高中数学直线与圆习题精讲精练
2023版高中数学新同步精讲精炼(选择性必修第一册) 2

2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。
(完整)2019-2020学年高中数学分类精练——直线与圆(一)

、选择题1•已知a , b 均为正实数,且直线 ax y6 0与直线b 1 x y 50互相平行,则ab 的最大值为()111A . 1B .-C —D .2482•已知直线l 1: ax y 1 0与直线l 2 : x y5 0垂直,则点(1,2)到直线丨1距离为()A . 1B . 2C .D . 2^23•已知方程2 2x y4x 2y 40,则 x 2y的最大值疋()A . 14— 6.5B . 14+ 6、5C .9D . 14值为()2019-2020学年高中数学分类精练直线与圆(一)4•已知圆O 与I 相切于点A ,Q 同时从A 点出发,P 沿直线 I 匀速向右、Q 沿圆周按逆时针方向以相同的速率运动, 当占■=1Q 运动到如图所示的位置时点P 也停止运动,连结 OQ , OP , 则阴影部分的面积S 、S 2的大小关系是 ()C . S 1 S 2 S 2,最后 S 1 S 25 直线 I : kx y k 10与圆x9交于A ,B 两6,过点A , B 分别作I 的垂线与 y 轴交于点M , N ,则 MN 等于()A. 4 .2B. 8C. 6 2D. 8 26•点P 是直线3 0上的动点,由点2P 向圆0 :X4作切线,则切线长的最小(A) 2、、27.已知直线l 1 : (3 m )x 4y 5 3m,l 2:2x (5 m )y 8平行,则实数 m 的值为()(B )C .1 或 78•从直线I : x — y + 3= 0上一点P 向圆C : x 2 + y 2— 4x — 4y + 7= 0引切线,记切点为 M ,则|PM|的最小值为(22A. 142B.3_22C.3 24D.3 2 - 12二、填空题直线AB 经过一个定点,该定点的坐标为2 2 2 210.已知O O 的方程是x y 2 0 , O O 的方程是x y 8x 10 0 ,由动点P 向O O 和O O 所引的切线长相等,则动点 P 的轨迹方程是 ________ .2 211. 已知圆M : x m y 1 1与圆N 关于直线l : x y 3 0对称,且圆 M 上任一点P 与圆N 上任一点Q 之间距离的最小值为 2.2 2,则实数m 的值为______________ .12. 已知直线丨1〃丨2 , A 是丨仆^之间的一定点,并且 A 点到h,l 2的距离分别为1, 2, B 是直 线l 2上一动点,BAC 60° , AC 与直线h 交于点 6则厶ABC 面积的最小值为 ____________ .15.若三条直线4x y 4 0, mx y 10 , x y 10不能围成三角形,则实数 m取值集合为_^.13.过点P 、、3, 1的直线I 与圆x 2y 2 1有公共点,则直线I 的倾斜角的取值范围是214.已知点P 0,2为圆C : x aCPQ 60o ,则正数a 的取值范围是 ▲9.在直线x 3上任取一点2 2P,过点P 向圆x (y 2) 4作两条切线,其切点分别为A,B,则三、解答题16.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: x2 3+ y2—12x—14y + 60= 0及其上一点A(2, 4).2 求圆C的方程;3 直线I: x y4 0与x轴交于点A,点D为直线I上位于第一象限内的一点,以AD为直径的圆与圆C相交于点M , N.若直线AM的斜率为-2,求D点坐标.(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x= 6上,求圆N的标准方程;(2)设平行于OA的直线I与圆M相交于B, C两点,且BC = OA,求直线I的方程.17.已知直线I :4x 3y 10 0 ,半径为2的圆C与I相切,圆心C在x轴上且在直线I的右上方.(1)求圆C的方程;(2)若直线AB过点M 1,0,且与圆C交于A, B两点(A在x轴上方,B在x轴下方),问在x轴正半轴上是否存在定点N,使得x轴平分ANB ?若存在,求出点N的坐标;若不存在,请说明理由.(5,2).19.在平面直角坐标系中,0为坐标原点,点A( . 3,1),点B是x轴上一点,AB OA,△ OAB的外接圆为圆C .(I )求圆C的方程;(n)求圆C在点A处的切线方程.2 230•在平面直角坐标系xOy中,A(2,4)是O M: x y 12x 14y 60 0上一点.(2)设平行于0A的直线I与O M相交于B, C两点,且BC 2 0A,求直线I的方程•21.已知圆C的圆心在直线3x y 5 0上,并且经过点A(1,4)和B(3,2).(I )求圆C的方程;(n)若直线I过点D(1,0)与圆C相交于P、Q两点,求CPQ的面积的最大值,并求此时直线I的方程.22•已知圆C: x2+y2—2x+4y—4=0 .(1)直线l i过点P(2,0),被圆C截得的弦长为,求直线11的方程;(2)直线12的的斜率为1,且12被圆C截得弦AB,若以AB为直径的圆过原点,求直线12 的方程.2 223•已知圆C:(x 3) (y 4) 4,直线h过定点A (1, 0).(1 )若11与圆C相切,求11的方程;(2 )若11的倾斜角为一,h与圆C相交于P, Q两点,求线段PQ的中点M的坐标;4(3)若11与圆C相交于P, Q两点,求三角形CPQ的面积的最大值,并求此时11的直线方程试卷答案1. C2. C3. B由圆的方程x'-i- y'+ 4x -2y-4 - 0,得x+2f+(y-】)'9,表示以卜rT为圆心,以一为半径的圆,如图所示,连接Q B,并延长交圆于点同,此时/ + '取得最大值, 又”比]»巡宀,—亠-时."二•: •余,4. C5. C根据题中的条件可知圆的半径等于3,所以直径等于6,所以直线过圆心,即直线过坐标原点,从而可以求得i厂「.|6 V|MN| -〒-砧结合图形的特征,6. C°••圆0 其” + y' ■ 4,•••圆心㈡电閃|,半径| —由题意可知, 点j?到圆| :、、" 、. ■泊勺切线长最小时,°圆心到直线的距离7. A两条直线存在两种情况:一,两直线的斜率均不存在,且不重合,二,两直线的斜率均存在且相等但不重合•当两直线斜率均存在时,由题可知无解,当两直线斜率均存在时可知- -",可求得- -",当 -时,两直线方程相同,即两直4 删十5 '亠线重合,当「:.-:时,两直线方程为一 _ _ - ,两直线没有重合,所以本题的正确选项为 A.8. A49・(3,2)10.x 3211.2 或6设圆卜啲圆心为航:,•••圆M和圆N关于直线I对称,圆忙的圆心为I:•• L "诃••• h的■ 一. m亠(” m + 4)' - J2(m - 4}'••••圆M上任一点P与圆N上任一点Q之间距离的最小值为为卜-「彳•叔1口- 4产2 - 2^2 - 2,解得II _或:厂二:12. 2313. 0,—314. ,15 3 a 1由题意易知:圆的圆心为 C (a, a),半径r=£|a|,•- PC=.J『+ 佃-丹,QC= |a|,••• PC 和QC 长度固定,•••当Q 为切点时,卜门送最大, •••圆C 上存在点Q 使得F C 西_ go* ,••若最大角度大于“「,则圆C 上存在点Q 使得玄二& ,•壯J 畫詁沁陀W 哼,整理可得a 2+6a -6>0,解得a 施”3或a<-^-3|, 又="解得a<1PC ^-(a-2)2又点取为圆(C. (x - a)^ + (y - a)~ 2寸外—点,...02+22 - 4a > 0,解得 av 1•••a >0, •••综上可得 - 3 <a < 1 •15.{4 , 1 , - 1} 16•解:圆M 的标准方程为(x — 6)2 + (y — 7)2= 25, 所以圆心M(6,7),半径为5.所以解得m = 5或m =— 15故直线I 的方程为2x — y + 5 = 0或2x — y — 15= 0(1)圆N 的标准方程为(x — 6)2+ (y — 1)2= 14 0⑵因为直线I // OA ,所以直线I 的斜率为=22 0设直线I 的方程为y = 2x + m ,即卩2x — y + m = 0,BC 2因为 BC = OA = -. 22 42 = 2,5,而 MC 2 = d 2+ —— 2, d 2 一52 则圆心M 到直线I 的距离d =|2 6 75 m||m 5| ■52-555 52o所以圆C 的方程为X 5 y 24 ;(2)因为AD 为直径,所以k AM k DM1D 点坐标为t,t 4,则 AM :y2 X124 tDM : yt 4x tM252224 t 2854 t 7或 11,而直线AM 的斜率为-2,所以k DM,设24 ,,生兰,由点M 在圆C 上可得:5,又因为点D 位于第一象限,D 7,35 4a 10 17. (1)设圆心 C a,0 a -,则 ------------------- 2 a 0或a 5.25当圆心为 5,0时,圆心在直线I 的左下方,所以a 0. 所以圆C:x 2 y 24.(2)当直线AB x 轴时,x 轴平分 ANB .当直线AB 的斜率存在时,设直线 AB 的方程为y k x 1,N t,0,A X 1,y 1,BX 2,y 2,由x 24,得1…X-I x 22k 2x k 2 4 0.2k 2 k 2 1 'X-|Xk 2 4若x 轴平分 ANB , 则k ANX 1X 2 y 2t0.k x-! 1 X 1k x 2 x 2 t 2x 1x 2X1X22t 0, 2 k 2即 2k 212k 2 t 1 k 212t 0,解得t4.所以存在定点N 4,0 , 使得x 轴平分 ANB .18. (1)由 7,0 ,5,2可得两点中垂线方程为 y x 5,当 y 0 时得 C 5,0 ,3)即y2 2••• Rt OAB ,•••圆C 以OB 为直径,2.3 3圆C 的方程为 (n )可得k Ac .3 , 则切线斜率_2 3C,0),(x2 2y•过点A 的切线方程为:y 120.( 1)圆M 的标准方程:(x 6) (y 7) 25,圆心M (6,7),743 4k AM ,•切线方程为y 4 (x 2),即4x 3y6 2 4 3(2)••• k oA 2,•可设直线l的方程为y 2x m,即2x y m 又BC 2OA 22424J5,•圆心M (6,7)到直线l的距离D 匹2亦,即借—亦,- 2 22 ( 1)2解得m 10或m 0 (不合题意,舍去),•直线l的方程为y 2x 10.半径r 5 , 20 0.0.2 2 2设圆C 的方程为(x a) (y b) r法二:由点A(1,4)和B(3,2)可求得直线AB 的垂直平分线方程为x y 1 0 与直线3x y 50方程联立解得圆心C(3,4)则圆的半径 r |CA| .(3 1)2 (4 4)2 2故圆C 的方程为(x 3)2 (y 4)24(n )法一:直线丨与圆C 相交,•••直线丨的斜率一定存在且不为0,设直线l 的方程为y k(x 1)即kx y k 0,则圆心C 到直线l 的距离为d £k[V 1 k 2又••• CPQ 的面积 S 1 d 2.4d 2 d -4 d 2 、.,d 2(4 d 2) . (d 2 2)2 4•••当d 2时,S 取最大值2.由d —= 2 k 1或k 7V 1 k•直线l 的方程为x y 10或7x y 7法二:设圆心C 到直线丨的距离为d则 CPQ 的面积 S 1 d 2、厂d 2 d .厂d 2 . d 2(4—d 2) d 邑 L 2(d 』2时取等号)以下同法一.1法三: CPQ 面积 S -r r sin PCQ 2sin PCQ 2 ,当 sin PCQ 1 ,即2 PCQ —时取等号,22ra 32a b 1r,解得 b4 3a b5 0r24)2 4(a 1)2 (b 4)22 2由题意有(a 3) (b 2)3a b 5故圆C 的方程为(x 3)2 (y21. (I)法此时为C PQ等腰直角三角形,圆心C到直线丨的距离为d .2 , 以下同法一.2 222•圆C: (x 1)2 (y 2) 9,圆心C(1, 2)半径为3,(1)因直线h过点(2,0)①当直线斜率不存在时11: x 2此时l i被圆C截得的弦长为4 2• • l i : X 2②当直线斜率存在时可设l i方程为y k(x 2)即kx y 2k 0由l i被圆C截得的弦长为 4 2,则圆心C到l i的距离为32 (422)2 i...k 2 2ki解得k 3i k24• l i方程为y 3-(x 2)4即3x4y 6 0由上可知l i方程为:x2或3x4y 6 0(2)设直线12的方程为y x b,代入圆C的方程得x2 (x b)2 2x 4(x b) 4 0.2 2即2x (2b 2)x b 4b 4 0 (*)以AB为直径的圆过原点O,则OA丄OB .设A(X i,y i), B(X2,y2),则yy 0,即x-|x2(X i b))(X2b)0• 2x i x2 b(x-i X2)b20b24b4由式得X i X2b i,x i X22• b24b 4b( b i)b20 即b23b4将b4或b i代入(*) 方程,对应的△ > 0.故直线l2: X y 4或x y i 0.0 ,• b 4 或b i②若直线’-斜率存在,设直线’•为' ',即5■;由题意知,圆心(3,4)到已知直线,的距离等于半径2,即:VA^ + 1解之得 '•所求直线方程是:•二.1 ,或二二一岂「一「•.⑵直线边方程为二■:— 1「「円Q 丄方程为:,,即匚3 「川点坐标(4,3)⑶直线与圆相交,斜率必定存在,且不为o,设直线方程为 「?-臼,\2k - 4|则圆一…•.又…三角形CPQ 面积x/A 十 k 2S = - dx2\/l — <P = d 4 - 沪二心住一率-(卡一2尸+ 4・23.(1)解:①若直线的斜率不存在,则直线' ,圆的圆心坐标(3,4),半径为2,符合题意(5 分)「当工=丿匚时,S 取得最大值.vl +八I . ;-.-直线方程为厂厂I ,或."y a 2a外一点,若圆C上存在一点Q,使得。
高中数学直线与圆习题精讲精练

