八年级轴对称图形教案

合集下载

轴对称图形制作教案设计

轴对称图形制作教案设计

教案设计:轴对称图形制作
一、教学目标:
1.能够理解轴对称图形的概念和特点;
2.能够使用画板工具制作轴对称图形;
3.能够通过轴对称图形的制作,发展创造力和艺术能力。

二、教学重点:
1.轴对称图形的概念和作用;
2.画板工具的使用方法;
3.创造力和艺术能力的培养。

三、教学准备:
1.电子设备;
2.画板软件。

四、教学过程:
1.对轴对称图形的介绍:
轴对称图形是通过一条轴对称线将图形分成两个相互对称的部分。

轴对称图形具有平衡和稳定的美感,容易吸引人们的视线。

例如:植物的叶子、蝴蝶的翅膀、对称的建筑等。

2.使用画板工具制作轴对称图形:
(1) 在画板上选择一个图形,例如选择正方形。

(2) 在正方形上选取一条对称线,可以选择中心对称或者其他位置的对称线,如下图所示:
(3) 将选择好的对称线沿着这条线进行对称,就可以得到一个完美的轴对称图形了。

3.创造力和艺术能力的培养:
通过制作轴对称图形的实践过程中,学生们可以发挥自己的创造力,尝试不同的颜色和形状组合,创造出自己的独特作品。

同时,这也可以培养学生的艺术能力,提高他们对美的敏感度。

五、教学评价:
学生制作轴对称图形的过程中,可以通过老师的指导和同学之间的交流合作,提高他们对轴对称图形的理解和创作能力。

同时,由于制作轴对称图形的过程比较简单,所以可以适当加入一些挑战性的内容,让学生们有更多的机会去发挥自己的想象和创作能力。

最终,通过学生们的展示和评价,可以发现每个学生的作品都各具特色,展现了他们的创造力和艺术能力,这些也可以成为鼓励学生更好地发掘自己潜力的正面评价和激励。

八年级上册人教版轴对称说课稿

八年级上册人教版轴对称说课稿

八年级上册人教版轴对称说课稿八年级上册人教版轴对称说课稿(篇1)一、游戏引入,激发兴趣尊敬的各位评委,老师们下午好:看!我给大家带来了什么?我们都玩过纸飞机吧!今天让我们再来玩一次(飞出一架好的)!现在,谁想上来和我一起做飞行表演?来,起飞了!(谢谢)诶,为什么我的飞机飞得又平又稳,而他的却飞不起来呢?仔细观察两架飞机。

