数字信号处理实验报告(同名22433)
《数字信号处理》实验报告
![《数字信号处理》实验报告](https://img.taocdn.com/s3/m/bac1bb7776eeaeaad1f330e5.png)
数字信号处理》实验报告年级:2011 级班级:信通 4班姓名:朱明贵学号:111100443 老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。
2. 熟悉应用FFT对典型信号进行频谱分析的方法。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。
二、实验类型演示型三、实验仪器装有MATLA爵言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:JV-1 $生反变换为:如-器冃吋科—有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1 .混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/a44dcd3aeef9aef8941ea76e58fafab069dc44e7.png)
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/bb76c7d5d5bbfd0a795673c3.png)
中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师学院信息科学与工程学院专业班级姓名实验一 常见离散时间信号的产生和频谱分析实验内容及要求(1)复习常用离散时间信号的有关内容;(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on-20-15-10-5051015200.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。
数字信号处理课程设计实验报告
![数字信号处理课程设计实验报告](https://img.taocdn.com/s3/m/3f2eb8e9760bf78a6529647d27284b73f242364c.png)
数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。
实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。
(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。
⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。
对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。
单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。
在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。
离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。
三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/ab65f83ade80d4d8d15a4f68.png)
数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。
设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。
)^点的共进行级运算,每级由个蝶形运算组成。
同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。
这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。
(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。
原位计算可节省大量内存,从而使设备成本降低。
))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。
依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。
)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。
依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。
.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/e459d2861b37f111f18583d049649b6648d70924.png)
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
【精品】数字信号处理实验报告
![【精品】数字信号处理实验报告](https://img.taocdn.com/s3/m/1ebae22da7c30c22590102020740be1e650ecc82.png)
【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。
2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。
3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。
4 总结。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/fe47a38f32d4b14e852458fb770bf78a64293a7d.png)
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/5dee6725c4da50e2524de518964bcf84b9d52da2.png)
数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。
实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。
2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。
3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。
4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。
实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。
2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。
