2013年沈阳中考数学真题解析分类汇编

合集下载

2013年沈阳市中考数学试题及标准答案

2013年沈阳市中考数学试题及标准答案

2013年沈阳中考数学试卷考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a--. 对称轴是直线2b x a=-,注意事项21.答题前,考生须用0. 5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号; 2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效; 3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为( )A .81.9610⨯B .819.610⨯C .101.9610⨯D .1019.610⨯ 2.右图是一个几何体的三视图,这个几何体的名称是( )A .圆柱体B .三棱锥C .球体D .圆锥体3.下面计算一定正确的是( )A .3362b a b += B .222(3)9pq p q -=-C .3585315y y y ⋅= D .933b b b ÷=4.如果71m =-,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m << 5.下列事件中,是不可能事件的是( )A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环.C .明天会下雨D .度量三角形的内角和,结果是360°6. 计算2311x x +-- 的结果是( ) A .11x - B .11x - C .51x - D .51x-7、在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )8.如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,AD=4,BC=8,BD:DC=5:3,则DE 的长等于( ) A .203 B .154 C .163 D .174二、填空题(每小题4分,共32分) 9.分解因式: 2363a a ++= _________.10.一组数据2,4,x ,-1的平均数为3,则x 的值是 =_________.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________. 12.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a 的取值方位是 _________.13.如果x=1时,代数式2234ax bx ++的值是5,那么x= -1时,代数式2234ax bx ++的值 _________.14.如图,点A 、B 、C 、D 都在⊙O 上,ABC ∠=90°,AD=3,CD=2,则⊙O 的直径的长是_________.15.有一组等式:22222222222222221233,2367,341213,452021++=++=++=++=…… 请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________ 三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:216sin 30282-⎛⎫-︒++- ⎪⎝⎭(-2)18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价, 图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-40.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-40.doc

等腰三角形2、(2013年临沂)如图,在平面直角坐标系中,点A 1 , A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,所作三角形是等腰三角形的概率是(A ) 3 4. (B) 1 3. (C) 23. (D) 1 2.答案:D解析:以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,能作4个,其中A 1B 1O ,A 2B 2O 为等腰三角形,共2个,故概率为: 1 23、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36° A答案:A解析:因为AB=AC,所以,∠C=∠ABC=12(180°-36°)=72°,又BD为高,所以,∠DBC=90°72°=18°4、(2013四川南充,3,3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B. 55°C. 50°D. 40°答案:D解析:因为AB=AC,所以∠C=∠B=70°,∠A=180°-70°-70°=40°5、(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()6、(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()出∠ACC′=∠CAB,然后利用等腰三角形两底角相等求出∠CAC′,再求出∠BAB′=∠CAC′,从而得解.解答:解:∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAC=∠B′AC′,∵CC′∥AB,∠CAB=75°,∴∠ACC′=∠CAB=75°,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×75°=30°,∵∠BAB′=∠BAC﹣∠B′AC,∠CAC′=∠B′AC′﹣∠B′AC,8、(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC 中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF 的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.解答:解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.9、(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标10、(2013•德州)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()13、(2013•淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()14、(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()=,,=,CD=,.15、(2013成都市)如图,在△ABC中,B C∠=∠,AB=5,则AC的长为()A.2B.3C.4D.5答案:D解析:由∠B=∠C,得AC=AB=5(等角对等边),故选D16、(2013•宜昌)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()17、(2013哈尔滨)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:根据CECE 平分∠BCD 得∠BCE=∠ECD,AD ∥BC 得∠BCE=∠DEC 从而△DCE 为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+AB,解得AB=3故选B18、(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的180°﹣80°×2=20°,20、(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 114 D 4分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tanB===2.故选B.点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.21、(2013台湾、31)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE 为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.22、(2013台湾、20)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC 长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55考点:矩形的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.解答:解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=PC,MP=MC,∵∠PBC=70°,∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选B.点评:本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题.23、(2013•滨州)在等腰△ABC中,AB=AC,∠A=50°,则∠B=65°.为边长的等腰三角形的周长为 5 .25、(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B 为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= 6 .∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.27、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .∴∠DBC=BD==DE=BD=故答案为:△AOP是等腰三角形,则这样的点P共有8 个.29、(2013•荆门)若等腰三角形的一个角为50°,则它的顶角为80°或50°.30、(2013凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解答:解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.31、(2013•白银)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .32、(2013凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.专题:动点型.分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图①所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.33、(2013•牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 2.4cm或cm .=解得x=2.4厘米,②若BD是平行四边形的一个短边,则EF∥AB,=,解得x=cm,综上所述短边为2.4cm或cm.题主要考查相似三角形的判定与性质等知识点,解答本题的关键是正确的画出图∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.,∴△AED≌△AEF(SAS),①正确;②∵∠BAC=90°,AB=AC,∴∠ABE=∠C=45°.∵点D、E为BC边上的两点,∠DAE=45°,∴AD与AE不一定相等,∠AED与∠ADE不一定相等,∵∠AED=45°+∠BAE,∠ADE=45°+∠CAD,35、(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15 度.36、(2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有 6 个,写出其中一个点P的坐标是(5,0).等腰三角形的判定;坐标与图形性质.37、(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a .∴∠BCD沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案是:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.39、(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 12 .考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.40、(2013年江西省)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.【答案】25°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE为等腰三角形,顶角∠ADE=∠BCF=60°+70°=130°,∴∠DAE=25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.【方法规律】先要明确∠DAE的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD=130°,∠F=110°转化为∠DCF=70°,从而求得∠ADE=∠BCF=130°.【关键词】平行四边形等腰三角形周长求角度41、(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点为线段AP的中点,从而可以求出AP.解答:(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,,即,﹣;的长为43、(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3, +2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1, +2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.44、(13年安徽省4分、14)已知矩形纸片ABCD中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF不经过A点(E、F是该矩形边界上的点),折叠后点A落在A,处,给出以下判断:(1)当四边形A,CDF为正方形时,EF=2(2)当EF=2时,四边形A,CDF为正方形(3)当EF=5时,四边形BA,CD为等腰梯形;(4)当四边形BA,CD为等腰梯形时,EF=5。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

