弹性力学及有限元法 ANSYS实例演示

合集下载

Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

Ansys机械工程应用精华60例第8例  平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5

弹性力学ansys分析

弹性力学ansys分析

图1为一个承受内压的薄板,在其中心位置有一个小圆孔,相关的结构尺寸参考图1所示。

材料属性:弹性模量E=2e11Pa,泊松比为0.3。

拉伸载荷为:q=3000Pa。

平板的厚度为:t=0.01mm。

通过简单力学分析,该问题属于平面应力问题,又因为平板结构的对称性,所以只要分析其中的1/4即可,如图2所示。

图1 板的结构示意图图2 有限元分析见图一、前处理(1)定义工作文件名:Utility Menu>File>Change Jobname,弹出如图3所示的Change Jobname对话框,在Enter new Jobname后面的输入栏中输入Plate,并将New Log and error files复选框选为yes,单击OK。

图3 定义工作文件名对话框(2)定义工作标题:Utility Menu>File>Change Title,在出现的对话框中输入The Analysis of Plate Stress with small Circle,单击OK。

图4 定义工作标题对话框(3)重新显示:Utility Menu>Plot>Replot。

(4)关闭三角坐标符号:Utility Menu>PlotCtrls>Window Controls>Window options,弹出一个对话框,在Location of triad 后面的下拉式选择框中,选择Not Shown,单击OK。

(5)选择单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出Element Type对话框,单击Add按钮,又弹出如图5所示的Library of Element Types对话框,在选择框中分别选择Structural Solid和Quad 8node 82,单击OK,然后单击Close。

弹性力学ansys求解实例详解

弹性力学ansys求解实例详解

弹性力学a n s y s求解实例详解Revised on November 25, 2020ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。

该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。

二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。

在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。

因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。

在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。

叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。

ansys有限元法解题实例

ansys有限元法解题实例

Ansys有限元课程设计问题一:飞机机翼振动模态分析机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3一、操作步骤:1.选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;2.B(2,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;3.D(1.9,0.45,0)为样曲线上一点;4.C(2.3,0.2,0)为样条曲线曲率最大点,样条曲线的顶点;5.E(1,0.25,0)与点A构成直线,斜率为0.25;6.通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状。

沿Z 方向拉伸,就得到机翼的实体模型;7.创建截面如图:机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3 8.定义网格密度并进行网格划分:选择面单元PLANE42和体单元SOLID45进行划分网格求解。

面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为109.对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束二、有限元处理结果及分析:机翼的各阶模态及相应的变形:一阶振动模态图:二阶振动模态图:三阶振动模态图:四阶振动模态图:五阶振动模态图:命令流:/FILNAM,MODAL/TITLE,Modal analysis of a modal airplane wing /PMETH,OFF,0KEYW,PR_STRUC,1/UIS,MSGPOP,3/PREP7ET,1,PLANE42ET,2,SOLID45MP,EX,1,380012MP,PRXY,1,0.3MP,DENS,1,1.033E-3K,1,K,2,2K,3,2.3,0.2K,4,1.9,0.45K,5,1,0.25/TRIAD,OFF/PNUM,KP,1LSTR,1,2LSTR,5,1BSPLIN,2,3,4,5,,,-1,0,,-1,-0.25,, AL,1,2,3ESIZE,0.25MSHKEY,0MSHAPE,0,2DAMESH,1SAVEESIZE,,10TYPE,2VEXT,1,,,0,0,10/SOLUANTYPE,MODAL MODOPT,SUBSP,5,,,,OFF EQSLV,SPARMXPAND,5,,,,0.001 LUMPM,0PSTRES,0ESEL,U,TYPE,,1NSEL,S,LOC,Z,0D,ALL,ALLALLSEL,ALLSOLVE/POST1SET,LISTSET,FIRSTPLDI,,ANMODE,10,0.5,,0FINISH13/EXIT,ALL问题二:内六角扳手静力分析内六角扳手在日常生产生活当中运用广泛,先受1000N的力产生的扭矩作用,然后在加上200N力的弯曲,分析算出在这两种外载作用下扳手的应力分布。

弹性力学平面问题的有限元法实例

弹性力学平面问题的有限元法实例

分析与决策
(1)何种类型?
平面问题中的结构问题,且为静力问题;
平面问题中具有对称性,为减少[K],简化模型取
1/4;
简化后加约束,(1)在ox面上,位移u是对称的,
位移v是反对称的;在oy面上,位移u是反对称的, 位移v是对称的; (2)在ox面上,载荷对称,在oy 面上,载荷对称;
(1)何种类型?