圆与直线一、典型例题例1、已知定点P (6,4)与定直线 1:y=4x ,过P 点的直线 与 1交于第一象限Q 点,与x 轴正半轴交于点M ,求使△OQM 面积最小的直线 方程。
分析:直线 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。
通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。
设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线 ∴ k PQ =k PM ∴m 64x 6x 4400-=--解之得:1x x 5m 00-=∵ x 0>0,m>0 ∴ x 0-1>0 ∴ 1x x 10mx2x 4|OM |21S 020OMQ -===∆令x 0-1=t ,则t>0 )2t1t (10t)1t (10S 2++=+=≥40当且仅当t=1,x 0=11时,等号成立 此时Q (11,44),直线 :x+y-10=0评注:本题通过引入参数,建立了关于目标函数S △OQM 的函数关系式,再由基本不等式再此目标函数的最值。
要学会选择适当参数,在解析几何中,斜率k ,截距b ,角度θ,点的坐标都是常用参数,特别是点参数。
例2、已知△ABC 中,A (2,-1),B (4,3),C (3,-2),求:(1)BC 边上的高所在直线方程;(2)AB 边中垂线方程;(3)∠A 平分线所在直线方程。
分析: (1)∵ k BC =5∴ BC 边上的高AD 所在直线斜率k=51-∴ AD 所在直线方程y+1=51-(x-2)即x+5y+3=0(2)∵ AB 中点为(3,1),k AB =2∴ AB 中垂线方程为x+2y-5=0(3)设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。
∵ k AC =-1,k AB =2 ∴k21k 2k11k +-=-+∴ k 2+6k-1=0∴ k=-3-10(舍),k=-3+10∴ AE 所在直线方程为(10-3)x-y-210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。
高中数学人教A版选择性必修一 精品专题讲练学生卷 专题08 直线与圆综合大题归类

专题8 直线与圆综合大题归类目录【题型一】圆大题基础:轨迹 -圆 .......................................................................................................................... 1 【题型二】圆大题基础:轨迹 -直线 ...................................................................................................................... 2 【题型三】直线与圆:韦达定理型 .......................................................................................................................... 3 【题型四】直线与圆:定点 ...................................................................................................................................... 4 【题型五】直线与圆:定值 ...................................................................................................................................... 4 【题型六】直线与圆:定直线 .................................................................................................................................. 5 【题型七】探索性、存在性题型 .............................................................................................................................. 5 【题型八】面积与最值 .............................................................................................................................................. 6 【题型九】直线与圆的应用题 .................................................................................................................................. 7 培优第一阶——基础过关练 ...................................................................................................................................... 8 培优第二阶——能力提升练 ...................................................................................................................................... 9 培优第三阶——培优拔尖练 (11)【题型一】圆大题基础:轨迹 -圆【典例分析】(2021·全国·高二课时练习)已知A (3,3),点B 是圆x 2+y 2=1上的动点,点M 是线段AB 上靠近A 的三等分点,则点M 的轨迹方程是( )A .221(2)(2)9x y -+-=B .221(2)(2)9x y -++=C .221(3)(3)3x y -+-=D .221(3)(3)3x y -++=1.(2022·全国·高二课时练习)已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且||2AB =,则||PA PB +的最小值是( )A.B .C.1 D .22.(2017·北京海淀·高二期中)若动点P 在直线1:20l x y --=上,动点Q 在直线2:60l x y --=上,设线段PQ 的中点为00(,)M x y ,且2200(2)(2)8x y -++≤,则2200x y +的取值范围是__________.3.(2020·全国·高三专题练习)在平面直角坐标系xOy 中,已知,B C 为圆224x y +=上两点,点()1,1A ,且0AB AC ⋅=,()12AM AB AC =+,则OAM ∆面积的最大值为______.【题型二】圆大题基础:轨迹 -直线【典例分析】.(2022·全国·高二课时练习)已知点(),m n 在过()2,0-点且与直线20x y -=垂直的直线上,则圆C :(()2214x y -++=上的点到点(),M m n 的轨迹的距离的最小值为( )A .1B .2C .5D .1.(2021·江苏·高二专题练习)已知圆221:4C x y +=与圆222:(1)(3)4C x y -+-=,过动点(,)P a b 分别作圆1C 、圆2C 的切线PM ,PN ,(,M N 分别为切点),若||||PM PN =,则226413a b a b +--+的最小值是A .5B .13C D .852.(2020·全国·高二)已知圆1C :221x y +=与圆2C :22(2)(4)1x y -+-=,过动点()P a b ,分别作圆1C 、圆2C 的切线PM 、PN (M 、N 分别为切点),若PM PN =,的最小值是( )A B C D【题型三】直线与圆:韦达定理型【典例分析】(2021·广东·西樵高中高二阶段练习)已知过点(0,2)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于M ,N 两点. (1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求||MN .(2021·江苏省镇江中学高二阶段练习)如图,已知图22:9C x y +=与x 轴的左右交点分别为A ,B ,与y 轴正半轴的交点为D .(1)若直线l 过点(3,4)并且与圆C 相切,求直线l 的方程;(2)若点M ,N 是圆C 上第一象限内的点,直线AM ,AN 分别与y 轴交于点P ,Q ,点P 是线段OQ 中点,直线//MN BD ,求直线AM 的斜率.【题型四】直线与圆:定点【典例分析】(2022·四川省德阳中学校高二开学考试)已知两个定点()0,4A 、()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线:4l y kx =-.(1)求曲线E 的方程;(2)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.(2021·江苏·高二专题练习)在平面直角坐标系xOy 中,圆C :22()()4x a y b -+-=与圆1C :2268160x y x y +--+=相切于点6855A ⎛⎫⎪⎝⎭,,且直线l :10x y +-=与圆C 有公共点.(1)求圆C 的方程;(2)设点P 为圆C 上的动点,直线l 分别与x 轴和y 轴交于点M ,N . ①求证:存在定点B ,使得2PB PM =;①求当12PM PN +取得最小值时,直线PN 的方程.【题型五】直线与圆:定值【典例分析】(2022·江苏省如皋中学高二开学考试)已知直线:(2)(12)630l m x m y m ++-+-=与圆22:40C x y x +-=.(1)求证:直线l 过定点,并求出此定点坐标;(2)设O 为坐标原点,若直线l 与圆C 交于M ,N 两点,且直线OM ,ON 的斜率分别为1k ,2k ,则12k k +是否为定值?若是,求出该定值:若不是,请说明理由.【变式训练】(2021·湖南·怀化五中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)直线n 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.(3)直线m 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之和为0,求证:直线m 的斜率是定值,并求出该定值.【题型六】直线与圆:定直线【典例分析】(2022·四川·遂宁中学高二开学考试(文))已知直线:1l x my =-,圆22:40C x y x ++=. (1)证明:直线l 与圆C 相交;(2)设l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .试探究:当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式训练】(2021·江西·高二阶段练习(理))已知圆C 经过()(0,2,P Q 两点,圆心在直线0x y -=上.(1)求圆C 的标准方程;(2)若圆C 与y 轴相交于A ,B 两点(A 在B 上方).直线:1l y kx =+与圆C 交于M ,N 两点,直线AM ,BN 相交于点T .请问点T 是否在定直线上?若是,求出该直线方程;若不是,说明理由.【题型七】探索性、存在性题型【典例分析】(2022·江苏·南京二十七中高二开学考试)已知圆C 过点()2,6A ,且与直线1:100l x y +-=相切于点()6,4B . (1)求圆C 的方程;(2)过点()6,24P 的直线2l 与圆C 交于,M N 两点,若CMN △为直角三角形,求直线2l 的方程; (3)在直线3:2l y x =-上是否存在一点Q ,过点Q 向圆C 引两切线,切点为,E F ,使QEF △为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.【变式训练】(2021·江苏·高二专题练习)已知圆22:1O x y +=和点(1,4)M . (1)过M 作圆O 的切线,求切线的方程;(2)过M 作直线l 交圆O 于点C ,D 两个不同的点,且CD 不过圆心,再过点C ,D 分别作圆O 的切线,两条切线交于点E ,求证:点E 在同一直线上,并求出该直线的方程;(3)已知(2,8)A ,设P 为满足方程22106PA PO +=的任意一点,过点P 向圆O 引切线,切点为B ,试探究:平面内是否存在一定点N ,使得22PB PN 为定值?若存在,请求出定点N 的坐标,并指出相应的定值;若不存在,请说明理由.【题型八】面积与最值【典例分析】(2021·四川省遂宁市第二中学校高二期中(理))已知圆C :222210x y x y +--+=,直线l 分别交x 轴,y 轴于A ,B 两点,O 为坐标原点,,OA a OB b ==(2,2)a b >>,且圆心C 到直线l 的距离为1.(1)求证:2)22()(a b --=;(2)设(3,1)N ,直线m 过线段CN 的中点M 且分别交x 轴与y 轴的正半轴于点P 、Q ,O 为坐标原点,求①POQ 面积最小时直线m 的方程; (3)求①ABC 面积的最小值.(2022·全国·高二课时练习)已知圆()()22:4C x a y b -+-=,圆心C 在直线y x =上,且被直线:2m x y +=截得弦长为 (1)求圆C 的方程;(2)若0a ≤,点()0,1A ,过A 作两条直线l ,1l ,且满足1l l ⊥,直线l 交圆C 于M ,N 两点,直线1l 交圆C 于P ,Q 两点,求四边形PMQN 面积的最大值.【题型九】直线与圆的应用题【典例分析】(2022·江苏·高二)在①直线l 与B 、C 均相切,①直线l 截A 、B 、C 所得的弦长均相等,这两个条件中任选一个,补充在下面问题中,并求解该问题.问题:2020年是中国传统的农历“鼠年”,现用3个圆构成“卡通鼠”的头像.如图,()0,2A -是A 的圆心,且A 过原点;点B 、C 在x 轴上,B 、C 的半径均为1,B 、C 均与A 外切.直线l 过原点.若___________,求直线l 截A 所得的弦长.【变式训练】1(2022·全国·高二课时练习)赵州桥位于我国河北省,是我国现存最早、保存最好的巨大石拱桥.如图所示,它是一座空腹式的圆弧形石拱桥.(1)利用解析几何的方法,用赵州桥的跨度a 和圆拱高b 表示出赵州桥圆弧所在圆的半径r ; (2)已知37.02a =米,7.23b =米,计算半径r 的值.(结果保留2位小数)2.(2022·福建省永春第一中学高二期末)“跳台滑雪”是冬奥会中的一个比赛项目,俗称“勇敢者的游戏”,观赏性和挑战性极强.如图:一个运动员从起滑门点A 出发,沿着助滑道曲线())0f x b x =-≤≤滑到台端点B 起跳,然后在空中沿抛物线()()2200g x ax ax b x =-->飞行一段时间后在点C 着陆,线段BC 的长度称作运动员的飞行距离,计入最终成绩.已知()220g x ax ax b =--在区间[]0,30上的最大值为30-,最小值为70-.(1)求实数a ,b 的值及助滑道曲线AB 的长度.(2)若运动员某次比赛中着陆点C 与起滑门点A 的高度差为120米,求他的飞行距离(精确到米,5 2.236≈).培优第一阶——基础过关练1.(2020·黑龙江·双鸭山一中高二阶段练习(理))由动点P 向圆221x y +=引两条切线PA 、PB 切点分别为A 、B ,若120APB ∠=︒,则动点P 的轨迹方程为__________.2.(2021·全国·高二期末)在平面直角坐标系xOy 中,点Q 为圆M :22(1)(1)1x y -+-=上一动点,过圆M 外一点P 向圆M 引-条切线,切点为A ,若|P A |=|PO |,则||PQ 的最小值为( )A .21-B .21+C .3214-D .3214+3.(2021·江苏省响水中学高二阶段练习)已知圆C 过点P (1,1),且与圆M :2(2)x ++22(y )+=2r (r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅取得最小值时点Q 的坐标; (3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.4.(2022·全国·高二课时练习)如图,在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4) 1.C x y -+-=设动圆C 同时平分圆1C 、圆2C 的周长.(1)求证:动圆圆心C 在一条定直线上运动.分阶培优练(2)动圆C 是否经过定点⋅若经过,求出定点的坐标;若不经过,请说明理由.5.(2021·广东·广州四十七中高二期中)在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.6.(2013·湖南长沙·一模(理))已知1,04A ⎛⎫⎪⎝⎭,点B 是y 轴上的动点,过B 作AB 的垂线l 交x 轴于点Q ,若()2,4,0AP AQ AB M +=.(1)求点P 的轨迹方程;(2)是否存在定直线x a =,以PM 为直径的圆与直线x a =的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.7.(2022·全国·高二单元测试)已知圆C 过坐标原点O 和点(6,A ,且圆心C 在x 轴上.(1)求圆C 的方程: (2)设点()10,0M -.①过点M 的直线l 与圆C 相交于P ,Q 两点,求当PCQ △的面积最大时直线l 的方程;①若点T 是圆C 上任意一点,试问:在平面上是否存在点N ,使得32TM TN =.若存在,求出点N 的坐标,若不存在,请说明理由.8.(2021·江苏·高二专题练习)圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N . (1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.9.(2021·江苏·扬州市江都区大桥高级中学高二阶段练习)如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)培优第二阶——能力提升练1.(2021·山东·薛城区教育局教学研究室高二期中)已知圆()()22:254C x y -+-=,T 为圆C 外的动点,过点T 作圆C 的两条切线,切点分别为M 、N ,使TM TN ⋅取得最小值的点T 称为圆C 的萌点,则圆C 的萌点的轨迹方程为_______.2.(2017·重庆一中一模(理))过x 轴下方的一动点P 作抛物线2:2C x y =的两切线,切点分别为,A B ,若直线AB 到圆221x y +=相切,则点P 的轨迹方程为 A .221(0)y x y -=< B .22(2)1y x ++=C .221(0)4y x y +=< D .21x y =--3.(2021·新疆维吾尔自治区喀什第六中学高二阶段练习)已知直线l :x +y +3=0及圆C :()()2239x a y -++=,令圆C 在x 轴同侧移动且与x 轴相切,(1)圆心在何处时,圆在直线l 上截得的弦最长; (2)C 在何处时,l 与y 轴的交点把弦分成1:3;(3)当圆C 移动过程中与直线l 交于A ,B 两点时,求OA ·OB 的取值范围.4.(2022·全国·高二课时练习)已知两个定点A (-4,0),B (-1,0),动点P 满足|P A |=2|PB |.设动点P 的轨迹为曲线E ,直线l :y =kx -4. (1)求曲线E 的方程;(2)若直线l 与曲线E 交于不同的C ,D 两点,且①COD =90°(O 为坐标原点),求直线l 的斜率;(3)若k =12,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.5.(2022·四川·盐亭中学高二开学考试)①圆心C 在直线:2780l x y -+=上,圆C 过点B (1,5);①圆C 过直线:3580l x y +-=和圆226160x y y ++-=的交点;在①①这两个条件中任选一个,补充在下面的问题中进行求解.已知圆C 经过点A (6,0),且 . (1)求圆C 的标准方程;(2)过点P (0,1)的直线l 与圆C 交于M ,N 两点 ①求弦M N 中点Q 的轨迹方程; ①求证PM PN ⋅为定值.注:若选择多个条件分别解答,按第一个解答计分. 6.(2021·安徽·高二阶段练习)已知圆C 过原点,圆心C 是直线2y x =+与直线22y x =-+的交点.(1)求圆C 的标准方程;(2)若圆C 与y 轴交于A 、B 两点(A 在B 上方),直线:1l y kx =+与圆C 交于M 、N 两点,直线AM ,BN 相交于T .请问点T 是否在定直线上?若是,求出该直线方程;若不是,说明理由.7.(2021·江西省铜鼓中学高二期中(文))已知点(2,0)P 及圆C :226490x y x y +-++=. (1)若直线l 过点P 且与圆C 相切,求直线l 的方程;(2)设过P 直线1l 与圆C 交于M 、N 两点,当MN =求以MN 为直径的圆的方程; (3)设直线10ax y -+=与圆C 交于A ,B 两点,是否存在实数a ,使得过点(2,0)P 的直线2l 垂直平分弦AB ?若存在,求出实数a 的值.8.(2021·江苏·高二专题练习)如图,已知圆O ①224x y +=,过点E (1,0)的直线l 与圆相交于A ,B 两点.(1)当|AB l 的方程;(2)已知D 在圆O 上,C (2,0),且AB ①CD ,求四边形ACBD 面积的最大值.9.(2022·全国·高二课时练习)河北省赵县的赵州桥是世界上著名的单孔石拱桥,它的跨度是37.02m ,圆拱高约为7.2m ,自建坐标系,求这座圆拱桥的拱所在圆的标准方程.(精确到0.01m )培优第三阶——培优拔尖练1.(2021·江苏·高二专题练习)已知圆:O 229x y +=与x 轴交于点A 、B ,过圆上动点M (M 不与A 、B 重合)作圆O 的切线l ,过点A 、B 分别作x 轴的垂线,与切线l 分别交于点,C D ,直线CB 与AD 交于点Q ,Q 关于M 的对称点为P ,则点P 的轨迹方程为_______2.(2021·广东·湛江市第四中学高二期中)过点(,)P x y 作圆221:1C x y +=与圆222:(2)(2)1C x y -+-=的切线,切点分别为A 、B ,若PA PB =,则22x y +的最小值为( )AB .2C .D .83.(2021·北京铁路二中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)若点B 也在圆C 上,且弦AB 长为8,求直线AB 的方程;(3)直线l 交圆C 于M ,N 两点,若直线,AM AN 的斜率之和为0,求直线l 的斜率.4.(2022·全国·高二课时练习)知圆22:4O x y +=,点P 是直线:4l x =上的动点.(1)若从点P 到圆O 的切线长为P 的坐标以及两条切线所夹的劣弧长; (2)若点()2,0A -,()2,0B ,直线PA ,PB 与圆O 的另一交点分别为M ,N ,求证:直线MN 经过定点()1,0Q .5.(2021·全国·高二专题练习)已知点(4,0)A 和(4,4)B ,圆C 与圆22(1)(2)4x y -++=关于直线2450x y --=对称.(1)求圆C 的方程;(2)点P 是圆C 上任意一点,在x 轴上求出一点M (异于点)A 使得点P 到点A 与M 的距离之比PA PM 为定值,并求12PB PA +的最小值.6.(2021·四川省绵阳南山中学高二阶段练习)已知圆O :224x y +=与x 轴的负半轴交于点P ,过点()1,0Q 且不与坐标轴重合的直线与圆O 交于A ,B 两点.(1)设直线PA ,PB 的斜率分别是1k ,2k ,试问12k k ⋅是否为定值?若是定值,求出该定值,若不是定值,请说明理由.(2)延长PA ,与直线4x =相交于点R ,证明:PBR △的外接圆必过除P 点之外的另一个定点,并求出该点坐标.7.(2020·江苏·苏州大学附属中学高二开学考试)已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;(3)是否存在定点(),M m n ,使过点M 有无数对相互垂直的直线12,l l 满足12l l ⊥,且它们分别被圆O 、圆1O 所截得的弦长相等?若存在,求出所有的点M ;若不存在,请说明理由.8.(2020·安徽省太和第一中学高二期中)已知圆M 的圆心M 在x 轴上,半径为1,直线l :4132y x =-被圆M M 在直线l 的下方. (1)求圆M 的方程;(2)设(0,),(0,6)(52)A t B t t +-≤≤-,若圆M 是△ABC 的内切圆,求△ABC 的面积S 的范围.9.(2022·全国·高二课时练习)如图,某海面上有O ,A ,B 三个小岛(面积大小忽略不计),A岛在O 岛的北偏东45°方向距O 岛B 岛在O 岛的正东方向距O 岛20千米处.以O 为坐标原点,O 的正东方向为x 轴的正方向,1千米为一个单位长度,建立平面直角坐标系.圆C 经过O ,A ,B 三点.(1)求圆C 的方程;(2)若圆C 区域内有未知暗礁,现有一船D 在O 岛的南偏西30°方向距O 岛40千米处,正沿着北偏东45°方向行驶,若不改变方向,试问该船有没有触礁的危险?。
高中数学必修二直线和圆的位置关系课后练习一(含解析)新人教A版必修2

