结构动力学公式

合集下载

结构动力学的刚度系数柔度系数汇总.

结构动力学的刚度系数柔度系数汇总.

三、自由振动微分方程的解
y(t ) Asin( t )
四、结构的自振周期和频率
k 1 m m
T
2

五、例题
m
l /2 1 EI l /2
[例1] 计算图示结构的频率和周期。 (柔度法) 解:
1 m
l 48EI
ml 3 T 2 48EI
3

48 EI ml 3
1
k22 k2
k12 k2
k2
EI∞
k11 k1 k2
1
k1
k1 、k2 —— 楼层刚度(本楼层单位侧移所需的侧向力) k11 、k12 、k21 、k22 —— 位移法的刚度系数 kij
kij
—— 第j 个结点位移发生单位位移(其它结点位移均锁固)时, 在第i 个结点位移处产生的反力。
h EI EI
3EI 3EI 6EI k k左柱 k右柱 3 3 3 h h h
总侧移刚度:
h2
h1
i1
i2
k k左柱 k右柱
3 i1 3 i2 2 2 h1 h2
∞ h
总侧移刚度:
i1
i2
12 i1 12 i2 k k左柱 k右柱 2 2 h h
(刚度并联,两者叠加)
k
k11 k
EI
1
l
3EI l3
k11 m
3 EI
l3
k m
[例7]计算图示刚架的频率和周期。
1
m EI1= I I h
k
解: (刚度法)
由柱刚度并联 得:
12 EI 24 EI k 2 3 3 h h
k 24 EI m mh3

结构动力学4

结构动力学4
2
4.2 有阻尼体系的简谐振动
通解uc对应于有阻尼自由振动反应:
u c (t ) = e
−ζω n t
( A cos ω D t + B sin ω D t )
特解up可以设为如下形式 :
u p (t ) = C sin ωt + D cos ωt
p0 && & u + 2ζω n u + ω n u = sin ωt m
1 − (ω / ω n ) 2 C = u st [1 − (ω / ω n ) 2 ]2 + [2ζ (ω / ω n )]2 − 2ζω / ω n D = u st [1 − (ω / ω n ) 2 ]2 + [2ζ (ω / ω n )]2
运动方程的全解:u(t)=uc+up :
u(t ) = e
u (t ) = C sin ωt + D cos ωt = u 0 sin(ωt − ϕ )
u0 —稳态振动的振幅 φ —相角,反映体系振动位移与简谐荷载的相位关系
D 2 2 −1 u 0 = C + D , ϕ = tan (− ) C
u 0 = u st 1 [1 − (ω / ω n ) 2 ] 2 + [ 2ζ (ω / ω n )] 2
uc (t ) = A cos ωn t + B sin ωn t
ωn = k / m
c - complementary
4.1 无阻尼体系的简谐振动
&& mu + ku = p 0 sin ωt
特解—满足运动方程的解,记为up(t) ,是由动 荷载p0sinωt直接引起的振动解。 设特解为:u p (t ) = C sin ωt + D cos ωt

结构力学课件15动力学(1)

结构力学课件15动力学(1)
(计个3算最)时便两可于个根计外据算形体来相系选似的用的具。结体构情,况如,果视周δ期、相k差、悬Δs殊t 三,参则数动中力哪性一
能相差很大。反之,两个外形看来并不相同的结构,如果其
2自021振/7/2周3 期相近,则在动荷载作用下的动力性能基本一致。2
例4、图示三根单跨梁,EI为常数,在梁中点有集中质量m, 不考虑梁的质量,试比较三者的自振频率。
EI
l
w=
k11 =
3EI l3
+k
m
m
•对于静定结构一般计算柔度系数方便。
•如果让振动体系沿振动方向发生单位位移时,所有刚节点
都不能发生转动(如横梁刚度为∞刚架)计算刚度系数方便。
两端刚结的杆的侧移刚度为:
12 l
EI
3
一端铰结的杆的侧移刚度为:
2021/7/23
3 EI l3
5
五、阻尼对自由振动的影响
忽略阻尼影响时所得结果 大能体不上能 反映实际结构的振动规律。
忽略阻尼的振动规律
考虑阻尼的振动规律
结构的自振频率是结构的固有特性,与外因无关。
简谐荷载作用下有可能出现共振。
自由振动的振幅永不衰减。
自由振动的振幅逐渐衰减。
共振时的振幅趋于无穷大。 共振时的振幅较大但为有限值。
产生阻尼的原因:结构与支承之间的外摩擦;材料之间的内摩
擦;周围介质的阻力。
阻尼力的确定:总与质点速度反向;大小与质点速度有如下关系:
①与质点速度成反比(比较常用,称为粘滞阻尼)。
②与质点速度平方成反比(如质点在流体中运动受到的阻力)。
③与质点速度无关(如摩擦力)。
粘滞阻尼力的分析比较简单,(因为R(t)=-Cy ).

