固体物理经典复习题及标准答案
固体物理习题与及解答
固体物理习题与及解答固体物理习题与及解答⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl>晶⾯族的晶⾯间距为/a该(hkl>晶⾯族的倒格⼦⽮量hkl G ρ为 k al j a k i a h ρρρπππ222++ 。
2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。
4. 体⼼⽴⽅[]{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。
5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为(hkl> ,与正格⼦晶⾯[hkl] 。
6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。
7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费M 波⽮为 3/123???? ??=V N k F π。
8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23 ,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为F B T T Nk /22π,⽐经典值⼩了约两个数量级。
9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。
10. 对晶格常数为a的简单⽴⽅晶体,与正格⽮R=a i+2a j+2a k正交的倒格⼦晶⾯族的⾯指数为 (122> , 其⾯间距为.11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数<⽐热)不连续。
12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进⼀步划分为 230 个空间群。
13.等径圆球的最密堆积⽅式有六⽅密堆74%。
14. ⾯⼼⽴⽅⾯⼼⽴⽅⼩;原⼦形状因⼦反映⼀个原⼦对于衍射能⼒⼤⼩。
固体物理复习题答案完整版
一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理试题1答案
固体物理试题1——参考答案一、填空题(每小题2分,共12分)1、体心立方晶格的倒格子是面心立方点阵,面心立方晶格的倒格子是体心立方点阵。
2、晶体宏观对称操作的基本元素分别是 1、2、3、4、6、i、m(2)、4等八种。
3、N 对钠离子与氯离子组成的离子晶体中,独立格波波矢数为 N ,声学波有 3 支,光学波有 3 支,总模式数为 6N 。
4、晶体的结合类型有金属结合、共价结合、离子结合、范德瓦耳斯结合、氢键结合及混合键结合。
5、共价结合的主要特点为方向性与饱和性。
6、晶格常数为a的一维晶体电子势能V(x)的傅立叶展开式前几项(单位为eV)为:,在近自由电子近似下, 第二个禁带的宽度为 2(eV)。
二、单项选择题(每小题 2分,共 12 分)1、晶格常数为a的NaCl晶体的原胞体积等于( D ).A、B、C、 D、.2、金刚石晶体的配位数是( D )。
A、12B、8C、6D、4.3、一个立方体的点对称操作共有( C )。
A、 230个B、320个C、48个D、 32个.4、对于一维单原子链晶格振动的频带宽度,若最近邻原子之间的力常数β增大为4β,则晶格振动的频带宽度变为原来的( A )。
A、 2倍B、4倍C、 16倍D、 1倍.5、晶格振动的能量量子称为( C )。
A、极化子B、激子C、声子D、光子.6、三维自由电子的能态密度,与能量E的关系是正比于( C )A、12EB、0E C、2/1E D、E.三、问答题(每小题4分,共16分)1、与晶列垂直的倒格面的面指数是什么?解答正格子与倒格子互为倒格子。
正格子晶面与倒格矢垂直,则倒格晶面与正格矢正交。
即晶列与倒格面垂直。
2、晶体的结合能、晶体的内能、原子间的相互作用势能有何区别?解答 自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能。
原子的动能与原子间的相互作用势能之和为晶体的内能。
在0K 时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多。
大学固体物理试题及答案
·考试时间120 分钟试题Array班级学号姓名一、简答题(共65分)1.名词解释:基元,空间点阵,复式格子,密堆积,负电性。
(10分)2.氯化钠与金刚石是复式格子还是单式格子,各自的基元中包含多少原子?分别是什么原子?(6分)3.在固体物理中为什么要引入“倒空间”的概念?(5分)4.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?(5分)5.共价键的定义和特点是什么?(4分)6.声子有哪些性质?(7分)7.钛酸锶是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?(5分)8.晶格振动的Einsten模型在高温和低温下都与实验定律符合吗?为什么?(5分)9.试画出自由电子和近自由电子的D~En关系图,并解释二者产生区别的原因。
(8分)10.费米能级E f的物理意义是什么?在绝缘体中费米能级处在导带、禁带、价带的哪个中?两块晶体的费米能级本来不同,E f1≠E f2,当两块晶体紧密接触后,费米能级如何变化?(10分)二、计算题(共35分)1.铜靶发射λ=0.154nm的X射线入射铝单晶(面心立方结构),如铝(111)面一级布拉格反射角θº,试据此计算铝(111)面族的面间距d与铝的晶格常数a。
(10分)2.图示为二维正三角形晶格,相邻原子间距为a。
只计入最近邻相互作用,使用紧束缚近似计算其s能带E(k)、带中电子的速度v(k)以及能带极值附近的有效质量m*。
(15分)提示:使用尤拉公式化简3.用Debye模型计算一维单式晶格的热容。
