22.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE=3,DE=4,求tan ∠BAF 的值.23.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表 分组 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810请根据图表中所提供的信息,完成下列问题:表中a= ,b= ,样本成绩的中位数落在 范围内;请把频数分布直方图补充完整;该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?24.(10分)已知关于x 的一元二次方程x 2+(2m +3)x +m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值. 25.(10分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D . (1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .26.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?27.(12分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(32)42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B2、A 【解析】根据只有符号不同的两数互为相反数,可直接判断. 【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数; 3与13互为倒数,故不正确; 3与3相同,故不是相反数. 故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单. 3、D 【解析】根据整式的混合运算计算得到结果,即可作出判断. 【详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意, 故选D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 4、D 【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2. 故选D 5、A 【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃. 【详解】③中含原三角形的两角及夹边,根据ASA 公理,能够唯一确定三角形.其它两个不行. 故选:A. 【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题. 6、C 【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1qq +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 7、D 【解析】运用正确的运算法则即可得出答案. 【详解】A 、应该为a 5,错误;B 、为2,错误;C 、为4,错误;D 、正确,所以答案选择D 项. 【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键. 8、C 【解析】由题意知:AB=BE=6,BD=AD ﹣AB=2(图2中),AD=AB ﹣BD=4(图3中); ∵CE ∥AB , ∴△ECF ∽△ADF , 得12CE CF AD DF ==, 即DF=2CF ,所以CF :CD=1:3, 故选C .【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键. 9、C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.10、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B11、B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.12、D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1:2试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.14、43 3π-【解析】【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【详解】如图,连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=12AB=2,BE=2242-=23,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE=2120211·36022AE BE π⨯-⨯=4142233 343ππ-⨯⨯=-,故答案为43 3π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE 的面积和△ABE的面积是解本题的关键.15、25 12首先由折叠的性质与矩形的性质,证得BND 是等腰三角形,则在Rt ABN 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB ≌C'ND ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解【详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==, 四边形ABCD 是矩形, AD //BC ∴,AD BC 4==,BAD 90∠=,ADB CBD ∠∠∴=,NBD ADB ∠∠∴=,BN DN ∴=,设AN x =,则BN DN 4x ==-,在Rt ABN 中,222AB AN BN +=,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=, C'D CD AB 3===,BAD C'90∠∠==,ANB C'ND ∠∠=,ANB ∴≌()C'ND AAS ,FDM ABN ∠∠∴=,tan FDM tan ABN ∠∠∴=,AN MF AB MD∴=,7MF832∴=,7MF12∴=,由折叠的性质可得:EF AD⊥,EF//AB∴,AM DM=,13ME AB22∴==,3725 EF ME MF21212∴=+=+=,故答案为25 12.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.16、1 2【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可. 【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=61= 122;故答案为:1 2 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17、1.【解析】先根据反比例函数比例系数k 的几何意义得到112233OB C OB C OB C 11S S S |k |k 22∆====,再根据相似三角形的面积比等于相似比的平方,得到用含k 的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为4918,列出方程,解方程即可求出k 的值.【详解】解:根据题意可知,112233OB C OB C OB C 11S S S |k |k 22∆==== 11223112233,//////OA A A A A A B A B A B y ==轴,设图中阴影部分的面积从左向右依次为123,,S S S ,则112s k =, 11223OA A A A A ==,222333:1:4,:1:9OB C OB C S S S S ∴== 2311,818S k S k ∴== 11149281818k k k ∴++= 解得:k=2.故答案为1.考点:反比例函数综合题.18、33.【解析】试题分析:设品尝孔明菜的朋友有x 人,依题意得,5x +3=6x -3,解得x =6,所以孔明菜有5x +3=33袋. 考点:一元一次方程的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)当0≤x≤8时,y=10x+20;当8<x≤a 时,y=800x ;(2)40;(3)要在7:50~8:10时间段内接水. 【解析】(1)当0≤x≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,即可求得k 1、b 的值,从而得一次函数的解析式;当8<x≤a 时,设y =2k x ,将(8,100)的坐标代入y =2k x,求得k 2的值,即可得反比例函数的解析式;(2)把y =20代入反比例函数的解析式,即可求得a 值;(3)把y =40代入反比例函数的解析式,求得对应x 的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x 的取值范围,从而求得李老师接水的时间范围.【详解】解: (1)当0≤x≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,可求得k 1=10,b =20∴当0≤x≤8时,y =10x +20.当8<x≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x≤a 时,y =800x. 综上,当0≤x≤8时,y =10x +20;当8<x≤a 时,y =800x(2)将y =20代入y =800x , 解得x =40,即a =40.(3)当y =40时,x =80040=20 ∴要想喝到不低于40 ℃的开水,x 需满足8≤x≤20,即李老师要在7:38到7:50之间接水.【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.20、 (1)开通隧道前,汽车从A 地到B 地要走)千米;(2)汽车从A 地到B 地比原来少走的路程为千米.【解析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程.【详解】(1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC =80千米, ∴CD =BC •sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21、(1)四边形AEA′F为菱形.理由见解析;(2)1.【解析】(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=22BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=12•12•6•6,然后利用算术平方根的定义求AE即可.【详解】(1)四边形AEA′F为菱形.理由如下:∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∵△AEF沿着直线EF向下翻折,得到△A′EF,∴AE=A′E,AF=A′F,∴AE=A′E=AF=A′F,∴四边形AEA′F为菱形;(2)∵四边形AEA′F是正方形,∴∠A=90°,∴△ABC为等腰直角三角形,∴AB=AC=22BC=22×2=6,∵正方形AEA′F的面积是△ABC的一半,∴AE2=12•12•6•6,∴AE=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22、(1)证明见解析(2)1 2【解析】分析:(1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE 是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=4182 BFAB==.详解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得5==,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四边形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=41 82 =.点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.23、(1)8,20,2.0≤x<2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.【解析】【分析】(1)根据题意和统计图可以求得a、b的值,并得到样本成绩的中位数所在的取值范围;(2)根据b的值可以将频数分布直方图补充完整;(3)用1000乘以样本中该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生比例即可得.【详解】(1)由统计图可得,a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x <2.4范围内,故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如图所示;(3)1000×1050=200(人), 答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.【点睛】本题考查了频数分布表、频数分布直方图、中位数等,读懂统计图与统计表,从中找到必要的信息是解题的关键.24、 (1)m ≥﹣;(2)m 的值为2.【解析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m +2)2﹣4×1×m 2≥1, 解得:m ≥﹣;(2)由根与系数的关系得:α+β=﹣(2m +2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m +2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m ≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.25、(1)详见解析;(2)313PB【解析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【详解】解:(1)如图,连结OA,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC,又∠BAD=∠BOC,∴∠BAD=∠AOC∵∠AOC+∠OAC=90°,∴∠BAD+∠OAC=90°,∴OA⊥AD,即:直线AD是⊙O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,∵BE是直径,∴∠EAB=90°,∴OC∥AE,∵OB=132,∴BE=13∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=132-52=4在直角△PEF中,FP=4,EF=6,PE2=16+36=52,在直角△PEB中,BE=13,PB2=BE2-PE2,PB=21352=313.【点睛】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.26、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.27、(1)①AE+BF =EC ;②AF+BF=2CE ;(2)AF ﹣BF=2CE ,证明见解析;(3)FG=65. 【解析】 (1)①只要证明△ACE ≌△BCD (AAS ),推出AE=BD ,CE=CD ,推出四边形CEFD 为正方形,即可解决问题; ②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE .由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG ∥EC ,可知FG AF EC AE=,由此即可解决问题;【详解】解:(1)证明:①如图1,过点C 做CD ⊥BF ,交FB 的延长线于点D ,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=, ∴325FG =, ∴FG=65. 【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