题2 答案: C.
详解:∵圆 x2+y2 =r 2 的圆心 O( 0, 0)到直线 l : 2x+3y+1=0 的距离 m= 13 , 13
又直线 l :2x+3y+1=0 被圆 C:x2 +y2 =r 2 所截得的弦长为 d,
∴弦心距 13 ,弦长之半 d 与圆半径 r 组成的直角三角形,
13
2
即 r 2 ( d )2 ( 13 )2 ,∵圆心 O( 0, 0)到直线 2x+4y-1=0 的距离
-2 ,
题3
11
1
答案:最大值为 5 ,最小值为 5.
详解:圆心 C( - 2,0) 到直线 3x+ 4y+12= 0 的距离为
|3 × ( -2) +4×0+ 12| 6
d=
32+ 42
=5.
6
11
∴P 点到直线 3x+ 4y+ 12= 0 的距离的最大值为 d+ r = 5+ 1= 5 ,
6
1
最小值为 d- r = 5-1= 5.
题4
求与圆
x
2
+(
y-2
)
2
=
4
相切且在两坐标轴上截距相等的直线方程.
题5
从直线 x- y+3=0 上的点向圆( x+2) 2 +( y+2) 2 =1 引切线,则切线长的最小值是
.
题6 若⊙ O: x2+ y2=5 与⊙ O1: ( x-m) 2+ y2= 20( m∈ R) 相交于 A、B 两点,且两圆在点 线互相垂直,则线段 AB的长度是 __________ .
当△> 0 时, ( m+1) 2-5 <0,∴ 1 5 <m< 1 5 ;
高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练

高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练典题精讲例1如图2-3-(3,4)-3已知圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的两交点为P 、Q ,且OP⊥OQ(O 为原点),求圆的方程.图2-3-(3,4)-3思路分析:涉及到直线与圆的交点问题,可以联立方程求解. 解法一:设P(x 1,y 1)、Q(x 2,y 2). 由⎩⎨⎧=+-++=-+,06,03222c y x y x y x消去x,得(3-2y)2+y 2+(3-2y)-6y+c=0,即5y 2-20y+12+c=0.由韦达定理,得y 1+y 2=4,y 1y 2=512c+. 如图2.3(3.4)3所示, ∵OP⊥OQ, ∴2211x y x y •=-1, 即123232211-=-•-y y y y .解得9-6(y 1+y 2)+5y 1y 2=0. ∴9-6×4+5×512c+=0,解得c=3. 从而所求圆的方程为x 2+y 2+x-6y+3=0.解法二:设过圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的交点P 、Q 的圆的方程为x 2+y 2+x-6y+c+λ(x+2y-3)=0,即x 2+y 2+(1+λ)x-(2λ-6)y+c-3λ=0. ∵OP⊥OQ,故该圆过原点,c-3λ=0,① 且圆心(21λ+-,262--λ)在直线x+2y-3=0上, 21λ+-+2·(262--λ)-3=0.②由①②求得λ=1,c=3.故所求圆的方程为x 2+y 2+x-6y+3=0.绿色通道:在解析几何中,更多的是把垂直转化为斜率问题,而较少利用勾股定理.在判定直线与圆的位置关系时,应选择能体现圆的几何性质的方法,即用圆心到直线距离与半径作比较,这样更简捷.变式训练1若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则这个圆的方程为_________________.思路解析:若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则圆心在直线y=3x 上,且圆心的横坐标为1,所以纵坐标为3,这个圆的方程为(x-1)2+(y-3)2=1. 答案:1变式训练2(2006重庆高考,文3)以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为 ( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=3 思路解析:根据题意,圆心到切线的距离即为圆的半径r=22435)1(423++-⨯-⨯=3,故选C.答案:C例2已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9. (1)求证:无论m 为何值,直线l 与圆C 总相交.(2)m 为何值时,直线l 被圆C 所截得的弦长最小?并求出该最小值.思路分析:分析已知条件:圆是定圆,直线不确定(方程中含有未知数m),解题关键在于发现直线的特征:过定点.(1)证法一:设圆心C(3,4)到动直线l 的距离为d ,则 d=21)25(21)2()3(|4)2(3)3(|222++=++++•+-•+m m m m m m ≤2.∴当m=25-时,d max =2<3(半径). 故动直线l 总与圆C 相交.证法二:直线l 变形为m(x-y+1)+(3x-2y)=0. 令⎩⎨⎧=-=+-,023,01y x y x 解得⎩⎨⎧==.3,2y x如图2-3-(3,4)-4所示,故动直线l 恒过定点A(2,3).图2-3-(3,4)-4而|AC|=32)43()32(22<=-+-,∴点A 在圆内,故无论m 取何值,直线l 与圆C 总相交. (2)解法一:由平面几何知识知,弦心距越大,弦长越小. 由(1)知,当m=25-时,弦长最小. ∴最小值为72)2(3222=-.解法二:由平面几何知识知,弦心距越大,弦长越小, ∴过点A 且垂直AC 的直线被圆C 所截弦长最小. ∴k l =11-=-ACk .∴,123-=++m m 解得m=25-.此时弦长为72)2(92||32222=-=-AC . 故当m=25-时,直线被圆C 所截弦长最小,最小值为72. 绿色通道:解法一使用圆心到直线的距离判断直线与圆的位置关系,解法简便,运算量小. 解法二从所要证的结论分析,总与定圆相交的动直线可能是过定点的直线系,且定点必在圆内.于是抓住动直线与定圆的几何特征,数形结合,生动直观,迅速解决问题.变式训练3设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则a 的值为( ) A.±2 B.±2 C.±22 D.±4 思路分析:设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,设直线方程为y=x+a ,圆心(0,0)到直线的距离等于半径2, ∴22||=a .∴a 的值为±2,选B. 答案:B例3已知P(x,y)在圆C:x 2+y 2-6x-4y+12=0上, (1)求x-y 的最大及最小值;(2)求x 2+y 2的最大及最小值;(3)求|PA|2+|PB|2的范围,其中A(-1,0)、B(1,0).思路分析:利用直线与圆的位置关系还可以求最值;另外数形结合的方法也需注意. (1)解:设x-y=m ,则P(x,y)在l:x-y-m=0上.又在⊙C 上,⊙C 的圆心坐标为(3,2), ∴l 与⊙C 有公共点. ⊙C 的圆心坐标为(3,2),∴圆心到直线l 的距离d=11|23|+--m ≤1,|1-m|≤2,得1-2≤m≤2+1.∴x -y 的最大值为2+1,最小值为1-2.(2)解法一:x 2+y 2=(x-0)2+(y-0)2=(22)0()0(-+-y x =|OP|2.由平面几何知识,连结直线OC 交⊙C 于A 、B. 当P 与A 重合时,|OP|min =|OA|=|OC|-1=13-1; 当P 与B 重合时,|OP|max =|OB|=|OC|+1=13+1. 从而,14-213≤x 2+y 2≤14+213.解法二:设x 2+y 2=r 2(r >0),因此P 在⊙O 上,又在⊙C 上,图2-3-(3,4)-5即⊙O 与⊙C 有公共点,由图2-3-(3,4)-5可知,当⊙O 与⊙C 外切时,r 最小. 此时|OC|=r+1=13, ∴r min =13-1.当⊙O 与⊙C 内切时,r 最大. 此时,|OC|=|r-1|=13, ∴r max =13+1.∴14-213≤x 2+y 2≤14+213.(3)解:可化归为(2),|PA|2+|PB|2=222222))1(())1((y x y x +-+++ =x 2+2x+1+y 2+x 2-2x+1+y 2=2(x 2+y 2)+2.由(2)14-132≤x 2+y 2≤14+132, ∴30-134≤|PA|2+|PB|2≤30+134.绿色通道:本题是坐标法的逆向应用,即用几何法研究代数问题——最值.变式训练4圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( )A.36B.18C.26D.25思路解析:圆x 2+y 2-4x-4y-10=0的圆心为(2,2),半径为23,圆心到直线x+y-14=0的距离为23522|1422|>=-+,所以直线与圆的位置关系是相离.因此圆上的点到直线的最大距离与最小距离的差是2R=26,选C.答案:C例4已知圆C:x 2+y 2-2x-4y-20=0及直线l:(2m+1)x+(m+1)y=7m+4(m∈R ). (1)求证:不论m 取什么实数,直线l 与圆C 总相交;(2)求直线l 被圆C 截得的弦长最短长度及此时的直线方程. 思路分析:(1)直线l 是过一个定点的直线,若此定点在圆内,则此直线l 必与圆C 相交.(2)当过定点的直线与圆心的距离最短,即此直线垂直于定点与圆心的连线时,被圆截得的弦最短.(1)证明:把直线l 的方程改写成(x+y-4)+m(2x+y-7)=0.由方程组⎩⎨⎧=-+=-+,072,04y x y x解得⎩⎨⎧==.1,3y x∴直线l 总过定点(3,1).圆C 的方程可写成(x-1)2+(y-2)2=25.∴圆C 的圆心为(1,2),半径为5,定点(3,1)到圆心(1,2)的距离为5)21()13(22=-+-<5.∴点(3,1)在圆C 内.∴过点(3,1)的直线l 总与圆C 相交,即不论m 为何实数,直线l 与圆C 总相交.图2-3-(3,4)-6(2)解:当直线l 过定点M(3,1)且垂直于过点M 的圆心的半径时,l 被圆截得的弦长|AB|最短.(如图2-3-(3,4)-6) |AB|=254202])21()13[(2522222==-+--=-CM BC .此时,k AB =CMk 1-=2.∴直线AB 的方程为y-1=2(x-3),即2x-y-5=0.故直线l 被圆C 截得的弦长的最短长度为54,此时直线l 的方程为2x-y-5=0. 绿色通道:充分考虑圆的几何性质,数形结合,如果对于第(2)问用纯代数的方法来解决,会很复杂.变式训练5(2006高考全国卷Ⅰ,文7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( ) A.21B.53C.23D.0思路解析:圆x 2-2x+y 2-2y+1=0的圆心为M(1,1),半径为1,从圆外一点P(3,2)向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为tanθ=34411212=-•,该角的余弦值等于53,选B. 答案:B 问题探究问题1过一点作圆的切线,求切线方程.现利用点斜式,求出斜率值只有一个,那么该点在圆上吗?利用点斜式求直线方程,会产生漏解吗?如果漏解,会漏掉什么样的解? 导思:根据不同条件求圆的切线,主要有以下题型:(1)已知切点,求切线方程.可根据切线垂直于过切点的半径直接写出切线的方程.注意只有一条.(2)已知圆外一点,求圆的切线方程.切记有两条. (3)已知切线的斜率求圆的切线方程. 求圆的切线方程常用的三种方法: (1)设切点用切线公式法; (2)设切线斜率用判别式法;(3)设切线斜率,用圆心到切线的距离等于半径法.探究:利用点斜式求直线方程时,很重要的一点就是注意点斜式不能表示斜率不存在的直线的方程,即倾斜角为2π的直线的方程.如果没有考虑到这一点就贸然运用点斜式方程就有可能产生漏解,忽略倾斜角为2π的直线的方程而造成错误.对于题中所给问题,先要判断此点与圆的位置关系,如果点在圆外,则过此点应该有两条圆的切线,现在只解出一个斜率,则说明遗漏了倾斜角为2π的切线方程;如果点在圆上,则应该有一条切线,现解出一个斜率,则正是所求切线的斜率;如果点在圆内,则不应该有切线,不可能解出正确的斜率值.问题2将两个相交的非同心圆的方程x 2+y 2+D i x+E i y+F i =0(i=1,2)相减,可得一直线方程,这条直线方程具有什么样的特殊性呢?导思:可以通过设出两圆的交点(x 1,y 1)、(x 2,y 2),将(x 1,y 1)代入两圆方程相减得到 (D 1-D 2)x 1+(E 1-E 2)y 1+F 1-F 2=0,将(x 2,y 2)代入两圆方程相减得到(D 1-D 2)x 2+(E 1-E 2)y 2+F 1-F 2=0,点(x1,y1)、(x2,y2)满足(D1-D2)x+(E1-E2)y+F1-F2=0,故该方程为公共弦所在直线的方程.探究:两圆相减得一直线方程,它当然经过两圆的公共点.经过相交两圆的公共交点的直线是两圆的公共弦所在的直线.。
2023版高中数学新同步精讲精炼(选择性必修第一册) 第2章 直线和圆的方程 章末测试

