数列求和方法总结

合集下载

数列求和方法归纳

数列求和方法归纳

数列求和方法归纳
1.数列的求和
数列的求和,是在数学中一个重要的概念,是对连续数字之和的描述,是对序列数据的运算总和。

数列的求和就是把一个数列中的数据累加起来,得到最终总和的过程。

这种数据求和的方法可以应用在各种计算任务上,
有助于我们计算各种复杂的数据结构,同时也是应用最广泛的一种计算方法。

2.通用求和公式
数列的求和是由一种通用的公式来描述的,它可以表示为:
S=a1+a2+a3+…+an,其中a1、a2、a3…即为数列中的n个数值,S即为求
和结果。

3.等差数列的求和
等差数列是指其中各项的差值相等的数列,其通用公式为:
S=(a1+an)*n/2,其中,a1为等差数列的第一项,an为最后一项,n为数
列中数值的个数。

4.等比数列的求和
等比数列是指其中各项的比值相等的数列,其通用公式为:
S=(a1*(1-q^n))/(1-q),其中,a1为等比数列的第一项,q为等比数列的
比值,n为数列中数值的个数。

5.组合数列的求和
组合数列是指由多个数字组成的数列,其通用公式为:
S=(a1+a2+a3+…+an)*n!/[(n-1)!*(n-2)!*…*1!],其中,a1、a2、a3…即为组合数列中的n个数值,S即为求和结果。

6.其他求和方法
除了上述数列的求和方法之外,还有其他几种求和的方法。

数列求和方法总结

数列求和方法总结

数列求和方法总结数列是数学中常见的一个概念,它由一系列按特定规律排列的数所组成。

在数列中,常常需要求和,即将数列中的所有元素相加得到一个总和。

求和是数列中的一个重要问题,有着多种方法和技巧,本文将对数列求和方法进行总结。

首先,我们来介绍一些常见的数列求和公式。

1.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,n为项数,d为公差,可以使用以下公式求和:Sn = (a1 + an) * n / 2其中Sn表示前n项和。

2.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,n为项数,r为公比,可以使用以下公式求和:Sn=a1*(1-r^n)/(1-r)其中Sn表示前n项和。

3.调和数列求和公式:调和数列是指an = 1/n,其中n为正整数。

调和数列没有一个简单的求和公式,但它满足以下性质:Sn=1+1/2+1/3+...+1/nSn = ln(n) + γ + O(1/n)接下来,我们将介绍一些常见的数列求和方法。