2024届浙江省台州玉环重点中学中考三模数学试题含解析

2024届浙江省台州玉环重点中学中考三模数学试题含解析

2024届浙江省台州玉环重点中学中考三模数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的是 ( ) A .22a +a=33a B .()32m =5mC .()222x y x y +=+D .63a a ÷=3a2.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A .50°B .40°C .30°D .25°3.关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根为0,则a 值为( ) A .1B .﹣1C .±1D .04.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( ) A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人5.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则AE 的弧长为( )A .2πB .πC .32π D .36.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .47.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)28.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同9.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x110.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A.3.1;B.4;C.2;D.6.1.11.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等12.如图,△ABC 是⊙O 的内接三角形,∠BOC =120°,则∠A 等于( )A .50°B .60°C .55°D .65°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若分式方程2m2x 22x-=--有增根,则m 的值为______. 14.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S 甲2=8.5,S 乙2=2.5,S 丙2=10.1,S 丁2=7.4,二月份白菜价格最稳定的市场是_____. 15.不等式组1020x x +≥⎧⎨->⎩的整数解是_____.16.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.17.若反比例函数y =﹣6x的图象经过点A(m ,3),则m 的值是_____. 18111242-=112393-=1134164-=,…则第n 个等式为_____.(用含n 的式子表示) 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程组220y xx y =⎧⎨+-=⎩. 20.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)21.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=2,AE=6,求EC的长.22.(8分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.23.(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.分别求每台A型, B型挖掘机一小时挖土多少立方米?若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24.(10分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.25.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?26.(12分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.27.(12分)已知二次函数y=mx2﹣2mx+n的图象经过(0,﹣3).(1)n=_____________;(2)若二次函数y=mx2﹣2mx+n的图象与x 轴有且只有一个交点,求m 值;(3)若二次函数y=mx2﹣2mx+n的图象与平行于x 轴的直线y=5 的一个交点的横坐标为4,则另一个交点的坐标为;(4)如图,二次函数y=mx2﹣2mx+n的图象经过点A(3,0),连接AC,点P 是抛物线位于线段AC 下方图象上的任意一点,求△PAC 面积的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解题分析】根据整式的混合运算计算得到结果,即可作出判断. 【题目详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意, 故选D . 【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 2、A 【解题分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【题目详解】 如图,∵∠1=40°, ∴∠3=∠1=40°, ∴∠2=90°-40°=50°. 故选A . 【题目点拨】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.3、B【解题分析】根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【题目详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.【题目点拨】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.4、A【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】用科学记数法表示16000,应记作1.6×104,故选A.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解题分析】∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE 是等边三角形, ∴∠B=60°, ∴AE 的弧长=6023360ππ⨯⨯=.故选B. 6、B 【解题分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【题目详解】解:由题意得:∠B =∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=故选B. 【题目点拨】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 7、D 【解题分析】先提取公因式ax ,再根据完全平方公式把x 2﹣2x +1继续分解即可. 【题目详解】原式=ax (x 2﹣2x +1)=ax (x ﹣1)2, 故选D . 【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止. 8、A 【解题分析】求出三种方案混合糖果的单价,比较后即可得出结论. 【题目详解】方案1混合糖果的单价为235a b+, 方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【题目点拨】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.9、D【解题分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【题目详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.10、A【解题分析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.11、B【解题分析】①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【题目详解】 由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误, 设货车对应的函数解析式为y =kx , 5k =300,得k =60,即货车对应的函数解析式为y =60x , 设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195, 令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误, 故选:B . 【题目点拨】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式 12、B 【解题分析】由圆周角定理即可解答. 【题目详解】∵△ABC 是⊙O 的内接三角形, ∴∠A =12∠BOC , 而∠BOC =120°, ∴∠A =60°. 故选B . 【题目点拨】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、-1【解题分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【题目详解】方程两边都乘(x-1),得x-1(x-1)=-m∵原方程增根为x=1,∴把x=1代入整式方程,得m=-1,故答案为:-1.【题目点拨】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.14、乙.【解题分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案.【题目详解】解:∵S 甲2=8.5,S 乙2=2.5,S 丙2=10.1,S 丁2=7.4,∴S 乙2<S 丁2<S 甲2<S 丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.【题目点拨】本题考查方差的意义.解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、﹣1、0、1【解题分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【题目详解】1020x x +≥⎧⎨->⎩, 解不等式10x +≥得:1x ≥-,解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<,∴不等式组的整数解为-1,0,1.故答案为:-1,0,1.【题目点拨】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.16、163【解题分析】设AC =x ,则AB =2x ,根据面积公式得S △ABC =2 ,由余弦定理求得 cos C 代入化简S △ABC ,由三角形三边关系求得443x << ,由二次函数的性质求得S △ABC 取得最大值. 【题目详解】设AC =x ,则AB =2x ,根据面积公式得:c =1sin 2sin 2AC BC C x C ⋅⋅= =2.由余弦定理可得:2163cos 8x C x-= ,∴S △ABC =2 由三角形三边关系有2442x x x x+>⎧⎨+>⎩ ,解得443x <<,故当x =时, 443x <<取得最大值163, 故答案为:163. 【题目点拨】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.17、﹣2【解题分析】 ∵反比例函数6y x =-的图象过点A (m ,3), ∴63m=-,解得=2-.18 【解题分析】探究规律后,写出第n 个等式即可求解.【题目详解】12=== …则第n 1n =+1n =+ 【题目点拨】本题主要考查二次根式的应用,找到规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、22x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩. 【解题分析】把y=x 代入220x y +-=,解得x 的值,然后即可求出y 的值;【题目详解】把(1)代入(2)得:x 2+x ﹣2=0,(x +2)(x ﹣1)=0,解得:x =﹣2或1,当x =﹣2时,y =﹣2,当x =1时,y =1,∴原方程组的解是22xy=-⎧⎨=-⎩或11xy=⎧⎨=⎩.【题目点拨】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数.20、33.3【解题分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.【题目详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【题目点拨】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.21、(1)证明见解析;(2)1.【解题分析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE 的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC 得,然后根据比例性质可计算出EC.试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE ⊥AE ,∴AC 是△BDE 的外接圆的切线;(2)解:设⊙O 的半径为r ,则OA=OD+DA=r+2,OE=r ,在Rt △AEO 中,∵AE 2+OE 2=AO 2,∴62+r 2=(r+2)2,解得r=2, ∵OE ∥BC , ∴,即, ∴CE=1.考点:1、切线的判定;2、勾股定理22、 (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解题分析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x =3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-;(2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 23、(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解题分析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800>,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.24、⑴; ⑵答案不唯一.如; ⑶.【解题分析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.25、从甲班抽调了35人,从乙班抽调了1人【解题分析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.26、(1)作图见解析(2)∠BDC=72°【解题分析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=12∠ABC=12×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于12EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.27、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=32时,△PAC的面积取最大值,最大值为278【解题分析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q 的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.【题目详解】解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),∴n=﹣2.故答案为﹣2.(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函数解析式为y=mx2﹣2mx﹣2,∴二次函数图象的对称轴为直线x=﹣-2m2m=2.∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,∴另一交点的横坐标为2×2﹣4=﹣2,∴另一个交点的坐标为(﹣2,5).故答案为(﹣2,5).(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函数解析式为y=x2﹣2x﹣2.设直线AC的解析式为y=kx+b(k≠0),将A(2,0)、C(0,﹣2)代入y=kx+b,得:3k+b=0 {b=-3,解得:k=1{b=-3,∴直线AC的解析式为y=x﹣2.过点P作PD⊥x轴于点D,交AC于点Q,如图所示.设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=12PQ•OD+12PQ•AD=﹣32a2+92a=﹣32(a﹣32)2+278,∴当a=32时,△PAC的面积取最大值,最大值为278.【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.。