这,其中的奥秘,又在哪里呢?(出示另一张PPT),这就是我《轴对称图形》一课的导入。

(同时出示标题彩色打印)二、说教材对称,是一种最基本的图形变换,对于培养学生的空间想象能力非常重要。

之前,学生已经学过长方形、正方形、三角形等平面图形的特征,形成了一定的空间观念。

本节课,主要是帮助学生认识轴对称图形的特征。

为今后学习正方体、圆柱等空间立体图形特征打下基础。

根据新课标要求和三年级学生的认知规律。

我确定如下课程目标:三、课程目标1.知识技能:经历认识轴对称图形的过程,体会轴对称图形的特征。

2.数学思考:学生在参与观察、猜想、操作、验证等实践活动中,进一步建立了空间观念。

3.问题解决:学会从数学的角度,进一步感受轴对称图形在生活中的广泛应用。

4.情感态度:通过开展学生亲身经历,积极探索的实践过程,激发学生学数学、爱数学的情感。

四、教学过程为实现这些课程目标,我是这样组织教学过程的。

1.感知特征,步步深入由于纸飞机是学生身边比较熟悉的玩具,这样的导入一下激发了他们的兴趣,学生开始激烈地讨论起来。

细心的学生已经观察到,左面飞机的一边缺了一个角,右面飞机的左右两边却完全一样。

顺着学生的思路,我顺势推出,像这种两边形状完全相同的现象,称之为“对称”。

本环节设计,抓住了孩子们好动爱玩的年龄特点,让学生在玩中不知不觉地进入学习状态,初步感知到对称物体的特征。

接着,我由体到面,又依次出示了以下图形,(课件和实物同时展示,彩色打印剪纸)。

并让他们拿出课前发下去的图片,按照一定的规律进行分类。

很快,学生排出了这样的两类图形,并说这一行是对称的,而这一个则不是。

2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。

四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。

学生:三角尺、直尺、圆规。

六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
4.家长参与作业,有助于激发学生的学习兴趣,培养学生的观察力和实践能力。
希望同学们认真完成作业,通过实践和练习,不断提高自己的几何图形认识和运用能力。
(四)课堂练习,500字
1.教师布置课堂练习题,要求学生在规定时间内完成。
“下面,请同学们完成这几道练习题,巩固所学知识。遇到问题可以互相讨论,也可以请教老师。”
2.学生独立完成练习题,教师巡回辅导,解答学生疑问。
3.教师选取部分学生的练习题进行讲解,分析解题思路和方法。
“这道题目考查了我们对轴对称图形的性质的理解。我们可以通过找到对称轴,然后利用对称性质解决问题。”
“现在,请同学们分成小组,讨论一下轴对称图形的性质以及它们在实际生活中的应用。每个小组派一名代表分享讨论成果。”
2.学生在小组内展开讨论,教师巡回指导,解答学生疑问。
“同学们,你们发现轴对称图形有哪些性质?它们在生活中有哪些应用?”
3.各小组代表分享讨论成果,教师点评并总结。
“很好,各小组都取得了不错的成果。轴对称图形的性质包括:对称轴两侧的图形完全一致,对称轴上的点称为对称点等。它们在生活中的应用非常广泛,如剪纸、建筑、标志等。”
3.教师布置课后作业,提醒学生加强练习。
“课后,请同学们完成这几道练习题,巩固所学知识。下节课我们将进一步探讨轴对称图形的其他性质和应用。”
五、作业布置
为了巩固本节课所学的轴对称图形知识,培养学生的动手操作能力和应用能力,特布置以下作业:
1.完成课本第13.2节课后练习题,包括填空题、选择题和解答题,要求学生在规定时间内独立完成,注意解题过程的规范性和逻辑性。
人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
一、教学目标
(一)知识与技能

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

最新人教版八年级数学上册《第1课时作轴对称图形》优质教案

最新人教版八年级数学上册《第1课时作轴对称图形》优质教案

13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形 .难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l 就是AA ′的垂直平分线;(2)作出B 、C 关于直线l 的对称点B ′、C ′.(3)连接A ′B ′、B ′C ′、C ′A ′,即得△ABC 关于直线l 的对称图形△A ′B ′C ′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB 内一点P ,P1P2分别是P 关于OA 、OB 的对称点,P 1P 2=交OA 于M ,交OB 于N.若P 1P 2=8cm ,则△PMN 的周长是多少?解:∵P 1、P 关于OA 对称,P 2、P 关于OB 对称,∴OA 垂直平分P1P ,OB 垂直平分P 2P.∴MP 1=MP ,NP 2=NP.∴C △PMN=PM+MN+NP.=P 1M+MN+NP 2= P 1P 2==8cm.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1 轴对称图形的教案-沪科版八年级数学上册一、教学目标1.了解什么是轴对称图形。

2.能够判断一个图形是否具有轴对称性。

3.能够找到图形的对称轴。

4.能够根据对称轴绘制轴对称图形。

二、教学准备1.教师准备:–沪科版八年级数学上册课本。

–沪科版八年级数学上册教师用书。

–相应的课件和教学工具。

2.学生准备:–数学工具(尺子、直尺等)。

–笔记本和铅笔。

–沪科版八年级数学上册练习册。

三、教学过程导入新知1.让学生观察一些日常生活中的图形,让他们描述这些图形是否具有轴对称性。

引导学生思考什么是轴对称图形。

学习轴对称图形的定义1.教师给出轴对称图形的定义:“轴对称图形是指可以通过一个轴进行翻转,使图形重合的图形。

”2.教师通过示例和图示来解释和展示轴对称图形的特征。

判断图形是否具有轴对称性1.教师通过一些实例来让学生自己判断图形是否具有轴对称性。

2.教师提供一些简单的几何图形,让学生观察并试着找出图形的对称轴。

3.学生通过直观观察和推理来判断图形是否具有轴对称性,并找出对称轴。

绘制轴对称图形1.教师给出一个简单的图形,并指导学生根据对称轴绘制该图形的轴对称图形。

2.学生根据对称轴绘制图形的轴对称图形。

3.教师展示学生绘制的轴对称图形,并指导学生进行讨论和比较。

巩固练习1.学生进行练习册上相关的练习题,巩固所学知识。

拓展延伸1.提供更复杂的图形,让学生进行观察、判断和绘制轴对称图形。

四、教学总结通过本节课的学习,我们了解了轴对称图形的概念和特征,学会了判断图形是否具有轴对称性,并能够根据对称轴绘制轴对称图形。

五、课后作业1.完成课堂练习册上相关的练习题。

2.查找一些日常生活中的轴对称图形,并写下你的观察和思考。

注意:这是一个示例教案,教师根据具体情况可以适当调整教学内容和安排。

八年级数学上册 《轴对称》优秀教学设计

八年级数学上册 《轴对称》优秀教学设计

《轴对称》优秀教学设计【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。

(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。

(3)了解轴对称的性质。

2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。

3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。

【教学难点】轴对称的性质。

【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。

初中数学八年级上册《轴对称》教案(二十四)

初中数学八年级上册《轴对称》教案(二十四)

