轴对称图形中心对称图形的定义及性质

合集下载

初中数学知识点轴对称与中心对称

初中数学知识点轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

中心对称和轴对称的几何性质

中心对称和轴对称的几何性质

中心对称和轴对称的几何性质在几何学中,中心对称和轴对称是两种重要的对称性质。

它们在数学、物理、化学等领域中都有着广泛的应用。

本文将详细介绍中心对称和轴对称的几何性质,以及它们之间的区别和联系。

1. 中心对称中心对称是指图形相对于一个中心点进行对称,即图形中的每个点与中心点之间的连线都会与另一个点对称。

中心对称特性使得图形能够在某个中心点进行旋转180度后不变。

1.1 中心对称的判定条件一个图形是否具有中心对称可以通过以下两个判定条件来验证:1)图形中存在至少一个点,它与中心点之间的连线与该点与另一个点之间的连线对称。

2)图形中的每个点都与中心点之间的连线都能够与另一个点对称。

1.2 中心对称的性质中心对称具有以下几何性质:1)中心对称的图形具有镜像对称性,即图形可以关于中心点进行对称,将其中一个点对称到另一个位置。

2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,只会改变位置。

2. 轴对称轴对称是指图形相对于一个轴线进行对称,即图形中的每个点与轴线之间的连线都会与另一个点对称。

轴对称特性使得图形能够在轴线上进行翻转后不变。

2.1 轴对称的判定条件判断一个图形是否具有轴对称可以通过以下两个条件来验证:1)图形中存在一个轴线,使得图形中的每个点与轴线之间的连线与该点与另一个点之间的连线对称。