3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。
实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。
在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/3650775817fc700abb68a98271fe910ef12dae94.png)
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/d455f7040a4e767f5acfa1c7aa00b52acfc79c7a.png)
数字信号处理实验报告实验⼀信号、系统及系统响应⼀、实验⽬的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利⽤卷积⽅法观察分析系统的时域特性;4、掌握序列傅⽴叶变换的计算机实现⽅法,利⽤序列的傅⽴叶变换对连续信号、离散信号及系统响应进⾏频域分析。
⼆、实验原理及⽅法采样是连续信号数字处理的第⼀个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发⽣变化以及信号信息不丢失的条件,⽽且可以加深对傅⽴叶变换、Z 变换和序列傅⽴叶变换之间关系式的理解。
对⼀个连续信号进⾏理想采样的过程可⽤下式表⽰:,其中为的理想采样,p(t)为周期脉冲,即的傅⽴叶变换为上式表明为的周期延拓。
其延拓周期为采样⾓频率()。
只有满⾜采样定理时,才不会发⽣频率混叠失真。
在实验时可以⽤序列的傅⽴叶变换来计算。
公式如下:离散信号和系统在时域均可⽤序列来表⽰。
为了在实验中观察分析各种序列的频域特性,通常对在[0,2]上进⾏M点采样来观察分析。
对长度为N的有限长序列x(n),有:其中,,k=0,1,……M-1时域离散线性⾮移变系统的输⼊/输出关系为上述卷积运算也可在频域实现三、实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅⽴叶变换及性质等有关内容,阅读本实验原理与⽅法。
2、编制实验⽤主程序及相应⼦程序。
①信号产⽣⼦程序,⽤于产⽣实验中要⽤到的下列信号序列:xa(t)=Ae-at sin(Ω0t)u(t)进⾏采样,可得到采样序列xa(n)=xa(nT)=Ae-anT sin(Ω0nT)u(n), 0≤n<50其中A为幅度因⼦,a为衰减因⼦,Ω0是模拟⾓频率,T为采样间隔。
这些参数都要在实验过程中由键盘输⼊,产⽣不同的xa(t)和xa(n)。
b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产⽣⼦程序。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/322eca02284ac850ac024288.png)
数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。
实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。
程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/c51a96b7d5d8d15abe23482fb4daa58da0111c1e.png)
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/7cfdc340dd88d0d233d46aee.png)
数字信号处理实验报告郑州航空工业管理学院《数字信号处理》实验报告专业电子信息工程学号姓名实验一 数字滤波器的结构一、 实验目的(1) 加深对数字滤波器分类与结构的了解;(2) 明确数字滤波器的基本结构及其相互间的转换方法;(3) 掌握用MATLAB 进行数字滤波器各种结构相互间转换的子函数及程序编写方法。
二、 实验原理一个离散LSI 系统可用系统函数来表示;()()()12001212120z 11M m M m m M N N kN k k b z Y b b z b z b z H z X z a z a z a za z ----=----=++++===+++++∑∑ 也可用差分方程来表示:()()()10N Mk m k m y n a y n k b x n m ==+-=-∑∑当k a 至少有一个不为0时,则在有限z 平面上存在极点,表示一个IIR 数字滤波器;当k a 全都为0时,系统不存在极点,表示一个FIR 系统。
IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、级联型和并联型。
FIR 数字滤波器的基本结构分为横截型、级联型、并联型、、线性相位型和频率抽样型。
三、 实验仪器微型计算机、MATLAB四、 实验内容(1) 已知一个IIR 系统的系统函数为()1231230.10.40.40.110.30.550.2z z z H z z z z -------+-=+++ 将其从直接型转换为级联型和并联型结构,并画出各种结构的流程图。
(2) 已知一个FIR 系统的系统函数为()12340.20.8850.212+0.212+0.885H z z z z z ----=++for i=1:2:N-1Brow=r(i:1:i+1,:); %取出一对留数Arow=p(i:1:i+1,:); %取出一对对应的极点%二个留数极点转为二阶子系统分子分母系数[Brow,Arow]=residuez(Brow,Arow,[]);B(fix((i+1)/2),:)=real(Brow);%取Brow的实部,放入系数矩阵B的相应行A(fix((i+1)/2),:)=real(Arow);%取Arow的实部,放入系数矩阵A的相应行endendnum =[8 -4 11 -2];den =[1 -1.25 0.75 -0.125];[C,B,A]=dir2par(num,den)C =16B =-16.0000 20.00008.0000 0A =1.0000 -1.0000 0.50001.0000 -0.2500 0五、试验结果分析实验二 用冲激响应不变法设计IIR 数字滤波器一、 实验目的(1) 加深对冲激响应不变法设计IIR 数字滤波器的基本原理的理解;(2) 掌握用冲激响应不变法设计数字低通、带通滤波器的设计;(3) 了解MATLAB 有关冲激响应不变法的常用子函数。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/137cd7de58f5f61fb73666aa.png)