第2章 直线和圆的方程章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·乌鲁木齐市第二十中学)方程 22240x y ax by ++-+=表示圆心为 (2,2)C ,半径为 2的圆,则 a , b 的值依次为( ) A .2,4B .2-,4C .2,4-D .2,4-【解析】圆的标准方程为2222()()424b b x a y a ++-=+-,由题意2,22b a -==,即2a =-,4b =,满足22444b a +-=.故选:B .2.(2021·乌鲁木齐市第二十中学)若两条平行直线1:20(0)l x y m m -+=>与2:30l x ny +-=之间的距m n +=( ) A .0 B .1C .2-D .1-【答案】A【解析】由题意两直线平行,则112n=-,2n =-,又d ==0m >,所以2m =. 所以0m n +=.故选:A .3.(2021·广东)过圆224x y +=上一点P 作圆222:()0O x y r r +=>的两条切线,切点分别为,A B ,若2APB π∠=,则r =( )A .1B .2C D 【答案】C【解析】由题意可知:0<r <2,如示意图,四边形OAPB 是正方形,因为|OP |=2,则r =故选:C.4.(2021·全国高三其他模拟(文))若圆22()(21)9x a y a -+-+=上有且仅有两个点到直线34120x y +-=的距离等于2,则实数a 的取值范围是( )A .41,11∞⎛⎫- ⎪⎝⎭B .9,11∞⎛⎫-+ ⎪⎝⎭C .93141,2,111111⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ D .92141,1,111111⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】圆22()(21)9x a y a -+-+=的圆心坐标为(),21a a -,半径为3.11165a -=,又圆22()(21)9x a y a -+-+=上有且仅有两个点到直线34x y +120-=的距离等于2,所以1116325a --<,解得9111a -<<或21411111a <<.故选:D . 5.(2021·江西省万载中学)直线:3250l x y -+=,()P m n ,为直线l 上动点,则()221m n++的最小值为( ) A .13B C .413D .313【答案】C【解析】由题意得:()221m n ++表示()P m n ,到()10-,的距离的平方,而()P m n ,为直线l 上动点,所以()221m n ++的最小值,即为()10-,到直线:3250l x y -+=距离的平方,即24=13,故选:C6.(2021·河南)已知()0,0O,)P,()14cos 4sin Q θθ+,[]0,2θπ∈,则OPQ △面积的最大值为( ) A .4 B .5C.D【答案】B【解析】设点(),Q Q Q x y,因为14cos 4sin Q Q x y θθ=+⎧⎪⎨=⎪⎩,所以()(22116Q Q x y -+-=,∴Q点的轨迹是以(M 为圆心,4为半径的圆,又直线OP 的方程为OP l:0x -=,2OP ==,圆心M 到直线OP 的距离1d ==,所以Q 到直线OP 的距离最大值为145d r +=+=则OPQ △面积的最大值为12552S =⨯⨯=.故选:B . 7.(2021·安徽)在平面直角坐标系中,四点坐标分别为()((2,0,3,2,1,2,A B C ()4,D a ,若它们都在同一个圆周上,则a 的值为( ) A .0 B .1C .2D 【答案】C【解析】设圆的方程为220x y Dx Ey F ++++=,由题意得((((2222222020323201220D F DEF D E F ⎧+++=⎪⎪++++=⎨⎪⎪+++++=⎩,解得444D E F =-⎧⎪=-⎨⎪=⎩,所以224440x y x y +--+=,又因为点()4,D a 在圆上,所以22444440a a +-⨯-+=,即2a =.故选:C.8.(2021·河南洛阳市)从直线34:15x l y +=上的动点P 作圆221x y +=的两条切线,切点分别为C 、D ,则CPD ∠最大时,四边形OCPD (O 为坐标原点)面积是( ) AB .C .D .2【答案】B【解析】圆221x y +=的圆心为坐标原点O ,连接OC 、OD 、OP ,则OPC OPD ∠=∠,设OPC OPD θ∠=∠=,则2CPD θ∠=,OC PC ⊥,则1sin OC OP OPθ==, 当OP 取最小值时,OP l ⊥,此时3OP ==,PC PD ===,OC OD =,OP OP =,故OPC OPD ≅△△,此时,21OPC OCPD S S OC PC ==⋅=⨯=△四边形故选:B.二、多选题(每题至少有两个选项为正确答案,每题5分,4题共20分)9.(2021·广东实验中学高三其他模拟)已知直线:cos sin 1l x y αα+=与圆22:6O x y +=交于A ,B 两点,则( )A .线段AB 的长度为定值B .圆O 上总有4个点到l 的距离为2C .线段AB 的中点轨迹方程为221x y += D .直线l 的倾斜角为2πα+【答案】AC【解析】对于A ,因为圆心(0,0)O 到直线:cos sin 1l x y αα+=的距离1d ==,所以AB ==A 正确;对于B ,由于圆心到直线的距离为1d ==,所以圆O 上只有2个点到l 的距离为2,所以B 错误; 对于C,由于圆心到直线的距离为1d ==,所以线段AB 的中点到圆心(0,0)O 的距离为1,所以线段AB 的中点轨迹是以(0,0)O 为圆心,1为半径的圆,即方程为221x y +=,所以C 正确; 对于D ,当0α=时,则cos 1,sin 0αα==,此时直线为1x =,则直线的倾斜角为2π,满足2πα+;当0α≠时,由cos sin 1x y αα+=,得直线的斜率为cos 1sin tan k ααα=-=-,设直线的倾斜角为θ,则1tan tan θα-=,即tan tan()2πθα=+,当02πα<<时,直线的倾斜角2πθα=+,而当2πα>时,直线的倾斜角2πθα≠+,所以D 错误,故选:AC10.(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=, 圆心M 到直线AB45==>,所以,点P 到直线AB的距离的最小值为425-<,最大值为4105+<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM ==,4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.11.(2021·广东深圳市)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为( )A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为2D .l 被C 截得的最短弦长为4 【答案】BD【解析】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误; 对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为d =,所以,直线l 被C 截得的弦长为=C 选项错误;对于D 选项,圆心C 到直线l 的距离为1d =≤,所以,直线l 被C 截得的弦长为4≥,D 选项正确. 故选:BD.12.(2021·广东潮州市)已知圆222:210C x ax y a -++-=与圆22:4D x y +=有且仅有两条公共切线,则实数a 的取值可以是( ) A .3- B .3 C .2 D .2-【答案】CD【解析】圆C 方程可化为:()221x a y -+=,则圆心(),0C a ,半径11r =;由圆D 方程知:圆心()0,0D ,半径22r =; 圆C 与圆D 有且仅有两条公切线,∴两圆相交,又两圆圆心距d a =,2121a ∴-<<+,即13a <<,解得:31a -<<-或13a <<, 可知CD 中的a 的取值满足题意.故选:CD.三.填空题(每题5分,4题共20分)13.(2021·黑龙江哈尔滨市)已知直线230x y +-=与圆C :()()22239x y -+-=相交于A ,B 两点,则ABC 面积为___________.【答案】【解析】圆C 的圆心为()2,3,半径3r =,圆心到直线230x y +-=的距离为d ==所以4AB ===,所以11422ABCSAB d =⨯⨯=⨯=故答案为:14.(2021·福建省福州第一中学)写出一个关于直线10x y +-=对称的圆的方程___________. 【答案】()2211x y -+=等,只要圆心在直线上均可. 【解析】设圆心坐标为(),C a b , 因为圆C 关于10x y +-=对称, 所以(),C a b 在直线10x y +-=上, 则10a b +-=,取10a b =⇒=,设圆的半径为1, 则圆的方程()2211x y -+=, 故答案为:()2211x y -+=(不唯一)15.(2021·辽宁)已知圆心为(),0a 的圆C 与倾斜角为56π的直线相切于点(3,N ,则圆C 的方程为___________【答案】()2244x y -+=【解析】由题意得,圆的半径r ==,直线的方程为:(3)3y x -=--0x y +=,因为直线与圆相切,所以圆心到直线的距离d r ===所以224(3)3a a ⎡⎤=-+⎣⎦,解得4a =, 所以圆C 的方程为()2244x y -+=. 故答案为:()2244x y -+=16.(2021·江苏南京市)直线y x =D:(()2213x y -+-=交与A ,B 两点,则直线AD 与BD 的倾斜角之和为_____________. 【答案】43π 【解析】如图所示:直线3y x =+3,则倾斜角为6π,则1=,2=66ππαπβ∠-∠+- , 因为AD BD =,所以1=2∠∠,所以=66ππαπβ-+-,即4=3αβπ+.故答案为:43π 四.解答题(17题10分,其余每题12分,7题共70分)17.(2021·江西赣州市)如图,在平面直角坐标系xOy 中,已知圆22:3O x y +=,过点()3,0P-的直线与圆O 相交于不同的两点A ,B .(1)求OAB 面积的最大值;(2)若AB =AB 的方程.【答案】(1)最大值32;(2)()34y x =±+. 【解析】(1)设AOB θ∠=,则()0,θπ∈, 且2113sin sin sin 222OAB S OA OB r θθθ=⋅⋅==△, ∵()0,θπ∈,所以0sin 1θ<≤,∴OAB 面积取得最大值32. (2)设圆心O 到直线AB 的距离为d,则AB ===解得1d =,根据题意,直线AB 的斜率存在,设直线AB 的方程为()3y k x =+,即30kx y k -+=,则1d ==,解得4k =±,因此,直线AB的方程为)34y x =±+. 18.(2021·江西省万载中学)已知直线l 经过点()2,3P --. (1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和10x y +-=所截得的线段恰被点P 平分,求直线l 的方程. 【答案】(1)2x =-或513126y x =-;(2)57y x =+. 【解析】(1)当直线l 的斜率不存在时,直线l 方程为2x =-,满足原点到直线l 的距离为2, 当直线l 斜率存在时,设直线l 方程为()32y k x +=+,即230kx y k -+-=,2=,解得512k =,直线l 的方程为()53212y x +=+,即513126y x =-, 综上,直线l 的方程为2x =-或513126y x =-; (2)设直线l 与直线220x y --=交于点()11,A x y ,与直线10x y +-=交于点()22,B x y 因AB 被点P 平分,即124x x +=-,126y y +=-,则214x x =--,216y y =--,因112222010x y x y --=⎧⎨+-=⎩,则11112211x y x y -=⎧⎨+=-⎩,解得13x =-,18y =-, 即(3,8)A --,直线l 的斜率是8(3)53(2)k ---==---,直线l 方程为(3)5[(2)]y x --=--,即57y x =+,所以直线l 的方程为:57y x =+.19.(2021·浙江高二期末)已知圆C 与y 轴相切,圆心C 在射线()20y x x =+≥上,且截直线220x y --=所得弦长为5. (1)求圆C 的方程;(2)已知点()1,4P -,直线(1) (45) 10m x m y -+-+=与圆C 交于A 、B 两点,是否存在m 使得PA PB =,若存在,求出m 的值;若不存在,说明理由. 【答案】(1)()()22244x y -+-=;(2)34m =. 【解析】(1)设圆C 的方程为()()()2220x a y b r r -+-=> 圆心C 在射线()20y x x =+≥上,所以()2,0,0b a a b =+≥≥ 圆C 与y 轴相切,则r a =点(),a b 到直线220x y --=的距离d ==,由于截直线220x y --=所得弦长为5,所以22212r d ⎛-= ⎝⎭则得2280a a +-=,又0a ≥ 所以2,4a a ==-(舍去),24,2b a r a =+=== 故圆C 的方程为()()22244x y -+-=; (2)由(1)得()2,4C ,因为PA PB =,CA CB = 所以,P C 在线段AB 的中垂线上,则PC AB ⊥, 因为44821PC k +==-,所以11458AB m k m -==-- 解得34m =20.(2021·玉林市第十一中学)如图,已知圆O ∶224x y +=,过点E (1,0)的直线l 与圆相交于A ,B 两点.(1)当|ABl 的方程;(2)已知D 在圆O 上,C (2,0),且AB ⊥CD ,求四边形ACBD 面积的最大值. 【答案】(1)()13y x =±-;(2)【解析】(1)1o 当直线l 的斜率不存在时,直线方程为1x =,此时AB ==2o 当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为()1y k x =-,所以圆心O 到直线l的距离d =因为AB =AB =3k =±,所以直线l的方程为)13y x =±-. (2)当直线AB 与x轴垂直时,AB =4CD =,∴四边形ACBD的面积1·2S AB CD ==,当直线AB 与x 轴不垂直时,设直线AB 方程为(1)y k x =-, 即kx y k 0--=,则直线CD 方程为1(2)y x k=--,即20x ky +-=, 点O 到直线AB,点O 到直线CDAB∴==,CD==,则四边形ACBD面积22221134242211k kS AB CDkk+===++令211k t+=>(当0k=时,四边形ACBD不存在),∴(S=,∴四边形ABCD面积S的最大值为21.(2021·浙江)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB QA上所有点到点O的距均不小于圆O的半径.已知点A,B到直线l的距离分别为A C和BD(C,D为垂足),测得10 , 6,12AB AC BD===(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由.【答案】(1)15PB=;(2)P,Q中不能有点选在D点;【解析】设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM BM⊥,即有6DM AC==,6BM=,8AM=,以C为坐标原点,l 为x轴,建立直角坐标系,则(0,6)A-,(8,12)B--,(8,0)D-(1)设点1(P x,0),PB AB⊥,则1BP ABk k=-,即1(12)6(12)1(8)0(8)x-----=-----,解得117x=-,所以(17,0)P-,15PB==;(2)当QA AB ⊥时,QA 上的所有点到原点O 的距离不小于圆的半径,设此时2(Q x ,0), 则1QA AB k k =-,即20(6)6(12)100(8)x -----=----,解得292x =-,9(2Q -,0),由91782-<-<-,在此范围内,不能满足PB ,QA 上所有点到O 的距离不小于圆的半径, 所以P ,Q 中不能有点选在D 点;22.(2021·重庆巴蜀中学)已知P 为直线:40l x y +-=上一动点,过点P 向圆()22:15C x y ++=作两切线,切点分别为A 、B .(1)求四边形ACBP 面积的最小值及此时点P 的坐标;(2)直线AB 是否过定点?若是,请求出该点坐标;若不是,请说明理由. 【答案】(1)最小值2,35,22⎛⎫⎪⎝⎭;(2)AB 恒过定点()0,1.【解析】(1)由题意,易知CA PA ⊥,PAC PBC ≅△△, ∴2ACPB ACPS S AC AP ==⋅又=AC r =∴ACPB S AP ==要使四边形ACBP 面积最小,则PC 最小,当PC l ⊥时,PC 的长最小. 过点()1,0C -且与l 垂直的直线为011y x y x -=+⇒=+ 将其与4y x =-联立解得此时点P的坐标为35,22⎛⎫⎪⎝⎭, ∴min2PC ==,∴()min ACBP S ==;(2)设()004,P x x -,又()1,0C -,则PC =PC 中点坐标为0014,22x x --⎛⎫ ⎪⎝⎭,因此以PC 为直径的圆的方程为()()22222000044114242x x x x PC x y +-⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝+⎭----, 整理得()()22000140x y x x x y x ++-+--=,∵2PAC PAB π∠=∠=,∴这个圆也是四边形ACBP 的外接圆,它与圆C 方程相减,得公共弦AB 方程:()()0001440x x x y x ++-+-=;()01440x x y x y ⇒-+++-=, 令1004401x y x x y y -+==⎧⎧⇒⎨⎨+-==⎩⎩, ∴AB 恒过定点()0,1.。
高考数学专题13直线与圆小题精练B卷(含解析).doc