2)图形中的每个点都与轴线之间的连线都能够与另一个点对称。

2.2 轴对称的性质轴对称具有以下几何性质:1)轴对称的图形具有镜像对称性,即图形可以关于轴线进行对称,将其中一部分镜像到另一部分。

2)轴对称的图形无论进行旋转多少度,只要不改变轴线的位置和方向,都不会改变图形的形状和大小,只会改变位置。

3. 中心对称和轴对称的区别和联系尽管中心对称和轴对称都是几何形状的对称性质,它们之间存在一些区别和联系。

区别:1)中心对称是相对于一个点进行对称,而轴对称是相对于一个轴线进行对称。

2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,但轴对称的图形必须在轴线上进行翻转才能保持不变。

轴对称与中心对称的基本概念

轴对称与中心对称的基本概念

轴对称与中心对称的基本概念轴对称与中心对称是数学中常见的概念,用来描述物体的对称性。

在几何学中,轴对称和中心对称是两种最基本的对称方式。

本文将介绍轴对称和中心对称的概念、特点以及其在几何学和其他领域中的应用。

一、轴对称轴对称是指物体相对于某根轴按照一定的规律做对称变换时,可以将物体完全重合的情况。

这根轴称为轴对称的轴线,物体上的任意一点相对于轴线的对称点都在轴线的同一侧。

轴对称的特点:1. 轴对称的图形可以分为左右对称、上下对称或者同时存在左右和上下对称。

2. 轴对称的图形可以通过沿着轴线将一个部分复制到另一部分来得到。

3. 轴对称的图形可以在平面上无限延伸,不会受到轴线本身长度的限制。

4. 轴对称的图形可以通过旋转180度来映射到自身。

轴对称在几何学中的应用:1. 用来描述平面上的多边形、图形和图案的对称性。

2. 在建筑设计中考虑到建筑物的对称性,以求得美感和结构的稳定性。

3. 在工程制图和雕塑设计中,通过轴对称来保持形状的对称和均衡。

二、中心对称中心对称是指物体相对于某个中心点按照一定的规律做对称变换时,可以将物体完全重合的情况。

这个中心点称为中心对称的中心,物体上的任意一点都有与中心对称的一点。

中心对称的特点:1. 中心对称的图形在任意一点相对于中心的对称点都在以中心为圆心的同一条直线上。

2. 中心对称的图形可以通过旋转180度加上绕圆心的对称变换来映射到自身。

3. 中心对称的图形对于镜像是群运算的封闭性,即两个中心对称的图形的镜像仍然是中心对称的。

中心对称在几何学中的应用:1. 用来描述平面上的圆、椭圆和其他有规则形状的图形的对称性。

2. 在生物学中,许多生物体的形状可以通过中心对称来描述,比如瓢虫的斑点和花瓣的排列。

3. 在天文学中,天体的分布和轨道常常呈现中心对称的特征。

总结:轴对称和中心对称是数学和几何学中常见的对称概念。

通过对轴对称和中心对称的特点和应用的介绍,我们可以更好地理解和应用这两种对称性。

平面解析几何中的中心对称和轴对称

平面解析几何中的中心对称和轴对称

平面解析几何中的中心对称和轴对称龙碧霞一、中心对称定义:把一个图形绕某个点旋转180o 后能与另一个图形重合。

这两个图形关于这个点对称。

这个点叫着对称中心。

性质:关于某个点成中心对称的两个图形。

对称点的连线都经过对称中心。

且被对称中心平分。

一般有三种情况。

(1) 点关于点对称。

点P (x,y )关于点M(a,b)对称的点Q 的坐标是Q(2a-x,2b-y)。

(由中点坐标公式很容易得到)如点(1.-4)关于(-2,0)对称的点是(-5.4),(2) 直线关于点对称:直线l:Ax+By+C=0 关于点P (a,b )对称的直线为l 1的方程是:A (2a-x )+B(2b-y)+C=0 .即 Ax+By-2aA-2bB-C=0。

推导过程:方法一:在直线l 上任意取一点,最好是特殊点。

如取M(0,-B C )则点M 关于点P 对称的点N 的坐标是N (2a,2b+BC ).点N l 1根据中心对称的定义。

l 11得2aA+B(2b+B C D=-2aA-2Bb-C 所以 l 1的方程是:Ax+By-2aA-2bB-C=0方法二:在直线l 上任意取两点并求出它们关于点P (a,b )对称的点.由两点式易得直线为l 1的方程是:Ax+By-2aA-2bB-C=0.方法三:设直线为l 1上任意一点为M(x,y ),其关于点P (a,b )对称的点M /(x /,y /)在直线为l 上.求出点M /的坐标后代入直线 l:Ax+By+C=0即得l 1的方程是:Ax+By-2aA-2bB-C=0例如:求直线l ;3x+y-2=0关于点A (-4,4)对称的直线l /方程。

解法一:关于点A 对称的两直线l 与l /互相平行。

于是可设l /的方程为:3x+y+C=0在直线l 上任取一点M (0,2),其关于点A 对称的点N 的坐标为N (-8,6),因为N 点在直线l /上。

所以3×(-8)+6+C=0,所以 C=18,故 直线l /的方程为 3x+y+18=0.解法二:在直线l ;3x+y-2=0上取两点M (0,2),N (1,-1)易得它们关于点A (-4。

(完整)轴对称与中心对称的性质及判定

(完整)轴对称与中心对称的性质及判定
(1)定义中都有一个点,都要沿着这个点旋转180度后重合;
(2)如果把.中心对称图形安中心点分成两部分(即看成两个图形),那么这两个图形就关于这个点成中心对称;反过来,如果把中心对称的两个图形看成一个整体,那么它就是一个1.中心对称图形.


1.关于某条直线对称的两个图形是全等形.对应线段相等,对应角相等


1。如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
2.如果两个图形关于某条直线成轴对称,那么对称轴是(对称点的中点的连线,即垂直平分线)轴对称图形的对称轴是(对折重合的折痕线)
1。如果两个图形的对应点连线被一个点评分平分,那么这两个图形关于这个点对称。
2.如果两个图形关于某点旋转180度能够完全重合 即为关于这点中心对称
1。中心对称是指两个图形间的位置关系
2。 中心对称是指两个图形
对称图形
如果一个图形沿着一条直线折叠,直线两旁的,部分能够互相重合,这条直线叫对称轴那么这个图形叫做轴对称图形
1。轴对称图形是指一个具有特殊形状的图形
2。轴对称图形是对一个图形而言的.
如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形,这个点叫对称中心
2。如果两个图形关于某直线对称。那么对称轴是对应点连线的垂直平分线.
3。两个图形关于某直线对称。如果它们的对应线段或延长线相交,那么交点在对称轴上。
1。关于某个点对称的两个图形是全等形。对应线段相等且平行,对应角相等
2。如果两个图形关于某点对称.那么对称点是对应点连线的中点.
3.两个图形关于某点对称。那么它们的对应线段互相平行.
轴对称与中心对称的性质及判定
轴对称