(10分)参考答案一、简答题(共65分)1. (10分)答:基元:组成晶体的最小结构单元。
空间点阵:为了概括晶体结构的周期性,不考虑基元的具体细节,用几何点把基元抽象成为一点,则晶体抽象成为空间点阵。
复式格子:晶体由几种原子组成,但各种原子在晶体中的排列方式都是相同的(均为B格子的排列),可以说每一种原子都形成一套布拉菲子格子,整个晶体可以看成是若干排列完全相同的子格子套构而成。
固体物理参考答案(修正版)
固体物理试题及参考答案注意:本答案仅供参考作答,名词解释部分有个别题不是很精确,如有自己的想法请自己把握,作图题由于不专业只能表示大概意思,但应该不会有错,一、名词解释1布里渊区:布里渊区是空间中由倒格矢的中垂面所围成的区域,按序号由倒空间的原点逐步向外扩展,可分为第一布里渊区、第二布里渊区、第三布里渊区等等。
2倒格子:晶格经傅里叶变换所得到的几何格子,其倒格子基矢定义:3声子:格波的能量量子,声子的能量为ħω,准动量为4声学波和光学波:声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格波,描述的是晶体中原胞的整体运动;描述的是晶体中原胞内原子之间的相对运动。
5能带:由于原子之间的相互作用,当若干个原子相互靠近时,由于彼此之间的力的作用,原子原有能级发生分裂,由一条变成多条,形成的众多能级间的间隔很小,故可近似看成连续的,即称之为能带。
6布洛赫函数:当势场具有晶格周期性时,对于含有晶格周期势的薛定谔方程,其解必定具有形式,则晶体中的波函数具有调幅的平面波形式,称其波函数为布洛赫函数。
7电负性:电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合能之和表示。
8布拉伐格子:晶体结构中全同原子构成的晶格称为布拉伐格子。
9等效晶面:简单立方晶格中晶面的密勒指数和晶面法线的晶向指数完全相同的面。
10赝势:在离子实内部,用假想的势能取代真实的势能,求解波动方程时,如不改变其能量本征值及离子实之间的区域的波函数,这个假想的势叫做赝势。
二、证明题11证明:体心立方晶格的倒格子是面心立方。
12、证明倒格子原胞的体积为,其中为正格子原胞的体积。
三、作图题13、在面心立方和体心立方的晶胞图上分别画出其原胞。
答:图如下:14、请在下图中标明[110]、[010]、(100)、(111)晶向和晶面。
答:【注意:由于此图没有相应的作图软件,不能画得和老师一样的立体效果,请同学们对照作图】四、简答题15、通过原子电负性的定义及周期分布,说明离子晶体形成的特征。
固体物理简答题及答案
固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
XXX耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。
2.什么叫简正振动形式?简正振动数量、格波数量或格波振动形式数量是不是是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.3.长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.4.长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.5.何谓极化声子?何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,称长光学纵波声子为极化声子.由本教科书的(3.103)式可知,长光学横波与电磁场相耦合,使得它具有电磁性质,人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。
固体物理总复习资料及答案
固体物理总复习资料及答案固体物理总复习题⼀、填空题1.原胞是的晶格重复单元。
对于布拉伐格⼦,原胞只包含个原⼦。
2.在三维晶格中,对⼀定的波⽮q ,有⽀声学波,⽀光学波。
3.电⼦在三维周期性晶格中波函数⽅程的解具有形式,式中在晶格平移下保持不变。
4.如果⼀些能量区域中,波动⽅程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表⽰有、、三种图式。
5.按结构划分,晶体可分为⼤晶系,共布喇菲格⼦。
6.由完全相同的⼀种原⼦构成的格⼦,格⼦中只有⼀个原⼦,称为格⼦,由若⼲个布喇菲格⼦相套⽽成的格⼦,叫做格⼦。
其原胞中有以上的原⼦。
7.电⼦占据了⼀个能带中的所有的状态,称该能带为;没有任何电⼦占据的能带,称为;导带以下的第⼀满带,或者最上⾯的⼀个满带称为;最下⾯的⼀个空带称为 ;两个能带之间,不允许存在的能级宽度,称为。
8.基本对称操作包括 , ,三种操作。
9.包含⼀个n重转轴和n 个垂直的⼆重轴的点群叫。
10.在晶体中,各原⼦都围绕其平衡位置做简谐振动,具有相同的位相和频率,是⼀种最简单的振动称为。
11.具有晶格周期性势场中的电⼦,其波动⽅程为。
12.在⾃由电⼦近似的模型中,随位置变化⼩,当作来处理。
13.晶体中的电⼦基本上围绕原⼦核运动,主要受到该原⼦场的作⽤,其他原⼦场的作⽤可当作处理。
这是晶体中描述电⼦状态的模型。
14.固体可分为 , ,。
15.典型的晶格结构具有简⽴⽅结构, , , 四种结构。
16.在⾃由电⼦模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。
17.在紧束缚近似中,由于微扰的作⽤,可以⽤原⼦轨道的线性组合来描述电⼦共有化运动的轨道称为,表达式为。
18.爱因斯坦模型建⽴的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的⾊散关系。
19.固体物理学原胞原⼦都在,⽽结晶学原胞原⼦可以在顶点也可以在即存在于。
20.晶体的五种典型的结合形式是、、、、。
2022固体物理复习题及答案
2022固体物理复习题及答案固体物理卷(A)第一部分:名词解释(每小题5分,共40分)1.原胞:在完整晶体中,晶格在空间的三个方向上都具有一定的周期对称性,这样可以取一个以结点为顶点,边长等于这三个方向上的周期的平行六面体作为最小的重复单元,来概括晶格的特征,这样的重复单元称为初基原胞或简称原胞。