2013年辽宁省沈阳市中考数学试卷解析

2013年辽宁省沈阳市中考数学试卷解析

2013年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•沈阳)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A .1.96×108B.19.6×108C.1.96×1010D.19.6×1010考点:难度:M11C 科学记数法容易题.分析:本题需用到科学计数法的概念:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.所以有:196亿=19 600 000 000=1.96×1010.故选C.解答: C点评:本题较简单,是中考的必考内容,解题的关键是:用科学记数法表示较大的数时,一定要准确确定a与n值.2.(3分)(2013•沈阳)如图所示是一个几何体的三视图,这个几何体的名称是()A .圆柱体B.三棱锥C.球体D.圆锥体考点:难度:M414 视图与投影容易题.分析:本题首先需知道主视图、左视图、俯视图的概念:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.而本题中,由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.解答: A点评:本题是一道基础题,考查了由三视图来判断几何体,以及对三视图掌握程度和灵活运用能力,和空间想象能力.解题的关键是:清楚知道主视图、左视图、俯视图的概念。

3.(3分)(2013•沈阳)下面的计算一定正确的是()A b3+b3=2b6B(﹣3pq)2=﹣9p2q2C5y3•3y5=15D b9÷b3=b3...y8.考点:难度:M114 有理数的运算M119 实数的混合运算M11J 求代数式的值容易题.分析:本题可分别根据合并同类项的法则;积的乘方的性质;单项式乘单项式的法则;同底数幂的除法对每个选项进行判断得出答案,分析如下:A、b3+b3=2b3,故本选项错误;B、(﹣3pq)2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.故选C.解答: C点评:本题考查的知识点较多,有合并同类项,积的乘方,单项式乘单项式,同底数幂的除法四个考点,这些都是中考的热门考点,解题关键是熟练掌握运算性质与法则.4.(3分)(2013•沈阳)如果m=,那么m的取值范围是()A .0<m<1 B.1<m<2 C.2<m<3 D.3<m<4考点:难度:M115 估算无理数的大小容易题.分析:本题用到的是估算法,先估算出在2与3之间,再根据m=,即可得出m的取值范围.估算过程如下:解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.解答: B点评:本题较简单,考查了估算无理数的大小,解题关键是:先确定无理数的整数部分,在进行计算.5.(3分)(2013•沈阳)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°考点:难度:M221 事件容易题.分析:本题要知道不可能事件的概念:不可能事件是指在一定条件下,一定不发生的事件.以及随机事件的概念:指在一定条件下,可能发生也可能不发生的事件.分析如下:A、买一张电影票,座位号是奇数,是随机事件,故A 选项错误;B、射击运动员射击一次,命中9环,是随机事件,故B选项错误;C、明天会下雨,是随机事件,故C选项错误;D、度量一个三角形的内角和,结果是360°,是不可能事件,故D选项正确.故选:D.解答: D点评:本题是一道基础题,考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.熟记概念是解题的关键. 6.(3分)(2013•沈阳)计算的结果是()A .B.C.D.考点:M11M 分式运算.难度:容易题分析:本题只需先通分,再根据同分母的分式相加减的法则进行计算即可.结算过程如下:解:原式=﹣==.故选B.解答: B点评:本题较简单,考查了分式的加减法,是中考的热点内容,注意:异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.7.(3分)(2013•沈阳)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A .B.C.D.考点:难度: M152 反比例函数的的图象、性质 M142 一次函数的的图象、性质 中等题.分析:本题由反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x ﹣1的图象在第一三四象限,可得答案.分析如下:解:函数中,k=1>0,故图象在第一三象限;函数y=x ﹣1的图象在第一三四象限, 故选:C . 解答: C点评:本题是一道基础题,主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一定要清楚一次函数y=kx+b 图象的四种情况,分别是:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.8.(3分)(2013•沈阳)如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD=4,BC=8,BD :DC=5:3,则DE 的长等于( )A .B .C.D.考点: M32H 相似三角形性质与判定. 难度: 中等题分析:本题突破口是:由∠ADC=∠BDE ,∠C=∠E ,得出△ADC ∽△BDE ,然后由相似三角形的对应边成比例,即可求得答案.解题过程如下: 解:∵∠ADC=∠BDE ,∠C=∠E , ∴△ADC ∽△BDE ,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.解答: B点评:本题难度不大,主要考查了相似三角形的判定与性质,是中考的必考知识点,解题时一定要注意数形结合思想的应用。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-19.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-19.doc

操作与探究1、(13年北京5分22)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积。

小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积。

参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________。

解析:考点:操作与探究(旋转、从正方形到等边三角形的变式、全等三角形)2、(2013成都市)如图,A B C ,,,为⊙O 上相邻的三个n 等分点,弧AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时,p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 75-==o o ,cos15sin 75==o o答案:c b ±2; c b 21322-+或c b --226解析:3、(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

2011年至2013年沈阳中考数学试题汇总及答案(word版)

2011年至2013年沈阳中考数学试题汇总及答案(word版)

2011年沈阳招生中考数学试题试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2bx a=-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1. 下列各选项中,既不是正数也不是负数的是 A .-1B .0CD .π2.左下图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是3.下列运算中,一定正确的是A .m 5-m 2=m 3B .m 10÷m 2=m 5C . m •m 2=m 3D .(2m )5=2m 54.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8) B .(-2,4)C .(1,7)D .(2,4)5.下列图形是中心对称图形的是6.下列说法中,正确的是A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C .某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D .“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.7.如图,矩形ABCD 中,AB <BC ,对角线AC 、BD 相交于点O ,则图中的等腰三角形有 A .2个 B .4个 C .6个 D .8个8.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .253010(180%)60x x -=+ B .253010(180%)x x -=+C .302510(180%)60x x -=+D .302510(180%)x x-=+A .BCD第2题图A .B .C 第5题图C第7题图二、填空题(每小题4分,共32分) 9.2(1)-=___________.10.不等式2-x ≤1的解集为____________.11.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.12.小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有__________人.13.如果一次函数y =4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________. 14.如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是__________度.15.16.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =F A .下列结:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S△CEF ,其中正确的是____________________________(只填写序号).一、 解答题(第17、18小题各8分,第19小题10分,共28分)17.先化简,再求值(x +1)2-(x +2)(x -2)x ,且x 为整数. 18.沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线图(部分),小王和小林分别从太原街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.⑴在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果)⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)第12题图第14题图F第16题图19.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB四、(每小题10分,共20分)20.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表信息1 4月份日最高气温的中位数是15.5℃;信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.请根据上述信息回答下列问题:⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.⑵4月份最高气温的众数是________℃,极差是_________℃。