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用一、轴对称图形如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1 已知直线l外有一定点 P,试在l上求两点A、B,使AB=m(定长),且PA+PB最短.分析当把P点沿l方向平移至C(如图1),使PC=m,那么问题就转化为在l上求一点B,使CB+PB为最短.作法过P作PC∥l,使PC=m,作P关于l的对称点P',连结CP'交l于B.在l上作AB=m,点A、B为所求之两点.证在l上另任取A'B'=m,连PA、PA'、PB',CB',A'P',B'P',则PA'=P'A',PB'=P'B',又PA'B'C 为平行四边形,∴CB'=PA'.∵CB'+B'P'>CP',∴ PA'+PB'>PA+PB.例2 如图2,△ABC中,P为∠A外角平分线上一点,求证:PB+PC>AB+AC.分析由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP、CP,则DP=CP,BD=AB+AC.这样,把 AB+AC、AC、PB、PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证 (略)说明通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3 等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD、BC的中点M、N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4 凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.证如图4,连结AA2,EE3.正方形ABCD和正方形A1BCD1关于BC对称;EFGH和E1FG1H1关于BC对称;A1BCD1和A2B1CD1关于 CD1对称;E1FG1H1和 E2F1G1H2关于CD1对称;A2B1CD1和A2B2C1D1关于A2D1对称,E2F1G1H2和E3F2G2H2关于A2D1对称.例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知如图22-5.四边形ABCD中,M、F、N、E分别为各边的中点,且MN、EF为它的对称轴.求证 ABCD是矩形.分析欲证ABCD是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证∵四边形ABCD关于EF成轴对称,∴DC⊥EF,AB⊥EF,∴AB∥DC.同理AD∥BC.∴ABCD是平行四边形.∴DC=AB.又∵DE=DC/2,AF=AB/2.∴DE AF,∴ADEF为平行四边形.∴AD∥EF,而DE⊥EF,∴DE⊥AD,∠D=Rt∠.∴ABCD是矩形.二、中心对称图形如果把一个图形绕着某一点旋转180°后,能和原图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心,能重合的点互为对称点.中心对称图形具有以下性质:(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等.平行四边形是中心对称图形.矩形、菱形、正方形既是中心对称图形,也是轴对称图形.例6 如图6.已知ABCD,O是对角线 AC与BC的交点. EF过O点与AB交于E,与DC交于F.求证:OE=OF.证∵O点是ABCD的对称中心,EF过O点与AB相交于E,与DC相交于F.故E、F两点是以点O为对称中心的对称点.∴OE=OF.例7 △ABC中,底边BC上的两点M、N把BC三等分,BE是AC上的中线,AM、AN分BE 为a,b,c三部分,求:a∶b∶c.分析本题解法很多,我们利用中心对称图形求解.如图7,以E为中心,作已知图形的中心对称图形,则M'C∥AM,N'C ∥AN,于是可得a∶(2b+2c)=1/2,∴a=b+c,①(a+b)∶2c=DN'∶N'A=2∶1,∴a+b=4c,②由①得,a-b=c,③②+③, 2a=5c,∴a=5c/2.②-③,2b=3c,∴b=3c/2.∴ a∶b∶c=5c/2∶3c/2∶c=5∶3∶2.解 (略)例8 若四边形的一组对边相等,延长这一组对边,使各与另一组对边的中点连线的延长线相交,则这两个交角必相等.已知如图8.四边形ABCD中, AD=BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于G、H.求证∠AGE=∠BHE.分析为了使求证的两个角与已知条件发生联系,利用“旋转法”使角或线段搬家而沟通思路.证如图8,以E为对称中心,作△EBC的中心对称图形△EAM(即连结CE并延长CE到M 使EM=EC,连结AM).连结DM,AM=BC=AD,∴∠2=∠3.∵DF=FC,CE=EM,∴DM∥HE,∴∠1=∠2.∵AE=EB, EM=EC,∴AMBC是平行四边形.∴AM∥BH,而DA∥HE,∴∠3=∠BHE.∴∠1=∠BHE,即∠AGE=∠BHE.习题1.如图9 一牧童在A处牧马,牧童家在B处.A、B处距河岸分别为300m、500m,CD =600m,天黑前,牧童从A点将马牵到河边去饮水后再赶回家.那么牧童最少要走多少米?2.证明:任一点关于正方形各边中点的对称点是一个正方形的顶点.3.求证:在四边形ABCD中,如果AB=AD,CB=CD,那么它的面积等于AC·BD/2.4.在直线MN两侧有A,B两点,在MN上求一点P,使P到A、B两点之差最大.5.等腰梯形的周长为22cm,中位线长为 7cm,两条对角线中点连线为3cm,求各边长.。