1.逐项相加法:这是最简单的求和方法,即将数列中的每一项逐个相加得到和。

例如,对于数列1,2,3,4,5,可以逐项相加得到152.折半相加法:这是一种针对特定数列的求和方法。

对于一些具有对称性质的数列,可以将数列折半后再进行求和。

例如,对于数列1,2,3,4,5,可以将其折半为1,5,3,再相加得到93.和差法:这是一种将数列拆分为两个子数列,并利用数列之间的关系求和的方法。

例如,对于等差数列1,2,3,4,5,可以将其拆分为两个等差数列1,3,5和2,4,并利用等差数列求和公式求和后再相加。

4.差分法:对于一些特定数列,其前后项之间存在一定的差值关系。

通过求得这种差值关系,我们可以将数列转化为差分数列,并利用差分数列的性质进行求和。

例如,对于数列1,4,9,16,25,可以发现相邻项之间的差值为3,5,7,可以将其转化为差分数列3,5,7,并利用等差数列求和公式求和后再进行相加。

数列求和各种方法总结归纳

数列求和各种方法总结归纳

故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。

本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。

通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。

一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。

求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。

二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。

求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。

三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。

求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。

四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。

求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。

五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。

求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。

六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。

求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。

七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。

这七种基本的数列求和方法能够解决大部分数列求和问题。

数列求和的八种方法及题型

数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。

例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。

由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。

2、数值加法法:直接对元素逐一加法求和。

例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。

3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。

例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。

将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。

4、数表法:把数列列成表,统计其和。

例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。

下面将介绍数列求和的8种常用方法。

1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。

例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。

例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。

首项与末项之和等于和的平均数乘以项数。

例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。

等差数列的和等于首项乘以项数,再加上项数与公差之积的和。

例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。

5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。

平均数等于数列中的第一项与最后一项的平均值。

例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。

首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。

例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。

可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。

例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。

数列求和的七种方法是什么

数列求和的七种方法是什么

数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

2、倒序相加法。

倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

3、分组求和法。

分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

4、错位相减法。

错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

5、裂项相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

6、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

7、公式法。

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

8、迭加法。

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

数列求和常见的7种方法

数列求和常见的7种方法

解:由log3 x-log 2 3log 3 x log 3 2数列求和的基本方法和技巧一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法小 n⑻ a n) n(n 1),1、等差数列求和公式:S n - — na i d2 22、等比数列求和公式:S nna1a1(1 q n)1 qn 13S n k 丁5 1)k 12n31 2 5S n k [匚1)]k 1 2(q 1)a1 a.q1 q(q 1)4、S nnk2k 11—n(n 1)(2 n 1)6[例1]已知log3 x- , 2 ,求x xlog 2 3 x n的前n项和.2解:由题可知,2n 2n}的通项是等差数列{2n }的通项与等比数列{ + }的通项之积2n由等比数列求和公式得23S n X Xxnx(利用常用公式)“n 、1(1x(1 x ) 21)2n l 1 — 12(2n 1)x n 1 (2n 1)x n (1 x)(1 x)2[例4]求数列2)^2^63,, 2n,前n 项的和.2 2 2 2[例 2]设 S n = 1+2+3+ …+n , n € N *,求 f(n)S n(n 32)S n 1的最大值.解:由等差数列求和公式得S n1 2n(n 1),S n1-(n 1)( n 2) 2(利用常用公式)S n"f(门)(n 32)S n 1n n 2 34n 641 ""—64 n 34 -n5050•••当 n 8 ,即 n = 8 时,f (n)V8max50二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n • b n }的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列• [例 3]求和:S n 1 3x 5x 2 7x 3(2n 1)x n 1 .................................... ①解:由题可知,{(2n 1)x n1}的通项是等差数列设 xS n 1x 3x 2 5x 3 7x 4 (2n ①一②得(1 x)S n 1 2x 2x 2 2x 3再利用等比数列的求和公式得:(1 x)S n{2n — 1}的通项与等比数列{ x n 1}的通项之积1)x n ....................................... ②(设制错位) 2x 42x n 1 (2n 1)x n (错位相减)n 11 x 1 2x (2n 1)x n1 xS n数列相加,就可以得到 n 个(a , a n ).