2013年辽宁省沈阳市中考真题 辽宁省沈阳市检测版

2013年辽宁省沈阳市中考真题 辽宁省沈阳市检测版

考点
抽样、统计图 2013年辽宁省沈阳市中考真题 【难易度】3

已掌握
考察内容:
第 3 页 /共 12 页
考点
圆的基础知识 2013年辽宁省沈阳市中考真题 【难易度】3

已掌握
考察内容:
考点
规律探索 2013年辽宁省沈阳市中考真题 【难易度】4

已掌握
考察内容:
考点
一元二次方程 2013年辽宁省沈阳市中考真题 【难易度】1
考察内容:
考点
概率基础
第 1 页 /共 12 页
2013年辽宁省沈阳市中考真题 考察内容:
【难易度】4

已掌握
考点
投影、视图、展开与折叠 2013年辽宁省沈阳市中考真题 【难易度】2

已掌握
考察内容:
考点
全等三角形 2013年辽宁省沈阳市中考真题 【难易度】4

已掌握
考察内容:
第 2 页 /共 12 页
考点
函数与几何的综合应用 2013年辽宁省沈阳市中考真题 【难易度】5

已掌握
考察内容:
考点
与圆有关的位置关系 2013年辽宁省沈阳市中考真题 【难易度】4

已掌握
考察内容:
第 10 页 /共 12 页
考点
整式的乘除 2013年辽宁省沈阳市中考真题 【难易度】3

已掌握
考察内容:
考点
科学记数法 2013年辽宁省沈阳市中考真题 【难易度】2

已掌握
考察内容:
第 8 页 /共 12 页
考点
相似三角形 2013年辽宁省沈阳市中考真题 【难易度】2

2013年全国中考数学试题分类解析汇编专题60代数几何综合(含答案)

2013年全国中考数学试题分类解析汇编专题60代数几何综合(含答案)

专题60代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<16<4。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC ==B 1,0),∴31,k k == ;③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k 10== 。

∴能使△ABC 为等腰三角形的抛物线的条数是3条。

故选B 。

3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

2013年全国中考数学试题分类解析汇编专题60代数几何综合(包含答案)

2013年全国中考数学试题分类解析汇编专题60代数几何综合(包含答案)

专题60代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<164。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC B 1,0),∴311,k k 3+== ;③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。

∴能使△ABC 为等腰三角形的抛物线的条数是3条。

故选B 。

3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-25.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-25.doc

全等变换(平移、旋转、翻折)1、(2013•天津)如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE,则四边形ADCF 一定是( )2、(2013年黄石)把一副三角板如图甲放置,其中90ACB DEC ∠=∠= ,45A ∠= ,30D ∠= ,斜边6AB =,7DC =,把三角板DCE 绕着点C 顺时针旋转15 得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为A.5 答案:BDCAE B AD 1OE 1BC图甲图乙解析:如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°。

∵∠OFE1=120°,∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,AB=6,∴OA=OB=3,∵∠ACB=90°,∴,又∵CD1=7,∴OD1=CD1-OC=7-3=4,在Rt△AD1O中,。

3、(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()4、(10-3平移与旋转·2013东营中考)将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至A OB ''∆的位置,点B 的横坐标为2,则点A '的坐标为( )A .(1,1)B .C .(-1,1)D .(5C.解析:在Rt AOB ∆中,2OB =,45AOB ∠=︒,OAAOB OB∠=,所以2cos 22OA OB AOB =∠==,所以2OA '=,过A '作A C y '⊥轴于点C ,在Rt A OC'∆,45A OC '∠=︒,2OA '=,sin A C A OC A O''∠=',2sin 21A C A O A OC '''=∠== ,又因为⊙O 1A C '==,且点A '在第二象限,所以点A '的坐标为(-1,1).5、(2012•青岛)如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是( )6、(2013泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.7、(2013•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()=理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.解答:解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DAC=∠BAC,∴∠EAC=∠DAC,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,==AD==8、(2013•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()9、(2013•郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()10、(2013•常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()∴AC==5x=11、(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()12、(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,13、(2013成都市)如图,将矩形ABCD沿对角线BD折叠,使点C与点C’重合。

2013年全国数学中考试卷分类汇编:规律探索题

2013年全国数学中考试卷分类汇编:规律探索题

2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。

2013-2019年辽宁省沈阳市中考数学试题汇编(含参考答案与解析)

2013-2019年辽宁省沈阳市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019年辽宁省沈阳市中考数学试题汇编(含参考答案与解析)1、2013年辽宁省沈阳市中考数学试题及参考答案与解析 (2)2、2014年辽宁省沈阳市中考数学试题及参考答案与解析 (26)3、2015年辽宁省沈阳市中考数学试题及参考答案与解析 (49)4、2016年辽宁省沈阳市中考数学试题及参考答案与解析 (76)5、2017年辽宁省沈阳市中考数学试题及参考答案与解析 (98)6、2018年辽宁省沈阳市中考数学试题及参考答案与解析 (122)7、2019年辽宁省沈阳市中考数学试题及参考答案与解析 (146)2013年辽宁省沈阳市中考数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B.19.6×108C.1.96×1010D.19.6×10102.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体3.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b34.如果1m,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<45.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°6.计算2311x x+--的结果是()A.11x-B.11x-C.51x-D.51x-7.在同一平面直角坐标系中,函数y=x﹣1与函数1yx=的图象可能是()A.B.C.D.8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A .203B .154C .163D .174二、填空题(本大题共8小题,每小题4题,共32分)9.分解因式:3a 2+6a+3= .10.一组数据2,4,x ,﹣1的平均数为3,则x 的值是 .11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是 .12.若关于x 的一元二次方程x 2+4ax+a=0有两个不相等的实数根,则a 的取值范围是 .13.如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=﹣1时,代数式2ax 3+3bx+4的值是 .14.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .15.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为 .16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 .三、解答题(本大题共9小题,共94分)17.(8分)计算:()2016sin 302|22-⎛⎫-︒+-+- ⎪⎝⎭. 18.(8分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为 人;(2)图①中,a= ,C 等级所占的圆心角的度数为 度;(3)请直接在答题卡中补全条形统计图.19.(10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若,求AD的长.20.(10分)在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为36.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次好抽取的卡片上的实数之差为有理数的概率.21.(10分)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.(1)求风筝距地面的高度GF;(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM 相切与点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)23.(12分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为,其中自变量x的取值范围是;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.24.(12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的14,请直接写出△ABC 的面积.25.(14分)如图,在平面直角坐标系中,抛物线2y bx c ++经过点A (32,0)和点B (1,,与x 轴的另一个交点为C . (1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∠BDA=∠DAC ,求点D 的坐标;(3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE .①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 的一个动点,且点M 与点B 不重合,当∠BMF=13∠MFO 时,请直接写出线段BM 的长.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010【知识考点】科学记数法—表示较大的数【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.【解答过程】解:196亿=19 600 000 000=1.96×1010.故选C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体【知识考点】由三视图判断几何体.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答过程】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【总结归纳】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3【知识考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据合并同类项的法则判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法则判断C;根据同底数幂的除法判断D.【解答过程】解:A、b3+b3=2b3,故本选项错误;B、(﹣3pq)2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;。