图形对称轴对称面对称中心对称

图形对称轴对称面对称中心对称

图形对称轴对称面对称中心对称————————————————————————————————作者:————————————————————————————————日期:图形轴对称与轴对称图形、中心对称,镜面对称【知识要点】一、轴对称图形与图形轴对称1.轴对称图形定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.注意:有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.2.图形轴对称:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.3. 轴对称图形的性质:如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线4.轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.二、轴对称变换1.定义:由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分3.作一个图形关于某条直线的轴对称图形:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.三、坐标系相关1.点P(x,y)关于x轴对称的点的坐标是(x,-y)2.点P(x,y)关于y轴对称的点的坐标是(-x,y)3.点P(x,y)关于原点对称的点的坐标是(-x,-y)4.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);5.点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);四、镜面对称1.镜面对称是关于关于面的对称2..镜面对称的两个图形全等,并且两个图形到镜面的距离相等五、中心对称1.中心对称图形定义:一个图形绕着某点旋转180°后能与自身重合,这种图形叫做中心对称图形,该点叫做对称中心2.中心对称:一个图形绕着某点旋转180°后能与另一个图形重合,这那么这两个图形成中心对称3.性质:①成中心对称的两个图形全等②对应点的连线经过对称中心且被对称中心平分【典型练习】1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是( )①②③④A.①②③ B.②③④ C.③④① D.④①②2.下列图形中,不是轴对称图形的是( )A.有两个角相等的三角形B.有一个角为45º的直角三角形C.有一个内角为30º,一个内角为120º的三角形D.有一个内角为30º的直角三角形3.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.顶角的平分线C.底边的垂直平分线D.腰上的高说明:等腰三角形的对称轴应该是底边的垂直平分线,而腰上的高与顶角的平分线都是线段,根据对称轴的定义,对称轴应该是直线,另外,过顶点的直线有无数多条,所以C 正确,A、B、D都是错误的,答案为C.4.下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段 D.不等边三角形5.正五角星的对称轴的条数是( )A.1条 B.2条 C.5条 D.10条6.下列图形中有4条对称轴的是( )A.平行四边形B.矩形C.正方形 D.菱形7.下列说法中,正确的是( )A.两个全等三角形组成一个轴对称图形B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的D.等边三角形是有三条对称轴的轴对称图形8.如图,ΔABC和ΔA’B’C’关于直线对称,下列结论中:①ΔABC≌ΔA’B’C’;②∠BAC’≌∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( )A.4个B.3个C.2个 D.1个9.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2 = 5cm,则ΔPMN的周长是( )A. 3cm B. 4cm C. 5cm D. 6cm10.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.等腰梯形D.菱形(注意平行四边形不是轴对称图形,同学们易犯错误)11.在平面上一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.180°B.90°C.270°D.360°12.下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( ) A.正方形、菱形、矩形、平行四边形B.正三角形、正方形、菱形、矩形C.正方形、菱形、矩形D.平行四边形、正方形、等腰三角形13.下列命题正确的个数是( )①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形(注意比较命题①、②的真假)③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称(没有说明被这一点平分)④关于中心对称的两个三角形,对应点连线都经过对称中心A.1B.2C.3D.4 14。