4.5剖分面(续)
以垂线剖分面。依次单击preprocessor-modelingoperate-booleans-divide-area by line,弹出对话框, 选择对话框中的box单选,用窗口选择两个面元素, 后单击apply,在窗口中选L6-ok,完成面元素剖分。 单击plotctrls菜单中的numbering命令,关闭line numbers –ok; 单击plot菜单中的area命令,用面元素显示模型, 剖分的模型如图所示,由2个面变为4个面,面元素 的编号同时发生变化。
Preprocessor-material
props-material models-弹出define material model behavior 对话框-列表框material models available中, 依次单击structural-linear-elastic-isotropic, 添加弹性模量2.1e+11,泊松比0.3-ok;

操作过程
一、建立新文件
二、类型的选择 Structural-ok;
二、前处理
1、添加单元类型 选择:Quad 4node 42(单元库编号); 具有厚度:选择 option-plane str w/thk(平面应力有厚度);
2、设置实常数(Real constants)

弹性力学及有限元法 ANSYS实例演示课件

弹性力学及有限元法 ANSYS实例演示课件
有限元法是一种数值分析方法,通过 将连续的物理系统离散化为有限数量 的单元,利用这些单元的组合来逼近 真实系统的行为。
它广泛应用于工程领域,用于解决各 种复杂的力学、热学、电磁学等问题 。
有限元法的实现过程
01
离散化
将连续的物理系统划分为有限数量 的离散单元。
整体分析
将所有单元的数学模型组合起来, 形成整个系统的数学模型。
使用ANSYS的几何建模 功能,创建一个矩形薄 板模型。
选择适当的单位制,如 国际单位制(SI)。
为薄板指定弹性模量、 泊松比和密度等材料属 性。
通过与已知解进行比较 ,验证模型的正确性和 准确性。
材料属性设置与网格划分
01
02
03
材料属性
根据问题描述,为薄板设 置弹性模量、泊松比和密 度等材料属性。
局限性
ANSYS软件的学习曲线较陡峭,需要用户具备一定的专业背景和经验;同时,对于某些特殊问题,可 能需要结合其他软件或方法进行求解。
未来研究与发展的方向
多物理场耦合
进一步发展多物理场耦合的有限元分析方法 ,以模拟更复杂的工程问题。
智能化与自动化
研究有限元分析的智能化和自动化技术,提 高分析效率和精度。
网格划分
对薄板进行网格划分,选 择合适的网格密度以提高 求解精度。
网格质量检查
检查网格质量,确保网格 划分满足求解精度要求。
边界条件与载荷设置
边界条件
载荷与边界条件验证
根据实际情况,为薄板的边界设置约 束条件,如固定约束或简支约束。
通过有限元分析理论,验证所设置的 载荷和边界条件的正确性。
载荷设置
结构分析
有限元法能够模拟复杂结构的力学行为,为工程设计 和优化提供依据。

ansys有限元建模与分析实例,详细步骤

ansys有限元建模与分析实例,详细步骤

《有限元法及其应用》课程作业ANSYS应用分析学号:姓名:专业:建筑与土木工程角托架的有限元建模与分析一 、模型介绍本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。

托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。

角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν=托架图(厚度:0.5)二、问题分析因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。

三、模型建立3.1 指定工作文件名和分析标题(1)选择菜单栏Utility Menu →File →Jobname 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket(2)定义分析标题GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。

3.2设置计算类型Main Menu: Preferences … →select Structural → OK3.3定义单元类型PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。

单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。

单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。

ansys有限元分析作业经典案例

ansys有限元分析作业经典案例

a n s y s有限元分析作业经典案例本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March有限元分析作业作业名称输气管道有限元建模分析姓名陈腾飞学号 3070611062班级 07机制(2)班宁波理工学院题目描述:输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。