2013年沈阳中考数学试卷(含详细解析版)

2013年沈阳中考数学试卷(含详细解析版)

一、选择题(每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B. 19.6×108C. 1.96×1010D. 19.6×1010【答案】C2.右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱柱C.球体D.圆锥体【答案】A3.下面的计算一定正确的是()A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3·3y5=15y8D.b9÷b3=b3【答案】C4.如果m=7-1,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【答案】B5.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【答案】D6.计算2x-1+31-x的结果是()A.1x-1B.11-xC.5x-1D.51-x【答案】B7.在同一平面直角坐标系中,函数y=x-1与函数y=1x的图象可能是()AB CD【答案】C8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.203B.154C.163D.174【答案】B二、填空题(每小题4分,满分32分.)9.分解因式:3a2+6a+3= .【答案】3(a+1)210.一组数据2,4,x,-1的平均数为3,则x的值是.题图)【答案】711.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是.【答案】(3,-2)12.若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是.主视图左视图俯视图【答案】a <413.如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是.【答案】314.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .【答案】13 (1415.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 【答案】82+92+722=73216.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 . 【答案】1,7三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.计算: (12)-2-6sin30°+(-2)0+|2-8|.【答案】22-6×21+1+22-2=2218.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B(一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题: (1)本次调查的人数为 人;(2)图①中,a = ,C 等级所占的圆心角的度数为 度; (3)请直接在答题卡中补全条形统计图. 【答案】(1)200; (2) 35,126 (3)图①C19.如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,,AD 与BE 交于点F ,连接CF. (1)求证:BF=2AE; (2)若CD=2,求AD 的长.【答案】(1)证明:∵AD ⊥BC, ∠BAD=45°,∴∠ABD=∠BAD=45°.∴∵AD ⊥BC, BE ⊥AC,∴∠CAD+∠ACD=90°,∠CBE +∠ACD=90°,∴∠又∵∠CDA=∠BDF=90°,∴△ADC ≌△BDF. ∴AC=BF. ∵AB=BC,BE ⊥AC,∴AE=EC 即AC=2AE, ∴BF=2AE; (2)解:∵△ADC ≌△BDF ∴DF=CD=2, ∴在Rt △CDF 中,CF=2=+22CD DF ,∵BE ⊥AC, AE=EC,∴AF=FC=2,∴AD=AF+DF=2+2.四、(每小题10分,共20分)20.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,2,2+6.(1)从盒子中随机抽取一张卡片,请直接写出卡片上实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数; 卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1)31(2)画树状图得:由树状图可知,共有6种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的实数之差为有理数的结果有两种,因此,两次抽取的卡片上的实数之差为有理数的概率是31=62. 21.身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物上方的树枝点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF ;(2)在建筑物后面有长5米的梯子MN ,梯脚M 在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)过点A 作AP ⊥GP 于P ,由题意得AP=BF=12,AB=PF=14,∠GAP=37°在Rt △PAG 中,tan ∠GAP=APGP,∴GP=AP·tan37°≈12×0.75=9, ∴GF=GP+PF=9+1.4=10.4.答:风筝距地面的高度为10.4米. (2)由题意可知MN=5,MF=3,∴在Rt △MNF 中,NF=4=22MF MN -, ∵10.4-5-1.65=3.75<4∴能触到挂在树上的风筝.B2+6 开始 3 2+6 2 2+63 32MFCB22.如图,OC 平分∠MON ,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM 相切于点B ,连接BA 并延长交⊙A 于点D ,交ON 于点E. (1)求证:ON 是⊙A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【答案】(1)证明:过点A 作AF ⊥ON 于F. ∵⊙A 与OM 相切于点B , ∴AB ⊥OM,∵OC 平分∠MON , ∴AF=AB=2, ∴ON 是⊙A 的切线;(2) ∵∠MON=60°,AB ⊥OM, ∴∠OEB=30°,∵AF ⊥ON, ∴∠FAE=60°在Rt △AEF 中,tan ∠FAE=AFFE, ∴EF=AF·tan60°=32,∴S 阴=S △AEF -S 扇形ADF =21AF·EF-36060πAF 2=32-32π 六、(本题12分)23.某市对火车站进行大规模改建,改建后火车站除原有的普通售票窗口外,新增自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图②中的图象. (1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x 的取值范围是 ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口? (3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.【答案】(1)y=60x 2,0≤x ≤23(2)上午9点y 1=80,y 2=60. 设需要开放x 个普通售票窗口.依题意得80x+60×5≥1450, x ≥1483. ∵x 为整数,∴x 取15.答:至少需要开放15个普通售票窗口.(3)设y 1= k 1x ,把(1,80)代入得80= k 1 ∴y 1= 80x.当x=2时,y 1= 160, 上午10点,y 2= y 1=160,由(1)得当x=23时,y 2=135, ∴图②中一次函数过点(23,135)、(2,160)设一次函数表达式为y 2= k 2x+b,23k 2+b=135,2k 2+b=160, 解得:k 2=50,b=60,∴一次函数表达式为y 2= 50x+60.图②图①24.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD . 应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O. (1) 求证:△AOB 和△AOE 是“友好三角形”;(2) 连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积. 探究:在△ABC 中,∠A=30°,AB=4, 点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的41,请直接写出△ABC 的面积.【答案】(1)证明:∵ 四边形ABCD 为矩形, ∴AD ∥BC,∴∠EAO=∠BFO,又∵∠AOE=∠FOB,AE=BF , ∴△AOE ≌△FOB , ∴EO=BO.∴△AOB 和△AOE 是“友好三角形”.(2)∵△AOE 和△DOE 是“友好三角形”, ∴S △AOE =S △DOE ,AE=ED=21AD=3. ∵△AOB 和△AOE 是“友好三角形” ∴S △AOB =S △AOE∵△AOE ≌△FOB , ∴S △AOE =S △FOB , ∴S △AOD =S △ABF ,∴S 四边形CDOF =S 矩形ABCD -2S △ABF =4×6-2×21×4×3=12. 探究:2或32.A DB BCF 图①图②25.如图,在平面直角坐标系中,抛物线y=c bx x ++5282经过点A (23,0)和点B (1,22),与x 轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∠BDA=∠DAC ,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE. ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当∠BMF=31∠MFO 时,请直接写出线段BM 的长.【答案】(1)将A (23,0)、B (1,22)代入y=c bx x ++5282得,0=+23+49×528c b ,22=++528c b ,得b=-,28c=5242. ∴y=2528x -28x+5242. (2)当∠BAD=∠DAC 时,BD ∥x 轴. ∵B (1,22),∴当y=22时,22=2528x -28x+5242, 解得:x 1=1,x 2=4 ∴D(4, 22).(3)①四边形OAEB 是平行四边形. 理由如下:抛物线的对称轴是x=25, ∴BE=25-1=23, ∵B (23,0),∴OA=BE=23,又∵BE ∥OA∴四边形OAEB 是平行四边形.②21或25.。