①+②得2S (sin 21cos 21 ) (sin 2 2 cos 2 2 )S = 44.5证明:设S nC 03C 1 5C 2(2n 1)c n ............................................. …•… •①把①式右边倒转过来得S n(2n 1)C:(2n 1)c n 13c nC 0C n(反序)又由 mC nC :m 可得S n(2n 1)C 0(2n 1)c n 3C ;1C n............. C n..……②①+②得2S n (2n2)(C 0 c nn 1C nC n n ) 2(n1) 2n(反序相加)S n(n 1) 2n2求 sin 1 sin 22 sin 23sin 288・2 “sin 89 的值解:设S sin21sin 22 ・2 sin > 3sin 2 88sin 2 89 •… ....①将①式右边反序得S sin 289・2sin 88sin 23sin 22.2 .sin 1 •… ....•② (反序)[例5]求证:C 03C:5C ;(2n 1)C :(n 1)2n又因为 sinx cos(90x), sin 2x cos 2 x 1设S n1 S n24尹4①一②得(1 1)S n2S n2尹1尹 n 2 2* i2n列 ........2n刘………2 2 T3 2 2 2n 尹2n(设制错位)(错位相减)三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) ,再把它与原(反序相加)2 2(sin 89 cos 89 ) = 89题 1 已知函数1)证明:(2)求的值.解:( 1 )先利用指数的相关性质对函数化简,后证明左边=右边2)利用第(1 )小题已经证明的结论可知,两式相加得:所以练习、求值: 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或 常见的数列,然后分别求和,再将其合并即可 1 4, —2 a (2 a 1 [例7]求数列的前n 项和:1 1,— a1 解:设 S n (1 1) ( 4) a将其每一项拆开再重新组合得1S n (1 一a 1 ~~2a当a = 1时, S n7,7) 1F) (1 a(3n 1)n _ 2 - (丄 n 1 a (3n 1)n23n 2) 3n 2)(分组) (分组求和)11丄当a 1 时,S n」(3n 1)n1丄a [例8]求数列{n(n+1)(2n+1)}的前n项和. (3n 1)n2解:设a k k(k 1)(2k 1) 2k33k2nS n k(k 1)(2kk 1 1)n(2k313k2k)将其每一项拆开再重新组合得n3 S n= 2 kk 1 k2(分组)=2(1323n3) 3( 1222n2) (1 2 n)n2(n 11)22 n(n 1)(2 n 1) n(n21) (分组求和)n(n 1)2(n 2)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1) a n f(n 1) f(n) (2)sin1cos n cos(n 1)tan(n 1) tan n(3) an1n(n 1)(4)an(2n)2(2n 1)(2 n 1)1 112(2n 112n 1)(5) an n(n 1)(n 2) 2 n(n 1) (na nn 2 1n(n 1) 2n2(n 1) nn(n 1)12n1n 2n 11(n 1)2n,则S" 1(n 1)2"(7)(8) a n (An B)(A n C) C B(An B An C)a n 一----- I n 1 mn 、n 11 1[例9]求数列 -------1 - 的前n 项和..2 .2.3. n 、n 1 [例 10] [例 11] 解: :设a n则S n..n(裂项)(裂项求和)=(2 ,1) 在数列{a n }中, 解:a n(,3、、2)1 .. . n),又b n-—,求数列{b n }的前n 项的和.1 2n 1 n2 n n 1 2 2数列{b n }的前n 项和1 1 -)(22 a nb nS n8[(1 =8(11 3)8nn 1 1 (3 1 4)1 11 cos0 cos1cos1 cos2cos88 c os891 11 cos0 cos1cos1 cos2cos88 c os89si n1tan(n 1) tan n)sn cos(n 1)1 1 1cos0 cos1 cos1 cos2 cos88 cos89 1 {(ta n 1 tan 0 ) (tan 2tan1 ) (tan 3n求证:设S••• Stan 2 ) [tan 89 tan 88 ]}sin 111)=cos1 sin 211(tan 89 sin 1tan 0 )=—sin 1cot1 =害 sin 21原等式成立(裂项)(裂项求和)(裂项) (裂项求和)答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n.[例12]求cos1 ° + cos2° + cos3° + •…+ cos178° + cos179° 的值.解:设S n= cos1 ° + cos2° + cos3° + ••• + cos178° + cos179°cosn cos(180 n ) 找特殊性质项)二S n= (cos1° + COS179 ) + ( cos2° ++ ( cos89°=0 + cos91 °) + cos90 °cos1 78°) + (cos3° + cos177 °) + •…(合并求和)[例13]数列{a n}: a i 1,a2 3,a3 2,a n 2 a n 1 a n ,求S2002.解:设S2002= a1 a2 a3 a20021, a2 3, a3 2, a n 2 a n 1 a n 可得a7 a41,1, a5a8 3, a9a6k 1 1, a6ka6k 1 a6kS2002 = a13,3,a6ka6 2,2, a10 1, a11 3, a12 2,a6k 33 a6ka2 a32, a6k 4a6k 5a20021, a6k 5 3, a6k 6a6k 6 找特殊性质项)合并求和)[例 i5]求i ii iii iii i 之和.n 个i解:由于iiik 个 i](io k 9i)(找通项及特征)i ii iiiiii in 个i=〔(IO 1i)9Z (io 2i) 9 ](io 3 i) 9!(io n i) 9(分组求和)1 1 2=9(io ioio 3iio n)9(i ii)由等比数列的性质 m n p qa m a n a p a q和对数的运算性质 log a M log a N log a M N 得=io七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来 求数列的前n 项和,是一个重要的方法.(a i993 a i994a i998 )a i999a 2oooa 2ooi a 2oo2=a i999a 2oooa 2ooia 2oo2=a 6k 1a 6k 2a 6k 3a 6k 4=5=(a i a 2 a 3@6k 1a 6k 2a 6) (a 7a 8a i2)a 6k 6 )[例14]在各项均为正数的等比数列中,若a 5a 6 9,求 log 3a i log 3 a 2 log 3 a io 的值.解:设 S n log 3 a 1 log 3 a 2log 3 a io (找特殊性质项)S n (log 3 a i log 3 a io ) (log 3 a 2 log 3 a g ) (log 3 a 5 log 3 a 6)(合并求和)=(log 3a i a io ) (log 3 a 2 a g ) (log 3 a 5 a 6)=log 3 9log 3 9log 3 91 10(10n 1) n9 10 1 9 =丄(10n1 10 9n)81[例16]已知数列{a n}: a n 8(n 1)(n,求3) n(n11)(a n a n 1)的值•解:T (n 1)(a n a n 1) 8(n 1)[- 11] (找通项及特征)(n 1)(n 3) (n 2)( n 4)=8 [1 1] (设制分组)(n 2)(n 4) (n 3)(n 4)1 1 1 1=4 (- ) 8( )(裂项)n2n4 n3n4(n 1)(a n a n 1) 4 ( 1 1 1 1 )8 ( ) (分组、裂项求和)n 1 n 2 n 4 n 1 n 3 n 41 1 1=4 (- -)8-3 4 413—3提高练习:1.已知数列a n中,S n是其前n项和,并且S n 1 4务2(n 1,2丄)◎ 1 , ⑴设数列b n a n 1 2a n(n 1,2,),求证:数列b n是等比数列;a⑵设数列C n n,(n 1,2, ),求证:数列C n是等差数列;22 、2.设二次方程a n x - a n+1X+1=0(n € N)有两根a 和B,且满足 6 a -2 a3 +6 3 =3 .⑴试用3n表示a n 1;2⑵求证;数列他-亍}是等比数列F7⑶当的二-时、求数列%}的通项公式.11U3.数列a n 中,a1 8,a4 2 且满足a n 2 2a n 1 a n n N ⑴求数列a n 的通项公式;⑵设S n |a1 | |a2 | |a n |,求S n ;12。