图1受均匀内压的输气管道计算分析模型(截面图)题目分析:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。

然后根据结构的对称性,只要分析其中1/4即可。

此外,需注意分析过程中的单位统一。

操作步骤1.定义工作文件名和工作标题1.定义工作文件名。

执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。

2.定义工作标题。

执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。

3.更改目录。

执行Utility Menu-File→ change the working directory –D/chen 2.定义单元类型和材料属性1. 设置计算类型ANSYS Main Menu: Preferences →select Structural → OK2.选择单元类型。

执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。

12-ansys弹性力学与有限元法实验报告

12-ansys弹性力学与有限元法实验报告

弹性力学与有限元法实验报告学院班级姓名学号实验一一已知条件板孔问题:(其中板厚,,,泊松比),绘出其变形图和在圆心所在的横截面内MISES应力的分布情况。

二实验目的和要求(1)掌握用ANSYS建立开孔平板几何模型的方法。

(2)掌握用ANSYS划分立开孔平板网格的方法。

(3)掌握用ANSYS对开孔平板加载与求解的方法。

(4)掌握用ANSYS对开孔平板计算结果后处理及分析的方法。

三实验过程概述首先做出一个长2000,宽200的长方形,然后在长方形的中央挖出一个直径为10的孔。

将长方形网格化,把固定点设在中心,在两侧分别设一个向外的力P(60KN)。

最后进行运算,结果用云图表示。

四实验内容分析由云图可以看出沿X轴的应力呈线性分布,大小由中间向外递增,其中四个角处的应力也为最小值。

最大应力值在施力点,为0.237406MPa。

形变只发生在施力点处。

由应力图可知,圆心横截面处的应力从外向内递增,但孔处没有应力。

五实验小结和体会对于网格划分,矩形单元比三角形单元更加接近理论求解结果。

而网格加密会使求解结果收敛于理论值,但是这也会加大计算机的计算量。

因此,对于比较复杂的模型,在进行有限元仿真模拟时既要考虑到计算结果的精确度,又要考虑到经济成本的合理性,这时选择一个合理的网格划分就显得十分重要了。

因此,在进行有限元仿真模拟时要选择合适的网格划分方法,划分合理的网格数量。

有限元法是一种求解连续介质、连续场力学和物理问题的数值方法,是工程分析和科学研究的重要工具;必须是对连续地介质等,因而也存在局限性。

实验二一已知条件如图所示支架中的三根杆件材料相同,弹性模量E=200GPa, 泊松比 =0.3,杆1的横截面面积为200mm2,杆2的横截面面积为300mm2,长为1m,杆3的横截面面积为400mm2。

若P=30kN,试求各杆的应力及铰支点的反力。

二实验目的和要求(1)掌握用ANSYS建立杆件系统几何模型的方法。

(2)掌握用ANSYS划分杆件系统网格的方法。

有限元ansys静力分析一个小例子

有限元ansys静力分析一个小例子

有限元学院:机电学院专业:姓名:学号:^.一、问题描绘如下图的平面,板厚为,左端固定,右端作用 50kg 的均布载荷,对其进行静力剖析。

弹性模量为 210GPa,泊松比为 0.25.二、剖析步骤1.启动 ansys ,进入ansys界面。

2.定义工作文件名进入ANSYS/Multiphsics Change Jobname 的按钮,会弹出的的程序界面后,单击Utility Menu菜单下File中Change Jobname对话框,输入gangban 为工作文件名,点击 ok。

3.定义剖析标题选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为剖析标题,单击 ok。

4.从头显示选择菜单Plot-Replot单击该按钮后,所命令的剖析标题工作文件名出此刻ANSYS 中。

5.选择剖析种类在弹出的对话框中,选择剖析种类,因为此例属于构造剖析,选择菜单Main Menu:Preferences,应选择Structural这一项,单击ok。

6.定义单元种类选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的 Add 按钮,弹出单元库对话框,在资料的单元库中选 Plane82 单元。

即在左边的窗口中选用 Solid 单元,在右边选择 8 节点的 82 单元。

而后单击 ok。

7.选择剖析种类定义完单元种类后,Element Type 对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk ,在 Extra Element output中,选择 Nodal stress,单击close,封闭单元种类对话框。