2.晶面指数:一个晶面得取向可以由这个晶面上的任意三个不共线的点确定,如果这三个点处在不同的晶轴上,则通过有晶格常量a1,a2,a3表示这些点的坐标就能标定它们所决定的晶面,它们具有相同比率的最小整数称为晶面指数3.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。
在这种类似镜子的镜面反射中,其反射角等于入射角。
当来自平行原子平面的反射发生相长干涉时,就得出衍射束。
考虑间距为d的平行晶面,入射辐射线位于纸面平面内。
相邻平行晶面反射的射线行程差是2din某,式中从镜面开始量度。
当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。
这就是布拉格定律。
布拉格定律用公式表达为:2din某=n某λ(d为平行原子平面的间距,λ为入射波波长,某为入射光与晶面之夹角),布拉格定律的成立条件是波长小于等于2d。
布拉格定律是晶格周期性的直接结果。
4.简述三维空间的晶系种类及其所包括的晶格类型三斜1,单斜2,正交4,四角2,立方3,三角1,六角1。
5.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。
固体的能带理论中,各种电子态按照它们波矢的分类。
在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;各布里渊区体积相等,都等于倒易点阵的元胞体积。
周期结构中的一切波在布里渊区界面上产生布喇格反射,对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。
《固体物理学》基础知识训练题及其参考标准答案
《固体物理学》基础知识训练题及其参考标准答案《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
固体物理习题及解答
一、填空题1. 晶格常数为a 的立方晶系 (hkl>晶面族的晶面间距为;222/l k h a ++该(hkl>晶面族的倒格子矢量为 。
hkl G k al j a k i a hπππ222++2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。
4. 体心立方<bcc )晶格的结构因子为,[]{})(exp 1l k h i f S hkl ++-+=π 其衍射消光条件是。
奇数=++l k h 5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为 (hkl> , 与正格子晶面<hkl )垂直的倒格子晶列的晶列指数为 [hkl] 。
6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为,电子波矢的允许值为 的整数倍。
a /2πNa /2π7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为,费M 波矢为()V/23π 。
3/123⎪⎪⎭⎫⎝⎛=V N k F π8. 按经典统计理论,N 个自由电子系统的比热应为,而根据量子统计得到的金属三维电子气的比热为 B Nk 23,比经典值小了约两个数量级。
F B T T Nk /22π9.在晶体的周期性势场中,电子能带在 布里渊区边界 将出现带隙,这是因为电子行波在该处受到 布拉格反射 变成驻波而导致的结果。
10. 对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为 (122> , 其面间距为.11. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数<比热) 不连续。
12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。
固体物理学备考(课后计算题及答案)
14 应物 1 班---《固体物理学》资料整备 9
14 应物 1 班---《固体物理学》资料整备 10
14 应物 1 班---《固体物理学》资料整备
第三章
11
14 应物 1 班---《固体物理学》资料整备 12
14 应物 1 班---《固体物理学》资料整备 13
14 应物 1 班---《固体物理学》资料整备 14
14 应物 1 班---《固体物理学》资料整备 15
14 应物 1 班---《固体物理学》资料整备
第四章
16
14 应物 1 班---《固体物理学》资料整备
第五章
17
14 应物 1 班---《固体物理学》资料整备 18
14 应物 1 班---《固体物理学》资料整备 19
14 应物 1 班---《固体物理学》资料整备 20
《固体物理学》资料整备
第一章
1
《固体物理学》资料整备 2
《固体物理学》资料整备 3
《固体物理学》资料整备 4
《固体物理学》资料整备5
14 应物 1 班---《固体物理学》资料整备 6
14 应物 1 班---《固体物理学》资料整备 7
14 应物 1 班---《固体物理学》资料整备
第二章
8
14 应物 1 班---《固体物பைடு நூலகம்学》资料整备 21
14 应物 1 班---《固体物理学》资料整备 22
固体物理期末复习题目及答案
第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以43a R =3334423330.68843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以42a R =3334442330.74642n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.341683n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
固体物理学答案详细版
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