轴对称第一课时★新课标要求一、知识与技能1.在生活实例中认识轴对称图形.2.分析轴对称图形,理解轴对称的概念.3.了解两个图形成轴对称性的性质,了解轴对称图形的性质.二、过程与方法通过丰富的生活实例认识轴对称,能识别简单的轴对称图形及其对称轴.观察生活中的轴对称,探索轴对称现象的特征.三、情感、态度与价值观1.从观察、实验、操作等活动中激发学生的兴趣,增强他们对数学美感的体会.2.在与同学老师的讨论交流中,培养学生团结协作的精神.★教学重点轴对称图形的概念.★教学难点轴对称图形和关于某条直线对称的区别和联系.★教学方法教师搜集图片投影给学生,学生观察,阅读,总结交流.★教学过程一、引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.二、进行新课1.轴对称图形的有关概念.对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.教师活动:指导学生阅读下面一段内容.了解轴对称图形和对称轴的概念.像窗花一样,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.观察下图中的图片是否是轴对称图形,如果是,指出它们的对称轴.学生活动:阅读下面内容,找出图中的轴对称图形和它的对称轴.图中的每一对图形,如果沿着虚线折叠,左边的图形能与右边的图形重合.2.关于某条直线对称的有关概念.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

人教版(数学)八年级上册公开课轴对称图形优秀教学设计与反思

人教版(数学)八年级上册公开课轴对称图形优秀教学设计与反思

人教版(数学)八年级上册公开课轴对称图形优秀教学设计与反思教材分析1.要求学生会推断所给图形是否是轴对称图形,并要求学生能指出其对称轴〔只要求学生进行直观推断,想象出它们的对称轴,并能用折叠等方法进行验证即可,对于一些具有多条对称轴的轴对称图形,学生能指出一些即可,不必作求全的要求〕,本节内容的教学能拉近数学与生活的距离。

前后内容的本质是一致的,它们有着紧密联系。

2.学习本节内容,能让学生更进一步的理解数学与生活、数学与其它学科的关系,更加热爱数学。

学情分析1.在原有知识的根底上,学生能比拟简单的接受本节的知识。

2.学生在原有知识的根底上,通过观察、动手操作等理解掌握轴对称图形,并能通过折叠寻觅对称点,会对所给图形作出正确地推断。

观察——操作——归纳——推断。

3.对称轴和对称点的寻觅。

教学目标1.通过丰富的实物图认识轴对称图形,并能找出轴对称图形的对称轴。

2.了解轴对称图形,两个图形成轴对称这两个概念之间的联系和区别。

3.经历丰富村料的学习过程,开展对图形的观察、分析、推断、归纳等能力。

4.体验数学与生活的联系、开展审美观。

教学重点和难点教学重点:轴对称图形的有关概念。

教学难点:利用轴对称图形的有关概念对所给图形作出正确的推断。

教学过程教学过程教学反思在学生出现错误时,教师不是急着指出错误,而是给学生以足够的时间和时机去发觉错误、改正错误,宽容学生的错误,给学生自我纠错的时机,如上例中,当学生说出“平行四边形是轴对称图形〞时,教师没有急于转向,把学生的思维导入自己预设的通道,而是有意制造“矛盾〞,开展正反两方的论辩,在这个过程中教师及时引导、鼓舞,把论辩不断引向深刻,从而形成“一般的平行四边形不是轴对称图形,而特别的平行四边形〔长方形、正方形、菱形等〕则是轴对称图形〞的观点,学生的奇思妙想在教师的鼓舞下,通过师生互动、生生互动都取得了意想不到的效果,展现了生活学习的美。

在新课程理念的指导下,我们的课堂教学打破了传统教师主宰一切的局面,形成了可变的师生多向互动的关系,形成了放开的课堂教学。

八年级上册数学教案《作轴对称图形》

八年级上册数学教案《作轴对称图形》

八年级上册数学教案《作轴对称图形》学情分析轴对称是义务教育课程标准“几何与图形”的重要内容,是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容。

在小学阶段,学生已经认识了轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴,并能补全一个简单的轴对称图形,本课在小学的基础上深入探究轴对称的性质,依据轴对称的性质,画简单图形的对称轴。