轴对称与中心对称图形

轴对称与中心对称图形

轴对称与中心对称图形图形在数学中扮演着重要的角色,我们常常通过图形来进行分析和研究。

其中,轴对称和中心对称是两种常见的图形特征,本文将对这两种特征进行深入探讨。

一、轴对称图形轴对称图形是指具有轴对称特点的图形。

轴对称意味着图形可以通过一个轴进行镜像对称,即图形和其镜像重合。

简单来说,轴对称图形是左右完全对称的,即使折叠图形,两边也完全相同。

轴对称图形具有以下特点:1. 存在轴线:轴对称图形一定存在轴线,该轴线可以是垂直、水平或倾斜的。

2. 镜像关系:图形沿轴线进行折叠后,两侧完全对称。

3. 完全对称:图形的任意一点关于轴线,其对应点均重合于图形上。

常见的轴对称图形有正方形、长方形、圆形等。

这些图形的特点是左右对称,通过图形中的轴线可以轻松确定这些图形是否轴对称。

例如,对于一个正方形,通过从中心点绘制两条垂直、水平的轴线,可以发现图形可以完全折叠。

二、中心对称图形中心对称图形是指图形具有中心对称性质的图形。

中心对称意味着图形可以通过一个中心点进行旋转180度,使得旋转后的图形与原图形完全一致。

中心对称图形具有以下特点:1. 存在中心点:中心对称图形一定存在中心点,该中心点可以位于图形内部或边界上。

2. 旋转180度:图形绕中心点旋转180度后,与原图形完全一致。

3. 完全一致:图形的任意一点关于中心点,其对应点均重合于图形上。

常见的中心对称图形有正五边形、正六边形等。

这些图形的特点是任意一点到中心点的距离相等,并且旋转180度后的图形与原图形完全相同。

总结:轴对称和中心对称是图形的重要特征,通过观察和分析图形的对称性质,可以更好地理解图形的形态和结构。

轴对称图形以左右对称为主要特点,而中心对称图形以中心旋转180度为主要特点。

研究和了解这些对称性质,有助于我们更深入地理解数学中的图形学知识。

通过对轴对称和中心对称图形的介绍,我们可以更好地理解图形的形态和特点。

图形学是数学中的重要分支,通过研究图形的特征和性质,我们可以将其应用于各个领域,如几何学、计算机图形学等。

中心对称图形和轴对称图形

中心对称图形和轴对称图形

什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称 (Central of symmetrygraph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点(corresponding points )。

理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。

,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后重合的两个点叫做对应点(corresp onding poi nts)。

① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。

② 成中心对称的两个图形全等。

③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。

区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。

中心对称图形常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。

正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。

反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。

中考数学一轮复习:图形的轴对称与中心对称

中考数学一轮复习:图形的轴对称与中心对称

A.3
B.4
C.5
D.6
解析:由折叠知 BE=EF=3,则 EC=5.故 CF= EC2-EF2=4.设 AB=x,则 AF=x, AC=x+4,∴x2+82=(x+4)2.∴x=6.
答案:D
二、填空题 3. 如图, D 是AB边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC上的F 处.若∠B=50°,则∠BDF=________.
解析:由题意得AD=DF,又AD=DB,∴DB=DF,∴∠DBF=∠DFB=50°, ∴∠BDF=80°.
答案:80°
4.如图,△ABC 的顶点都在正方形网格格点上,点 A 的坐标为(-1,4).将△ABC 沿 y 轴翻折到第一象限,则点 C 的对应点 C′的坐标是(3,1).
三、解答题 5.如图,在 10× 10 的正方形网格中,每个小正方形的边长都为 1,网格中有一个格点 △ABC(即三角形的顶点都在格点上 ).
解析:∵四边形 ABCD 是正方形,∴∠ABC=90° .由轴对称可知:∠DBF=∠CBF, 1 ∠ABE=∠DBE,∴∠EBF= ∠ABC=45° . 2
答案:C
一、选择题 1. 如图,在下列四个图案中既是轴对称图形,又是中心对称图形的是(
)
答案:B
2.如图,在矩形纸片 ABCD 中,已知 AD=8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在 F 处,折痕为 AE,且 EF=3,则 AB 的长为( )
知识点二
中心对称图形和中心对称
1.在平面内,一个图形绕某个点旋转 180° ,能与原来的图形重合,这个图形叫做中心 对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点. 2.在平面内,一个图形绕某一定点旋转 180° ,它能够与另一个图形重合,就说这两个 图形关于这个点成中心对称, 这个点叫做对称中心, 旋转后两个图形上能够重合的点叫做关 于对称中心的对称点. 3.中心对称与中心对称图形的区别与联系 区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指具有某种性质的一 类图形;(2) 成中心对称的两个图形的对称点分别在两个图形上,而中心对称图形的对称点 在同一个图形上. 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称 的两个图形看成一个整体,则成为中心对称图形.

轴对称与中心对称

轴对称与中心对称

轴对称与中心对称轴对称和中心对称是几何学中常用的概念,用来描述图形的对称性质。

它们在数学、物理、工程等领域中都有广泛的应用。

本文将介绍轴对称和中心对称的定义、性质以及一些实际应用。

轴对称的概念是指图形相对于某一条线对称,即图形绕某条线旋转180度后,仍能与原来的图形完全重合。

这条线被称为对称轴。

举个例子,我们可以想象一张纸上画了一个直角三角形,如果我们将纸沿着三角形的斜边对折,那么对折后的纸与原来的纸完全重合,这说明三角形是关于对称轴对称的。

中心对称是指图形相对于某一点对称,即图形绕某一点旋转180度后,仍能与原来的图形完全重合。

这个点被称为对称中心。

一个简单的例子是正方形,当我们将正方形绕着其中心旋转180度后,它仍然与原来的正方形完全一样。

轴对称和中心对称在几何学中有一些重要的性质。

首先,它们都是自反的,即一个图形关于对称轴或对称中心对称的话,它自身也是对称的。

其次,轴对称和中心对称都是可传递的,即如果图形A关于对称轴或对称中心对称,图形B关于同样的轴或中心对称,那么图形A 和图形B之间也是对称的。

轴对称和中心对称的应用非常广泛。

在艺术和设计领域,许多作品都利用了对称的美感。

建筑设计中,对称结构可以使建筑更加稳定和美观。

在化学领域,分子的对称性对于分子的性质和反应有着重要的影响。

在物理学中,对称性是研究物理定律和现象的基础。

总结起来,轴对称和中心对称是几何学中常用的概念,用来描述图形的对称性质。

它们有着自反性和传递性的特点,广泛应用于各个领域。

通过研究轴对称和中心对称,我们可以更深入地理解和应用几何学的知识。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