2013年辽宁省沈阳市中考数学试卷-答案

2013年辽宁省沈阳市中考数学试卷-答案
【提示】先提取公因式 3,再对余下的多项式利用完全平方公式继续分解. 【考点】提公因式法与公式法的综合运用 10.【答案】7 【解析】解:∵数据 2,4, x , 1的平均数为 3,∴ (2 4 x 1) 4 3 ,解得: x 7 ,故答案为:7. 【提示】根据求平均数的公式: x x1 x2 ... xn ,列出算式,即可求出 x 的值.
AD 4 故选 B. 【提示】由 ADC BDE , C E ,可得△ADC∽△BDE ,然后由相似三角形的对应边成比例,即 可求得答案. 【考点】相似三角形的判定与性质 二、填空题 9.【答案】 3(a 1)2
【解析】 3a2 6a 3 3(a2 2a 1) 3(a 1)2 ,故答案为: 3(a 1)2 .
【考点】关于原点对称的点的坐标
12.【答案】 a 1 或 a 0 4
【解析】根据题意得: (4a)2 4a 0 ,即 4a(4 a 1) 0 ,解得: a 1 或 a 0 ,则 a 的范围是 a 1 或
4
4
a 0 ,故答案为 a 1 或 a 0 . 4
【提示】先估算出 7 在 2 与 3 之间,再根据 m 7 1,即可得出 m 的取值范围.
【考点】估算无理数的大小 5.【答案】D 【解析】A.买一张电影票,座位号是奇数,是随机事件; B.射击运动员射击一次,命中 9 环,是随机事件;
1 / 11
C.明天会下雨,是随机事件; D.度量一个三角形的内角和,结果是 360°,是不可能事件.故选 D. 【提示】不可能事件是指在一定条件下,一定不发生的事件. 【考点】随机事件 6.【答案】B 【解析】解:原式 2 3 2 3 1 ,故选 B.
【提示】根据方程有两个不相等的实数根,得到根的判别式的值大于 0,列出关于 a 的不等式,求出不等式

辽宁省沈阳市2013年中考数学模拟试卷(解析版)

辽宁省沈阳市2013年中考数学模拟试卷(解析版)