8.定义实常数选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete履行该命令后,在弹出Real Constants对话框中单击Add 按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后边输入板的厚度 0.01 单击 ok,单击 close 。

ANSYS有限元分析实例

ANSYS有限元分析实例

有限元分析一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。

左边固定,右边受载荷p=20N/mm作用,求其变形情况200100P20一个典型的ANSYS分析过程可分为以下6个步骤:①定义参数②创建几何模型③划分网格④加载数据⑤求解⑥结果分析1定义参数1.1指定工程名和分析标题(1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。

(2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定(3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。

(4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。

1.2定义单位在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI”1.3定义单元类型(1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。

(2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。

(3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。

(4)返回[Element Types]对话框,如下所示(5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

(6)在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定。

(7)再次回到[Element Types]对话框,单击[close]按钮结束,单元定义完毕。

ansys有限元法解题实例

ansys有限元法解题实例

Ansys有限元课程设计问题一:飞机机翼振动模态分析机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3一、操作步骤:1.选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;2.B(2,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;3.D(1.9,0.45,0)为样曲线上一点;4.C(2.3,0.2,0)为样条曲线曲率最大点,样条曲线的顶点;5.E(1,0.25,0)与点A构成直线,斜率为0.25;6.通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状。

沿Z 方向拉伸,就得到机翼的实体模型;7.创建截面如图:机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3 8.定义网格密度并进行网格划分:选择面单元PLANE42和体单元SOLID45进行划分网格求解。

面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为109.对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束二、有限元处理结果及分析:机翼的各阶模态及相应的变形:一阶振动模态图:二阶振动模态图:三阶振动模态图:四阶振动模态图:五阶振动模态图:命令流:/FILNAM,MODAL/TITLE,Modal analysis of a modal airplane wing /PMETH,OFF,0KEYW,PR_STRUC,1/UIS,MSGPOP,3/PREP7ET,1,PLANE42ET,2,SOLID45MP,EX,1,380012MP,PRXY,1,0.3MP,DENS,1,1.033E-3K,1,K,2,2K,3,2.3,0.2K,4,1.9,0.45K,5,1,0.25/TRIAD,OFF/PNUM,KP,1LSTR,1,2LSTR,5,1BSPLIN,2,3,4,5,,,-1,0,,-1,-0.25,, AL,1,2,3ESIZE,0.25MSHKEY,0MSHAPE,0,2DAMESH,1SAVEESIZE,,10TYPE,2VEXT,1,,,0,0,10/SOLUANTYPE,MODAL MODOPT,SUBSP,5,,,,OFF EQSLV,SPARMXPAND,5,,,,0.001 LUMPM,0PSTRES,0ESEL,U,TYPE,,1NSEL,S,LOC,Z,0D,ALL,ALLALLSEL,ALLSOLVE/POST1SET,LISTSET,FIRSTPLDI,,ANMODE,10,0.5,,0FINISH13/EXIT,ALL问题二:内六角扳手静力分析内六角扳手在日常生产生活当中运用广泛,先受1000N的力产生的扭矩作用,然后在加上200N力的弯曲,分析算出在这两种外载作用下扳手的应力分布。

ANSYS有限元教程经典20例

ANSYS有限元教程经典20例
【ANSYS 算例】3.3.7(3) 三梁平面框架结构的有限元分析 针对【典型例题】3.3.7(1)的模型,即如图 3-19 所示的框架结构,其顶端受均布力作用, 用有限元方法分析该结构的位移。结构中各个截面的参数都为: E 3.0 1011 Pa ,
I 6.5 107 m4 , A 6.8 104 m2 ,相应的有限元分析模型见图 3-20。在 ANSYS 平台
!%%%%%%%%%% [典型例题]3.3.7(3) %%% end %%%%%
www.bzfxw.com
【ANSYS 算例】3.4.2(1) 基于图形界面的桁架桥梁结构分析(step by step) 下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执 安的"Old North Park Bridge" (1904 - 1988),见图 3-22。该桁架桥由型钢组成,顶梁及侧梁, 桥身弦杆, 底梁分别采用 3 种不同型号的型钢, 结构参数见表 3-6。 桥长 L=32m,桥高 H=5.5m。 桥身由 8 段桁架组成,每段长 4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间 位置, 假设卡车的质量为 4000kg, 若取一半的模型, 可以将卡车对桥梁的作用力简化为 P1 , P2 和 P3 ,其中 P1= P3=5000 N, P2=10000N,见图 3-23。
图 3-22 位于密执安的"Old North Park Bridge" (1904 - 1988)
www.bzfxw.com
图 3-23 桥梁的简化平面模型(取桥梁的一半) 表 3-6 桥梁结构中各种构件的几何性能参数 构件 惯性矩 m4 横截面积 m2 顶梁及侧梁(Beam1) 桥身弦梁(Beam2) 底梁(Beam3)