2019 年高考数学 专题 13 直线与圆小题精练 B 卷(含分析)1.已知圆的方程为 x 2 y 2 4x 2y 4 0 ,则圆的半径为( )A .3B .9C . 3D .3【答案】 A2.已知圆 C : 2 y 22( a 0 )及直线:x y 3 0,当直线被 C 截得的x a 4 弦长为 23 时,则 a = ()A . 2B .22C . 21D . 21【答案】 Ca 21 24 ,解得 a2 1 ,又由于 a 0 ,因此 a2 1;【分析】由题意,得131 应选 C .3.已知圆心 ,一条直径的两个端点恰幸亏两坐标轴上,则这个圆的方程是()A .B .C .D .【答案】 B【分析】由题意可设圆的直径两头点坐标为,由圆心坐标可得,可求得,可得圆的方程为即.应选 B .4.过点 ,且倾斜角为的直线与圆相切于点,且,则的面积是 ()A .B .C .1D .2【答案】 B【分析】在直角三角形 AOB 中 ,选 B .5.若直线与圆有公共点,则实数的取值范围是( )A.B.C.D.【答案】 C6.直线与圆订交于两点,则弦的长度等于()A.B.C.D.【答案】 B【分析】圆心到直线,的距离,由勾股定理可知,,即,应选 B.7.已知圆的圆心在直线上,且与直线平行,则的方程是()A.B.C.D.【答案】 A【分析】设直线为,代入点得.应选A.点睛:两条直线平行的想法,斜率相等,只要要截距不一样.8.直线x ky10 (k R )与圆 x2y 24x 2 y 2 0 的地点关系为()A.订交B.相切 C.相离D.与 k 的值有在【答案】 A【解析】由于直线 x ky10恒过定点P1,0 ,且P1,0在圆x2y24x 2 y 2 0 内,故圆与直线x ky 1 0 的订交,应选答案A.9.曲线y= 1+与直线 y=k( x-2)+4有两个交点,则实数k 的取值范围是() A.B.(,+∞)C.(,]D.(,]【答案】 C【分析】由题设可化为过定点的动直线与半圆 有两个交点, 如图,圆心 到直线的距离是,又 ,联合图形可知: 当 ,即 ,应选答案 C .10.若曲线2 20(0) 与直线xyxyy k( x 2)有交点,则 k的取值范围是()6A . [3,0)B . (0, 4]C . (0,3]D .[ 3,3]43 44 4【答案】 C考点:直线与圆的地点关系.11.若一次函数y kx b,y随x的增大而减小,当3x 1y 9 ,则它的分析时, 1式为()A.y2x7B.y 2 x3C.y2x7或 y2x3D .以上都不对【答案】 B【分析】试题剖析:∵一次函数y kx b ,当3 x 1y9 ,且 y 随x的增大而减小,∴时, 1当 x 3 时, y9 ;当 x 1 时, y13k b9k2,∴1,解得b.∴一次函数的解k b3析式为 y2x 3 .应选B.考点:函数分析式.12.已知直线ax by60(a0,b0) 被圆x2y22x 4 y0 截得的弦长为 2 5 ,则 ab 的最大值是()A.5B.4C.9D.9 22【答案】 C考点: 1.圆的一般方程化为标准方程;2.基本不等式.专题 14直线与圆1.已知直线的倾斜角为,直线经过,两点,且直线与垂直,则实数的值为()A.-2 B.-3C.-4D.-5【答案】 D【分析】∵,∴,应选D.2.设 A,B 为x轴上的两点,点 P 的横坐标为 2 且PA PB ,若直线PA的方程为x y 10 ,则直线 PB 的方程为()A. 2 x y 7 0B.2x y 1 0C.x 2 y 4 0D.x y 50【答案】 D3.方程1 4k x 2 2k y214k0 表示的直线必经过点()A.2,2B.2,2C.12 ,11 D .34,225555【答案】 C【分析】方程 1 4k x 2 2k y 2 14k0 ,化为(x﹣2y+2)+k(4x+2y﹣14)=012﹣0xx 2 y 2512 ,11解 {﹣,得 {,∴直线必经过点4x 2 y 14011 5 5y5应选 C.点睛:过定点的直线系A1x+ B1y+C1+λ( A2x+ B2y+ C2)=0 表示经过两直线l 1∶A1x+ B1y+C1=0与 l 2∶A2x+ B2y+ C2= 0 交点的直线系,而这交点即为直线系所经过的定点.4.已知圆心,一条直径的两个端点恰幸亏两坐标轴上,则这个圆的方程是()A.B.C.D.【答案】 B5.过点,且倾斜角为的直线与圆相切于点,且,则的面积是 ( )A.B.C.1D.2【答案】 B【分析】在直角三角形AOB中,选B.6.若直线与圆有公共点,则实数的取值范围是( )A.B.C.D.【答案】 C【分析】圆的圆心,半径为,直线与圆有公共点,则,,解得实数的取值范围是,应选C.7.直线与圆订交于两点,则弦的长度等于()A.B.C.D.【答案】 B【分析】 圆心到直线 ,的距离 ,由勾股定理可知, ,即,应选 B .8.已知圆 C : ( a<0)的圆心在直线上,且圆 C 上的点到直线 的距离的最大值为 ,则的值为()A .1B.2C.3D.4【答案】 C【分析】圆的方程为,圆心为 ① ,圆 C 上的点到直线的距离的最大值为 ②由①②得,a<0,故得 , =3 .点睛:圆上的点到直线的距离的最大值,就是圆心到直线的距离加半径;再就是二元化一元的应用.9.已知直线 ax y2 2ABC 为等腰1 0 与圆 C : x 1ya1订交于 A,B 两点,且 直角三角形,则实数 a 的值为A .1B .1C .1或1D .1或17【答案】 D10.过点 ( 2,0) 引直线与曲线 y1 x2 订交于 A 、B 两点, O 为坐标原点,当 AOB 的面积取最大值时,直线的斜率等于( )A .3B .3 3C .333D.3【答案】 B 【分析】试题剖析:因y1x2表示以 O 为圆心,半径为的上半圆.又SAOB1sin AOB,故2AOB900时,AOB 的面积取最大值,此时圆心 O 到直线y k (x2)的距离d1, 即|2k |1, 也即3k21,解之得 k3,应选 B.2 1 k 223考点:直线与圆的地点关系及运用.11.若直线ax by10 a 0, b 0均分圆 C : x2y22x4y 10 的周长,则 ab 的取值范围是()A .111 ,B.0,C.0, 884D. 1 ,4【答案】 B考点:直线与圆的地点关系.12.在平面直角坐标系xOy 中, M , N 分别在线段 OA,OB 上,以 C 1,1 为圆心的圆与若, MN与圆C相切,则x 轴和MNy 轴分别相切于的最小值为(A,B )两点 ,点A.B.22C.222D.222【答案】 D【分析】试题剖析:由于 C 1,1 为圆心的圆与x 轴和y轴分别相切于A, B 两点,点 M , N 分别在线段OA,OB 上,若,MN与圆C相切,设切点为Q ,因此AM BN QM QN MN ,设MNO,则OM ON MN cos MN sin , OA OB 2 MN 1 cos sin,MN2222 2 2,应选D.1 cos siny32A1M Q-2-1ON1B-11 2 sin1242345x考点: 1、圆的几何性质;2、数形联合思想及三角函数求最值.。
新教材高考数学第二章直线和圆的方程4圆的方程精讲含解析新人教A版选择性必修第一册