结构的动力学方程

结构的动力学方程

结构的动力学方程()g MX CX KX MIx t ++=-clear; clc; n=4;II=sqrt(-1);%主结构质量、阻尼、刚度矩阵123400000000000m mM m m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M=eye(n)*1.0e+4; K=eye(n)*1.6*1.0e+7; %主结构刚度矩阵聚合 zk=zeros(n);122223333444400000k k k kk k k K k k k k k k +-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎣⎦for j=1:(n-1)zk(j,j)=K(j,j)+K(j+1,j+1); zk(j,j+1)=-K(j+1,j+1); zk(j+1,j)=-K(j+1,j+1); endzk(n,n)=K(n,n); k=zk; m=M;%求解各阶模态频率 [tzxl,tzz]=eig(k,m); d=diag(sqrt(tzz)); %振型规一化 for i=1:n[tzz1(i),j]=min(d); tzxl1(:,i)=tzxl(:,j); d(j)=max(d)+1; end%振型归一化取第一层振型为1 for j=1:ntzxl1(:,j)=tzxl1(:,j)/tzxl1(1,j); endw0=tzz1;w=tzz1/(2*pi); zhx=tzxl1;广义阻尼矩阵1112220333444200002000020002M M C M M ζωζωζωζω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦各阶模态阻尼比都取0.05i ζ= %阻尼比ks0=0.05;ks=ones(n,1)*ks0;第n 阶广义质量:Tn n n M M φφ=%求广义质量 Mn=zhx'*m*zhx; 阻尼矩阵为:()()110TC C φφ--=%求阻尼矩阵 C=zeros(n); for i=1:nC(i,i)=2*ks(i)*w0(i)*Mn(i,i); endc=(zhx')\C/zhx;()()4222022222244g g g g x g g gS S ωζωωωωωζωω+=-+参数eg 即g ζ%过滤白噪声参数 eg=0.6; wg=15.708; S0=0.001574;%按照书上的要求,取频率和时间的最大值和步长 %频率间隔 dw=0.3;%最大频率范围 maxw=45; %最大时间值 maxt=40; %时间间隔 dt=0.2;%各层各时间点频率点的功率谱密度,循环变量:层数,时间点,频率点 Pwt=zeros(n,maxt/dt,maxw/dw); %频率点数循环变量wn wn=1;%对频率进行循环,求解各频率点的时间历程 for w=0:dw:maxwx1=1+4*eg^2*(w/wg)^2;x2=(1-(w/wg)^2)^2+4*eg^2*(w/wg)^2; Sgw=x1*S0/x2; s=sqrt(Sgw);%采用精细积分法进行求解时间历程,得到位移和速度时程 [disp,velp]=JINGXI67(M,zk,c,dt,maxt,w,s,n); Ywt=disp;for kkk=1:maxt/dt%求确定频率下各时间点的功率谱 Yw=Ywt(:,kkk);()()()()()1234t t t t t y y y y y ωωωωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭每一时刻和频率点的位移向量,对其进行求共轭和装置得到协方差矩阵,对角上的元素即是每一时刻的各层的功率谱y1=conj(Yw);y2=transpose(Yw);()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()11121314212223243132333441424344t t t t t t t t t t t t t t t t yy t t t t t t t t t t t t t t t t y y y y y y y y y y y y y y y y S y y y y y y y y y y y y y y y y ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωω****************⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ %确定时间点确定频率下的功率谱Yw,取对角线元素Syyw=y1*y2; for kk=1:nPwt(kk,kkk,wn)=Syyw(kk,kk); end endwn=wn+1; end()()()()()()()()()()()()()()2012311231212222yyy yy yy yy n yy yy yy n yy yy n yy yy yy n S d S d S S S S S d S S S S S d σωωωωωωωωωωωωωωωω+∞+∞-∞--==⎡⎤ =⨯++++⋯+⎣⎦⎡⎤ =++++⋯+⎣⎦⎰⎰ %求解完成后实际上wn 为maxw/dw+2,实际频率点个数为maxw/dw+1%各层的时变方差,循环变量为:层数,时间点 Fangcha=zeros(n,maxt/dt); for tn=1:maxt/dt%求解各层的时变方差 for kk=1:nxx1=zeros(wn-1,1);%每一个时刻的方差对各频率点进行积分,频率点数取maxw/dw+1,即wn-1 for wn0=1:wn-1xx1(wn0)=Pwt(kk,tn,wn0); end%采用复合梯形求积公式对功率谱进行积分得到方差Fangcha(kk,tn)=(xx1(1)+xx1(wn-1)+2*sum(xx1(2:wn-1-1)))*dw; end end%画图c1=(1:maxt/dt)*dt; d1=Fangcha(1,:)/S0; d2=Fangcha(2,:)/S0; d3=Fangcha(3,:)/S0; d4=Fangcha(4,:)/S0; figure(3)plot(c1,d1,'k',c1,d2,'r',c1,d3,'m',c1,d4,'r-')精细积分的程序function [disp,velp]=JINGXI67(m,k,c,dt,maxt,w,s,n) %虚数单位 II=sqrt(-1); % i teω中的i ωIIW=II*w; I=eye(n); Z=zeros(n);离散化n 自由度结构受均匀调制演变随机激励(){}f t 时的运动微分方程可表示为:()()()My Cy Ky f t MIg t x t ++==-其中()x t 为平稳高斯白噪声随机过程向量,()g t 为调制函数。