教学目的1、能依据轴对称的性质,找出轴对称图形的对称轴。

2、掌握线段的垂直平分线尺规作图。

3、经历作图过程,体会作图的语言特点,体会转化思想。

教学重点用尺规作线段的垂直平分线。

教学难点理解作图的依据和用数学语言描述作图过程。

教学方法讲授法、谈话法、演示法、练习法教学过程一、复习回顾回顾线段的垂直平分线的性质定理和判定定理。

线段的垂直平分线与轴对称图形的关系。

二、学习新知1、思考如何用尺规作图,作出线段AB的对称轴?归纳:如果两个图形成轴对称,则对应点所连线段的垂直平分线即为对称轴。

2、例题已知线段AB,求作AB的对称轴。

作法:(1)分别以点A和点B为圆心,大于1/2AB的长为半径作弧,两弧相交于C,D两点;(2)作直线CD,CD就是所求的直线。

3、应用作出下列图形的一条对称轴。

找到任意一组对应点A和A′,连接AA′,作出对应点所连线段AA′的垂直平分线l,则l就是图形的对称轴。

类似地,你能作出这个五角星的其他对称轴吗?找到任意一组对应点B和B′,连接BB′,作出对应顶点BB′的垂直平分线m,则m就是图形的对称轴。

4、如图,在一张半透明的纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的左脚印。

这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分。

类似地,请你再画一个图形,看能否得到同样的结论。

归纳:由一个平面图形,可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分。

新人教版教材八年级数学上册第13章《轴对称》全章教案

新人教版教材八年级数学上册第13章《轴对称》全章教案

§13.1 轴对称(1)教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是什么?(3)成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题13.1第1、2、3、4、5题课后反思:13.1 轴对称(2)教学目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.教学重、难点:线段垂直平分线的性质.教学过程:一、问题导入:探索并证明线段垂直平分线的性质如图,直线l 垂直平分线段AB,P1,P2,P3,…是l 上的点,请猜想点P1,P2,P3,…到点A 与点B 的距离之间的数量关系.教师:你能用不同的方法验证这一结论吗?二、课本精讲:请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.求证:PA =PB.用符号语言表示为:∵CA =CB,l⊥AB,∴PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA =PB,那么点P 是否在线段AB 的垂直平分线上呢?点P 在线段AB 的垂直平分线上.已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.用数学符号表示为:∵PA =PB,∴点P 在AB 的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?这些点能组成什么几何图形?在线段AB 的垂直平分线l 上的点与A,B 的距离都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书62页练习1、2.四、课堂小结:(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?五、课后作业:教科书习题13.1第6、9题课后反思:13.1 轴对称(3)教学目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点:作线段的垂直平分线.教学难点:作线段的垂直平分线.教学过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图.(1)分别以点A,B 为圆心,以大于AB的为半径作弧,两弧相交于C,D 两点;(2)作直线CD.CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:教科书64页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教学目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教学重点:画轴对称图形.教学难点:画轴对称图形.教学过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师:如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1 如图,已知△ABC 和直线l,画出与△ABC关于直线l 对称的图形.画法:(1)如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;(2)同理,分别画点B,C 关于直线l 的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.教师:如何验证画出的图形与△ABC 关于直线l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:教科书68页练习1、2四、课堂小结:(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?五、课后作业:教科书习题13.2第1题.课后反思:13.2 画轴对称图形(2)教学目标:1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.教学重、难点:在平面直角坐标系中关于x 轴或y轴对称的点的变化规律和作出与一个图形关于x 轴或y轴对称的图形.教学过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中.教师:观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数.教师:观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____).例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.教师:归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤.先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)在平面直角坐标系中,已知点关于x 轴或y 轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x 轴或y 轴对称?(3)说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教学目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教学重、难点:探索并证明等腰三角形性质.教学过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B = ∠C.你还有其他方法证明性质1吗?可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教学重、难点:理解和运用等腰三角形的判定定理教学过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?已知:如图,在△ABC 中,∠B =∠C. 求证:AB =AC.教师:你还有其他证明方法吗?思考能作底边BC 上的中线吗?等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:∵在△ABC 中,∠B =∠C,∴AB =AC.思考与等腰三角形性质进行比较看有什么区别?例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD∥BC.求证:AB =AC.例2 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB =a;(2)作线段AB 的垂直平分线MN,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.三、巩固提高:教科书79页练习1、2、3、4四、课堂小结:(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.五、课后作业:教科书习题13.3第2、5题.课后反思:13.3 等腰三角形(3)教学目标:1.探索等边三角形的性质和判定.2.能运用等边三角形的性质和判定进行计算和证明.教学重、难点:探索等边三角形的性质与判定.教学过程:一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.思考将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC 是等边三角形求证:∠A =∠B =∠C =60°.证明:∵△ABC 是等边三角形,∴BC =AC,BC =AB.∴∠A =∠B,∠A =∠C.∴∠A =∠B =∠C .∵∠A +∠B +∠C =180°,∴∠A =60°.∴∠A =∠B =∠C =60°.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.例1 如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.三、巩固提高:教科书80页练习1、2四、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.五、课后作业:教科书习题13.3第12、14题.课后反思:13.3 等腰三角形(4)教学目标:1.探索含30°角的直角三角形的性质.2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.教学重、难点:探索并理解含30°角的直角三角形的性质.教学过程:一、问题导入:问题已知△ABC 中,∠A =60°,().请你在括号内补充一个条件,使△ABC 能成为等边三角形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.问题你能借助这个图形,找到含30°角的直角△ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.思考这个命题是真命题吗?请进行证明.已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC = AB.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC 中,∠C =90°,∠A =30°,∴BC = AB.例如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?三、巩固提高:教科书81页练习四、课堂小结:(1)本节课学习了哪些内容?(2)在应用含30°角的直角三角形的性质时,能解决哪些问题?需要注意哪些问题?五、课后作业:教科书习题13.3第15题.课后反思:。

轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

轴对称图形微课教案
学校林芝市八一中学教师田果清
科目数学教材版本人教版年级八年级
一、教学目标
1.知识与技能目标:知道什么是轴对称图形,会判断一个图形是否为轴对称图形,会找一个轴对称图形的对称轴。

2.过程与方法目标:在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创造等数学活动过称,逐步发展学生的空间知觉与空间观念,培养其抽象思维和空间想象能力并体会数学的价值与数学的对称美。