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法数列求和是数学中的一个基本问题,我们经常会在数学课上遇到。

在解决数列求和的问题时,我们可以使用多种方法来计算数列的和。

下面我将介绍七种常见的方法。

第一种方法是等差数列求和。

等差数列的特点是每一项与前一项的差值都相等,我们可以使用等差数列求和公式来计算其和。

如果一个等差数列的首项为a,公差为d,有n项,则等差数列的和可以表示为Sn = (n/2)(2a + (n-1)d)。

通过这个公式,我们可以快速计算等差数列的和。

第二种方法是等比数列求和。

等比数列的特点是每一项与前一项的比值都相等,我们可以使用等比数列求和公式来计算其和。

如果一个等比数列的首项为a,公比为r,有n项,则等比数列的和可以表示为Sn = a(1 - r^n)/(1 - r)。

通过这个公式,我们可以方便地计算等比数列的和。

第三种方法是求和公式法。

对于一些特殊的数列,我们可以找到一个求和公式来计算其和。

例如,等差数列和等比数列都有对应的求和公式。

在解决数列求和的问题时,我们可以通过寻找求和公式来简化计算过程。

第四种方法是换元法。

有时候,我们可以通过将数列中的项进行变量替换来简化计算过程。

例如,我们可以将数列中的项表示为一个多项式,并对该多项式进行求和。

通过变量替换和多项式求和,我们可以迅速得出数列的和。

第五种方法是递推法。

对于一些没有明显规律的数列,我们可以使用递推法来计算其和。

递推法的思想是通过前几项的和来求解后一项的值。

通过不断累加并递推,我们可以得到数列的和。

第六种方法是分组求和法。

对于一些复杂的数列,我们可以将其划分为多个子数列,并分别计算每个子数列的和。

然后将所有子数列的和相加,即得到整个数列的和。

这个方法常常在解决难题时使用,可以将复杂问题化简为简单问题。

第七种方法是利用数学工具求和。

在现代数学中,我们有各种各样的数学工具可以用来辅助求和。

例如,我们可以使用微积分中的积分来计算一些复杂数列的和。

通过利用数学工具,我们可以更加高效地求解数列求和的问题。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。

数列求和方法总结

数列求和方法总结

数列求和方法总结求数列的前n项和是高中数学的教学重点之一,但有些数列既非等差数列,又非等比数列,那么这些数列该怎样求和呢?下面举例说明这类数列求和的常用方法及解题策略。