2022学年浙江省台州市玉环县中考数学四模试卷(含答案解析)

2022学年浙江省台州市玉环县中考数学四模试卷(含答案解析)

2022学年浙江省台州市玉环县中考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm2.下面的几何体中,主视图为圆的是()A.B.C.D.3.计算1211x xx x+---的结果是()A.1 B.﹣1 C.1﹣x D.311 xx+ -4.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°5.已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A.b2 -4c +1=0 B.b2 -4c -1=0 C.b2 -4c +4 =0 D.b2 -4c -4=06.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.7.实数213-的倒数是()A.52-B.52C.35D.358.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°9.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.10.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()A.180人B.117人C.215人D.257人二、填空题(共7小题,每小题3分,满分21分)11.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.12.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .13.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .14.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.15.对于一切不小于2的自然数n ,关于x 的一元二次方程x 2﹣(n+2)x ﹣2n 2=0的两个根记作a n ,b n (n≥2),则223320072007111...2)(2)(2)(2)(2)(2)a b a b a b +++=------(______ 16.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于_____.17.不等式42x>4﹣x的解集为_____.三、解答题(共7小题,满分69分)18.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?19.(5分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.(I)根据题意,填写下表:月用水量(吨/户)4 10 16 …… 应收水费(元/户) 40 ……(II )设一户居民的月用水量为x 吨,应收水费y 元,写出y 关于x 的函数关系式;(III )已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?20.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)21.(10分)如图,在ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F .求证:△ADE ≌△BFE ;若DF 平分∠ADC ,连接CE .试判断CE 和DF 的位置关系,并说明理由.22.(10分)如图,在ABC 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.23.(12分)如图,△ABC 中AB=AC ,请你利用尺规在BC 边上求一点P ,使△ABC ~△PAC 不写画法,(保留作图痕迹).24.(14分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】测试卷解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,, 根据勾股定理,2222435AB OA OB cm =+=+=,设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B .2、C【答案解析】测试卷解析:A 、的主视图是矩形,故A 不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.3、B【答案解析】根据同分母分式的加减运算法则计算可得.【题目详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【答案点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.4、C【答案解析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【题目详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【答案点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.5、D【答案解析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式.【题目详解】解:∵1212,x x b x x c +=-=,∴AB =12x x -=∵若S △APB =1 ∴S △APB =12×AB×244c b - =1, 214124c b -∴-=∴−12×2414b c -=,∴(248b ac -=,s ,则38s =,故s =2,2,∴2440b c --=.故选D .【答案点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.6、B【答案解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.7、D【答案解析】因为213-=53,所以213-的倒数是35.故选D.8、D【答案解析】测试卷分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.9、C【答案解析】根据定义运算“※” 为: a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【题目详解】解:y=2※x=()()222020x xx x⎧>⎪⎨-≤⎪⎩,当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【答案点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.10、B【答案解析】设男生为x 人,则女生有65%x 人,根据今年共毕业生297人列方程求解即可.【题目详解】设男生为x 人,则女生有65%x 人,由题意得,x +65%x =297,解之得x =180,297-180=117人.故选B.【答案点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、3.05×105 【答案解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】故答案为:. 【答案点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.12、300π【答案解析】测试卷分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则120180rπ=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算13、3yx =.【答案解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数3yx=(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.14、3【答案解析】测试卷解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD ,∴tan ∠BOD=tan ∠BO′D′,设每个小正方形的边长为a ,则O′B=,O′D′=,BD′=3a ,作BE ⊥O′D′于点E ,则BE=, ∴O′E=,∴tanBO′E=,∴tan ∠BOD=3.考点:解直角三角形.15、﹣10034016. 【答案解析】测试卷分析:由根与系数的关系得:2n 22n n n n a b a b n +=+=-,,则()()()222n n 1n n a b --=-+, 则()()()11111222n 12n 1n n a b n n ⎛⎫=-=-- ⎪--++⎝⎭, ∴原式=1111111111100322334201720182220184016⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-++-=-⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型.解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的.16、40°【答案解析】由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.【题目详解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B与∠C是AD对的圆周角,∴∠B=∠C=40°.故答案为40°.【答案点睛】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、x>1.【答案解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【题目详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【答案点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.三、解答题(共7小题,满分69分)18、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.【答案解析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.【题目详解】解:(1)∵直方图中,B组的人数为12,最多,∴男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴男生的身高的中位数在C 组,故答案为B ,C ;(2)女生身高在E 组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有:40×5%=2(人),故答案为2;(3)600×10840+480×(25%+15%)=270+192=462(人). 答:该校身高在165≤x <175之间的学生约有462人.【答案点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.19、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x ;当x >15时,y=6x ﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨【答案解析】(Ⅰ)根据题意计算即可;(Ⅱ)根据分段函数解答即可;(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.【题目详解】解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元; 当月用水量为16吨时,应收水费=15×4+1×6=66元; 故答案为16;66;(Ⅱ)当x≤15时,y=4x ;当x >15时,y=15×4+(x ﹣15)×6=6x ﹣30; (Ⅲ)设居民甲上月用水量为X 吨,居民乙用水(X ﹣6)吨.由题意:X ﹣6<15且X >15时,4(X ﹣6)+15×4+(X ﹣15)×6=126 X=18,∴居民甲上月用水量为18吨,居民乙用水12吨.【答案点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.20、客车不能通过限高杆,理由见解析【答案解析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【题目详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【答案点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.21、(1)见解析;(1)见解析.【答案解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【题目详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.22、(1)见解析;(2)见解析【答案解析】(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=12AB,AC=12AB,推出AC=CE,根据菱形的判定推出即可.【题目详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=12AB,∵DE是BC的垂直平分线,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=12AB,∴CE=AC,∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,即当∠B=30°时,四边形ACEF是菱形.【答案点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.23、见解析【答案解析】根据题意作∠CBA=∠CAP 即可使得△ABC ~△PAC.【题目详解】如图,作∠CBA=∠CAP ,P 点为所求.【答案点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.24、证明见解析.【答案解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【题目详解】∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SAS ),∴∠GEF=∠GFE ,∴EG=FG .【答案点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.。