圆的方程考点一 圆的方程【例1】(1)(2019·河北新华.石家庄二中高一期末)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是() A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=(2)(2020·海林市朝鲜族中学高一期末)圆心为()3,1,半径为5的圆的标准方程是( ) A .()()22315x y +++= B .()()223125x y +++= C .()()22315x y -+-= D .()()223125x y -+-=【答案】(1)C (2)D【解析】(1)本题作为选择题,可采用排除法,根据圆心在直线20x y +-=上,排除B 、D , 点()1,1B -在圆上,排除A 故选C(2)∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()223125x y -+-=,故选:D .【一隅三反】1.(2020·河南濮阳.高一期末(理))设(2,1),(4,1)A B -,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+= B .22(3)8x y -+= C .22(3)2x y ++= D .22(3)8x y ++=【答案】A【解析】AB 的中点坐标为(3,0),圆的半径为||2AB r ===所以圆的方程为22(3)2x y -+=.故选:A.2.(2020·广东东莞四中高一月考)圆心为()1,2-,且与x 轴相切的圆的标准方程为( ) A .()()22122x y -+=+ B .()()22124x y -++= C .()()22122x y ++-= D .()()22124x y ++-=【答案】B【解析】因为圆心为()1,2-,圆与x 轴相切,所以圆的半径为2, 所以圆的标准方程为()()22124x y -++=,故选:B3.(2020·河北运河.沧州市一中高一期末)已知点()3,6A ,()1,4B ,()1,0C ,则ABC ∆外接圆的圆心坐标为( ) A .()5,2 B .()5,2-C .()2,5D .()5,2-【答案】A【解析】线段AB 中点坐标为()2,5,线段AB 斜率为64131-=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+.线段AC 中点坐标为()2,3,线段AC 斜率为60331-=-,所以线段AC 垂直平分线的斜率为13-,故线段AC 的垂直平分线方程为()1323y x -=--,即11133y x =-+.由75111233y x x y y x =-+⎧=⎧⎪⇒⎨⎨==-+⎩⎪⎩.所以ABC ∆外接圆的圆心坐标为()5,2.故选:A 考点二 根据圆的方程求参数【例2】(2020·西夏.宁夏大学附属中学高一期末)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( ) A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <23【答案】D【解析】由题意可得圆的标准方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【一隅三反】1.(2020·全国高二)已知m 是实常数,若方程22240x y x y m ++++=表示的曲线是圆,则m 的取值范围为( ) A .(),20-∞ B .(),5-∞ C .()5,+∞ D .()20,+∞【答案】B【解析】由于方程22240x y x y m ++++=表示的曲线为圆,则222440m +->,解得5m <. 因此,实数m 的取值范围是(),5-∞.故选:B. 2.(2020·浙江丽水.高二期末)“12m >”是“2222530x y mx m m +---+=为圆方程”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【解析】方程2222530x y mx m m +---+=表示圆需满足()()22245+30,3m m m m ---->∴<-或1>2m ,所以“12m >”是“2222530x y mx m m +---+=为圆方程”的充分不必要条件,故选:A.3.(2020·河北新乐市第一中学高二月考)已知方程()()2224232141690x y m x my m+-++++=─表示一个圆,则实数m 的取值范围为( ) A .1(,1)7-B .1(,1)7-C .1(,)(1,)7-∞-⋃+∞D .1(,1)(,)7-∞-⋃+∞【答案】B【解析】由题意可得()()()22244341441690m m m ++⨯--+>,所以()()7110m m +-<,解得117m -<<.故选:B .考点三 点与圆的位置关系【例3】(2020·黑龙江南岗哈师大附中高二月考)点P (m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上 D .不确定【答案】A【解析】因为a 2+52=a 2+25>24,所以点P 在圆外.【一隅三反】1.(2020·莆田第七中学高一月考)点()1,1在圆()2211x y +-=的( )A .圆上B .圆内C .圆外D .无法判定【答案】A【解析】将点()1,1的坐标代入圆()2211x y +-=的方程即()221111+-=,∴点()1,1在圆()2211x y +-=上,故选:A2.(2020·江苏泗洪。
高考数 学专题精练(九)直线与圆

高考数学专题精练(九)直线与圆决战2010:高考数学专题精练(九)直线与圆一、选择题1.过点)1,0(P 与圆03222=--+x y x 相交的所有直线中,被圆截得的弦最长时的直线方程是( )A .0=xB .1=yC .01=-+y xD .01=+-y x .2.已知两点(5,0)(5,0)M N -和,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.给出下列直线:①1y x =+;②2y =;③43y x =;④21y x =+,其中为“B 型直线”的是( )A .①②B .①③C . ①④D . ③④二、填空题1.设P 为圆221x y +=的动点,则点P 到直线34100x y --=的距离的最小值为_________.2.如图,在平面斜坐标系中xoy 中,O 60xoy ∠=,平面上任一点P 的斜坐标定义如下:若12OP xe ye =+,其中12,e e 分别为与x 轴,y 轴同方向的单位向量,则点P 的斜坐标为(,)x y .那么,以O 为圆心,2为半径的圆有斜坐标系xoy 中的方程是__________. O x y 60O3.曲线()142≤--=x x y 的长度是 .4.函数12(0,1)x y a a a +=->≠的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0m n >、,则n m 21+的最小值为 .5.已知圆的半径为2,圆心在x 轴的正半轴上,且圆与直线3x + 4y +4 = 0相切,则圆的标准方程是_______________________6.已知两直线方程分别为1:210l x y --=、2:20l ax y ++=,若12l l ⊥,则直线2l 的一个法向量为n = . 7.直线12:10:20l x my l x y ++=-+=与垂直,则m =______________.第9部分:直线与圆参考答案一、选择题[1-2CA二、填空题1.12.2240x xy y ++-=3.34π4.322+5.22-+=(2)4x y 6.()1,27.1。
专题5 直线与圆(原卷版)-2021年高考冲刺之二轮专题精讲精析

专题5直线与圆一、单选题1.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .C D . 2.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 3.直线()()()21230m x m y m m R ++---=∈过定点( )A .()2,1B .1,2C .()1,1-D .()1,14.已知直线1:10l x my ++=和2:420l mx y ++=互相平行,则实数m 的值为( ) A .2- B .2 C .2± D .2或45.若在直线2y =-上有一点P ,它到点()3,1A -和()5,1B -的距离之和最小,则该最小值为( )A .B .C .D .6.已知直线:tan17l y x π=-+,则该直线的倾斜角为( ) A .7π B .7π- C .67π D .87π 7.已知直线1l :3420x y --=和直线2l :3430x y -+=,则1l 与2l 之间的距离为( )A .1BC .2D .38.已知直线1:352l ax y a +=-,2:2(5)8l x a y ++=.若12l l ⊥,则a 的值为( ) A .6- B .3- C .1 D .1或6-9.若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( ). A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤ ⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭ 10.圆1O :()()22122x y -+-=与圆2O :224230x y x y +++-=的位置关系是( )A .相离B .相交C .外切D .内切11.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A .32B .52C .42D .6212.若方程2242x y x y a +-+=表示圆,则实数a 的取值范围为( )A .(,5)-∞-B .(5,)-+∞C .(,0)-∞D .(0,)+∞二、填空题 13.设直线l 的斜率为k ,且11k -<<,则直线的倾斜角α的取值范围是_________.14.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.15.已知圆221:210240C x y x y +-+-=和圆222:2280C x y x y +++-=相交于A 、B 两点,则线段AB 的长度为__________.16.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的两个焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆D :22(3)3x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2MN NF +的最大值是___________.三、解答题17.已知圆C :2224150x y x y +-+-=.(1)过点()3,0M -的直线l 与圆C 相切,求直线l 的方程;(2)过圆C 上一点()1,2P -作两条相异直线分别与圆C 相交于A ,B 两点,且直线PA 和直线PB 的倾斜角互补.求证:直线AB 的斜率为定值.18.已知直线l :2360x y ++=.(1)求经过点()2,1P -且与直线l 平行的直线方程;(2)求与直线l 垂直,且与两坐标轴围成的三角形面积为3的直线方程.19.已知一束光线经过直线1:370l x y -+=和2:230l x y ++=的交点M ,且射到x 轴上一点()1,0N 后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线3l 的方程.20.已知直线1l :2360x y ++=,求直线2l 的方程,使得:(1)2l 与1l 平行,且过点()2,1-;(2)2l 与1l 垂直,且2l 与两坐标轴围成的三角形面积为3.21.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.22.已知圆22:84160C x y x y +--+=关于直线:250l x y +-=对称的图形为圆C '. (Ⅰ)求圆C '的方程;(Ⅱ)若过点()2,1P 的直线l 与圆C 交于A ,B 两点,当AB 时,求直线l 的斜率.。
高三专题复习直线和圆知识点和经典例题(附含答案解析)

高三专题复习直线和圆知识点和经典例题(附含(Han)答案解析)【知识要(Yao)点】圆的(De)定义:平面内与一定点距离(Li)等于定长的点的轨迹称为圆(一)圆的标(Biao)准方程形如:这个方程叫做圆的标准方程。
说明:1、若圆心在坐标原点上,这时,则圆的方程就是。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r 三个量确定了且r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件确定a,b,r ,可以根据3个条件,利用待定系数法来解决。
(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得。
可见,任何一个圆的方程都可以写成 :。
问题:形如022=++++F Ey Dx y x 的方程的曲线是不是圆? 将方程022=++++F Ey Dx y x 左边配方得:(1)当时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以为圆心,以为半径的圆。
(2)当时,方程022=++++F Ey Dx y x 只有实数解,解为,所以表示一个点)2,2(ED --.(3)当时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当0422>-+F E D 时,方程022=++++F Ey Dx y x 称为圆的一般方程.圆的一般方程的特点:(i )的系数相同,不等于零;(ii )没有xy 这样的二次项。
(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离; (2)相切---求切线; (3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式(Shi),利用圆的方程求出圆心和半径(2)利(Li)用点到直线的距离公式求圆心到直线的距离(3)作(Zuo)判断(Duan): 当(Dang)d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交。
高中数学必修二直线与圆的综合问题精选精编版

直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心C到直线l的距离为=,∵截得的弦长为2,∴半径为2,∴圆C:(x﹣3)2+(y﹣4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线l与圆C交于A,B两点.∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,∴△CAB为正三角形,∴三角形的高等于边长的,∴圆心C到直线l的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.在△CDE中,∵DE=,∴=∴,当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.∵CH=,∴|n+1|=,∴n=,∴存在n的值,使得△CDE的面积最大值为3,此时直线m的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).∵•=6||,∴﹣3×(x﹣4)+0×y=6,化简得=1为所求点P的轨迹方程.4分(Ⅱ)设A(x1,y1),B(x2,y2).①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),∴﹣λ1=1+同理由得﹣λ2=1+,∴﹣(λ1+λ2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,∴y1+y2=﹣,y1y2=﹣代入得∴(λ1+λ2)=2+=,∴λ1+λ2=﹣②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,∴λ1+λ2=﹣11分综上,λ1+λ2为定值﹣.12分.【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…(1分)所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(4分)(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…(5分)所以|MN|==…(7分)因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…(9分)所以△QMN的面积.…(10分)令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…(11分)所以△QMN的面积的最大值为.…(12分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,从而丨PM丨+丨PN丨=4>丨MN丨=2,∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线C的轨迹方程为;(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,解得:m>2或m<﹣2,由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,∴k AQ•k BQ=•==,要使k AQ•k BQ为非零常数,当且仅当,解得t=±2,当t=2时,常数为=,当t=﹣2时,常数为=,∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;(Ⅱ)可设直线,进而表示面积,即可求△OEF面积的取值范围.【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线…(5分)由得,,同理可得:,;所以,又OE⊥OF,所以…(8分)令t=k2+1,则t>1且k2=t﹣1,所以=…(10分)又,所以,所以,所以,所以,所以△OEF面积的取值范围为.…(12分)【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,所以,,,同理,,所以Q(1,2)与M,N两点连线的斜率之积为定值4.【点评】本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.【分析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为的椭圆,即可求曲线E 的方程;(2)联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC过定点(3,0),表示出面积,即可求△ABC面积的最大值.【解答】解:(1)圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则﹣r=|PM|.因为动圆P经过点N,所以r=|PN|,>|MN|,所以曲线E是M,N为焦点,长轴长为的椭圆.由,得b2=2﹣1=1,所以曲线E的方程为…(4分)(Ⅱ)直线BC斜率为0时,不合题意设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)=.代入得又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),解得m=3,故直线BC过定点(3,0)…(8分)由△>0,解得t2>4,=(当且仅当时取等号).综上,△ABC面积的最大值为…(12分)【点评】本题考查圆与圆的位置关系,考查椭圆的定义与方程,考查直线与椭圆位置关系的运用,考查韦达定理,属于中档题.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.【分析】(1)设出直线方程,利用直线与圆的位置关系,列出不等式求解即可.(2)设出M,N的坐标,利用直线与圆的方程联立,通过韦达定理,结合向量的数量积,求出直线的斜率,然后判断直线与圆的位置关系求解|MN|即可.【解答】解:(1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,解得:<k<所以k的取值范围为得(,)(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程:(x﹣2)2+(y﹣3)2=1,整理得(1+k2)x2﹣4(1+k)x+7=0.所以x1+x2=,x1x2=,•=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1==12,解得k=1,所以直线l的方程为y=x+1.故圆心C在直线l上,所以|MN|=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力,是中档题.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【分析】(1)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段OQ的长;(2)联立直线和抛物线方程进行消元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,得2+=,∴n=2,抛物线C的方程为y2=2x,P(2,2).…(2分)C在第一象限的图象对应的函数解析式为y=,则y′=,故C在点P处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点Q的坐标为(﹣2,0).故线段OQ的长为2.…(5分)(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0.由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …(7分)直线PA的斜率为,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以+=2×…(10分)整理得:=,因为l2不经过点Q,所以b≠﹣2,所以2m﹣b+2=2m,即b=2.故l2的方程为x=my+2,即l2恒过定点(2,0).…(12分)【点评】本题主要考查直线和抛物线的位置关系,利用直线和抛物线方程,转化为一元二次方程,结合韦达定理,利用设而不求的思想是解决本题的关键.。
选择性必修一 第二章 直线与圆的方程 全章讲解训练 (含答案)

第二章 直线与圆的方程 全章讲解训练 (含答案)【要点梳理】一、直线1、直线的倾斜角和斜率:(1)直线的倾斜角:直线向上的方向和x 轴正向所成的最小正角。
其围是),0[π (2)直线的斜率:不是900的倾斜角的正切值,即k=tan α, 若直线经过两点(x 1,y 1),(x 2 ,y 2),则该直线的斜率为k=y y y y 2222-- )(21x x ≠.(3)直线的斜率和倾斜角反映了直线相对于x 轴的倾斜程度,|k|越大,直线的倾斜程度越大.α=0°时,k =0;0°<α<90°时,k >0;α=90°时,k 不存在;90°<α<180°时, k <0. 2、两直线垂直:121-=•k k 两直线平行:21k k = 3、直线方程的五种形式:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=-- (12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4) 截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3、两条直线位置关系的判定:((2)若两直线的程都是斜截式(斜率都存在),即:若111:l y k x b =+,222:l y k x b =+ 可以利用以下结论判断:①121212||,l l k k b b ⇔=≠;②l 1与l 2重合b b k k 2121==⇔且③l 1与l 2相交k k 21≠⇔.注:相交中特殊情况:12121l l k k ⊥⇔=-.(3)若两直线的程是一般式:1111:0l A x B y C ++=,2222:0l A x B y C ++=,则采用以下结论判断: ①l l 22//⇔⎩⎨⎧≠-≠-=-000122112211221C A C A C B C B B A B A 或.②l 1与l 2重合⇔⎩⎨⎧=-=-0012211221C B C B B A B A .③l 1与l 2相交⇔01221≠-B A B A 注:相交中特殊情况:1212120l l A A B B ⊥⇔+=;4、点到直线的距离:(1)设平面上两点()()111222,,,P x y P x y ,则12PP =(2)已知点00(,)P x y ,直线l :0Ax By C ++=).点到直线的距离公式为:d =(3)若两平行线间距离公式:若1111:0l A x B y C ++=与2222:0l A x B y C ++=平行, 则2221BA C C d +-=5、关于点对称问题(1)点关于点对称:点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题。
2013高中数学精讲精练(新人教A版)第08章__直线和圆的方程