3.情感态度与价值观目标:通过观赏图片赏析图片,激发学生爱生活爱祖国的美好情感。

二、学情分析
学生在小学学过轴对称图形,能够识别简单的轴对称图形及其对称轴,因此本节课的知识点是着重让学生认识轴对称图形在生活当中的作用。

三、授课类型
讲授课
四、教学过程
五、课后反思
1.为学生的数学学习构筑起点。

2.为学生提供了生活中有趣的、富有挑战性的学习素材。

3.为学生提供了探索、交流与合作的时间与空间,帮助学生通过思考与交流,理顺所学的知识,形成适应个性认知特点的知识结构。

4.重视数学知识的形成与应用过程,满足不同学生发展的需求。

5.让学生体会到学数学是有价值的,数学来源于生活又作用于生活,让学生带着一双发现的眼睛去发现生活中的数学,并用自己所学的数学去解决生活中的问题。

苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》

苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》

苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》一. 教材分析《2-1轴对称与轴对称图形》这一节内容是苏科版数学八年级上册的重要内容之一。

主要介绍了轴对称的概念,轴对称图形的性质以及如何寻找生活中的轴对称图形。

通过这一节的学习,学生能够了解并掌握轴对称的基本概念和性质,能够识别和画出常见的轴对称图形,提高他们的观察能力和审美能力。

二. 学情分析八年级的学生已经具备了一定的几何基础知识,对图形的认识和观察能力有一定的提高。

但是,对于轴对称的概念和性质,他们可能还比较陌生,需要通过具体的实例和活动来理解和掌握。

此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养和提高。

三. 教学目标1.了解轴对称的概念,掌握轴对称的性质。

2.能够识别和画出常见的轴对称图形。

3.培养学生的观察能力,提高他们的空间想象能力和逻辑思维能力。

四. 教学重难点1.轴对称的概念和性质的理解和掌握。

2.轴对称图形的识别和画法。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索。

2.利用具体的实例和活动,让学生通过观察和实践来理解和掌握轴对称的概念和性质。

3.采用小组合作的学习方式,培养学生的合作意识和团队精神。

六. 教学准备1.准备相关的实例和图片,用于讲解和展示轴对称的概念和性质。

2.准备一些实际的图形,让学生进行观察和操作。

3.准备黑板和粉笔,用于板书和讲解。

七. 教学过程1.导入(5分钟)通过提问的方式引导学生思考和探索轴对称的概念。

例如,问学生:“你们在生活中有没有见过一些物体或图形,它们的一侧和另一侧是完全相同的?”让学生结合自己的生活经验来理解和认识轴对称。

2.呈现(10分钟)利用具体的实例和图片,向学生讲解和展示轴对称的概念和性质。

可以举例说明一些常见的轴对称图形,如蝴蝶、飞机、枫叶等,让学生观察和分析它们的特点,引导他们发现和总结轴对称的性质。

3.操练(15分钟)让学生分组进行观察和操作,每组提供一些实际的图形,让学生尝试识别和画出它们的轴对称图形。

轴对称的教案八年级

轴对称的教案八年级

八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。

下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。

《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。

2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。

3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。

二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。

2. 教学难点:运用轴对称解决简单的几何问题。

三、教学准备1. 教师准备:课件、方格纸、彩色笔。

2. 学生准备:笔记本、笔。

四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。

2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。

(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。

(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。

3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。

4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。

5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。

五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。

八年级第13章轴对称说课稿9篇

八年级第13章轴对称说课稿9篇

八年级第13章轴对称说课稿9篇八年级第13章轴对称说课稿【篇1】根据新课标的理念,对于本节课,我将从课件中的资源整合的设计理念、教学策略、如何使用等方面进行展示和陈述。

一、教材分析本节课的主要内容是作轴对称图形,要求学生能够作出简单图形经过一次或者两次轴对称得到的图形,能够利用轴对称进行简单的图案设计,所以在寻找资源的过程中,使用一些图片、动画等。

前面的一节内容中学生认识了轴对称图形和两个图形关于某条直线对称,它们都是讲一个图形成或两个图形之间的位置关系,是一个静止的状态,我们选用的图片比较多。

作轴对称图形是由一个图形得到与它轴对称的图形的过程,是一个运动的过程,所以在本节课的课件中,我将用动画去展示轴对称变换的过程。

二、学情分析从心理特征来说,八年级阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,选取适当的教学资源,利用课件中好的视觉效果,如图片、动画、视频等,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要使用“班班通”的教学设备让学生参与到教学过程中来,让学生发表见解,发挥学生学习的主动性。