某某省某某市2013年中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,满分24分)1.(3分)(2013•某某模拟)计算3×(﹣2)的结果是()A.5B.﹣5 C.6D.﹣6考点:有理数的乘法.分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,再把绝对值相乘,即可得到结果.解答:解:3×(﹣2),=﹣(3×2),=﹣6.故选D.点评:此题主要考查了有理数的乘法,牢记法则即可.2.(3分)(2013•某某模拟)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2013•某某模拟)下列电视台图标中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013•某某模拟)2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 C.平均数是32 D.极差是5考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解答:解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、35,位于中间位置的数是31,故B 符合要求;平均数为(30+31+31+31+33+33+35)÷7=32,故C不符合要求;极差为35﹣30=5,故D不符合要求.故选B.点评:本题属于基础题,考查了确定一组数据的中位数、众数、平均数及极差的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2013•某某模拟)如图所示的“h”型几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上向下看得到的视图进行分析解答即可.解答:解:从上面看可得到一个矩形,中间左边有一条实心线,右边有一条虚线.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得见的线用实线表示,看不见的线用虚线表示.6.(3分)(2013•某某模拟)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%考点:一元一次不等式的应用.专题:压轴题.分析:缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y 元,根据公式×100%=利润率可列出不等式,解不等式即可.解答:解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,经检验,x≥是原不等式的解∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.点评:此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意再解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.7.(3分)(2013•某某模拟)若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的特征,xy=3,所以得到x1•y1=3,x2•y2=3,x3•y3=3,再根据x1<x2<0<x3,即可判断y1、y2、y3的大小关系.解答:解:∵A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,∴x1•y1=3,x2•y2=3,x3•y3=3,∵x3>0,∴y3>0,∵x1<x2<0,∴0>y1>y2,∴y3>y1>y2.故选A.点评:此题主要考查了反比例函数图象上点的特征,凡是在反比例函数图象上的点,横纵坐标的乘积是一个定值=k.8.(3分)(2013•某某模拟)直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为()A.B.C.D.考点:锐角三角函数的定义;翻折变换(折叠问题).专题:压轴题.分析:直角三角形纸片的两直角边AC与BC之比为3:4,就是已知tan∠ABC=,根据轴对称的性质,可得∠DEA=∠A,就可以求出tan∠DEA的值.解答:解:根据题意:直角三角形纸片的两直角边AC与BC之比为3:4,即tan∠ABC==;根据轴对称的性质,∠CBD=a,则由折叠可知∠CBD=∠EBD=∠EDB=a,∠ABC=2a,由外角定理可知∠AED=2a=∠ABC,∴tan∠DEA=tan∠ABC=.故选A.点评:已知折叠问题就是已知图形的全等,并且三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.二、填空题(每小题4分,满分32分)9.(4分)(2013•某某模拟)分解因式:4ax2﹣a= a(2x+1)(2x﹣1).考提公因式法与公式法的综合运用.点:分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解即可求得答案.解答:解:4ax2﹣a=a(4x2﹣1)=a(2x+1)(2x﹣1).故答案为:a(2x+1)(2x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.10.(4分)(2013•某某模拟)若分式的值为0,则x的值为 2 .考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,x2+4≠0,解可得答案.解答:解:由题意得:x﹣2=0,x2+4≠0,解得:x=2,故答案为:2.点评:此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.11.(4分)(2011•某某)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是 6 .考点:关于x轴、y轴对称的点的坐标.专题:应用题.分根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出析:ab.解答:解:∵点A(2,a)关于x轴的对称点是B(b,﹣3),∴a=3,b=2,∴ab=6.故答案为6.点评:本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.12.(4分)(2013•某某模拟)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a 的取值X围是a≥﹣1 .考点:根的判别式;一元一次方程的定义;一元二次方程的定义.专题:压轴题.分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值X围即可.解答:解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.点评:此题考查了根的判别式,注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若有实数根则应有△≥0.13.(4分)(2013•某某模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.14.(4分)(2013•某某模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是60 度.考点:全等三角形的判定与性质;等边三角形的性质.专题:几何图形问题.分析:根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.解答:解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为60.点评:本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.15.(4分)(2013•某某模拟)已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是4π.考点:圆锥的计算.分析:首先求得底面周长,然后利用扇形的面积公式S=lr,即可求解.解答:解:圆锥的底面周长是:2π×1=2π,则圆锥侧面展开图的面积是:×2π×4=4π.故答案是:4π.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.(4分)(2013•某某模拟)用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x 的代数式表示y,得到.考点:规律型:图形的变化类.专题:压轴题.分析:图1中,一排有x 个边长为4cm平行四边形,图2中,每一排有y个边长为4cm平行四边形,横排线段有三排,斜线段有(y+1)段,根据图1,图2火柴根数相等,列方程求解.解答:解:依题意,由图1可知:一个平行四边形有4条边,两个平行四边形有4+3条边,∴m=1+3x,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=2+5y,得1+3x=3y+2(y+1),整理,得y=x﹣,故答案为:y=x ﹣.点评:本题是一道找规律的题目,这类题型在中考中经常出现.关键是根据图1,图2中,火柴根数相等列出方程.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2013•某某模拟)先化简:,然后再取一个你喜爱的x的值代入求值.考点:分式的化简求值.分析:首先把每个分式的分子,分母分解因式,然后计算分式的乘法,最后进行减法运算即可化简,最后代入适当的x的值计算即可求解.解答:解:原式=•﹣=﹣=﹣,当x=1时,原式=﹣=2.点评:注意:取喜爱的数代入求值时,要特注意原式及化简过程中的每一步都有意义.如果取x=0,则原式没有意义,因此,尽管0是大家的所喜爱的数,但在本题中却是不允许的.18.(8分)(2013•某某模拟)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.考点:全等三角形的判定.专题:探究型.分析:由平行的性质可证∠C=∠F,又已知AC=DF,BC=EF,满足SAS,即可证结论.解答:解:△ABC与△DEF全等.证明:∵AC∥DF,∴∠C=∠F.在△ABC与△DEF中,∴△ABC≌△DEF(SAS).点评:本题重点考查了三角形全等的判定定理,是一道较为简单的题目.19.(10分)(2013•某某模拟)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50 人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、(每小题10分,共20分)20.(10分)(2013•某某模拟)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?若不公平,请你设计一个公平的规则.考点:游戏公平性.分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:(1)列表法:AB1 2 341,4 2,4 3,451,5 2,5 3,56 1,6 2,6 3,67 1,7 2,7 3,7树形图法故小明胜的概率为,小飞胜的概率为.(2)∵,∴不公平,小明胜的机会大;规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可.)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2013•某某模拟)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC 并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)考点:扇形面积的计算;勾股定理;圆周角定理.专题:几何综合题;压轴题.分析:(1)连接CB,AB,CE,由点C为劣弧AB上的中点,可得出CB=CA,再根据CD=CA,得△ABD为直角三角形,可得出∠A BE为直角,根据90度的圆周角所对的弦为直径,从而证出AE是⊙O的直径;(2)由(1)得△ACE为直角三角形,根据勾股定理得出CE的长,阴影部分的面积等于半圆面积减去三角形ACE的面积.解答:(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.点评:本题考查了扇形面积的计算、勾股定理以及圆周角定理,是基础知识要熟练掌握.五、(本题10分)22.(10分)(2013•某某模拟)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D 处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:先根据斜坡的坡度是i=1:2.5,EF=2,求出FD的长,再根据CE=13,CE=GF,求出GD 的长,在Rt△DBG和Rt△DAN中,根据∠GDB=45°和∠NAD=60°,分别求出BG=GD和ND的长,从而得出A N=ND•tan60°,最后再根据AM=AN﹣MN=AN﹣BG,即可得出答案.解答:解:∵斜坡的坡度是i==,EF=2,∴FD=2.5EF=2.5×2=5,∵CE=13,CE=GF,∴GD=GF+FD=CE+FD=13+5=18,在Rt△DBG中,∠GDB=45°,∴BG=GD=18,在Rt△DAN 中,∠NAD=60°,∴ND=NG+GD=CH+GD=2+18=20,AN=ND•tan60°=20×=20,∴AM=AN﹣MN=AN﹣BG=20﹣18≈17(米).答:铁塔高AC约17米.点评:此题考查了解直角三角形的应用,要掌握坡度、仰角、俯角的定义,关键是能借助仰角和俯角构造直角三角形,并解直角三角形.六、(本题12分)23.(12分)(2013•某某模拟)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x 之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为960 km;图中点C的实际意义为:当慢车行驶6h时,快车到达乙地;慢车的速度为80km/h ,快车的速度为160km/h ;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值X围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.考点:一次函数的应用.分析:(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km 两种情况列出方程求解即可.解答:解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得,所以,线段BC所表示的y与x之间的函数关系式为y=240x﹣960,自变量x的取值X 围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a﹣160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a﹣(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.点评:本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.七、(本题12分)24.(12分)(2013•某某模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.专题:压轴题.分析:(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC 的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG 全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.解答:(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC是等边三角形.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.八、(本题14分)25.(14分)(2013•某某模拟)如图,抛物线y=﹣x2﹣x+交x轴于A、B两点,交y轴于C点,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得四边形AEBC,求点E的坐标,并判四边形AEBC 的形状,并说明理由;(3)在直线BC上是否存在一点P,使得△PAD周长最小?若存在,请求出点P的坐标;若不存在请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)分别令x=0以及y=0求出A、B、C三点的坐标.(2)依题意得出BC∥AE,又已知A、B、C的坐标易求出点E的坐标,又因为四边形AEBC是平行四边形且∠ACB=90°可得四边形AEBC是矩形.(3)作点A关于BC的对称点A′,连接A′D与直线BC交于点P.则可得点P是使△PAD周长最小的点,然后求出直线A′D,直线BC的函数解析式联立方程求出点P 的坐标.解答:解:(1)y=﹣x2﹣x+,令x=0,得y=,令y=0,即﹣x2﹣x+=0,即x2+2x﹣3=0,∴x1=1,x2=﹣3∴A,B,C三点的坐标分别为A(﹣3,0),B(1,0),C(0,);(2)如图1,过点E作EF⊥AB于F,∵C(0,),∴EF=,∵B(1,0),∴AF=1,∴OF=OA﹣AF=3﹣1=2,∴E(﹣2,﹣),四边形AEBC是矩形.理由:四边形AEBC是平行四边形,且∠ACB=90°,(3)存在.D(﹣1,)如图2,作出点A关于BC的对称点A′,连接A′D与直线BC交于点P.则点P是使△PAD周长最小的点.∵AO=3,∴FO=3,CO=,∴A′F=2,∴求得A′(3,2)过A′、D的直线y=x+,过B、C的直线y=﹣x+,将两函数解析式联立得出:,解得:,故两直线的交点P(﹣,).点评:本题综合考查了二次函数的有关知识以及利用待定系数法求出函数解析式以及利用轴对称求线段最小值,利用轴对称得出P点位置是解题关键.。