浙江省台州市玉环县市级名校2021-2022学年中考试题猜想数学试卷含解析

浙江省台州市玉环县市级名校2021-2022学年中考试题猜想数学试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是()A.a<3 B.a>3 C.a<﹣3 D.a>﹣32.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃O的直径,且AB⊥CD.入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C3.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且BC,CD,DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出D.立交桥总长为150m4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB 的长为42,则a的值是()A.4 B.3+2C.32D.33+5.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=36.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤7.如图,已知正五边形ABCDE内接于O,连结BD,则ABD∠的度数是()A.60︒B.70︒C.72︒D.144︒8.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-B.4848944+=+-x xC.48x+4=9 D.9696944+=+-x x10.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或311.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查12.在平面直角坐标系xOy中,函数31y x的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .14.如图,sin∠C35=,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.15.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB 于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).16.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.17.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.18.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD=7,sin∠DAC =,BC=9,求AC的长.20.(6分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;(2)若P 是直线AB 上方抛物线上的一点,设P 点的横坐标是t ,△PAB 的面积是S ,求S 关于t 的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,当PB ∥CD 时,点Q 是直线AB 上一点,若∠BPQ+∠CBO=180°,求Q 点坐标.21.(6分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.22.(8分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y =ax 2+bx 与直线y =x 只有一个交点;②对于任意实数x ,a (-x +5)2+b (-x +5)=a (x -3)2+b (x -3)都成立.(1)求二次函数y =ax 2+bx 的解析式;(2)若当-2≤x ≤r (r ≠0)时,恰有t ≤y ≤1.5r 成立,求t 和r 的值.23.(8分)如图,已知AB 是⊙O 的弦,C 是 AB 的中点,AB=8,AC= 25 ,求⊙O 半径的长.24.(10分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.25.(10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.26.(12分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.27.(12分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.考点:一元二次方程与函数2、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.3、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确.B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确.C.分析图2可知甲车从G 口出,乙车从F 口出,故错误.D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.4、B【解析】试题解析:作PC ⊥x 轴于C ,交AB 于D ,作PE ⊥AB 于E ,连结PB ,如图,∵⊙P 的圆心坐标是(3,a ),∴OC=3,PC=a ,把x=3代入y=x 得y=3,∴D 点坐标为(3,3),∴CD=3,∴△OCD 为等腰直角三角形,∴△PED 也为等腰直角三角形,∵PE ⊥AB ,∴AE=BE=12AB=12×22 在Rt △PBE 中,PB=3,∴223-22=1(),∴22,∴2.故选B .考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.5、B【解析】解:去分母得:2x =x ﹣3,解得:x =﹣3,经检验x =﹣3是分式方程的解.故选B .6、D【解析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅= 故②错误 当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822610t -=或810622t=-,解得t=13214(舍去)或t=14.1 故⑤正确故选:D .【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.7、C【解析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.8、D【解析】分a >0和a <0两种情况分类讨论即可确定正确的选项【详解】当a >0时,函数y =a x的图象位于一、三象限,y =﹣ax 2+a 的开口向下,交y 轴的正半轴,没有符合的选项, 当a <0时,函数y =a x 的图象位于二、四象限,y =﹣ax 2+a 的开口向上,交y 轴的负半轴,D 选项符合; 故选D .【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.9、A【解析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.10、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.11、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、50°.【解析】解:连接DF,连接AF交CE于G,∵EF为⊙O的切线,∴∠OFE=90°,∵AB为直径,H为CD的中点∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案为:50°.14、210作BK ∥CF ,使得BK =DE =2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D ',则''2D E DE ==,此时△BD 'E '的周长最小,作BH CF ⊥交CF 于点F ,可知四边形''BKD E 为平行四边形及四边形BKMH 为矩形,在Rt BCH 中,解直角三角形可知BH 长,易得GK 长,在Rt △BGK 中,可得BG 长,表示出△BD 'E '的周长等量代换可得其值.【详解】解:如图,作BK ∥CF ,使得BK =DE =2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D ',则''2D E DE ==,此时△BD 'E '的周长最小,作BH CF ⊥交CF 于点F.由作图知''''//D ,D BK E BK E =,∴四边形''BKD E 为平行四边形, ''BE KD ∴=由对称可知'',2,KG CF GK KM KD GD ⊥==BH CF ⊥//BH KG ∴//CF BK ,即//BK HM∴四边形BKMH 为矩形,90KM BH BKM ︒∴=∠=在Rt BCH 中, 3sin 55BH BH C BC ∠=== 3BH ∴=26∴==GK KM在Rt△BGK中,BK=2,GK=6,∴BG22=+=210,26∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+210.故答案为:2+210.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.15、②③.【解析】试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.16、4 5【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案.详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:45.