三、教学目标分析本节课的教学目标为:知识技能:1、能按要求做出简单平面图形经过一次两次轴对称后的图形。

2、能利用轴对称进行图案设计。

过程与方法:利用轴对称作图和图案设计。

情感态度价值观:1、通过欣赏轴对称图案,形成学生了解数学、应用数学的态度。

2、通过作轴对称图形、设计图案,锻炼学生克服困难的意志,培养创新精神。

四、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:作轴对称图形。

难点确定为:利用轴对称设计图案。

五、教学方法分析本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

13.2 画轴对称图形【教案】八年级上册数学

13.2  画轴对称图形【教案】八年级上册数学

第1课时画轴对称图形课时目标1.通过回顾轴对称的性质,感悟画轴对称图形的方法,培养学生的推理意识和应用能力.2.掌握画出给定对称轴的简单图形的轴对称图形的方法,培养几何直观和空间观念.3.经历观察、动手操作、类比迁移、设计方案的过程,培养学生的模型意识和创新意识.4.让学生在活动中体验到成功的喜悦,体验合作交流的重要性,感受数学美,会用数学的语言表达现实世界.学习重点画出给定对称轴的简单图形的轴对称图形.学习难点利用轴对称设计图案.课时活动设计回顾引入你能说出什么是两个图形关于一条直线成轴对称吗?轴对称的性质是什么?设计意图:通过回忆旧知,让学生在思考的过程中产生知识风暴,为本节课学习新知识作铺垫.回忆对称点——折叠后重合的点,为学生发现本节课作图的本质奠定基础;回忆性质“对称轴是任何一对对应点所连线段的垂直平分线”,为本节课作图方法的得出奠定基础;回忆“轴对称的图形全等”为求线段和角度做准备,培养学生知识的迁移能力.探究新知问题1:拿出印有左脚印的半透明纸片,你能画出右脚印吗?动手试一试.学生自己动手操作,通过对折后描图画出右脚印.追问:观察思考所画右脚印和左脚印有什么关系,你还能发现什么结论?小组交流一下.学生通过探讨交流得到:右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.请学生再画一个图形做一做,小组交流探讨,看看能否得到相同的结论.教师总结:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.问题串:根据轴对称的性质,如何画出一个点关于已知直线的对称点?如何画出一条线段关于已知直线的对称线段?如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?学生自主交流探究.如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.解:画法:(1)如图,过点A画直线l的垂线,垂足为O,在垂线上截取OA'=OA,A'就是点A关于直线l的对称点;(2)同理,分别画出点B,C关于直线l的对称点B',C';(3)连接A'B',B'C',C'A'.△A'B'C'即为所求.归纳总结:几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.你能画出任意多边形关于已知直线的对称图形吗?请说说看.请学生叙述即可.设计意图:情境设置成画脚丫,通过画学生的身体部位激发学生的兴趣,培养美育,同时开阔学生的思维并让学生体会到教学方法的多样性.可以通过描图、扎眼、印墨迹、剪纸、画图等方式,培养学生的创新意识和动手能力.从最简的几何图形入手,研究思路:点——直线——图形,作点的对称点是其他作图方法的基础,学生在刚才描图等方法的基础上对画轴对称图形有了初步认知,结合对称轴是对应点连线的垂直平分线的特性引导学生研究作法:做垂线——截取等长,培养学生的推理能力和动手能力.锻炼学生的语言表达能力,提升归纳和总结能力,体会知识的迁移性.典例精讲例画出图形关于对称轴的对称图形.解:如图所示.设计意图:通过例题巩固新知,让学生更好地掌握所学内容.巩固训练1.下面是四名同学作的△ABC关于直线MN的轴对称图形,其中正确的是(B)2.如图,把下列图形补成关于直线l的对称图形.设计意图:通过一组练习巩固做轴对称图形,掌握作图方法,进一步理解轴对称图形的本质.课堂小结1.轴对称性质.2.作图的原理和一般方法.3.作图的步骤.4.不同的对称轴对应不同的轴对称图形.设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心知识,回顾由特殊到一般的过程,体会类比方法在研究数学问题中的重要作用.课堂8分钟.1.教材第71页习题13.2第1题.2.作业.教学反思第2课时用坐标表示轴对称课时目标1.掌握在平面直角坐标系中关于x轴和y轴对称的点的坐标特点.培养学生数形结合的意识.2.能利用坐标特点在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形,学会用代数的方法研究几何问题,发展想象思维.3.能根据坐标系中轴对称的坐标特点解决简单的问题,增强学生的应用意识,提升学生的应用能力.4.经历作图、观察、发现的过程得出坐标的变换规律,培养学生勇于探索的精神和总结归纳的能力.学习重点利用坐标特点画关于坐标轴的对称图形.学习难点能根据坐标系中轴对称点的坐标特点解决简单的问题.课时活动设计情境引入出示北京城示意图,你能根据东直门的坐标,写出西直门的坐标吗?设计意图:以首都北京城的布局特点为背景,引出坐标系中轴对称坐标的问题,激发学生的求知欲望并引出本节课的研究内容.让学生从实际情景中发现数学问题、提出问题并研究解决问题,培养学生用数学思维思考现实世界的能力.探究新知类比做一点关于一条直线的对称点,说说在平面直角坐标系中,要作一个点关于x轴、y轴的对称点该怎么做?试一试并完成教材第69页表格.小组交流方法和结果.问题1:根据写出的关于x轴对称的点的坐标特点,你发现了什么规律?小组说说想法.得出结论:关于x轴对称的点的坐标的特点:横坐标相等,纵坐标互为相反数(简称:横同纵反).问题2:根据写出的关于y轴对称的点的坐标特点,你发现了什么规律?小组说说想法.得出结论:关于y轴对称的点的坐标的特点:横坐标互为相反数,纵坐标相同(简称:横反纵同).归纳总结:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y).设计意图:学生自主探究关于x轴、y轴的对称点,并通过作图,写出对称点的坐标.在巩固旧知的同时为对称点坐标规律的总结做了准备,让学生体会知识的生成过程,经历动手作图的过程,为后面规律的理解做准备,培养学生数形结合的能力.典例精讲例如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.解:如图所示,四边形ABCD关于x轴对称的图形为四边形A'B'C'D',关于y轴对称的图形为四边形A″B″C″D″.设计意图:学生上节课已经学过作关于直线的轴对称图形,本题目的是让学生通过关于y轴和x轴对称的点的坐标特点,先写出对称点坐标然后描点连线,归纳坐标系中作图的基本步骤(一找二描三连),体现数形结合思想,为函数部分画图作铺垫.教学中要善于归纳总结,提升大单元观,培养学生知识迁移能力.扩展应用已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A,B关于x轴对称,求a,b的值;(2)若点A,B关于y轴对称,求(4a+b)2016的值.学生独立思考自主完成.解:(1)∵点A(2a-b,5+a)与点B(2b-1,-a+b)关于x轴对称,∴{2a-b=2b-1,5+a=−(−a+b),解得{a=−2,b=−1.∴a,b的值分别为-2,-1. (2)∵点A,B关于y轴对称,∴{2a-b=−(2b-1),5+a=−a+b,解得{a=−1,b=3.∴(4a+b)2 016=(-1)2 016=1.设计意图:本题重点是抓住关于坐标轴对称的点的坐标特点,建立等量关系,列方程组求解,培养学生模型意识和观念.在利用解方程组、幂运算培养学生的运算能力的同时,提升学生知识的应用意识.课堂小结谈谈今天的收获:(1)P(x,y)关于x轴对称的点的坐标的x值不变,y值互为相反数,即(x,-y).(2)P(x,y)关于y轴对称的点的坐标的y值不变,x值互为相反数,即(-x,y).(3)在平面直角坐标系中作一个与图形关于x轴或y轴对称的图形的步骤:①找出原图形中的关键点;②根据关于x轴或y轴对称的点的坐标特征,作出每个关键点的对称点;③将每个点顺次连接起来.(4)本节课你学到了哪些方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心内容,掌握数形结合研究问题的方法,掌握建立不等式方程(组)解决问题的方法,提升学生的知识转化和迁移能力.课堂8分钟.1.教材第70,71页练习第1,2,3题.2.作业.教学反思。