固体物理经典复习题及答案
则此轴称为 3 度旋转-反演轴。
22.n 度螺旋轴
答:一个 n 度螺旋轴表示绕轴每转 2
角度后,在沿该轴的方向平移 T
n的
n
3 / 118
………………………………………………最新资料推荐………………………………………
点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空 间点阵(布喇菲点阵),即平移矢量 h1d、h2d、h3d 中 n1,n2,n3 取整数时 所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量, 以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原 胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体 物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,
答:若晶体绕某一固定轴转 2 角度后自身重合,则此轴称为 n 度旋转对称 n
轴。 18.4 度旋转对称轴 答:若晶体绕某一固定轴转 900 角度后自身重合,则此轴称为 4 度旋转对称
轴。
19.6 度旋转对称轴 答:若晶体绕某一固定轴转 600 角度后自身重合,则此轴称为 6 度旋转对称
固体物理复习习题及答案
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn mE F=和3/222)3(10353πn m E E o F ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理经典复习题及答案————————————————————————————————作者:————————————————————————————————日期:21一、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间无限重复排列而构成的。
2.晶体的解理性答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。
3.配位数答: 晶体中和某一粒子最近邻的原子数。
4.致密度答:晶胞内原子所占的体积和晶胞体积之比。
5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。
空间点阵是晶体结构周期性的数学抽象。
6.基元答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体可以看成是基元的周期性重复排列而构成。
7.格点(结点)答: 空间点阵中的点子代表着结构中相同的位置,称为结点。
8.固体物理学原胞答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。
取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。
固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。
9.结晶学原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢2为边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。
10.布喇菲原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间划分成各个区域。
围绕原点的最小闭合区域为维格纳-赛兹原胞。
一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。
12. 简单晶格答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais 格子。
13.复式格子答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
显然,复式格子是由若干相同结构的子晶格相互位移套构而成。
14.晶面指数答:描写晶面方位的一组数称为晶面指数。
设基矢123,,a a a r u u r u u r,末端分别落在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。
用结晶学原胞基矢坐标系表示的晶面指数称为密勒指数。
315.倒格子(倒易点阵)答:设布喇菲格子(点阵)的基矢为123,,a a a r u u r u u r ,由1220iji ja b i jπδ⎧=⎪⋅=⎨≠⎪⎩r u u r 决定的格子(点阵)称为正格子。
满足下述关系1220ij i ja b i j πδ⎧=⎪⋅=⎨≠⎪⎩ru u r的123、、b b b r u u r u u r 称为倒格子(易点阵)基矢。
由112233K h b h b h b =++u r r u u r u u r ,(其中为任意整数)决定的格子称为倒格子(倒易点阵)。
16.布里渊区答:在倒格空间中,选取一倒格点为原点,原点与其它倒格点连线的垂直平分面的连线所组成的区域称为布里渊区。
17.n 度旋转对称轴 答:若晶体绕某一固定轴转nπ2角度后自身重合,则此轴称为n 度旋转对称轴。
18.4度旋转对称轴答:若晶体绕某一固定轴转900角度后自身重合,则此轴称为4度旋转对称轴。
19.6度旋转对称轴答:若晶体绕某一固定轴转600角度后自身重合,则此轴称为6度旋转对称轴。
20.3度旋转-反演轴 答:若晶体绕某一固定轴转32π角度后,再经过中心反演,晶体能自身重合,则此轴称为3度旋转-反演轴。
21.2度旋转-反演轴答:若晶体绕某一固定轴转π角度后,再经过中心反演,晶体能自身重合,则此轴称为3度旋转-反演轴。
22.n 度螺旋轴答:一个n 度螺旋轴表示绕轴每转nπ2角度后,在沿该轴的方向平移n T ϖ4的L 倍,则晶体中的原子和相同的原子重合(L 为小于n 的整数T ϖ为沿u ϖ轴方向上的周期矢量),则此轴称为n 度螺旋轴。