结构动力学

结构动力学
结构动力反应分析的时域直接数值计算方法:
(1)分段解析法; (2)中心差分法; (3)平均常加速度法; (4)线性加速度法; (5)Newmark-β法; (6)Wilson-θ法。
•••••••••
时域逐步积分法是结构动力分析问题中一个得到广泛研 究的课题,也是得到广泛应用的计算方法。
5.1 数值算法中的基本问题
5.3 中心差分法(Central Difference Method)
中心差分方法用有限差分代替位移对时间的求导(即速 度和加速度)。如果采用等步长,Δti=Δt,则i时刻 速度和加速度的中心差分近似为:
u&i
=
ui+1 − ui−1 2∆t
u&&i
=
ui+1
− 2ui ∆t 2
+
ui−1
mu&&(ti ) + cu&(ti ) + ku(ti ) = p(ti )
u&(τ ) = A1 + (ωD A3 − ζωn A2 )e−ζωnτ cosωDτ − (ωD A2 + ζωn A3 )e−ζωnτ sin ωDτ
其中,
A0
=
pi k
− 2ζαi kωn
,
A1
=
αi
k
,
A2 = ui − A0,
A3
=
1
ωD
[u&i
+
ζωn
A2

αi
k
]
5.2 分段解析法
u&0
=
u1 − u−1 2∆t
u&&0
=
u1

结构动力学公式归纳总结

结构动力学公式归纳总结
0

������)������������
h.杜哈梅数值积分(当������(������)不可积时):
无阻尼体系:
������������������������(������ − ������) = sin(������������ − ������������) = ������������������������������������������������������������ − ������������������������������������������������������������
0

������)������������
其中ℎ(������ − ������) = 1 ������������������������(������ − ������)
������������
有阻尼稳态解:
������(������)
=
1 ������������������
������
∫ ������(������)������−������������(������−������)������������������������������(������
随机动荷载。所谓非随机动荷载,即荷载的变化规律我们是已经完全掌握的,可以绘制出
荷载随时间变化曲线的荷载,这类荷载一般进行所谓的数定分析以获得荷载-位移曲线。而
随机荷载是指荷载随时间的变化规律我们是无法事先知道的,比如我们需要研究的风荷
载,对这类荷载一般需要采用随机振动理论去进行求解。
下面简单概括结构动力学的理论公式:
b.有阻尼自由振动:
������������̈ (������) + ������������̇ (������) + ������������(������) = 0

