《稍复杂的分数除法应用题》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稍复杂的分数除法应用题

教学目标:

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握

已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

师:同学们,我们数学来源于生活实践,也要服务于生活。学好了数学,就可以解决很多生活实践中的问题。

师:上节课我们已经学习了简单的“已知一个数的几分之几是多少,求这个数”的应用题,这节课我们继续来研究分数除法应用题。(板书课题:稍复杂的分数除法应用题)首先来进行几个练习。

一、复习

1、只列式不计算。

(1)甲数占乙数的

8

5,甲数是40,乙数是多少? (2)男生人数占女生人数的5

4,男生有120人,女生有多少人? (3)苹果树有60棵,苹果的棵数是梨树的32,梨树有多少棵? 过程要求:

● 逐一出示以上题目,学生独立思考,列出解答式子;

● 可以列方程解答,也可以列除法算式解答;

● 说一说这三题有什么相同之处;

学生回答,教师引导归纳问题结构:

一个数(单位“1”)×几

几 = 具体量 ↓ ↓ ↓

未知 已知 已知

● 说一说可以用什么方法解答,你是怎么算的。

师:从同学们的解题方法可以看出,有时同一道题有多种不同的方法解答,这就要求同学们有灵活的思维,学校、老师为了发展同学们的智力和其他各方面的能力,总是想尽办法创造条件鼓励同学们参加各种课外兴趣小组。你们看,这里就有两个小组的同学正在讨论问题。(出示第三张幻灯片)

2、出示例题的原型题条件:航模小组有20人,美术小组的人数比航模小组多4

1。 师:已知这两个条件,可以提出什么问题?(美术小组的人数比航模小组多几人?美术小组有多少人?)

● 引导学生分析题意,找出单位“1”的量,找准要求数量所对应的分率。

● 让学生试着画线段图,写出题中的等量关系。请学生板演算式。

二、新授

1、教学例2

(1)通过改变复习题的条件和问题而出示例题,理解题意。

(2)比航模组多4

1是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组多的人数占航模组的4

1 (2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有χ人。

χ+

4

1χ=25 (1+41)χ=25 χ=25÷

4

5 χ=20

2、指导学生用算术方法解答:

(1)师:这道题用算术方法如何解答呢?算术方法解答时关键是找准单位“1”和已知数量所对应的分率是多少。

(2)引导学生从线段图中找答案。

(3)学生独立列式解答。

3、即时练习:舞蹈小组有24人,舞蹈小组的人数比声乐小组少71,声乐小组有多少人? 学生独立解答。

三、讨论小结:

今天我们学习的稍复杂的分数除法应用题,可以用方程和算术方法来解答,那么,这两种方法各有什么相同点和不同点呢?同学分小组进行讨论。

师根据学生回答进行总结。

用方程解答的关键是:关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程。 用算术方法的关键是:找准单位“1”,找出已知量所对应的分率。用已知量除以它所对应的分率就可以得到单位“1”的量。

四、拓展练习

补充条件和问题,列式解答:

,今年比去年增产10

3, ? 教师提示:如果单位“1”的量已知,就可以直接用乘法进行计算;如果单位“1”的量未知,可以列方程或者用除法进行计算。

板书设计:

线段图

一个数(单位“1”)×几

几 = 具体量 等量关系

↓ ↓ ↓

未知 已知 已知 方程解 算术方法解

一个数(单位“1”)×(1±几

几 )= 具体量

相关文档
最新文档