《数字信号处理》实验报告课程名称数字信号处理学生姓名指导教师李宏学院信息科学与工程学院专业班级学号2017年5月实验一 离散时间信号和系统响应一. 实验目的1. 掌握连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握求系统响应的方法3. 掌握时域离散系统的时域特性4. 利用卷积方法观察分析系统的时域特性二. 实验原理与方法采样是连续信号数字化处理的第一个环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号ˆ()a x t :ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,()()n P t t nT δ∞=-∞=-∑ˆ()a xt 的傅里叶变换()a X j Ω为:上式表明将连续信号xa(t)采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱是原连续信号xa(t)的频谱Xa(j Ω)在频率轴上以Ωs 为周期,周期延拓而成的。
在时域中,描述系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
一个时域离散线性时不变系统的输出与输入间的关系为:1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑这里,()y n 为系统的输出序列,()x n 为输入序列。
()()x n h n 、可以是无限长,也可以是有限长。
三. 实验内容1. 时域采样定理的验证 给定模拟信号:0()sin()()t a x t Ae t u t α-=Ω,式中444.128, A=,α=0/rad s Ω=。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/b2ffbe5415791711cc7931b765ce05087732757e.png)
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/1da3c47959fafab069dc5022aaea998fcc224085.png)
实验一 基于LMS 算法的自适应滤波器设计一、自适应算法的概括包括最小均方算法LMS 、最小高阶均方算法LMP 、最小平方算法OLS 、递推最小算法RLS 。
自适应算法主要根据滤波器输入的统计特性进行处理,存在开环算法和闭环算法;开环算法的控制输出仅取决于滤波器的输入和其他输入数据;闭环的控制输出则是滤波器输出及其他输入信号的函数。
闭环控制利用输出反馈,不但能在滤波器输入信号变化时保持最佳输出,而且在某种程度上补偿滤波元件参数的变化和误差以及运算误差。
二、自适应滤波器的结构自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。
如图1.1所示为自适应滤波器的一般结构。
输入信号)(n x 通过参数可调数字滤波器后产生输出信号(或响应))(n y ,将其与参考信号(或期望响应))(n d 进行比较,形成误差信号)(n e ,)(n e 通过某种自适应算法对滤波器参数进行调整,最终使)(n e 得均方值最小。
所以,自适应滤波器实际上是一种能够自动调整本身参数的特殊的Wiener 模型。
)(n d 自适应滤波器算法滤波器结构)(n x )(n e )(n y +-图1.1 自适应滤波器的一般结构上面的自适应滤波器设计不需要知道关于输入信号和噪声的统计特性,能够在工作过程中估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳的滤波效果。
一旦输入信号统计特性发生变化,其又能跟踪这种变化,自动调整参数,从而使滤波器性能达到最佳效果。
三、滤波器采用的结构采用FIR 横向滤波器(由于IIR 滤波器存在稳定性问题)作为自适应滤波器结构,如图1.2所示。
)(n x )(0n w )(1n w )(2n w )(1n w N -1-Z 1-Z ....1-Z )1(+-N n x ∑)(n y图1.2 FIR 横向滤波器结构图中所示自适应滤波器的输入矢量:T N n x n x n x n X )]1(),...,1(),([)(+--= , 权重系数矢量:T N n w n w n w n W )](),...,(),([)(110-=,即自适应滤波器的冲击响应。
数字信号处理课程实验报告
![数字信号处理课程实验报告](https://img.taocdn.com/s3/m/530b8ede71fe910ef12df8c5.png)
数字信号处理课程实验报告课题名称:IIR滤波器相位校正实验一、实验内容与分析1、实验目的和内容1)利用MATLAB设计一个IIR滤波器;2)结合课本关于全通滤波器特性知识(课本p128),在IIR滤波器后级联一个全通相位滤波器进行相位校正,使此滤波器最终实现线性相位特性;3)分别使用相位校正前后两滤波器实现对某一信号的处理;4)画出IIR滤波器、全通滤波器、相位校正后滤波器的幅度频率特性曲线、相位频率特性曲线,信号时域波形、信号的幅度频率特性曲线、相位频率特性曲线;5)详述实验设计原理,分析相位校正前后两类滤波器对信号处理后的区别。
2、实验的分析1)、IIR滤波器的设计通过对实验内容的理解,我们首先需要设计一个IIR滤波器,对课本第六章的学习我们知道IIR数字滤波器有两种设计方法:间接设计法和直接设计法。
间接设计法中有巴特沃斯滤波器,切比雪夫I型、II型滤波器,椭圆滤波器和贝塞尔滤波器五种。
我们选择设计切比雪夫II型低通滤波器,其中的技术指标为:通带边界频率fp=1000Hz,阻带边界频率fs=2000 Hz,阻带最小衰减As=40 dB,通带最大衰减Ap=1 dB。
2)全通滤波器的设计全通滤波器的幅度特性是在整个频带上均等于常数,或者等于1.信号通过全通滤波器后,其输出的幅度特性保持不变,仅相位发生变化。
由于IIR滤波器后需要级联一个全通相位滤波器,使整个系统实现线性相位特性,为了求解全通滤波器的参数,我们先假设整个系统具有线性相位特性,再根据已经设计好了的切比雪夫II 型滤波器的系统参数,求解全通滤波器的参数。
二、实验的过程1、切比雪夫II型滤波器的设计过程在确定了滤波器的参数之后,我们运用cheb2ord函数计算模拟低通滤波器的最小阶数;然后用cheby2计算滤波器传输函数的系数。
然后运用脉冲响应不变法将模拟低通滤波器转换成数字滤波器。
这样我们就设计出了满足给定参数的切比雪夫II型滤波器。
数字信号处理实验报告(全)
![数字信号处理实验报告(全)](https://img.taocdn.com/s3/m/cbde61d9195f312b3169a5d7.png)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
数字信号处理实验报告
![数字信号处理实验报告](https://img.taocdn.com/s3/m/e8a704f4534de518964bcf84b9d528ea81c72fc2.png)
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:***学号:**********指导教师:***2017年5月28日实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即()()n P t t nT δ∞=-∞=-∑1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()|j a TX j X e ωω=ΩΩ=而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