结构动力学:理论及其在地震工程中的应用4.doc

结构动力学:理论及其在地震工程中的应用4.doc

结构动力学:理论及其在地震工程中的应用45章动力反应的数值计算如果激励[作用力)(t p 或地面加速度)(t ug ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。

这类问题可以通过数值时间步进法对微分方程进行积分来处理。

在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。

然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。

尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。

5.1 时间步进法对于一个非弹性体系,欲采用数值求解的运动方程为)(),(t p u u f u c um s =++ 或者)(t u m g - (5.1.1) 初始条件)0(0u u = )0(0u u= 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。

然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。

作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i到N 。

时间间隔i i i t t t -=∆+1 (5.1.2)图5.1.1 时间步进法的记号通常取为常数,尽管这不是必需的。

在离散时刻i t (表示为i 时刻)确定反应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。

假定这些值是已知的,它们在i 时刻满足方程i i s i i p f u c um =++)( (5.1.3)式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。

将要介绍的数值方法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻1111)(++++=++i i s i i p f u c um (5.1.4)对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,…所有瞬时所需的反应。

结构动力学试题及答案20180602

结构动力学试题及答案20180602

结 构 动 力 学 试 题(2018年上半年硕士研究生考试课程)参考公式:(式中ξ为阻尼比,β为频率比) (1) 单自由度体系动力放大系数0d stu R u ==(2) 单自由度体系传递率TR()()()22222121ξββξβ+-+=TR1(15’)建立题1图所示的三个弹簧-质点体系的运动方程。

❍☎♦✆◆❍♍♋✆♌✆♍✆♍♍❍☎♦✆◆❍◆☎♦✆◆❍◆题1图2(20’)汽车在多跨连续梁桥梁上行驶,桥梁跨度均为L=32m,桥面由于长时徐变效应而产生12cm 的挠度(如题2图所示)。

桥面可以用振幅为12.0cm 的正弦曲线来近似,汽车可以用一个单质点体系模拟,如果汽车重m=2.8tf ,等效弹簧刚度k=280E3 N/m ,等效阻尼比5.0=ξ,求:(1)汽车以72km/h ν=行驶时,汽车的竖向运动()t u t 的振幅t u 0;(2)发生共振时汽车的行驶速度(此处指使振幅最大时的速度)。

题2图3(15’)如题3图所示,一总质量为m 的刚性梁两端由弹簧支撑,梁的质量均匀分布、两弹簧的刚度分别为k 和2k 。

定义的两个自由度u 1和u 2示于图中,建立结构体系的运动方程,并求出的振型和自振频率。

题3图4(15’)题4图所示动力体系为:AB 、BC 杆件都为均布质量刚杆,单位均布质量分别为m 1 、m 2,M 为集中质量,C1及C2为阻尼系数,K1及K2为刚度系数,在C 点作用有压力N 。

以B 点竖向位移B u u =为广义坐标,试求: (1)列出体系的运动方程 (2)求出体系的自振频率 (3)求出临界压力N 。

题4图5(15’)工程场地竖向加速度为0.10g u g =,振动频率为10f Hz =,安放一个质量50m kg =的敏感仪器。

仪器固定在刚度14/k kN m =,阻尼比10%ξ=的橡胶隔振垫上,求: (1) 传递到仪器上的加速度是多少?(2) 如果仪器只能承受0.0038g 的加速度,给出解决方案。

结构动力学5

结构动力学5

p(t )e
i j t
dt
p(t )e
k k 0
N 1
i j t k
t t
p(t )e
k k 0
N 1
i
2kj N
将离散化的谱值代入Fourier逆变换公式,并应用矩形积 分公式得:
1 u (t k ) 2 1 2