2013年沈阳数学中考试题

2013年沈阳数学中考试题

沈阳市2013年中等学校招生统一考试数学试题*试卷满分150分,考试时间120分钟一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个是正确的) 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +4.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .325.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2x b +A .41B .21C .43D .18为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文c按上述规定,将明文“maths ”译成密文后是( ) A .wkdrc B .wkhtc C .eqdjc D .eqhjc 二、填空题(本大题共8小题,每小题4分,共32分)9.2013年第十二届全运会将于2013年8月31日在辽宁举行,作为开幕式的主体育场沈阳奥体中心的建筑面积为140000平方米,将140000用科学记数法表示为_______. 10.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .11.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,这些数据的中位数为 吨.12.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 13一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留π) 14如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .15.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).16已知二次函数c bx ax y ++=2的图象如图12所示,以下关于a ,b ,c 的不等式中正确的序号是 。

2013年中考数学试题按章节考点分类:第34章概率初步

2013年中考数学试题按章节考点分类:第34章概率初步

(最新最全)2013年全国各地中考数学解析汇编(按章节考点整理)三十四章概率初步34.1随机事件与概率(2013山东省聊城,3,3分)“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件解析:抛一枚均匀硬币,落地后有可能正面朝上、也有可能反面朝上.答案:B点评:必然事件与不可能事件属于确定事件,事先可以确定是否发生;而随机事件事先无法预料能否发生.(2013四川省资阳市,2,3分)下列事件为必然事件的是A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【解析】必然事件是指一定会发生的事件,A是随机事件,B是随机事件,C是随机事件,D是必然事件.【答案】D【点评】本题考查了必然事件和随机事件的概念.要注意必然事件和随机事件属于可能事件,还有一类是不可能事件.难度较小.(2013江苏泰州市,5,3分)有两个事件,事件A:367人中至少有两人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件【解析】必然事件是一定会发生的事件,A是必然事件,事件B是随机事件【答案】D【点评】本题考查了必然事件和随机事件的概念.要注意必然事件和随机事件属于可能事件,还有一类是不可能事件.(2013年四川省德阳市,第8题、3分.)下列事件中,属于确定事件的个数是⑴打开电视,正在播广告;⑵投掷一枚普通的骰子,掷得的点数小于10;⑶射击运动员射击一次,命中10环;⑷在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【解析】(1)和(3)都是不确定事件;(2)是一定会发生的,(4)是一定不会发生的;所以(2)和(4)是确定事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年沈阳中考数学试卷考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a--. 对称轴是直线2b x a=-,注意事项21.答题前,考生须用0. 5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效; 3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分) 1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为( ) A .81.9610⨯ B .819.610⨯ C .101.9610⨯ D .1019.610⨯2.右图是一个几何体的三视图,这个几何体的名称是( )A .圆柱体B .三棱锥C .球体D .圆锥体3.下面计算一定正确的是( )A .3362b a b +=B .222(3)9pq p q -=-C .3585315y y y ⋅= D .933b b b ÷=4.如果1m =,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m << 5.下列事件中,是不可能事件的是( )A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环.C .明天会下雨D .度量三角形的内角和,结果是360°6. 计算2311x x +-- 的结果是( ) A .11x - B .11x - C .51x - D .51x-7、在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )8.如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,AD=4,BC=8,BD:DC=5:3,则DE 的长等于( )A .203 B .154 C .163 D .174二、填空题(每小题4分,共32分) 9.分解因式: 2363a a ++= _________.10.一组数据2,4,x ,-1的平均数为3,则x 的值是 =_________.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________.12.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a 的取值方位是 _________.13.如果x=1时,代数式2234ax bx ++的值是5,那么x= -1时,代数式2234ax bx ++的值 _________.14.如图,点A 、B 、C 、D 都在⊙O 上,ABC ∠=90°,AD=3,CD=2,则⊙O 的直径的长是_________. 15.有一组等式:222221233,23++=++=…… 请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________ 三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:216sin3022-⎛⎫-︒++ ⎪⎝⎭(-2)18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价, 图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。