故答案为45.点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.17、1 6【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得【详解】画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:212=16.故答案为:1 6 .【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率. 18、1【解析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n,由题意得,()2180nn-︒=144°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.20、(1)k=1、a=2、b=4;(2)s=﹣32t2﹣152t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣73,53)【解析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA 于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,∴B(﹣1,3),将A(﹣4,0)B(﹣1,3)代入函数解析式,得340k bk b-+⎧⎨-+⎩==,解得14 kb=⎧⎨=⎩,直线AB的解析式为y=x+4,∴k=1、a=2、b=4;(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,∴当x=t时,y P=﹣t2﹣4t,y N=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=12PN(AM+BH)=12(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=12(﹣t2﹣5t﹣4)×3,化简,得s=﹣32t2﹣152t﹣6,自变量t的取值范围是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).当y=3时,x=﹣3,∴P (﹣3,3),连接OP ,交AC 于点R ,过P 点作PN ⊥OA 于M ,交AB 于N ,过D 点作DT ⊥OA 于T ,如图2,可证R 在DT 上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC ,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO ⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC过点Q 作QS ⊥PN ,垂足是S ,∴∠SPQ=∠BOR ∴tan ∠SPQ=tan ∠BOR ,可求2,2,设Q 点的横坐标是m ,当x=m 时y=m+4,∴SQ=m+3,PS=﹣m ﹣1 23122m m +=--,解得m=﹣73. 当x=﹣73时,y=53, Q (﹣73,53). 【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.21、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 △DEF ∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB =, 代入数据计算即得BC 的长,由 AB =AC+BC ,即可求出树高.【详解】∵∠DEF =∠DCB =90°,∠D =∠D ,∴△DEF ∽△DCB∴ DE EF DC CB=, ∵DE =0.4m ,EF =0.2m ,CD =8m , ∴0.40.28CB=, ∴CB =4(m ),∴AB =AC+BC =1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.22、(1)y=12-x 2+x ;(2)t=-4,r=-1. 【解析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论;(2)进行分类讨论,分别求出t 和r 的值.【详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1, ∴2b a-=1, ∴a=12-, ∴y=12-x 2+x. (2)因为y=12-x 2+x=12-(x-1)2+12,所以顶点(1,12)当-2<r<1,且r≠0时,当x=r时,y最大=12r2+r=1.5r,得r=-1,当x=-2时,y最小=-4,所以,这时t=-4,r=-1. 当r≥1时,y最大=12,所以1.5r=12,所以r=13,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.23、5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.24、(1)50,10;(2)见解析.(3)16.8万【解析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为152050+,所以全市参与辅导科目不多于2科的人数为24×152050+ =16.8(万).【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×152050+ =16.8(万), 答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.25、 (1) EH 2+CH 2=AE 2;(2)见解析.【解析】分析:(1)如图1,过E 作EM ⊥AD 于M ,由四边形ABCD 是菱形,得到AD=CD ,∠ADE=∠CDE ,通过△DME ≌△DHE ,根据全等三角形的性质得到EM=EH ,DM=DH ,等量代换得到AM=CH ,根据勾股定理即可得到结论;(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC ,在CH 上截取HG ,使HG=EH ,推出△DEG 是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE ≌△DCG ,根据全等三角形的性质即可得到结论. 详解:(1)EH 2+CH 2=AE 2,如图1,过E 作EM ⊥AD 于M ,∵四边形ABCD 是菱形,∴AD=CD ,∠ADE=∠CDE ,∵EH ⊥CD ,∴∠DME=∠DHE=90°,在△DME 与△DHE 中,DME DHE MDE HDE DE DE ===∠∠⎧⎪∠∠⎨⎪⎩, ∴△DME ≌△DHE ,∴EM=EH ,DM=DH ,∴AM=CH ,在Rt △AME 中,AE 2=AM 2+EM 2,∴AE 2=EH 2+CH 2;故答案为:EH 2+CH 2=AE 2;(2)如图2,∵菱形ABCD ,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC ,∵EH ⊥CD ,∴∠DEH=60°,在CH 上截取HG ,使HG=EH ,∵DH ⊥EG ,∴ED=DG ,又∵∠DEG=60°,∴△DEG 是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG ﹣∠ADG=∠ADC ﹣∠ADG ,∴∠ADE=∠CDG ,在△DAE 与△DCG 中,DA DC ADE CDG DE DG ⎧⎪∠∠⎨⎪⎩=== , ∴△DAE ≌△DCG ,∴AE=G C,∵CH=CG+GH,∴CH=AE+EH.点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.26、(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.27、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解析】(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;【详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得7500{12250k bk b+=+=,解得k=﹣50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.。

玉环中考数学试卷及答案

玉环中考数学试卷及答案

一、选择题(每小题3分,共30分)1. 已知函数y=2x+1的图象与y轴的交点坐标是()。

A.(0,1)B.(1,0)C.(-1,0)D.(0,-1)答案:A2. 下列命题中,正确的是()。

A. 垂线段最短B. 对顶角相等C. 相似图形的面积比等于相似比D. 对应角相等的两个三角形是全等三角形答案:A3. 若方程3x-5=2(x+1)的解是x=a,则a的值为()。

A. 1B. 2C. 3D. 4答案:C4. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数是()。

A. 105°B. 120°C. 135°D. 150°答案:B5. 若等差数列{an}的公差d=2,且a1+a5=20,则数列的前10项和S10是()。

A. 120B. 140C. 160D. 180答案:C6. 下列函数中,在其定义域内单调递增的是()。

A. y=x^2B. y=2xC. y=-xD. y=x^3答案:B7. 若a、b、c是等比数列,且a+b+c=12,a+b+c=8,则该等比数列的公比q是()。

A. 1/2B. 2C. 1/4D. 4答案:B8. 在直角坐标系中,点P(-3,2)关于x轴的对称点坐标是()。

A.(-3,-2)B.(3,-2)C.(-3,2)D.(3,2)答案:A9. 若等差数列{an}的前n项和为Sn,且S10=100,S20=400,则数列的公差d是()。