初中新课标轴对称教案

初中新课标轴对称教案

初中新课标轴对称教案【篇一:新课标人教版八年级数学上册第十二章轴对称全章教案】第十二章轴对称教学目标:1、通过生活中的具体实例认识轴对称,让学生掌握轴对称图形和关于直线成轴对称这两个概念。

2、培养学生的观察能力、思维能力、操作能力、归纳能力。

3、让学生体会数学的对称美在生活中的广泛应用和体现。

教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。

教学难点:轴对称图形和关于直线成轴对称的区别和联系。

学生课前准备:每人准备一张纸和一把剪刀教学过程:一、情景创设在生活中,许多事物与图形紧密联系在一起。

现在老师给大家准备了一些生活中的常见的事物图案和标志,请大家观赏。

(投影显示)[教学说明:创设情景将生活中的对称图案和标志展示出来,引导学生将生活中的对称美牵引到数学中来]二、探索研讨做一做(活动)将同学们准备好的一张纸对折后,用笔沿着折线画一条直线,然后从折叠处剪出一个你喜欢的图形,想一想,展开后会是一个什么样的图形?[教学说明:让同学们从动手实践中总结出结论:剪出来的图形关于折线对称](引出课题)看一看,想一想细心观察一些日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?(投影显示)[教学说明:让学生通过观察、讨论得出规律。

]请同学们细心观察动画后,总结出轴对称图形的概念(投影显示)轴对称图形定义:如果一个图形沿着某条直线对折,对折后的两面部分能够完全重合,就称这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴。

在我们的现实生活中有很多物体的平面图形是轴对称图形,你能举例说说吗?3、例题讲解:请同学们细心观察,下列轴对称图形各有多少条对称轴?[教学说明:让学生从本题中总结出轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条等,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