轴对称和中心对称的区别

轴对称和中心对称的区别

轴对称和中心对称的区别轴对称和中心对称是常见的几何概念,用于描述图形在平面中的对称性质。

虽然这两种对称都涉及到相对的镜像,但它们在定义和应用上有一些区别。

本文将详细阐述轴对称和中心对称的区别。

首先,轴对称是指图形相对于某条轴线的镜像对称性质。

给定一个平面上的图形,如果它可以通过沿着某条直线折叠或翻转后重合,那么我们说这个图形是轴对称的。

在轴对称中,轴线通常是指一个直线,可以是任意方向、任意位置的直线。

对称的两边称为轴对称图形的一对对称图形。

例如,正方形、圆形、等边三角形都是轴对称图形,因为它们可以通过某条轴线的镜像对称。

相比之下,中心对称是指图形相对于一个中心点的镜像对称性质。

给定一个平面上的图形,如果它可以通过绕着某个固定中心旋转180度后重合,那么我们说这个图形是中心对称的。

在中心对称中,中心点是固定的,是图形的一个属性。

对称的两边称为中心对称图形的一对对称图形。

例如,正方形、圆形、五角星都是中心对称图形,因为它们可以通过中心点的旋转镜像对称。

轴对称和中心对称的区别在于对称方式不同。

轴对称是图形相对于一条直线的对称,而中心对称是图形相对于一个点的对称。

轴对称可以有无限个轴线,而中心对称只有一个中心点。

此外,在轴对称中,对称的部分可能是平面上的一条直线、一个点或整个图形,而在中心对称中,对称的部分通常是整个图形。

也就是说,在轴对称中,对称图形可以是原图形的真子集,而在中心对称中,对称图形通常与原图形相同。

轴对称和中心对称在几何学中具有重要的应用价值。

轴对称常用于构建可折叠的模型、设计对称图案,以及判断图形性质。

中心对称常用于绘制几何图形、解决几何问题,以及研究图形的几何特征。

综上所述,轴对称和中心对称是描述图形对称属性的几何概念。

轴对称是图形相对于一条直线的对称,中心对称是图形相对于一个点的对称。

它们在对称方式、对称部分和应用领域上有所区别。

了解轴对称和中心对称的区别可以帮助我们更好地理解几何图形的对称性质,并应用于解决几何问题。

平面几何中的轴对称与中心对称

平面几何中的轴对称与中心对称

平面几何中的轴对称与中心对称平面几何是研究平面上的图形、点、线、面等几何概念和性质的数学分支。

在平面几何中,轴对称和中心对称是两个重要的概念。

本文将就轴对称和中心对称的定义、性质以及在实际应用中的意义进行探讨。

一、轴对称轴对称是指图形关于某条直线对称。

这条直线称为轴线或对称轴。

对于一个轴对称图形中的任意一点P,如果存在另一点Q在对称轴上,使得P关于对称轴对称,那么图形关于对称轴是轴对称的。

轴对称图形有许多有趣的性质。

首先,轴对称图形可以通过对称轴进行折叠,两边完全重合。

这意味着轴对称图形在对称轴两侧具有完全相同的形状和大小。

另外,轴对称图形的对称轴上的任意一点都是图形的中点,这与对称轴的定义是相关的。

轴对称在日常生活中有广泛的应用。

比如我们常见的五角星图案、心形图案等都是轴对称的。

在设计和美术领域中,轴对称的运用可以带来更好的平衡感和美观度。

在机械制图和建筑设计中,轴对称的概念也有重要的作用。

二、中心对称中心对称是指图形关于某个点对称。

这个点称为中心对称的中心。

对于一个中心对称图形中的任意一点P,如果存在另一点Q关于中心对称的中心对称,那么图形关于中心对称的中心是中心对称的。

中心对称图形的一个重要性质是,图形中的任意一点与中心对称的中心之间的距离相等。

这意味着中心对称图形的任意两点可以通过中心对称的变换互相转化。

而在轴对称图形中,两个点在对称轴上的距离并不一定相等。

中心对称也是我们生活中常见的一种对称方式。

比如自然界中的雪花、植物的叶子等都具有中心对称的特点。

在艺术作品和装饰品中,中心对称的图案也常常被运用。

轴对称和中心对称在几何学中是两个重要的概念,它们不仅有着理论上的意义,也有着实际的应用。