23.晶体的对称性答:晶体经过某种对称操作能够自身重合的特性。
24.原子散射因子答:原子内所有电子的散射波的振幅的几何和与一个电子的散射波的振幅之比。
25.几何结构因子答:原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。
二、简答题(59道题)1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
答:晶态固体材料中的原子有规律的周期性排列,称为长程有序;非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序;准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?答:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构。
3.简述晶体的特征。
答:1)长程有序与周期性52)自限性 3)各向异性4.什么是空间点阵?它与晶体结构有什么不同?它能确定一个晶体结构的什么特性而忽略了晶体结构的什么特性?答:1) 晶体的内部结构可以概括为由一些相同的点子在空间有规律地做周期性无限分布,这些点子的总体称为空间点阵。
2) 晶体结构中的点是与原子、分子或其基团相对应的,空间点阵的点则是和晶体中一族晶面相对应的;晶体结构中的点是位于位置空间或坐标空间内的,其线度量纲为[长度],而空间点阵中的点是在倒格空间和傅里叶空间内的,其线度量纲为-1长度⎡⎤⎣⎦。
3) 空间点阵反映了晶体结构的周期性,忽略了晶体结构的具体内容。
5. 六角密积结构是复式格子还是简单格子,平均每个原胞包含几个原子,属于哪种晶系?答:六角密积结构是复式格子,平均每个原胞包含2个原子,属于六角晶系。
6. 试解释“基元+点阵=晶格结构”的公式{要求说明:1)什么是布喇菲点阵?2)什么是基元?3)点阵和结构间的区别和联系}。
答:理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成,这些物理单元称为基元,它可以是原子、分子或分子团,将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,这就是“基元+点阵=晶体结构”的含义,布喇菲点阵是一个抽象的几何点的周期列阵,而晶体结构则是一个物理实体,当基元以相同的方式放置在布喇菲点阵的阵点上时,才得到晶体结构。
7.在结晶学中, 晶胞是按晶体的什么特性选取的?答:在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。
68. 什么是布喇菲点阵?按顺序写出晶体Si 、Cu 、CsCL 、NaCL 和ZnS 的布喇菲原胞名称。
答:晶体的内部结构可以概括为是由一些相同的格点规则地做周期性无限重复排列,喇菲点阵是平移操作112233R n a n a n a =++r u u r u u r r所联系的诸点的列阵,喇菲点阵是晶体结构周期性的数学抽象。
Si :面心立方;Cu :面心立方;CsCL :体心立方;NaCL :面心立方;ZnS :面心立方。
9.如图所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?答:“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6 个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
10. 如图所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?7答:“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
竖直边心点的最邻近的点子处于相互平行、横放的两个平面上,而水平边心点的最邻近的点子处于相互平行、竖放的两个平面上,显然这两种点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
11. 如图所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?答: “边心+体心”立方不是布喇菲格子。
从“边心+ 体心”立方任一顶点来看,与它最邻近的点子有6 个;从8边心任一点来看,与它最邻近的点子有2 个;从体心点来看,与它最邻近的点子有12个。
显然这三种点所处的几何环境不同,因而也不是布喇菲格子,而是属于复式格子,此复式格子属于简立方布喇菲格子。
12. 如图所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?答:“面心四方”从“面心四方”任一顶点来看,与它最邻近的点子有4 个,次最邻近点子有 8 个;从“面心四方”任一面心点来看,与它最邻近的点子有 4 个,次最邻近点子有 8 个,并且在空间的排列位置与顶点的相同,即所有格点完全等价,因此“面心四方”格子是布喇菲格子,它属于体心四方布喇菲格子。
13. 基矢为1=u r r a ai , 2=u u r r a a j , ()3=2++u u r r r ra a i j k 的晶体为何种结构?为什么?答:有已知条件, 可计算出晶体的原胞的体积()31232Ω=⋅⨯=u r u u r u u r a a a a .由原胞的体积推断, 晶体结构为体心立方.我们可以构造新的矢量()31=2=--++r u u r u r r r r a u a a i j k ,()32=2=--+r u u r u u r r r ra v a a i j k ,()123=2=+-+-u r u r u u r u u r r r ra w a a a i j k .,,u v w 满足选作基矢的充分条件.可见基矢为 1=u r r a ai , 2=u u r r a a j , ()3=2++u u r r r r a a i j k 的晶体为体心立方结构。