]练一练判断下列图形哪些是轴对称图形,如果是,请找出所有对称轴。

(结论:一般的三角形,一般的梯形,一般的平行四边形不是轴对称图形(可以通过折纸验证。

初中八年级初二数学《作轴对称图形》参考教案

初中八年级初二数学《作轴对称图形》参考教案

作轴对称图形作轴对称图形(一)教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)情感与价值观要求1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学方法讲练结合法.教具准备多媒体课件.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.(课件演示)取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E 挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.Ⅲ.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.(二)回顾本节课内容,然后小结.Ⅳ.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.课后作业(课件演示)(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.(二)自己设计并制作一个花边.(三)收集并欣赏1~2个对称的中国民间剪纸图案,你能找出它的对称轴吗?Ⅵ.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.板书设计备课资料艺术作品中的对称许多著名画家在作品中运用简单的图形创造出了奇妙的韵意.•法国著名画家V.瓦萨雷利于1969年创作了名画《委加.派尔》,画中仅仅用了“圆”形图案,就形成了一幅动态的轴对称图形!在从古至今的艺术创作中,不仅画家大量运用了对称,许多别的艺术家也经常运用对称的手法.如雕刻家威廉斯.多佛1971年在加蓬《非洲人的设计》中创作的“木制卫兵雕像”就是典型的雕刻艺术中的对称.带状装饰图案的做法油漆工只需要不断移动镂花模板(可以直接移动,也可以将翻转与移动相结合),就可以完全一条美丽的镶边图案.感兴趣的话自己试一试.§12.2.1作轴对称图形(二)教学目标(一)教学知识点1.能够按要求作出简单平面图形经过轴对称后的图形.2.轴对称的简单应用.(二)能力训练要求1.能够按要求作出简单平面图形经过轴对称后的图形.2.培养学生运用轴对称解决实际问题的基本能力.3.使学生掌握数学知识的衔接与各部分知识间的相互联系.(三)情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形.教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的.•下面同学们来仔细观察一个图案.(课件演示)以虚线为对称轴画出图的另一半:[生甲]这个图案(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案(2)画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画(教师发给每人一张方格纸,且纸上画有图).……[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?•大家请看大屏幕.(演示课件)[例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了. [师]好,下面大家一起动手做.作法:如图(2).(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B′、C′;(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.Ⅲ.随堂练习课本P41练习 1、2.1.如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.Ⅳ.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业(一)课本P45习题─1、5、8、9题.(二)预习内容P43~P46.Ⅵ.活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B′是B的对称点,•将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′,•而AB′=AC+CB′=AC+CB,则有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短.板书设计§12.2.1作轴对称图形(二)一、已知对称轴L和一个点A,要画出点A关于L的对称点A′,方法如下:(1)过点A作对称轴L的垂线,垂足为B.(2)在垂线上截取BA′=AB.则点A′就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.已知△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:(1)作点C关于直线L的对称点C′;(2)作点B关于直线L的对称点B′;(3)点A在L上,故点A的对称点A′与A重合;(4)连结A′B′、B′C′、C′A′.则△A′B′C′就是所求作的三角形.2.已知a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称辅导教案
学员编号:年级:八年级课时数:
学员姓名:辅导科目:数学学科教师:
专题第二章轴对称图形
星级★★
授课日期及时段
教学内容
知识点1
轴对称:
1、轴对称是指两个图形之间的关系
2、轴对称的特征是两个图形沿某条直线折叠后两个图形能够重合
轴对称图形
1、图形本身的特征(沿对称轴折叠,两旁部分能够完全重合)
2、对称轴是经过图形的某条直线,可能只有一条,也可能不止一条
常见的轴对称图形
轴对称图形对称轴对称轴条数
直线
线段

等腰三角形
等边三角形
典型例题:
1、(2010·连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.
其中,既是轴对称图形又是中心对称图形的是()
A.①② B.②③ C.②④ D.①④
2、(2012·连云港)下列图案是轴对称图形的是()
A. B. C. D.
3、如图所示的两位数中,是轴对称图形的有()
A B P Q C (1)若△AEF 的周长为10 cm ,则BC 的长为__________cm .
(2)若∠EAF=100°,则∠BAC__________.
3、△A8C 中, AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D .
(1)若△BCD 的周长为8,求BC 的长;
(2)若BC=4,求△BCD 的周长.
4、如图所示,在△ABC 中,∠BAC=900,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F ,FG ⊥BC 于G ,请猜测AE 与FG 之间有怎样的数量关系,并说明理由.
知识点4
等腰三角形的轴对称性:顶角平分线所在的直线是它的对称轴
性质:1、等腰三角形的两底角相等(简称“等边对等角”)
2、等腰三角形底边上的高、中线、顶角平分线重合(三线合一)
3、有两个角相等的三角形是等腰三角形(简称“等角对等边”)
等边三角形:三边相等的三角形(正三角形)
性质:1、是轴对称图形,有且只有3条对称轴
2、等边三角形的各角都等于60°
判定:三个角都相等的三角形是等边三角形
有两个角等于60°的三角形是等边三角形
有一个角是60°的等腰三角形是等边三角形
四点合一:角平分线的交点、中线的交点、高的交点、垂直平分线的交点均重合
直角三角形:斜边上的中线等于斜边的一半
经典例题:
1、已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,且BD=CE ,连接DE 交BC 于F ,请说明:DF=EF.
2、如图,P 、Q 是△ABC 的BC 边上的两点,且BP =PQ =QC =
AP =AQ ,求∠BAC 的度数.
3、如图,△ABC 和△CDE 都是等边三角形,且点A,C,E 在一条直线上.
(1)AD 与BE 相等吗?为什么? (2)连接MN ,试说明△MNC 为等边三角形.
4、如图,△ABC 是等边三角形,D 为AC 边上的一点,且∠1=∠2,BD=CE .
求证:△ADE 是等边三角形.
5、如图,在AABC 中,BD 、CE 是高,G 、F 分别是BC 、DE 的中点,连接GF ,试判断GF 与A B C D E F。

相关文档
最新文档