通过对轴对称和中心对称的研究,我们可以更好地理解图形的性质和特点,扩展我们的几何思维方式。

总结:在平面几何中,轴对称和中心对称是两个基本的对称方式。

轴对称是指图形关于某条直线对称,而中心对称是指图形关于某个点对称。

关于对称知识点总结

关于对称知识点总结

关于对称知识点总结一、对称的定义对称是指一个物体的一部分关于某个中心或轴旋转、翻转等操作后,与另一部分完全重合的性质。

简单地说,就是一个物体可以通过某种变换保持不变。

在几何学中,对称通常涉及到轴对称和中心对称两种类型。

1. 轴对称:轴对称是指存在一个直线,使得图形绕这条直线旋转180度后,图形仍然不变。

这条直线就被称为轴线,而关于轴线的对称变换就被称为轴对称变换。

轴对称的图形通常具有左右对称或上下对称的性质。

2. 中心对称:中心对称是指存在一个点,使得图形绕这个点旋转180度后,图形仍然不变。

这个点就被称为中心,而关于中心的对称变换就被称为中心对称变换。

中心对称的图形通常具有圆形或椭圆形的性质。

二、对称的性质对称具有许多重要的性质,在数学中,这些性质对于解题和证明都具有重要的作用。

下面我们来介绍一些常见的对称性质:1. 对称性质:对称性是物体的一种基本性质。

一个图形如果关于某个中心或轴对称,那么它的两部分互为镜像,即完全重合。

这种性质在几何学中有很广泛的应用,比如在证明定理、计算面积等方面。

2. 对称轴:对称轴是指一个图形能够关于其上的直线旋转180度后仍保持不变的直线。

对称轴通常具有一些特殊的性质,比如在研究多边形的对称性质时,我们常常需要找到多边形的对称轴来简化问题。

3. 对称中心:对称中心是指一个图形能够关于其上的点旋转180度后仍保持不变的点。

对称中心通常具有一些特殊的性质,比如在研究圆的对称性质时,我们常常需要找到圆的对称中心来简化问题。

4. 对称图形:对称图形是指具有轴对称或中心对称性质的图形。

对称图形通常具有美观性和稳定性,因此在设计建筑、家具等方面都得到了广泛的应用。

三、对称的分类在数学中,对称的分类通常以轴对称和中心对称为基础进行划分。

不同类型的对称性质具有不同的特点和应用,下面我们来介绍一些常见的对称类型:1. 轴对称图形:轴对称图形是指具有轴对称性质的图形。

轴对称图形通常都具有左右对称或上下对称的性质,比如矩形、正方形、等腰三角形等都是轴对称图形。

初中数学知识点总结轴对称与中心对称

初中数学知识点总结轴对称与中心对称

知识点总结一、轴对称及轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够及另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:〔1〕关于某条直线对称的两个图形是全等形;〔2〕如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;〔3〕两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;〔4〕如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:〔1〕定义:垂直平分一条线段的直线是这条线的垂直平分线。

〔2〕性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:〔1〕定义:把一个角分成两个相等的角的射线叫做角的平分线.〔2〕性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质及判定:性质:〔1〕对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;〔2〕三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;〔3〕等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