ANSYS软件进行有限元计算实例

ANSYS软件进行有限元计算实例

ANSYS软件进行有限元计算实例工字钢梁结构静力分析一工字钢梁两端均为固定端,其截面尺寸为:l=1.0m,a=0.16m,b=0.2m,c=0.02m,d=0.03m。

试建立该工字钢梁的三维实体模型,并在考虑重力的情况下对其进行结构静力分析。

其他已知参数如下:弹性模量E=206GPa;泊松比μ=0.3;材料密度ρ=7800kg/m3;重力加速度g=9.8m/s2;作用力作用于梁的上表面沿长度方向的中线处,其大小为F y=-5000N。

1)单元类型、几何特性、材料特性定义a)定义单元类型:Main Menu: Preprocessor→Element Type→Add/Edit/Delete弹出对话框,单击对话框中的“Add…”按钮,又弹出一对话框,选中其中的“Solid”和“Brick 8node 45”选项,单击“OK”按钮,关闭该对话框返回至上一级对话框。

单击“Close”按钮,关闭该级对话框。

b)定义材料特性:Main Menu: Preprocessor→Material Props→Material Models弹出对话框; 逐级双击右侧框中的Structural→Linear→Elastic →Isotropic,弹出下一级对话框。

在“弹性模量”(EX)文本框中输入“2.06e11”;在“泊松比”(PRXY)文本框中输入“0.3”;单击“OK”按钮,关闭该对话框返回至上一级对话框。

双击右侧框中的Density选项,在弹出的对话框中的“DENS”一栏中输入材料密度“7800”,单击“OK”按钮,关闭该对话框返回至上一级对话框。

关闭材料特性定义对话框。

2)三维实体模型的建立生成关键点●Main Menu: Preprocessor→Modeling →Create →Keypoints→In Active cs弹出对话框; 在Keypoint number 一栏中输入关键点编号“1”,在“X,Y,Z Location inactive cs”一栏中输入关键点1的坐标(-0.08,0,0),单击“Apply”按钮。

弹性力学与有限元ANSYS建模教程模板

弹性力学与有限元ANSYS建模教程模板

第二题:简支梁的计算(4)mm D 201=图示一圆截面简支梁,跨度m L 1=,圆截面直径mm D 20=,作用在梁上的集中力N P 1000=,作用点距离支座A 的距离m a 2.0=,已知梁材料的弹性模量211/102mm N E ⨯=,泊松比为3.0=μ,试分析该梁的挠度ω。

求解步骤: ⑴ 创建单元类型选择Structusral Beam 类的2 node 188,点击OK ,创建单元类型。

(2)定义材料特性Material Props→Material Models→Material Model Number1→Structural→Linear →Elastic→Isotropic。

输入(泊松比)=PE⨯rxy(弹性模量),3.010211=x(3)创建关键点MainMenu→Proprocessor→Modeling→Creat→Keypoints→In Active CS在弹出对话框的NPT文本框中输入1,在“X、Y、Z”文本框中分别输入0,0,0。

单击Apply按钮,在NPT文本框中输入2。

在“X、Y、Z”文本框中分别输入1,0,0。

单击OK按钮,关键点1、2创建如图所示:(4)显示关键点号Utility Menu→PlotCtrls→Numbering。

在弹出的对话框中,将关键点号打开,单击ok按钮。

(5)创建杆件截面MainMenu→Preprocessor→Sections→Beam→Common Sections弹出来一个对话框,在Sub-Type中选择圆形截面,m,点击OK。