2013高中数学精讲精练第八章直线和圆的方程【知识图解】【方法点拨】1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.3.熟练运用待定系数法求圆的方程.4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.第1课 直线的方程【考点导读】理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是50,,66πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是10320-+=-=或x y x y3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】例1.已知两点A (-1,2)、B (m ,3)(1)求直线AB 的斜率k ; (2)求直线AB 的方程;(3)已知实数m 1⎡⎤∈-⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,11k m =+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1211y x m -=++. (3)①当m =-1时,2πα=;②当m ≠-1时,∵(1,1k m ⎫=∈-∞⋃+∞⎪⎪+⎣⎭∴2,,6223ππππα⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦故综合①、②得,直线AB 的倾斜角2,63ππα⎡⎤∈⎢⎥⎣⎦例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|²|PB|取最小值时,求直线l 的方程.分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k ,0),B(0,1-2k ),且2-1k>0, 1-2k >0,即k <0. △AOB 的面积S=12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k -,即k =12-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0.(2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k,0),B(0,1-2k ), ∴|PA|²4=,当且仅当k 2=1,即k =±1时, |PA|²|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|²|PB|=||||44sin cos sin 2PE PF θθθ⋅=≥ 当且仅当θ=4π时, |PA|²|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.分析 本题关键是如何使用好中点坐标,对问题进行适当转化.解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有4303(2)5(4)50a b a b ++=⎧⎨-----=⎩,解得25a b =-⎧⎨=⎩ 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),例2图且l 的斜率k =nm ,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50m n m n -++++=⎧⎨-----=⎩,消去常数项得-3m =n ,所以k =-3,从而直线l 的方程为3x +y +1=0.解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。
高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1求直线斜率的基本方法(1) 定义法:已知直线的倾斜角为a,且a工90°,贝U斜率k = ta n a .y2 — y i⑵公式法:已知直线过两点P i(x i,y i) ,P2(X2,y2),且X i M X2,则斜率k = .X2 一X i2. 判断两直线平行的方法(1) 若不重合的直线11与12的斜率都存在,且分别为k i, k2,贝U k i= k2? 11//I 2.(2) 若不重合的直线I i与I 2的斜率都不存在,其倾斜角都为90°,则I i//l2.3. 判断两直线垂直的方法(1) 若直线I i与丨2的斜率都存在,且分别为k i, k2,贝U k i • k2=—i? I i±12.(2) 已知直线I i与12,若其中一条直线的斜率不存在,另一条直线的斜率为0,则I i 丄I 2.i. 已知两条直线I i:ax —by+ 4= 0和12:(a—i)x + y + b = 0,求满足下列条件的a, b的值.(1) I i 丄12 且I i 过点(—3,—i);(2) I i / I 2,且坐标原点到这两条直线的距离相等.[解]⑴••• Ii丄I2,a(a—i) —b = 0,①又丨i过点(一3, —i),—3a + b+4 = 0.②a= 2,解①②组成的方程组得.cb = 2.(2) I 2的斜率存在,I i / I 2 ,.直线I i的斜率存在.a--k i = k2,即二=i —a.③b又•••坐标原点到这两条直线的距离相等,I i // I 2, .11, 12在y轴上的截距互为相反数,即b = — ( 一 b ).④经检验此时的l 1与丨2不重合,故所求值为2a=- 或 3b = 2.注:已知两直线 11: A i X + By + C = 0 和 12: Ax + By + C 2= 0(1) 对于I 1//I 2的问题,先由AB — AB i = 0解出其中的字母值,然后代回原 方程检验这时的I l 和I 2是否重合,若重合,舍去.⑵ 对于丨1丄12的问题,由AiA +0解出字母的值即可.2. 直线ax + 2y — 1 = 0与直线2x — 3y — 1= 0垂直,则a 的值为()4A•- 3 B .- 3 C. 2D . 3解析:选D 由2a — 6= 0得a = 3.故选D.3. 已知直线 x + 2ay — 1 = 0与直线(a — 1)x + ay + 1 = 0平行,则a 的值为 ( )或0C. 0D . — 2解析:选A 当a = 0时,两直线的方程化为x = 1和x = 1,显然重合,不符 a 1 a 3合题意;当a ^O 时,^厂= ,解得a =-.故选A.1 2a 2、直线方程1 .直线方程的五种形式由③④联立,解得:=2,b = — 2a = _b = 2.a= 2,b = — 22.常见的直线系方程(1) 经过两条直线I仁A i X + By + C i= 0, 12 :Ax+ By + G= 0父点的直线系方程为A i x + B i y + C i+入(A2X + By + Q) = 0,其中入是待定系数.在这个方程中,无论入取什么实数,都不能得到Ax + By + C2= 0,因此它不能表示直线丨2.⑵平行直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)平行的直线系方程是Ax+ By+入=0(入工C).(3) 垂直直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)垂直的直线系方程是Bx—Ay+入=0.4. 过点A(3 , - 1)作直线I交x轴于点B,交直线I仁y二2x于点C,若| Bq 二2| AB,求直线I的方程.[解]当直线I的斜率不存在时,直线I : x = 3,••• B(3,0) , C(3,6).此时| Bq = 6, I AB = 1, |Bq 工2|AB ,•••直线I的斜率存在.设直线I的方程为y +1 = k(x-3),显然k M0且k工2.••• B3 +1 0 ,k ,-| Bq = 2| AB|,…| X B — X c | = 2| X A — X B | , 3k + 1 1 1•- 口 — k — 3= 2 k ,3k +1 1 2 3k +1 1 2 ■k^ — k — 3= k 或 T —2 — k — 3= — k , 3 1解得k =—㊁或k = 4.•••所求直线I 的方程为3X + 2y — 7 = 0或X — 4y — 7= 0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解: (1)直接法:直接选取适当的直线方程的形式,写出结果;⑵ 待定系数法:先以直线满足的某个条件为基础设出直线方程, 再由直线满足的另一个条件求出待定 系数,从而求得方程.5. 已知直线I 仁3X — 2y — 1 = 0和丨2: 3X — 2y — 13= 0,直线I 与I 1,12的距 离分别是d 1, d 2,若d 1 : d 2=2 : 1,求直线I 的方程.解:由直线丨1,I 2的方程知I 1//I 2,又由题意知,直线I 与丨1,丨2均平行(否 则d 1 = 0或d 2= 0,不符合题意).设直线I : 3x — 2y + m = 0( mr^ — 1且m^ — 13),由两平行直线间的距离公式,=—25 或 m = — 9.故所求直线I 的方程为3x — 2y — 25 = 0或3x — 2y — 9 = 0. 6. 已知直线I : 3x — y + 3= 0,求: (1)点P(4,5)关于I 的对称点;y = 2x , y + 1 = k x — 3得点C 的横坐标X c =3k + 1k — 2 .得d 1d 2=| n + 13|13又 d 1 : d 2=2 : 1,所以 | 1| = 2| m + 13|,解得 m| m + 1|⑵直线x—y — 2 = 0关于直线I对称的直线方程.解:设P(x,y)关于直线I : 3x—y+ 3= 0的对称点为P'(x',y').y — y••• k pp • ki 二―1 即x ^—x x 3二—1.① 又PP'的中点在直线3x — y + 3= 0上,—4x + 3y — 9 — ,—4x + 3y — 9 3x + 4y + 3—2= 0,化简得 7x + y + 22 = 0.三、圆的方程(1) 圆的标准方程:(x — a)2+ (y — b)2 = r 2 (2) 圆的一般方程:x 2 + y 2+ Dx + Ey + F = 0(3) 若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程 时可用相应的圆系方程加以求解:① 过两圆 C i : x 2+y 2+ Dx + E i y + F i = 0, G : x 2+y 2+ D 2x + &y + F ?= 0 交点的 圆系方程为 x 2+ y 2+ Dx + E i y + F i + 入(x 2+y 2+ Dx + Ey + F 2) = 0( X 为参数,入工 —1),该方程不包括圆G ;② 过圆C : x 2+ y 2+ Dx + Ey + F = 0与直线I : Ax + By + C = 0交点的圆系方程2 2 __________________为 x + y + Dx + Ey + F + X (Ax + By + C) = 0( X 为参数,X € R).7.在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A — 3,0),B(2,0) , C(0,— 4),经过这三个点的圆记为 M(1)求BC 边的中线AD 所在直线的一般式方程;⑵求圆M 的方程.••• 3X 22 +3 = 0.②由①②得=3x + 4y + 3(1)把x = 4, y =5代入③④得 =—2, y ' = 7,••• P(4,5)关于直线I 的对称点 P' 的坐标为(一2,7).⑵用③④分别代换x — y — 2= 0 中的x , y ,得关于I 的对称直线方程为[解]⑴法一:由B(2,0) , C(0,—4),知BC的中点D的坐标为(1 , —2).即中线AD 所在直线的一般式方程为x + 2y + 3= 0. 法二:由题意,得| AB = | Aq = 5, 则厶ABC 是等腰三角形, 所以ADL BC因为直线BC 的斜率k Bc = 2, 1所以直线AD 的斜率k AD = — 2 ,1由直线的点斜式方程,得y — 0= — 2(x + 3), 所以直线AD 的一般式方程为x + 2y + 3= 0.⑵ 设圆M 的方程为x 2 + y 2+ Dx + Ey + F = 0.将 A — 3,0) , B(2,0) , C(0 , — 4)三点的坐标分别代入方程,得5所以圆M 的方程是x + y + x + qy — 6= 0. 注:利用待定系数法求圆的方程(1) 若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件 列出关于a , b , r 的方程组,从而求出a , b , r 的值.(2) 若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据 已知条件列出关于D, E , F 的方程组,从而求出D, E , F 的值.8.以线段AB x+ y — 2 = 0(0< x < 2)为直径的圆的方程为()A. (x + 1)2+ (y + 1)2= 2B. (x — 1)2+ (y — 1)2= 2C. (x + 1)2+ (y + 1)2= 8D. (x — 1)2+ (y — 1)2= 8又A — 3,0),所以直线AD 的方程为y —0 x +3—2—0=~1+3,9 — 3D+ F = 0,4+ 2D+ F = 0,16— 4E + F =—1,5解得E = 2,F = —解析:选B直径的两端点分别为(0,2) ,(2,0),二圆心为(1,1),半径为2 故圆的方程为(x—1)2+ (y —1)2= 2.9. 已知圆C经过点A(2 , —3), B( —2,—5),且圆心在直线I : x—2y —3 =0上,求圆C的方程.解:设圆C的方程为(x —a)2+ (y—b)2= r2.2 一a + —3一b = r , a = —1,由题意,得一2— a 2+ —5— b 2= r2,解得b= —2,a —2b—3= 0,r2= 10.所以圆C的方程为(x+ 1)2+ (y + 2)2= 10.10. 求以圆C: x2+ y2—12x —2y —13 = 0 和圆Q: x2+ y2+ 12x + 16y—25= 0 的公共弦为直径的圆C的方程.解:联立两圆的方程得方程组2 2x + y —12x —2y—13= 0,2 2x + y + 12x + 16y —25 = 0,相减得公共弦所在直线的方程为4x + 3y —2= 0.4x+ 3y —2 = 0,再由2解得两圆交点坐标为(一1,2),(5,—6).2x + y —12x—2y —13 =1 •••所求圆以公共弦为直径,•••圆心C是公共弦的中点(2,—2),半径长为2厂5+ 厂2+ 一- 6—2一2= 5.2 2•••圆C的方程为(x —2) + (y + 2) = 25.四、直线与圆的位置关系1. 直线与圆位置关系的判断方法(1) 几何法:设圆心到直线的距离为d,圆的半径长为r.若dvr,则直线和圆相交;若d= r,则直线和圆相切;若d>r,则直线和圆相离.(2) 代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为△ . △= 0?直线与圆相切;△ >0?直线与圆相交;△ <0?直线与圆相离.2. 过圆外一点(X o,y o)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y —y o= k(x—X。
高中数学训练题及解析——直线与圆的位置关系