本实验仅在时域求解,对于差分方程可用Matlab 中的工具箱函数filter()函数求解一个时域离散线性时不变系统的输出与输入间的关系为:可用Matlab 中的工具箱函数conv()函数求解三、实验内容及步骤1. 时域采样定理的验证给定模拟信号:0()sin()()t a x t Ae t u t α-=Ω式中 444.128, A=,α=0/rad s Ω=。
其幅频特性如图所示:选择三种采样频率Fs=1kHz, 300Hz, 200Hz, 生成采样序列0()sin()()064nT x n Ae nT u n n α-=Ω≤<分别用序列123()()()x n x n x n 、、表示。
编写程序计算三个序列的幅频特性曲线123|()|()|()|j j j X e X e X e ωωω、|、|,并绘图显示。
观察|()|j X e ω在折叠频率附近与连续信号频谱有无明显差别,分析频谱混叠现象。
实验程序如下%时域采样定理的验证%Fs=1KHzTp=64/1000; %Tp=64msFs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑10.80.60.40.200100200300400500x a (j f ) f /Hzxnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %MµãFFTyn='xa(nT)';subplot(3,2,1);stem(xnt); %»-ͼbox on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=300HzTp=64/1000;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt);box on;title('(a) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk),'r');title('(a)T*FT[xa(nT)],Fs=300Hz’) ;xlabel('f(Hz)');ylabel(‘幅度’);axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=200HzTp=64/1000; %64msFs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt,'.');box on;title('(a) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);2. 给定一个低通滤波器的差分方程为:()0.05()0.05(1)0.9(1)y n x n x n y n =+-+-输入序列182()(), ()()x n R n x n u n ==(1)分别求出18()()x n R n =和2 ()()x n u n =的系统响应,并画出其波形(2) 求出系统的单位脉冲响应,画出其波形A=[1,-0.9];B=[0.05,0.05];x1n=[ones(1,8),zeros(1,50)]x2n=ones(1,200);hn=impz(B,A,50);subplot(3,1,1);stem(hn);title(‘(1)系统单位脉冲响应h(n)’);y1n=filter(B,A,x1n);subplot(3,1,2);stem(y1n);title('(2)系统对R (8)的响应 y1(n)');y2n=filter(B,A,x2n);subplot(3,1,3);stem(y2n);title(‘(3)系统对u(n)的响应)y2(n)’);3. 给定系统的单位脉冲响应为1102()(), ()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ==+-+-+-用线性卷积法求18()()x n R n =分别对系统1()h n 和2()h n 的输出响应,并画出波形x1n=ones(1,8);h1n=[ones(1,10) zeros(1,20)];h2n=[1,2.5,2.5,1,zeros(1,10)];y11n=conv(h1n,x1n);y22n=conv(h2n,x1n);subplot(2,2,1);stem(h1n,’.b’);title(‘(4)系统单位脉冲响应h1(n)’);subplot(2,2,2);stem(y11n,'.b');title(‘(5)h1(n)与R8(n)的卷积y11(n)’);subplot(2,2,3);stem(h2n,'.b');title(‘(6)系统单位脉冲响应h2(n)’);subplot(2,2,4);stem(y22n,'.b');title(‘(7)h2(n)与R8(n)的卷积y22(n)’);四、实验思考1. 在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?答:当采样频率不同时,数字度量不同,但是模拟频率相同。
因为数字频率W是模拟角频率Ω用采样频率F S归一化频率。
数字频率和模拟角频率之间的关系是W=ΩT,模拟信号的模拟角频率Ω不变,当采样频率不同时,T不同,所以数字频率Ω不同。
因此,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量不相同,但是它们所对应的模拟频率相同。
2. 如果输入信号为无线长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应?如何求?答:(1)对输入信号序列分段;(2)求单位脉冲响应与各段的卷积;(3)将各段卷积结果相加。
3. 如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化?用前面第二个实验结果进行分析说明答:把信号经过低通滤波器,把信号的高频成分滤掉,时域信号的剧烈将变得平滑。
五、实验心得及体会通过本次实验我重新温习了MATLAB这个软件的使用方法,运行环境。
通过这款软件使我们的学习更加便利。
实验二用FFT对信号作频谱分析一、实验目的1. 进一步加深DFT算法原理和基本性质的理解2. 掌握用FFT对连续信号和时域离散信号进行频谱分析的方法3. 了解用FFT进行频谱分析时可能出现的分析误差及其原因,以便在实际中正确应用FFT二、实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容,经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率F和分析误差。
频谱分辨率直接和FFT的变换区间N有关,FFT能够实现的频率分辨率是2π/N,因此要求2π/N≤F。
可以根据此式选择FFT的变换区间N。