U ( )e
it k
p(τ)dτ的动力反应

du(t ) p( )d h(t ) , t
在任意时间t结构的反应, 等于t以前所有脉冲 作用下反应的和 :
u (t ) du
0

t
p( )h(t )d
0
t
5.1 时域分析方法—Duhamel积分 2、对任意荷载的反应
无阻尼体系动力反应的Duhamel积分公式 :
1 U ( ) i 2 nU ( ) n U ( ) P( ) m
2 2
U ( ) F u(t ) , P( ) F p(t )
5.2 频域分析方法—Fourier变换法
2U ( ) i 2 nU ( ) n U ( )
结构动力学
(2003春)
结构动力学
第五章
单自由度体系对任意荷载的反应
在实际工程中,很多动力荷载既不是简谐荷载,也 不是周期性荷载,而是随时间任意变化的荷载,需要 采用更通用的方法来研究任意荷载作用下体系的动力 反应问题。
本章介绍三种动力反应问题的分析方法: 时域分析方法—Duhamel积分法, 频域分析方法—Fourier变换法, 时域逐步积分法—中心差分法;Newmark—β法; Wilson—θ法。

结构动力学哈工大版课后习题解答

结构动力学哈工大版课后习题解答

第一章 单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动。

解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。

用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。

方法一:衰减曲线法。

求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。

桥梁结构动力分析中质量惯性矩的定义及计算

桥梁结构动力分析中质量惯性矩的定义及计算

桥梁结构动力分析中质量惯性矩的定义及计算赵凯 李永乐(西南交通大学桥梁工程系,四川成都,610031)1.概 念1.1 定义质量惯性矩(或称质量惯矩,转动惯量)是刚体动力学里的一个重要概念,与质量具有同等重要的地位。

质量惯性矩为空间中质量关于距离的二次矩。

对于离散质点系,它对空间任意一条直线z 的质量惯矩表示为:21nz i i i J m r ==∑式中,m i 是第i 个质量块质量,r i 表示第i 个质量块到直线z 的距离。

对于连续体,则需用积分表示:2z J r dm =∫1.2 几何意义由定义表达式可见,质量惯矩的大小不仅与质量大小有关,而且与质量的分布情况有关。

在国际单位制中单位为kg·m 2。

质量惯矩越大,则表示质量分布离z 轴越远。

若设想刚体的质量集中于离z 轴距离为ρz 处,令2z zJ m ρ=,则z ρ=称之为对z 轴的回转半径。

显然,它代表质量分布到z 轴距离的一种“平均”。

物体的质量惯矩等于该物体的质量与回转半径平方的乘积。

1.3 物理意义理论力学中有关于刚体运动的两个重要定理,分别是动量定理:22d ym Fdt =∑动量矩定理:22()z z d J M Fdtϕ=∑这两个定理分别描述刚体曲线运动和绕定轴的转动运动规律。

动量定理表示质量为物体运动惯性的一种度量。

类似地,由动量矩定理可见,力矩大,转动角加速度大;如力矩相同,刚体质量惯矩大,则角加速度小,反之,角加速度大。

可见,质量惯性矩的大小表现了物体转动状态改变的难易程度,即:质量惯矩是转动惯性的度量。

若将转动与位移类比,力矩与力类比,则转动惯矩对应于质量。

1.4 质量惯性矩 VS 截面极惯性矩截面极惯性矩表示平面上面积区域关于距离的二次矩,表示为:2p i X Y I r dA I I ==+∫材料力学推导了悬臂梁的扭转公式,pTlGI ϕ=因此,极惯性矩是截面抗扭能力的一种度量,代表转动刚度,而质量惯性矩代表了转动惯性。