.0R01(6)创建直线MainMenu→Preprocessor→Modeling→Create→Lines→ Lines→Straight Line。

弹出拾取窗口,拾取关键点1和2,单击OK按钮。

(7)划分单元MainMenu→Preprocessor→Meshing→MeshTool。

弹出MeshTool对话框,单击“Size Controls”区域中的“Line”中的Set 按钮,弹出拾取框口,拾取直线,单击OK按钮,在NDIV文本框中输入50。

弹性力学ansys求解实例详解

弹性力学ansys求解实例详解

弹性力学a n s y s求解实例详解Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。

该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。

二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。

在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。

因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。

在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。

叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。

弹性力学及有限元法ANSYS实例演示

弹性力学及有限元法ANSYS实例演示

图5.1
图5.2
实例——静力学分析 位移变形图
X方向位移
Y方向位移
Z方向位移
整体位移
实例——静力学分析 受力图
X方向受力
Z方向受力
Y方向受力 整体受力
Mises应力图
实例——动力学分析
动力学分析 单元的选择
由于实体建模单元数多,计算慢,效率低,所以, 这种轴对称模型我们一般用梁单元(beam)和壳单元 (shell)来模拟。这种简化单元具有精度高,运算速度 快,效率高的优点。
ANSYS界面介绍
图2 信息输出窗口
APDL简介
ANSYS参数化设计语言(APDL)是一门可用来自动完 成有限元常规分析操作或通过参数化变量方式建立分析模 型的脚本语言,用建立职能化分析的手段为用户提供自动 完成有限元分析过程,即程序的输入可设定为根据制定的 函数、变量以及选用的分析类型来做决定,是完成优化设 计和自适应网格的最主要的基础。APDL允许复杂的数据 输入,使用户实际上对任何设计或分析属性有控制权,如 分析模型的尺寸、材料的性能、载荷、边界条件施加的位 置和网格的密度等。APDL扩展了传统有限元分析的范围, 并扩展了更高级运算包括灵敏度研究、零件库参数化建模、 设计修改和设计优化等 。
ANSYS界面介绍
(6) 图形窗口:是ANSYS的图形输出区域,一般的交互 式图形操作也在此区域进行。
(7) 状态栏:显示当前操作的有关提示。 (8) 输出窗口:如图2所示。输出窗口接受ANSYS软件运
行时所有的文本输出,比如命令的响应、注释、警告、 错误以及其他的各种信息。一般情况下,这个窗口隐 藏在主窗口后面。
下面我们先简单介绍一下Beam188单元
实例——动力学分析
Beam188单元适合于分析从细长到中等粗短的梁 结构,该单元基于铁木辛哥梁结构理论,并考虑了剪 切变形的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Beam188是三位线性或者二次梁单元。每个节 点有六个或者七个自由度。这个单元非常适合线性 、大角度转动和非线性大应变问题。
实例——动力学分析
下面是单元的几何示意图
实例——动力学分析
建立模型
建模过程和其他类型分析类似,但要注意以下两点: 在模态分析中只有线性行为是有效的。 材料兴致可以是线性的或非线性的、各向同性的或正交
各向异性的、恒定的或和温度相关的。 下面是用梁单元建立的有限元模型。其中轴承部分
APDL简介
APDL具有下列功能
标量参数
数组参数
表达式和函数 分支和循环
重复功能和缩写 宏 用户程序
静力学分析
ANSYS软件中结构静力分析用来分析由于稳态 外载荷引起的系统或部件的位移、应力、应变和力 、静力问题。适合于求解惯性及阻尼的时间相关作 用对结构响应的影响并不显著的问题。静力分析能 够分析稳定的惯性力(如重力和旋转件所受的离心力 )和能够被等效为静载荷的随时间变化的载荷作用下 结构响应的问题。这种分析类型有很广泛的应用, 如确定结构倒角处的应力集中程度,或预测结构中 由温度引起的应力。
图3.6
实例——静力学分析
之后我们会会
得到如图3.7所示
的网格图。我们可
以看到由人为的划分
,所以,线段1和
图3.7
线段2分别是4个单 圈的部分)。
元和2个单元(画红
实例——静力学分析
我们可以看到,由
于是自由划分,所以 网
格的质量比较差,单元
大小不一。为了改善网
格质量,提高计算精度