几何中的轴对称与中心对称

几何中的轴对称与中心对称

几何中的轴对称与中心对称几何学是一门研究形状、大小以及其他属性的学科。

在几何学中,轴对称和中心对称是两个重要的概念。

它们被广泛运用在求解几何问题以及设计图形中。

本文将介绍轴对称和中心对称的概念、性质以及应用。

一、轴对称轴对称是指某个物体或图形具有对称轴,对其做关于该轴的镜像变换后仍然与原物体完全相同。

轴对称可以存在于一维、二维和三维空间中。

下面以二维平面中的图形为例来介绍轴对称的相关概念。

1. 轴对称图形的定义在二维平面中,轴对称图形是指可以找到一条直线,该直线平分图形,对该图形进行对称操作后可以完全重合。

2. 轴对称图形的性质轴对称图形有以下几个性质:(1)轴对称图形的每个点关于对称轴都有对称点,即对称轴上的任意点到对称轴的距离与该点的对称点到对称轴的距离相等。

(2)轴对称图形的对称轴是唯一的。

(3)轴对称图形的对称轴上的任意点不动。

3. 轴对称图形的应用轴对称图形在几何学、工程设计和艺术中具有广泛应用。

一些常见的轴对称图形包括圆、正方形、矩形等等。

轴对称的特性使得这些图形在设计和制作中更加方便和美观。

二、中心对称中心对称是指某个物体或图形具有对称中心,对其做关于该中心的旋转180度后仍然与原物体完全相同。

中心对称存在于二维和三维空间中。

下面以二维平面中的图形为例来介绍中心对称的相关概念。

1. 中心对称图形的定义在二维平面中,中心对称图形是指可以找到一个中心点,该中心点与图形上的任意一点的连线经过中心点,并且与连接这两个点的直线垂直。

2. 中心对称图形的性质中心对称图形有以下几个性质:(1)中心对称图形的每个点关于对称中心都有对称点,即中心点与任意一点的连线延长线与对称点相重合。

(2)中心对称图形的对称中心是唯一的。

(3)中心对称图形的对称中心上的任意点不动。

3. 中心对称图形的应用中心对称图形在几何学中常用于设计具有对称美的图形,如蝴蝶形状、心形状等。

中心对称还应用于电子产品的外观设计中,使产品更加吸引人的同时也符合人的审美观。

空间几何中的中心轴与中心对称

空间几何中的中心轴与中心对称

空间几何中的中心轴与中心对称在空间几何中,中心轴和中心对称是两个重要的概念。

它们在研究立体图形的对称性和几何关系时起着重要的作用。

本文将从什么是中心轴和中心对称,它们的性质和应用等方面进行论述,帮助读者更好地理解和应用这两个概念。

一、中心轴中心轴是空间几何中的一个重要概念,它是指一个立体图形的每个点到其对应中心的向量旋转变换的轨迹。

换句话说,中心轴是由立体图形的所有中心点组成的一条曲线或曲面。

中心轴有几个重要的性质值得注意。

首先,中心轴是对称中心的轨迹,即通过旋转变换可以使得立体图形的每个点到中心的距离保持不变。

其次,中心轴可以作为一个标志,判断立体图形是否具有几何对称性。

如果一个立体图形的中心轴存在且具有对称性,那么这个立体图形就是中心对称的。

中心轴在实际应用中有广泛的应用。

例如,在工程设计中,中心轴可以用于判断一个结构物的平衡性和稳定性。

在艺术设计中,中心轴可以用于创作对称美和动态感。

二、中心对称中心对称是另一个空间几何中的重要概念,它是指一个图形沿中心轴对称后,保持形状和大小不变。

换句话说,中心对称是一种特殊的对称关系,通过旋转变换使得一个立体图形的每个点关于中心轴保持对称。

中心对称有一些独特的性质。

首先,中心对称图形可以具有多个中心,即可以以不同的中心轴进行旋转变换。

其次,中心对称可以与其他几何变换结合使用,如平移、旋转和缩放等。

通过这些变换的组合,可以创造出更加丰富多样的对称图形。

中心对称在几何学和图形学的研究中具有重要意义。

它不仅可以帮助我们理解和分析立体图形的对称性和结构,还可以应用于计算机图形学、装饰设计和艺术创作等领域。

结语综上所述,中心轴和中心对称是空间几何中的两个重要概念。

中心轴是由一个立体图形的中心点组成的轨迹,它可以帮助我们判断立体图形是否具有对称性和分析结构。

而中心对称是一种旋转变换,使得一个图形关于中心轴对称。

它不仅可以帮助我们理解图形的对称性和几何关系,还具有广泛的应用价值。

什么是中心对称图形和轴对称图形

什么是中心对称图形和轴对称图形

几何部分一直都是数学学习的重点,一些图形是考试的常考问题。

那么,什么是什么是中心对称图形?什么是轴对称图形?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

需要注意中心对称和中心对称图形不是一个概念。

中心对称是在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称
轴对称图形
数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。

直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

中心对称图形和轴对称图形区别
轴对称图形关键抓两点:一是沿某直线折叠,二是两部分互相重合;
中心对称图形关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。

常见的图形归类
既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。

只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等。

只是中心对称图形的有:平行四边形。

既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。

以上就是一些中心对称图形与轴对称图形的相关信息,供大家参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形、中心对称图形的基本概念
轴对称图形的定义
如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质
1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)
(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)
(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:
①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.
只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.
只是中心对称图形的有:平行四边形等.
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

相关文档
最新文档