请你根据以上统计图提供的信息,回答下列问题; (1) 本次调查的人数为___________人;(2) 图①中,a=_________,C 等级所占的圆心角的度数为__________度; (3) 请直接在答题卡中不全条形统计图。

19.如图,ABC ∆中,AB=BC ,BE⊥AC 于点E ,AD⊥BC 于点D ,45BAD ∠=︒,AD 与BE 交于点F ,连接CE , (1)求证:BF=2AE(2)若CD =AD 的长。

四、(每小题10分,共20分)20.在一个不透明的盒子中放有三张卡片,每张卡片上写有意个实数,分别为36。

(卡片除了实数不同外,其余均相同) (1)从盒子中随机抽取一张卡片,请直接..写出卡片上的实数是3的概率; (2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率。

21.身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上,在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物前点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上),经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 据地面的高度AB=1.4米,风筝线与水平线夹角为37°。

(1)求风筝据地面的告诉GF ;(2)在建筑物后面有长5米的梯子MN,梯脚M在距离3米处固定摆放,通过计算说明;若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37○≈0.60, cos37○≈0.80,tan37○≈0.75)五、(本趣1O分)∠,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切22.如图,OC平分MON于点B,连接BA并延长交⊙A于点D,交ON于点E。

(1)求证:ON是⊙A的切线;∠=60°,求图中阴影部分的面积。

(结果保留π)(2)若MON六、(本题12分)23.某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口,某日,从早上8点开始到上午11点,每个普通售票窗口售y(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人出的车票数1y(张)与售票时间x(小时)的函数关系满足图②中的图象。

售票窗口售出的车票数2(1) 图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为________,其中自变量x 的取值范围是_________。

(2) 若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3) 上午10点时,每天普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式。

七、(本题l2分)24.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形” 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等,理解:如图①,在ABC ∆中,CD 是AB 边上的中线,那么ACD ∆和BCD ∆是“友好三角形”,并且=S ACD BCD S ∆∆。

应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O ,(1) 求证: AOB ∆和AOE ∆是“友好三角形”;(2) 连接OD ,若AOE ∆和DOE ∆是“友好三角形”,求四边形CDOF 的面积,探究:在ABC ∆中,30A ∠=︒,AB=4,点D 在线段AB 上,连接CD ,ACD ∆和BCD ∆是“友好三角形”,将ACD ∆沿CD 所在直线翻折,得到'ACD ∆与ABC ∆重合部分的面积等于ABC ∆面积的14,请直接..写出ABC ∆的面积。

八、(本题14分)25.如图,在平面直角坐标系中,抛物线2y bx c =++经过点A (32,0)和点B (1,,与x 轴的另一个交点为C ,(1)求抛物线的表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且BDA DAC ∠=∠,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当13BMF MFO ∠=∠,请直接..写出线段BM 的长辽宁省沈阳市2013年中考数学试卷参考答案一、选择题1~8 CACBD BCB二、填空题9.3(a+1)2.10.7.11.(3,﹣2).12.a>或a <0.13.3.14..15.82+92+722=732.16.1,7.三、解答题17. 解:原式=﹣6×+1+2﹣2=2 18.解:(1)20÷10%=200人;(2)C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:(1)200;(2)35,126.(3)补全统计图如图所示.1(1)证明:∵AD⊥BC,∠BAD=45°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AF,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.2 0解:(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.∴从盒子中随机抽取一张卡片,卡片上的实数是3的概率是:;(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次好抽取的卡片上的实数之差为有理数的概率为:=.2 1.解:(1)过A作AP⊥GF于点P.则AP=BF=12,AB=PF=1.4,∠GAP=37°,在直角△PAG中,tan∠PAG=,∴GP=AP•tan37°≈12×0.75=9(米),∴GF=9+1.4≈10.4(米);(2)由题意可知MN=5,MF=3,∴在直角△MNF中,NF==4,∵10.4﹣5﹣1.65=3.75<4,∴能触到挂在树上的风筝.2 2.(1)证明:过点A作AF⊥ON于点F,∵⊙A与OM相切与点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;(2)解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE=,∴AF=AF•tan60°=2,∴S阴影=S△AEF﹣S扇形ADF=AF•EF﹣×π×AF2=2﹣π.则函数解析式为:y=60x2(0≤x≤);(2)设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数,∴x=15,即至少需要开放15个普通售票窗口;(3)设普通售票的函数解析式为y=kx,把点(1,80)代入得:k=80,则y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由(1)得,当x=时,y=135,∴图②中的一次函数过点(,135),(2,160),设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,则一次函数的解析式为y=50x+60.2 4.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE.∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′DCB是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.2解:(1)将A(,0)、B(1,)代入抛物线解析式y=x2+bx+c,得:5.,解得:.∴y=x2x+.(2)当∠BDA=∠DAC时,BD∥x轴.∵B(1,),当y=时,=x2x+,解得:x=1或x=4,∴D(4,).(3)①四边形OAEB是平行四边形.理由如下:抛物线的对称轴是x=,∴BE=﹣1=.∵A(,0),∴OA=BE=.又∵BE∥OA,∴四边形OAEB是平行四边形.②∵O(0,0),B(1,),F为OB的中点,∴F(,).过点F作FN⊥直线BD于点N,则FN=﹣=,BN=1﹣=.在Rt△BNF中,由勾股定理得:BF==.∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF.(I)当点M位于点B右侧时.在直线BD上点B左侧取一点G,使BG=BF=,连接FG,则GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.∵BG=BF,∴∠BGF=∠BFG.又∵∠FBM=∠BGF+∠BFG=2∠BMF,∴∠BFG=∠BMF,又∵∠MGF=∠MGF,∴△GFB∽△GMF,∴,即,∴BM=;(II)当点M位于点B左侧时.设BD与y轴交于点K,连接FK,则FK为Rt△KOB斜边上的中线,∴KF=OB=FB=,∴∠FKB=∠FBM=2∠BMF,又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK,∴MK=KF=,∴BM=MK+BK=+1=.综上所述,线段BM的长为或.。

相关文档
最新文档