A. 5B. 10C. 20D. 50答案:B10. 若函数y=kx+b的图象经过点(2,3),则k和b的关系是()。

A. k+b=5B. 2k+b=3C. k=3/2D. k=2b答案:B二、填空题(每小题3分,共30分)11. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长是______cm。

12. 若a=√3,b=√2,则a^2+b^2的值为______。

13. 若函数y=x^2-4x+3的图象与x轴的交点坐标是(1,0)和(3,0),则该函数的解析式是______。

2022年浙江省台州市玉环县市级名校中考数学猜题卷含解析

2022年浙江省台州市玉环县市级名校中考数学猜题卷含解析

2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处2.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥3.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为()A.6×105B.6×106C.6×107D.6×1084.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°5.如图是用八块相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.7.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x8.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.169.-2的绝对值是()A.2 B.-2 C.±2 D.1 210.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8 B.8 C.﹣2 D.211.16的相反数是( )A.6 B.-6 C.16D.1612.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算1x x +﹣11x +的结果为_____. 14.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.15.如图,平行四边形ABCD 中,AB=AC=4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为_____.16.若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为______17.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.18.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 100 90 80 70 60 人数14212则这10名学生的数学成绩的中位数是_____分.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高(1)△ACD 与△ABC 相似吗?为什么? (2)AC2=AB•AD 成立吗?为什么?20.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(6分)解不等式组:()()3x 1x 382x 11x 132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.22.(8分)手机下载一个APP 、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a 的值.23.(8分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.24.(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).25.(10分)如图,∠AOB=90°,反比例函数y=﹣2x(x <0)的图象过点A (﹣1,a ),反比例函数y=k x (k >0,x>0)的图象过点B ,且AB ∥x 轴. (1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=kx于另一点C ,求△OBC 的面积.26.(12分)如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.27.(12分)计算:(﹣1)2018+(﹣12)﹣2﹣|2﹣12|+4sin60°;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解. 2、B 【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x 2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解. 【详解】由题意可得:﹣x+2=,所以x 2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数, ∴解不等式组,得t >. 故选:B .点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解. 3、C 【解析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可. 【详解】解:6000万=6×1. 故选:C . 【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键. 4、B 【解析】解:∵OC 平分∠AOB ,∴∠AOC =∠BOC =12∠AOB =35°,∵CD ∥OB ,∴∠BOC =∠C =35°,故选B .5、B【解析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.【详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,故选B.【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.6、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD=2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.7、C【解析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.8、C【解析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 .故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.9、A【解析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大10、C【解析】分析:减去一个数,等于加上这个数的相反数.依此计算即可求解.详解:(-5)-(-3)=-1.故选:C.点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).11、D【解析】根据相反数的定义解答即可.【详解】根据相反数的定义有:16的相反数是16-.故选D.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.12、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、11 xx-+.【解析】根据同分母分式加减运算法则化简即可.【详解】原式=11 xx-+,故答案为11 xx-+.【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.14、-1.【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.15、1.【解析】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.16、4 yx【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.17、(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=2)5,B5所在的象限为第三象限;∴OB6=2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).18、1【解析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,则中位数为:90802=1.故答案为:1.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.【解析】(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.【详解】解:(1)△ACD 与△ABC相似,理由是:∵在Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.20、软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22、(1)7000辆;(2)a的值是1.【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752, 化简,得a 2﹣250a+4600=0,解得:a 1=230,a 2=1, ∵1%20%4a <,解得a <80,∴a=1,答:a 的值是1.【点睛】 本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.23、(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式;(2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.24、5.6千米【解析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.25、(1)a=2,k=8(2)OBCS=1.