最后,我们通过旋转的 方式来生成轴。选择前处理 模块中的 Modaling→Operate→ Extrude,再选Elem Ext Opts ,就会弹出如图3.10所示的 对话框。这里,我们要把单 元类型选成实体单元 solid186。在对话框下面有 个单元划分数量的对话框, 至少要写1,这里我们划分4
动力学分析
通常动力分析的工作主要有系统的动力特性分 析(即求结构的固有频率和振型),和系统在受到一 定载荷时的动力响应分析两部分构成。根据系统的 特性可分为线性动力学分析和非线性动力学分析两 类。根据载荷随时间变化的关系可以分为稳态动力 学分析和瞬态动力学分析。
动力学分析
1. 模态分析
模态分析用语确定设计机构或机器部件的振动特性 (固有频率和振型),即结构的固有频率和振型,它们是 承受动态载荷结构设计中的重要参数。同时,也可以作 为其他动力学分析问题的起点,例如瞬态分析、谐响应 分析和谱分析。其中模态分析也是进行谱分析或模态叠 加法谱响应分析或瞬态动力学分析所必须的前期分析过 程。
弹性力学及有限元法 ANSYS实例演示.ppt
ANSYS界面介绍
图1 用户界面
ANSYS界面介绍
在启动ANSYS后,就可以打开如图1所示的图 形用户界面(GUI)。 (1) 应用菜单:包括一些在整个分析过程中都有可能用 到的一些命令,比如文件类命令、选取类命令以及 图形控制和一些参数设置等。 (2) 标准工具栏:包括一些常用的命令按钮,这些按钮 对应的命令都可以在应用菜单中找到对应的菜单项
图4.2
图4.3
实例——静力学分析
加外部激励 选择求解模块里的Define Loads→Apply→Structural→
Force/Moment→On Nodes,如图4.4。然后选择大小齿轮外圆中点 ,如图3.15中所示,点击OK。会弹出图4.5中的对话框。
图4.4
图4.5
实例——静力学分析 选择载荷所沿坐标轴的方向,然后在下方输入载荷
动力学分析
2. 谐响应分 析 任何持续的周期载荷将在结构系统中产生持续的周
期响应(谐响应)。谐响应分析是用于确定线性结构在承 受随时间按正弦(简谐)规律变化的载荷时稳态响应的一 种技术。分析的目的是计算出结构在几种频率下的响应 并得到一些响应值(通常是位移)对频率的曲线。从这些 曲线上可以找到“峰值”响应,并进一步观察峰值频率对 应的应力。该技术只计算结构的稳态受迫振动,而不考 虑发生在激励开始时的瞬态振动。
图3.10
实例——静力学分析
在Areas下拉菜单中 选择About Axis,如图 3.11。然后选择需要旋转 的面,点OK。再选择旋 转轴上的两点,如图3.9 红圈所示,点OK。会弹 出如图3.12所示对话框, 在下面一栏里,填上一周 所分体数量,这里把体一 周分成4份,然后点OK, 得到图3.13。
Nodal,弹出如图5.2所示的对话框,然后选择Nodal Solution查看不
同结果。
图5.1
图5.2
实例——静力学分析 位移变形图
X方向位移
Y方向位移
Z方向位移
整体位移
实例——静力学分析 受力图
X方向受力
Z方向受力
Y方向受力 整体受力
Mises应力图
实例——动力学分析
动力学分析 单元的选择
的大小。这里,载荷的正负号表示沿某一坐标轴正方向 和负方向。单击OK完成加载,加载之后如图4.6所示。
图4.6
实例——静力学分析 求解 选择Solution→Solve,点击OK,开始求解运算, 如图4.6。
图4.6
实例——静力学分析
查看求解结果
在主菜单中选择General Postproc→Plot Result→Contour Plot→
图1.1
实例——静力学分析
点开PARA就会出现如图 1.2所示的对话框。在右边的 对话框里选择文件所在位置 ,左边对话框显示所选文件 里的x_t文件。
这里要注意一下,由于 我们要导入ANSYS里是面, 所以在右下方的Geomelty Type选项要选择Surface Only 或者All Entities。导入之后如 图1.3所示。
ANSYS界面介绍
(3) 命令输入窗口:通过这个窗口,可以直接输入 ANSYS支持的命令,以前所有输入过的命令以下拉 列表的形式便于再次输入。
(4) 快捷菜单:允许用户自定义一些按钮来执行一些 ANSYS命令或者函数。
(5) 主菜单:包括一些基本的ANSYS命令,以处理器 的类型来组织(预处理器、求解器等),具体的命令 是否可用,与ANSYS当前所处的处理器位置有关。
图3.11 图3.12
实例——静力学分析
显示单元。在使用菜单中,选plot→element(图3.15) ,就能显出如图3.14所示的模型了。
图3.13
图3.14
实例——静力学分析
加载求解
确定分析类型 在主菜单中选择求解模块solution,然
后选择Analysis Type→New Analysis命令,出现New
图2.5
实例——静力学分析
划分单元
用前处理模块 中meshing模块来 划分网格。在 meshing模块里, 我们使用划分工具 栏(meshtool)来进 行划分,如图3.1 。
图3.1
实例——静力学分析
首先我们要确定要使 用单元,先选择图3.1中 ①所示选项,会弹出如 图3.2所示的对话框。在 第一个选项单元类型编 号中,我们可以看到, 之前定义的两个单元 plan42和solid186都在里 面,由于我们现在要划
图1.2 图 1.3 导入之后的