平面解析几何——直线与圆的位置关系一、选择题1.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.(-22,22)B.(-2,2)C.(-24,24) D.(-18,18)答案 C解析设l的方程y=k(x+2),即kx-y+2k=0.圆心为(1,0).由已知有|k+2k|k2+1<1,∴-24<k<24.2.直线x sinθ+y cosθ=2+sinθ与圆(x-1)2+y2=4的位置关系是()A.相离B.相切C.相交D.以上都有可能答案 B解析圆心到直线的距离d=|sinθ-2-sinθ|sin2θ+cos2θ=2.所以直线与圆相切.3.平移直线x-y+1=0使其与圆(x-2)2+(y-1)2=1相切,则平移的最短距离为()A.2-1 B.2- 2C. 2D.2-1与2+1答案 A解析如图,圆心(2,1)到直线l0:x-y+1=0的距离d=|2-1+1|2=2,圆的半径为1,故直线l0与l1的距离为2-1,∴平移的最短距离为2-1,故选A.4.已知圆O1:(x-a)2+(y-b)2=4;O2:(x-a-1)2+(y-b-2)2=1(a,b ∈R),那么两圆的位置关系是()A.内含B.内切C.相交D.外切答案 C解析由两圆方程易知其圆心坐标分别为O1(a,b)、O2(a+1,b+2),经计算得:O1O2=5,由于R-r=1<O1O2=5<R+r=3,故两圆相交.5.函数y=f(x)的图象是圆心在原点的单位圆在Ⅰ、Ⅲ象限内的两段圆孤,如图,则不等式f(x)<f(-x)+2x的解集为()A.(-1,-22)∪(0,22)B.(-1,-22)∪(22,1)C.(-22,0)∪(0,22)D.(-22,0)∪(22,1)答案 D6.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()A.1 B.2 2C.7 D.3答案 C解析设直线上一点P,切点为Q,圆心为M,则|PQ|即为切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y=x+1上的点到圆心M的最小距离,设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.7.若圆O1方程为:(x+1)2+(y+1)2-4=0,圆O2方程为:(x-3)2+(y-2)2-1=0,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是() A.线段O1O2的中垂线B.过两圆的公切线交点且垂直于线段O1O2的直线C.两圆公共弦所在的直线D.一条直线且该直线上的点到两圆的切线长相等答案 D解析∵圆心距|O1O2|=(3+1)2+(2+1)2=5>2+1=3,∴两圆相离.把所给的轨迹方程化简得4x+3y-7=0显然线段O1O2的中点不在直线4x+3y-7=0上,排除A、C,由计算知,到两圆的切线长相等的点的轨迹恰为直线4x+3y-7=0.8.已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-433)∪(433,+∞)D.(-∞,-4)∪(4,+∞) 答案 C解析 解法一:(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A 、B 两点的直线方程为y =a 4x +a2, 即ax -4y +2a =0, 则d =|2a |a 2+16=1,化简后,得3a 2=16,解得a =±433.再进一步判断便可得到正确答案为C.解法二:设AB 1直线方程为{y =k (x +2)x 2+y 2=1⇒(1+k 2)x 2+4k 2x +4k 2-1=0,Δ=0,k =±33,直线AB 1方程为y =33(x +2),直线AB 2方程为y =-33(x +2),可得B 1(2,433),B 2(2,-433),要使从A 看B 不被圆挡住,B 纵坐标即实数a 的取值范围为(-∞,-433)∪(433,+∞).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6)C .(4,6]D .[4,6] 答案 A 二、填空题10.已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,且|OA →+OB →|=|OA →-OB→|(其中O 为坐标原点),则实数a 等于________. 答案 ±2解析 由|OA →+OB →|=|OA →-OB →|知OA ⊥OB ,所以由题意可得|a |2=2,所以a =±2.11.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,其中的劣弧最短时,直线l 的方程为________.答案 x -2y +3=0解析 设圆心为N (2,0),由圆的性质得直线l ⊥MN 时,形成的劣弧最短,由点斜式得直线l 的方程为x -2y +3=0.12.(2010·江西卷,理)直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是________.答案 [-34,0]解析 如图,记题中圆的圆心为C (3,2),作CD ⊥MN 于D ,则|CD |=|3k +1|1+k2,于是有|MN |=2|MD |=2|CM |2-|CD |2=24-9k 2+6k +11+k2≥23,即4-9k 2+6k +11+k 2≥3,解得-34≤k ≤0.13.若直线y =x +b 与曲线x =1-y 2恰有一个公共点,则b 取值范围是__________.答案 -1<b ≤1或b =- 2解析 x =1-y 2⇔x 2+y 2=1(x ≥0)方程x 2+y 2=1(x ≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l 2与l 3之间时,适合题意. 三、解答题14.已知圆C :x 2+y 2+2x -4y +3=0.若圆C 的切线在x 轴和y 轴上的截距的绝对值相等,求此切线的方程.解析 ∵切线在两坐标轴上截距的绝对值相等, ∴切线的斜率是±1.设切线方程为y =-x +b 或y =x +c ,分别代入圆C 的方程得2x 2-2(b -3)x +(b 2-4b +3)=0或2x 2+2(c -1)x +(c 2-4c +3)=0, 由于相切,则方程有等根, 即b =3或b =-1,c =5或c =1. 故所求切线方程为:x +y -3=0,x +y +1=0,x -y +5=0,x -y +1=0.15.(2011·北京海淀区期末)已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P 、Q 两点.(1)求圆C 的方程;(2)若OP →·OQ →=-2,求实数k 的值; (3)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.解 设圆心C (a ,a ),半径为r .因为圆C 经过点A (-2,0),B (0,2), 所以|AC |=|BC |=r ,易得a =0,r =2, 所以圆C 的方程是x 2+y 2=4.(2)因为OP →·OQ →=2×2×cos 〈OP →,OQ →〉=-2,且OP →与OQ →的夹角为∠POQ ,所以cos ∠POQ =-12,∠POQ =120°, 所以圆心到直线l :kx -y +1=0的距离d =1,又d =1k 2+1,所以k =0.(3)设圆心O 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l ⊥l 1,根据勾股定理,有d 21+d 2=1.又易知|PQ |=2×4-d 2,|MN |=2×4-d 21,所以S =12·|PQ |·|MN |,即S =12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21·d 2=212+d 21·d2≤212+(d 21+d22)2=212+14=7,当且仅当d 1=d 时,等号成立,所以S 的最大值为7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与直线一、典型例题例1、已知定点P (6,4)与定直线 1:y=4x ,过P 点的直线 与 1交于第一象限Q 点,与x 轴正半轴交于点M ,求使△OQM 面积最小的直线 方程。
分析:直线 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。
通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。
设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线 ∴ k PQ =k PM ∴m64x 6x 4400-=-- 解之得:1x x 5m 00-=∵ x 0>0,m>0 ∴ x 0-1>0 ∴ 1x x 10mx 2x 4|OM |21S 02000OMQ-===∆ 令x 0-1=t ,则t>0)2t1t (10t )1t (10S 2++=+=≥40当且仅当t=1,x 0=11时,等号成立 此时Q (11,44),直线 :x+y-10=0评注:本题通过引入参数,建立了关于目标函数S △OQM 的函数关系式,再由基本不等式再此目标函数的最值。
要学会选择适当参数,在解析几何中,斜率k ,截距b ,角度θ,点的坐标都是常用参数,特别是点参数。
例2、已知△ABC 中,A (2,-1),B (4,3),C (3,-2),求:(1)BC 边上的高所在直线方程;(2)AB 边中垂线方程;(3)∠A 平分线所在直线方程。
分析: (1)∵ k BC =5∴ BC 边上的高AD 所在直线斜率k=51-∴ AD 所在直线方程y+1=51-(x-2) 即x+5y+3=0(2)∵ AB 中点为(3,1),k AB =2∴ AB 中垂线方程为x+2y-5=0(3)设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。
∵ k AC =-1,k AB =2 ∴k21k2k 11k +-=-+ ∴ k 2+6k-1=0∴ k=-3-10(舍),k=-3+10∴ AE 所在直线方程为(10-3)x-y-210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。
一般地涉及到角平分线这类问题时,都要对两解进行取舍。
也可用轨迹思想求AE 所在直线方程,设P(x ,y)为直线AE 上任一点,则P 到AB 、AC 距离相等,得2|1y x |5|5y x 2|-+=--,化简即可。
还可注意到,AB 与AC 关于AE 对称。
例3、(1)求经过点A (5,2),B (3,2),圆心在直线2x-y-3=0上圆方程;(2)设圆上的点A (2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为22,求圆方程。
分析:研究圆的问题,既要理解代数方法,熟练运用解方程思想,又要重视几何性质及定义的运用,以降低运算量。
总之,要数形结合,拓宽解题思路。
(1)法一:从数的角度若选用标准式:设圆心P (x ,y ),则由|PA|=|PB|得:(x 0-5)2+(y 0-2)2=(x 0-3)2+(y 0-2)2又2x 0-y 0-3=0两方程联立得:⎩⎨⎧==5y 4x 00,|PA|=10∴ 圆标准方程为(x-4)2+(y-5)2=10若选用一般式:设圆方程x 2+y 2+Dx+Ey+F=0,则圆心(2E,2D --)∴ ⎪⎪⎩⎪⎪⎨⎧=----⨯=++++=++++03)2E()2D (20F E 2D 3230F E 2D 5252222解之得:⎪⎩⎪⎨⎧=-=-=31F 10E 8D法二:从形的角度AB 为圆的弦,由平几知识知,圆心P 应在AB 中垂线x=4上,则由⎩⎨⎧==--4x 03y x 2得圆心P (4,5)∴ 半径r=|PA|=10显然,充分利用平几知识明显降低了计算量 (2)设A 关于直线x+2y=0的对称点为A ’ 由已知AA ’为圆的弦 ∴ AA ’对称轴x+2y=0过圆心 设圆心P (-2a ,a ),半径为R 则R=|PA|=(-2a-2)2+(a-3)2又弦长22d R 222-=,2|1a a 2|d +--=∴ 2)1a 3(2R 22-+=∴ 4(a+1)2+(a-3)2=2+2)1a 3(2-∴ a=-7或a=-3当a=-7时,R=52;当a=-3时,R=244∴ 所求圆方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244例4、已知方程x 2+y 2-2(m+3)x+2(1-4m 2)y+16m 4+9=0表示一个圆,(1)求实数m 取值范围;(2)求圆半径r 取值范围;(3)求圆心轨迹方程。
分析:(1)m 满足[-2(m+3)]2+[2(1-4m 2)]2-4(16m 4+9)>0,即7m 2-6m-1<0∴ 1m 71<<-(3)半径r=716)73m (71m 6m 722+--=++-∵ 1m 71<<-∴ 73m =时,774r max =∴ 0<r ≤774(3)设圆心P (x ,y ),则⎩⎨⎧-=+=1m 4y 3m x 2消去m 得:y=4(x-3)2-1 又1m 71<<- ∴4x 720<< ∴ 所求轨迹方程为(x-3)2=41(y+1)(4x 720<<) 例5、如图,过圆O :x 2+y 2=4与y 轴正半轴交点A 作此圆的切线 ,M 为 上任一点,过M 作圆O 的另一条切线,切点为Q ,求△MAQ 垂心P 的轨迹方程。
分析:从寻找点P 满足的几何条件着手,着眼于平几知识的运用。
连OQ ,则由OQ ⊥MQ ,AP ⊥MQ 得OQ ∥AP 同理,OA ∥PQ 又OA=OQ ∴ OAPQ 为菱形 ∴ |PA|=|OA|=2设P(x ,y),Q(x 0,y 0),则⎩⎨⎧-==2y y xx 0又x 02+y 02=4∴ x 2+(y-2)2=4(x ≠0)评注:一般说来,当涉及到圆的切线时,总考虑过焦点的弦与切线的垂直关系;涉及到圆的弦时,常取弦的中点,考虑圆心、弦的中点、弦的端点组成的直角三角形。
同步练习(一)选择题1、若直线(m 2-1)x-y+1-2m=0不过第一象限,则实数m 取值范围是 A 、-1<m ≤21 B 、21-≤m ≤1 C 、21<m<1 D 、21≤m ≤1 2、已知直线2x+y-2=0和mx-y+1=0的夹角为4π,则m 值为 A 、 31-或-3 B 、-3或31 C 、-3或3 D 、31或3 3、点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值是A 、 2B 、6C 、22D 、10 4、过点A (1,4),且横纵截距的绝对值相等的直线共有A 、 1条B 、2条C 、3条D 、4条5、圆x 2+y 2-4x+2y+C=0与y 轴交于A 、B 两点,圆心为P ,若∠APB=900,则C 的值是 A 、 -3 B 、3 C 、22 D 、86、若圆(x-3)2+(y+5)2=r 2上有且只有两个点到直线4x-3y-2=0距离等于1,则半径r 取值范围是A 、 (4,6)B 、[4,6)C 、(4,6]D 、[4,6] 7、将直线x+y-1=0绕点(1,0)顺时针旋转2π后,再向上平移一个单位,此时恰与圆x 2+(y-1)2=R 2相切,则正数R 等于A 、 21B 、22C 、1D 、28、 方程x 2+y 2+2ax-2ay=0所表示的圆A 、关于x 轴对称B 、关于y 轴对称C 、关于直线x-y=0对称D 、关于直线x+y=0对称 (二)填空题9、直线ax+by+c=0与直线dx+ey+c=0的交点为(3,-2),则过点(a ,b ),(d ,e )的直线方程是___________________。
10、已知{(x ,y)|(m+3)x+y=3m-4}∩{(x ,y)|7x+(5-m)y-8=0}=φ,则直线(m+3)x+y= 3m+4与坐标轴围成的三角形面积是__________________。
11、已知x ,y 满足⎪⎩⎪⎨⎧≥+-≤-+≥++010y 5x 206y 3x 5015y 8x 3,则x-y 的最大值为________,最小值为________。
12、过点A (2,1),且在坐标轴截距相等的直线方程是_________________。
13、已知圆:(x-1)2+y 2=1,作弦OA ,则OA 中点的轨迹方程是__________________。
(三)解答题14、已知y=2x 是△ABC 中∠C 平分线所在直线方程,A (-4,2),B (3,1),求点C 坐标,并判断△ABC 形状。
15、已知n 条直线:x-y+c i =0(i=1,2,…,n ),其中C 1=2,C 1<C 2<C 3<…<C n ,且每相邻两条之间的距离顺次为2,3,4,…,n ,(1)求C n ;(2)求x-y+C n =0与坐标轴围成的三角形面积:(3)求x-y+C n-1=0与x-y+C n =0与x 轴、y 轴围成的图形面积。
16、已知与曲线C :x 2+y 2-2x-2y+1=0相切的直线 交x 、y 轴于A 、B 两点,O 为原点,|OA|=a ,|OB|=b ,a>2,b>2,(1)求证:(a-2)(b-2)=2;(2)求线段AB 中点的轨迹方程;(3)求△AOB 面积的最小值。
17、已知两圆x 2+y 2=4和x 2+(y-8)2=4,(1)若两圆分别在直线y=25x+b 两侧,求b 取值范围;(2)求过点A (0,5)且和两圆都没有公共点的直线的斜率k 的范围。
18、当0<a<2时,直线 1:ax-2y-2a+4=0与 2:2x+a 2y-2a 2-4=0和坐标轴成一个四边形,要使围成的四边形面积最小,a 应取何值?参考答案(一)1、D 2、C 3、C 4、C 5、A 6、A 7、B 8、D (二)9、3x-2y+C=0 10、2 11、6,-5 12、x+y=3或x-2y=013、41y )21x (22=+-(x ≠0)(三)14、C (2,4),∠C=90015、(1)2)1n (n 2C n +=(2)4)1n (n 22+ (3)n 316、(1)利用圆心到直线距离等于半径 (2)(x-1)(y-1)=21(x>1,y>1) (3)322+ 17、(1)画图 3≤b ≤5 (2)k ∈(25,25-) 18、21一、选择题1、设2000200120012002101101,101101M N ++==++,2000200120012002109109,1010010100P Q ++==++,则M 与N 、P 与Q 的大小关系为 ( )A.,M N P Q >>B.,M N P Q ><C.,M N P Q <>D.,M N P Q << 解:设点(1,1)A --、点20012000(10,10)B 、点20022001(10,10)C ,则M 、N 分别表示直线AB 、AC的斜率,BC 的方程为110y x =,点A 在直线的下方,∴AB AC K K >,即M >N ; 同理,得P Q <。