10结构动力学概论

10结构动力学概论

当 FP (t)为简谐荷载时,其解的形式为
第十章 结构动力学简介
y(t)
y0
cos ωt
ν0 ω
sin ωt
F
θ sin ωt
F
sin θt
m(ω2 θ 2 ) ω
m(ω2 θ 2 )
前两项为初始条件引起的自由振动;第三项为荷载(干扰力)引起的自由振 动,称为伴生自由振动。实际上,由于阻尼的存在,自由振动部分都很快 衰减掉。自由振动消失前的振动阶段称为过渡阶段。第四项为按荷载频率 进行的振动,此阶段为振动的平稳阶段,称为纯受迫振动或稳态振动。
2、平衡方程的建立
平衡方程的建立有两种方法:一是刚度法;一是柔度法。
my
y k
k
m
刚度法:根据达兰贝尔原理,沿位移正向,在质点上加上惯性力,列动态平 衡方程
ky my
k y ——总是与位移方向相反,指向平衡位置
平m衡y 方—程—与加速m度y方向相k反y 0
第十章 结构动力学简介
柔度法:在惯性力作用下,质点的位移等于实际位移
结构力学
STRUCTURAL MECHANICS
第十章 结构动力学简介
§10-1 概述
一、动力计算的内容
动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和方法。 涉及到内外两方面的因素: 1)确定动力荷载(外部因素,即干扰力); 2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和 阻尼等等),类似静力学中的I、S等; 计算动位移及其幅值;计算动内力及其幅值。
纯受迫振动解的讨论请同学们课下自学完成!
第十章 结构动力学简介
三、阻尼对振动的影响
§10-3 单自由度体系的振动分析

清华大学结构动力学2-1

清华大学结构动力学2-1
对如下图所示结构体系,用虚位移原理建立方程更简便一些
2.2 运动方程的建立 4. Hamilton原理
可以应用变分法(原理)建立结构体系的运动方程。 体系的平衡位置是体系的稳定位置,在稳定位置,体系 的能量取得极值,一般是极小值。 Hamilton原理是动力学中的变分法(原理)。
2.2 运动方程的建立 4. Hamilton原理(积分形式的动力问题的变分方法)

t2 t1
用 Hamilton 原理推导 Lagrange 方程 对于有 N 个自由度的结构体系,体系的动能和位能分别为:
& & & T = T ( u1 , u 2 , L u N , u1 , u 2 , L u N ) V = V ( u1 , u 2 ,L u N )
(a) (b)
因此动能和位能的变分为:


t2 t1
t2
t1
& & & [ muδu − cuδu − kuδu + p(t )δu]dt = 0
对上式中的第一项进行分部积分
& & & muδudt = ∫ mu(δ
t2 t1 t t t t d d & & & && && u )dt = ∫ mu (δu )dt = ∫ mud (δu ) = muδu tt − ∫ δu ⋅ mudt = − ∫ muδudt t t t t dt dt
结构动力学
(2004秋)
结构动力学
第二章
运动方程的建立
运动方程: 描述结构中力与位移关系的数学表达式 (有时称动力方程) 运动方程是进行结构动力分析的基础 运动方程的建立是结构动力学的重点和难点

结构动力学公式

结构动力学公式

广义力:1()Nii i ixiyj jjji x y z Q FF q q q =∂∂∂=++∂∂∂∑ Lagrange 方程:()jjjjdT T V Q dtq q q∙∂∂∂-+=∂∂∂临界阻尼:22n cr c m ω==阻尼比:2crnc c c m ζω==对数衰减率:12lni i u u πζδ+==阻尼比:/2δπζ=阻尼比:1ln2j i j u ju ζπ+≈动力放大系数:021d stu R u ==力的传递率:Tmax 0f TR=P =位移的传递率:t d g uTR R u ==Duhamel 积分:1()()sin[()]t n n u t P t d m τωττω=-⎰()1()()sin[()]n tw t D Du t P et d m ζττωττω--=-⎰两个自由度体系的两个自振圆频率:1/212211212k k k m m ω⎛⎫⎡+ ⎪⎢=+- ⎪⎢ ⎪⎣⎝⎭1/2 12221212k k km mω⎛⎫⎡+⎪⎢=++⎪⎢⎪⎣⎝⎭两个自由度体系的运动方程的一般解:(1)(2)1111122sin()sin()u t tφωθφωθ=+++(1)(2)1211222sin()sin()u t tφωθφωθ=+++广义特征值求解问题:2[][]0K Mω-=振型的正交性:{}[]{}{}{}[]{}{}Tm nTm nM m nK m nφφφφ=≠=≠无阻尼体系动力反应的振型叠加法:[]{}[]{}{}{}[]{}[][]{}[][]{}{}[][][]{}[][][]{}[]{}{}[]{}{}[]{}{}{}[]201()()()1()()sin ()TTTTn n n Tnn nTn nn n n n nnn n n nt n n n n nM u K u P u q M q K q P M q K q P M M K K P P M q K q P q t q t P t M q t P t d M φφφφφφφφφφφφφωτωττω∙∙∙∙∙∙∙∙∙∙+==+=+====+=+==-⎰Newmark-β法的基本假设:()()()()1110112201/2i i a u u a u u γγγβββ++=-+≤≤=-+≤≤Newmark-β法求解过程:(1) 基本数据准备和初始条件计算: 1) 选择时间步长△t 、参数β和γ,并计算积分常数()012324567111;22;1;2a a a a t ttt a a a t a t γββββγγγγββ====∆∆∆⎛⎫∆==-=∆-=∆ ⎪⎝⎭;;-1;-1;。