实例——静力学分析
定义单元和材料属性
定义单 元 在前处理模块
(Preprocessor)里, 选择Element
Type→
Add/edit/delete,如
图2.1所示
图2.1
实例——静力学分析
之后会弹出如图2.2所示的对话框。根据我们的实 际需要来选择单元,这里我们选择plan42面单元和 solid186体单元,如图2.3所示。
ANSYS界面介绍
(6) 图形窗口:是ANSYS的图形输出区域,一般的交 互式图形操作也在此区域进行。
(7) 状态栏:显示当前操作的有关提示。 (8) 输出窗口:如图2所示。输出窗口接受ANSYS软件
运行时所有的文本输出,比如命令的响应、注释、 警告、错误以及其他的各种信息。一般情况下,这 个窗口隐藏在主窗口后面。
实例
下面用个例子来简单介绍一下动力学分析和静力学分析 。
图3 中速轴
图4 中速轴受力图
实例
上图为二级减速器中速轴,如图3和图4所示,具体参数 如下: 转速: 外载:小齿轮: 大齿轮: 齿数:小齿轮:n1=24,大齿轮:n2=96
实例——静力学分析
静力学分析
模型的导入
为了方便建模,我们一般在CAE软件进 行一些复杂的建模。这里使用solidworks软 件进行建模辅助。我们先在solidworks里建 立齿轮-轴系统的平面图,并储存为中间格 式parasolid(x_t)。然后将平面导入到 ANSYS里:File-Import。在Import里我们 能看到6中可以导入到ANSYS里的文件类 型,我们这里选择PARA(如图1.1)。
图2.2
图2.3
实例——静力学分析
定义材料属性
材料我们在前处理模 块里的Material Props→Material Models中 设置,如图2.4 。
图2.4
实例——静力学分析
点开之后,会看到如图2.5所示的对话框,左侧是以 定义的材料,右侧是具体需要定义的材料属性。这里我 们需要定义的弹性模量,泊松比以及密度。然后关闭对 话框。
由于实体建模单元数多,计算慢,效率低,所 以,这种轴对称模型我们一般用梁单元(beam)和壳 单元(shell)来模拟。这种简化单元具有精度高,运 算速度快,效率高的优点。
下面我们先简单介绍一下Beam188单元
实例——动力学分析
Beam188单元适合于分析从细长到中等粗短的 梁结构,该单元基于铁木辛哥梁结构理论,并考虑 了剪切变形的影响。
动力学分析
相关文档
最新文档