【解析】分析:(1)把A(-1,a)代入反比例函数2x得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),∴a=﹣21-=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.26、(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2)或(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴2,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.27、1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.,详解:原式=1+4-(-2)+4×2=1.点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省台州市玉环县2017年中考数学模拟试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.3的绝对值是()A.3 B.﹣3 C.±3 D.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个4.某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8 A.平均数B.众数 C.中位数D.方差5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组6.关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m≤1 C.m<1且m≠0 D.m≤1且m≠07.数轴上A点读数为﹣1,B点读为3,点C在数轴上,且AC+BC=6,则C点的读数为()A.﹣2 B.4 C.﹣2或4 D.﹣3或58.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣369.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.10.农夫将苹果树种在正方形的果园内.为了保护苹果树不怕风吹,他在苹果树的周围种针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n为()A.6 B.8 C.12 D.16二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:3a2﹣12= .12.不等式组的解集为.13.设a<b<0,a2+b2=4ab,则的值为.14.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.15.以A为圆心,半径为9的四分之一圆,与以C为圆心,半径为4的四分之一圆如图所示放置,且∠ABC=90°,则图中阴影部分的面积为.16.如图,点E,F分别是矩形ABCD的边BC和CD上的点,其中AB=3,BC=3,把△ABE沿AE进行折叠,使点B落在对角线AC上,在把△ADF沿AF折叠,使点D落在对角线AC上,点P为直线AF上任意一点,则PE的最小值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)计算:|﹣3|+tan60°+;(2)化简:(x﹣1)2+x(x+1).18.先化简再求值:(x﹣1)2﹣x(x+2)﹣,其中x=.19.如图,在▱ABCD中,BD是对角线,且DB⊥BC,E、F分别为边AB、CD的中点.求证:四边形DEBF是菱形.20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)21.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.22.已知△ABE中,∠BAE=90°,以AB为直径作⊙O,与BE边相交于点C,过点C作⊙O的切线CD,交AE于点D.(1)求证:D是AE的中点;(2)求证:AE2=EC•EB.23.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM 并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是(cm)(直接写出结果,结果四舍五入取整数).24.阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x=﹣是否在t1≤x≤t2的范围和a的正负:①当对称轴x=﹣在t1≤x≤t2之内且a >0时,则x=﹣时y有最小值,x=t1或x=t2时y有最大值;②当对称轴x=﹣在t1≤x ≤t2之内且a<0时,则x=﹣时y有最大值,x=t1或x=t2时y有最小值;③当对称轴x=﹣不在t1≤x≤t2之内,则函数在x=t1或x=t2时y有最值.解决问题:设二次函数y1=a(x﹣2)2+c(a≠0)的图象与y轴的交点为(0,1),且2a+c=0.(1)求a、c的值;(2)当﹣2≤x≤1时,直接写出函数的最大值和最小值;(3)对于任意实数k,规定:当﹣2≤x≤1时,关于x的函数y2=y1﹣kx的最小值称为k的“特别值”,记作g(k),求g(k)的解析式;(4)在(3)的条件下,当“特别值”g(k)=1时,求k的值.2017年浙江省台州市玉环县中考数学模拟试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.3的绝对值是()A.3 B.﹣3 C.±3 D.【考点】28:实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:3的绝对值是3,故选:A.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】U1:简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选:B.4.某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8 A.平均数B.众数 C.中位数D.方差【考点】W5:众数.【分析】商场经理要了解哪些型号最畅销,所关心的即为众数.【解答】解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:B.5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【考点】KB:全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.6.关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m≤1 C.m<1且m≠0 D.m≤1且m≠0【考点】AA:根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到m≠0且△=22﹣4m>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m≠0且△=22﹣4m>0,所以m<1且m≠0.故选C.7.数轴上A点读数为﹣1,B点读为3,点C在数轴上,且AC+BC=6,则C点的读数为()A.﹣2 B.4 C.﹣2或4 D.﹣3或5【考点】13:数轴.【分析】根据题意,可以分三种情况对点C进行讨论,然后根据AC+BC=6,求出相应的带你C的读数,从而可以解答本题.【解答】解:当点C在点A的左侧时,设点C的读数为c1,∵AC+BC=6,∴(﹣1﹣c1)+(3﹣c1)=6,解得,c1=﹣2;当点C在点A和B中间时,设点C的读数为c2,∵∵AC+BC=6,∴[c2﹣(﹣1)]+(3﹣c2)=6,化简,得4=6∵4=4不成立,∴点C在点A和B中间时不成立;当点C在点B的右侧时,设点C的读数为c3,∵AC+BC=6,∴[c3﹣(﹣1)]+(c3﹣3)=6,解得,c3=4;由上可得,点C的读数是﹣2或4,故选C.8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形的性质;G6:反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.9.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KQ:勾股定理;KW:等腰直角三角形.【分析】延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.【解答】解:延长AE交DF于G,如图:∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.10.农夫将苹果树种在正方形的果园内.为了保护苹果树不怕风吹,他在苹果树的周围种针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n为()A.6 B.8 C.12 D.16【考点】37:规律型:数字的变化类.【分析】观察图形不难发现,苹果树的棵树为相应序号的平方,再求出各个图形中针叶树的棵树,并找出规律写出第n个图形中的棵树的表达式,然后列出方程求解即可.【解答】解:第1个图形中苹果树的棵树是1,针叶树的棵树是8,第2个图形中苹果树的棵树是4=22,针叶树的棵树是16=8×2,第3个图形中苹果树的棵树是9=32,针叶树的棵树是24=8×3,第4个图形中苹果树的棵树是16=42,针叶树的棵树是32=8×4,…,所以,第n个图形中苹果树的棵树是n2,针叶树的棵树是8n,∵苹果树的棵数与针叶树的棵数相等,∴n2=8n,解得n1=0(舍去),n2=8.故选B.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:3a2﹣12= 3(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).12.不等式组的解集为x>4 .【考点】CB:解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式①,得x>.解不等式②,得x>4.所以,不等式组的解集是x>4.故答案为x>4.13.设a<b<0,a2+b2=4ab,则的值为.【考点】54:因式分解﹣运用公式法.【分析】首先配方进而得出a+b以及a﹣b的值,进而求出答案.【解答】解:∵a<b<0,a2+b2=4ab,∴(a﹣b)2=2ab,(a+b)2=6ab,∴a﹣b<0,a+b<0,∴的值为: =.故答案为:.14.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.【考点】T1:锐角三角函数的定义.【分析】利用图形构造直角三角形,进而利用sinA=求出即可.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴SinA==.故答案为:.15.以A为圆心,半径为9的四分之一圆,与以C为圆心,半径为4的四分之一圆如图所示放置,且∠ABC=90°,则图中阴影部分的面积为π﹣36 .【考点】MO:扇形面积的计算.【分析】观察图形可知,图中阴影部分的面积=半径为9的四分之一圆的面积+半径为4的四分之一圆的面积﹣长9宽4的长方形面积,根据扇形的面积公式和长方形的面积公式代入数据计算即可求解.【解答】解:π×92+π×42﹣9×4=π+π﹣36=π﹣36.答:图中阴影部分的面积为π﹣36.故答案为:π﹣36.16.如图,点E,F分别是矩形ABCD的边BC和CD上的点,其中AB=3,BC=3,把△ABE沿AE进行折叠,使点B落在对角线AC上,在把△ADF沿AF折叠,使点D落在对角线AC上,点P为直线AF上任意一点,则PE的最小值为2.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据矩形的性质得到∠B=∠BAD=90°,根据三角函数的定义得到∠BAC=60°,根据折叠的性质得到∠BAE=∠CAE=30°,∠DAF=∠CAF,求得∠EAP=∠EAC+∠FAC=BAD=45°,过E作EP⊥AF于P,此时,PE的值最小,解直角三角形得到AE=2,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵AB=3,BC=3,∴tan∠BAC==,∴∠BAC=60°,∵把△ABE沿AE进行折叠,使点B落在对角线AC上,在把△ADF沿AF折叠,使点D落在对角线AC上,∴∠BAE=∠CAE=30°,∠DAF=∠CAF,∴∠EAP=∠EAC+∠FAC=BAD=45°,过E作EP⊥AF于P,此时,PE的值最小,∵AB=3,∠B=90°,∠BAE=30°,∴AE=2,∵∠APE=90°,∠EAP=45°,∴PE=AE=2.∴PE的最小值为2,故答案为:2.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)计算:|﹣3|+tan60°+;(2)化简:(x﹣1)2+x(x+1).【考点】4A:单项式乘多项式;2C:实数的运算;4C:完全平方公式;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=3++1=4+;(2)原式=x2﹣2x+1+x2+x=2x2﹣x+1.18.先化简再求值:(x﹣1)2﹣x(x+2)﹣,其中x=.【考点】6D:分式的化简求值;4J:整式的混合运算—化简求值.【分析】根据完全平方公式、单项式乘多项式、分式的除法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:(x﹣1)2﹣x(x+2)﹣=x2﹣2x+1﹣x2﹣2x﹣=x2﹣2x+1﹣x2﹣2x+2=﹣4x+3,当x=时,原式=﹣4×+3=﹣1+3=2.19.如图,在▱ABCD中,BD是对角线,且DB⊥BC,E、F分别为边AB、CD的中点.求证:四边形DEBF是菱形.【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】利用平行四边形的性质结合平行四边形的判定与性质得出四边形DEBF为平行四边形,进而得出BF=DC=DF,再利用菱形的判定方法,即可得出答案.【解答】证明:∵E、F分别为边AB、CD的中点,∴DF=DC,BE=AB,又∵在▱ABCD中,AB∥CD,AB=CD,∴DF∥BE,DF=BE,∴四边形DEBF为平行四边形,∵DB⊥BC,∴∠DBC=90°,∴△DBC为直角三角形,又∵F为边DC的中点,∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形.20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)【考点】T8:解直角三角形的应用.【分析】(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.【解答】解:(1)如图,作AD⊥BC于点D.Rt△ABD中,AD=ABsin45°=4×=2.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4≈5.6.即新传送带AC的长度约为5.6米;(2)结论:货物MNQP应挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2.在Rt△ACD中,CD=ACcos30°=2.∴CB=CD﹣BD=2﹣2=2(﹣)≈2.1.∵PC=PB﹣CB≈4﹣2.1=1.9<2,∴货物MNQP应挪走.21.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.【考点】X6:列表法与树状图法.【分析】(1)利用频数÷百分比=总数,求得总人数;(2)根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.【解答】解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.22.已知△ABE中,∠BAE=90°,以AB为直径作⊙O,与BE边相交于点C,过点C作⊙O的切线CD,交AE于点D.(1)求证:D是AE的中点;(2)求证:AE2=EC•EB.【考点】S9:相似三角形的判定与性质;MC:切线的性质.【分析】(1)根据已知条件得到AE为⊙O的切线,根据切线的性质得到AD=CD,由等腰三角形的性质得到∠DAC=∠DCA,由圆周角定理得到∠ACB=90°,根据余角的性质得到∠DCE=∠DEC,即可得到结论;(2)根据圆周角定理得到∠ACB=90°,根据相似三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BAE=90°,AB为直径,∴AE为⊙O的切线,又CD为⊙O的切线,∴AD=CD,∴∠DAC=∠DCA,又AB直径,∴∠ACB=90°,∴∠ACD+∠DCE=90°,∠DAC+∠DEC=90°,∴∠DCE=∠DEC,∴DC=DE,∴AD=DE,即D是AE的中点;(2)解:∵∠BAE=90°,∴∠BAC+∠CAE=90°,又AB直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠CAE=∠ABC,又∠E=∠E,∴△ACE∽△BAE,∴=,∴AE2=EC•EB.23.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM 并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是113 (cm)(直接写出结果,结果四舍五入取整数).【考点】SO:相似形综合题.【分析】(1)利用直角三角形斜边中线定理即可解决问题;(2)分三种情形根据DH∥QO,可得=,求出AH,再利用勾股定理求解即可;(3)由题意当等腰直角三角形的直角边为80cm时,斜边为≈113cm,由此即可解决问题.【解答】解:(1)∵点C是AB的中点,∴OC=AB,∴点C的运动轨迹是以O为圆心, AB长为半径的圆弧,经过的路程的圆周.故选甲.(2)过D作DH⊥OP于H,设DH=a,在Rt△OHD中,∵∠AOD=90°﹣600=300,∴OD=2a,OH=a,∵DH⊥OA,OQ⊥OA,∴DH∥QO,∴=,当AD=时,BD=,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴a2+a2=,解得a=,OD=,当AD=1时,BD=1,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴3a2+a2=1,解得a=,OD=1,当AD=时,BD=,∴=,∴AH=2a,在Rt△AHD中,∵AH2+DH2=AD2,∴12a2+a2=,解得a=,OD=.(3)由题意当等腰直角三角形的直角边为80cm时,斜边为≈113cm,所以这根木棒最长可以是113cm.故答案为113cm.24.阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x=﹣是否在t1≤x≤t2的范围和a的正负:①当对称轴x=﹣在t1≤x≤t2之内且a >0时,则x=﹣时y有最小值,x=t1或x=t2时y有最大值;②当对称轴x=﹣在t1≤x ≤t2之内且a<0时,则x=﹣时y有最大值,x=t1或x=t2时y有最小值;③当对称轴x=﹣不在t1≤x≤t2之内,则函数在x=t1或x=t2时y有最值.解决问题:设二次函数y1=a(x﹣2)2+c(a≠0)的图象与y轴的交点为(0,1),且2a+c=0.(1)求a、c的值;(2)当﹣2≤x≤1时,直接写出函数的最大值和最小值;(3)对于任意实数k,规定:当﹣2≤x≤1时,关于x的函数y2=y1﹣kx的最小值称为k的“特别值”,记作g(k),求g(k)的解析式;(4)在(3)的条件下,当“特别值”g(k)=1时,求k的值.【考点】HF:二次函数综合题.【分析】(1)将(0,1)代入得:4a+c=1,然后将4a+c=1与2a+c=0联立可求得a、c的值;(2)将a=,c=﹣1代入得y1=(x﹣2)2﹣1,抛物线的对称轴为x=2,然后在﹣2≤x≤1范围内,当x=﹣2时,y1有大值,当x=1时,y1有最小值;(3)由题意可知y2=x2﹣(k+2)x+1,抛物线的对称轴为x=k+2,然后分为k+2<﹣2、﹣2≤k+2≤1、k+2>1三种情况分别求得y2的最小值即可;(4)由g(k)=1列出关于k的方程,从而可求得k的值.【解答】解:(1)将(0,1)代入得:4a+c=1.又∵2a+c=0,∴2a=1,解得:a=.∴c=﹣2a=﹣2×=﹣1.(2)∵a=,c=﹣1,∴y1=(x﹣2)2﹣1.∴x=﹣=2.∵x=2不在﹣2≤x≤1之内,∴当x=﹣2时,y1有最大值,最大值为=×16﹣1=7,当x=1时,y1有最小值,最小值为=×1﹣1=﹣.(3)∵y2=y1﹣kx,∴y2=(x﹣2)2﹣1=﹣kx=x2﹣(k+2)x+1.∴抛物线的对称轴为x=k+2.当k+2<﹣2时,即k<﹣4时,当x=﹣2时,y2有最小值,y2的最小值=×4+2(k+2)+1=2k+7;当﹣2≤k+2≤1时,即﹣4≤k≤﹣1时,当x=k+2时,y2有最小值,y2的最小值=(k+2)2﹣(k+2)2+1=﹣(k+2)2+1.当k+2>1时,即k>﹣1时,当x=1时,y2有最小值,y2的最小值=×1﹣(k+2)+1=﹣k ﹣.综上所述,g(k)的解析式为g(k)=.(4)当k<﹣4时:令y=2k+7=1,得k=﹣3,不合题意舍去;当﹣4≤k≤﹣1时:令y=﹣(k+2)2+1=1;得k=﹣2.当k>﹣1时:令y=﹣k﹣=1,得k=﹣,舍去.综上所述,k=﹣2.。

相关文档
最新文档