结构动力学多自由度

结构动力学多自由度
阻尼正交性条件:
求解系数:由质量矩阵和刚度矩阵的正交性,阻尼矩阵的一般形式为:
不耦合的运动方程—有阻尼
同理:
故:
不耦合的运动方程—有阻尼
另一种方法:
不耦合的运动方程—有阻尼
体系的对角广义质量矩阵:
不耦合的运动方程—有阻尼
在上式中,每一振型对阻尼矩阵起的作用与振型的阻尼比成比例。因此,任何无阻尼的振型对阻尼矩阵不起作用。
对每一项乘一个未知的时间函数li(t),并且将这个乘积在时间间隔t1到t2积分:
由于变分为零:
令:
Lagrange运动方程可改写为:
规格化的主振型矩阵:
无阻尼多自由度结构体系自由振动方程:
第i 阶振型的特解:
这样的特解有n个!
振型的物理意义
将N个振型中的每一振型形式,用F表示N个振型所组成的方阵。
以上矩阵为结构的振型矩阵,为一N*N方阵。
各项前乘 ,可得:
即:
注意:即使质量矩阵和柔度矩阵都是对称的,它们的乘机也是不对称的!
几何约束条件:
Hamilton原理:
动能可以用广义坐标和它们的一次导数表示,位能可以单独用广义坐标表示。非保守力在广义坐标的一组任意变分所引起的虚位移上所做的虚功,可以表示为这些变分的线性函数。
代入Hamilton原理公式:
由分部积分公式:
由:
故:
Lagrange运动方程:
由算例:
此时:
Lagrange运动方程写为:
假定弯矩—位移关系:
上式中,第一项由保守力产生,第二项由非保守力产生。
非保守力所做的虚功:
假定非保守力仅限于横向分布荷载p(x,t),这些力的虚功为:
非保守力所做的总虚功为:
其中:

结构动力学的刚度系数柔度系数

结构动力学的刚度系数柔度系数
一、自由振动 2 m y k y 0 y y 0 二、振动微分方程的建立 (1)刚度法 —— 研究作用于被隔离的质量上的力,建立 平衡方程,需要用到刚度系数。
(2)柔度法 —— 研究结构上质点的位移,建立位移协调方程, 需要用到柔度系数。
超静定结构,查表(形常数)
取决于结构的
刚度系数 柔度系数
3 E I k 3 l
i
1 k
两端固支梁侧移刚度: 12E I 12i k 3 2 l l
i
1
一固一铰支梁的侧移刚度:(同悬臂梁) 1 3EI 3i k 3 2 l l k 简支梁中点柔度、刚度:
l3 4 8 E I 4 8 E I k 3 l
δ
2. 柱的并联、串联刚度 (1)并联 总侧移刚度:
l/2
解:
l/2
1 ,先求δ m
3 l/ 16
l/2
l/2
P=1
l/2
l/2
l3 1 48EI
l/
2
7 l53l/32 2 7 6 8P=1 EI
l3 3 192 EI
1
48EI ml3
3 l 768 EI 192 EI 1 l 3 l l 5 l 7 l 2 2 ( 2 ) 3 2 3 m l 623 E I6 7 21 2 7 6 8 E I m l3
h1
k1
k1
、k2 — 楼层刚度
1 2 i2 k 2 2 h 2
总刚度:
k
P 1 1 1
k1 k 2
1 2 i 1 k 1 2 h 1
串联一般公式:
1 1 1 1 n1 k k k k j 1k 1 2 n j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档