一、公式法如果是等差、等比数列可直接利用其求和公式求和,而有些特殊的常见数列则应记住其求和结果,以便于应用。

二、分组求和法有些数列,通过合理分组,从而改变原数列的形式,转换成新数列,再利用公式法求和。

三、聚合法有些数列表示形式复杂,每一项是若干个数的和,这时可先对其第n 项求和,然后将和化简,改变原数列形式,从新组合后再求和,此法称为聚合法。

例1.列2,2+4,2+4+6,2+4+6+8,…,2+4+6+…+2n,…的前n 项和。

解:由an=2+4+6+…+2n=n(n+1)=n2+n 知Sn=(12+1)+(22+2)+(32+3)+…+(n2+n)=(12+22+32+…n2)+(1+2+3+…n)=1/6n(n+1)(2n+1)+1/2n(n+1)=1/3n(n+1)(n+2)四、裂项法此方法是先把数列的第n 项aa分裂为几项的代数和,从而改变了数列的形式,以便可以分组求和或能进行消项处理,进而达到求和的目的。

例2.求数列1, 1/1+2, 11+3,…,1/1+2+3+…+n,…的前n项和。

解:∵an= 1/1+2+3+…+n= 2/n(n+1)=2n- 2/n+1∴sn=2[(1-1/2)+(12-1/3)+…+(1n- 1/n+1)]=2(1- 1/n+1)= 2n/n+1五、归纳法用此方法求数列的和,一般分两步:第一步先用不完全归纳法推测出sn的表达式;第二步再对sn的表达式用数学归纳法证明。

例3.求数列1/1×2, 1/2×3, 1/3×4,…, 1/n(n+1),…的前n项和。

解:∵s1=a1= 1/2,s2=s1+a2= 2/3,s3=s2+a3= 3/4,s4=s3+a4= 4/5,…,于是由不完全归纳法可猜想sn= n/n+1,再由数学归纳法证明上式正确,证明略。

数列求和方法总结

数列求和方法总结

数列求和方法总结1.公式法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可以组成等差或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解。

常见的公式:(1)等差数列求和公式d n n n a a a n S n n 2)1(2)(11-+=+=(2)等比数列求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11n q qq a q na S n(3))12)(1(61 (3212)222++=++++n n n n(4)233332)1(.......321⎥⎦⎤⎢⎣⎡+=++++n n n例1:求和:S n =1+(1+21)+(1+21+41)+........+[1+21+41+…+(21)n-1].2. 奇偶分析法对于正负项间的数列或含有()n1-的运算结构的数列求和,通常要进行奇偶分析分类讨论求解。

例2:等比数列{a n }中.a 1,a 2,a 3分别是下表第一、二、三行中的某一个数.且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{a n }的通项公式;(Ⅱ)如数列{b n }满足b n =a n +(﹣1)n lna n ,求数列b n 的前n 项和s n .练习1:数列{a n }中)(543*1N n n a a n n ∈-=++.(1)若a 1=﹣20,求数列的通项公式;(2)设S n 为{a n }的前n 项和,证明:当a 1>﹣27时,有相同的n ,使S n 与|a n+1+a n |都取最小值.练习2:已知数列{a n }的前4项成等差数列,且满足⎩⎨⎧+=+)(,2)(,22为偶数为奇数n a n a a nn n . (Ⅰ)求数列{a n }的通项公式;(Ⅱ)数列{a n }的前n 项的和为S n ,求满足S n <2012的最大的S n 的值.3. 分段讨论法一般地,求形如{}n a 型数列的前n 项和,常用分段讨论法,通过分段讨论脱去绝对值号后求解。

数列求和7种方法

数列求和7种方法

数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。

1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。

3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。

例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。

二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。

4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。

6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。

三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数列求和的8种方法

数列求和的8种方法

数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。

本文将为您介绍数列求和的8种常用方法。

一、公式法公式法是数列求和中最常用的一种方法。

当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。

例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。

二、差累加法差累加法是一种通过累加差值来求和的方法。

将一个数列中的每一项与其前一项的差相加,即可得到数列的和。

例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。

通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。

这种方法特别适用于等差数列或等比数列求和。

四、数形结合法数形结合法是通过图形化数列来求和的方法。

将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。

这种方法特别适用于几何数列或者满足其中一种几何规律的数列。

五、递推关系法递推关系法是通过递推关系来求和的方法。

数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。

例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。

六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。

通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。

这种方法适用于数列可以被分解成多个简单数列的情况。

七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。

通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。

这种方法特别适用于数列无法通过常规的方法求和的情况。

八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。

数列求和的七种方法总结

数列求和的七种方法总结

数列求和的七种方法总结嘿,朋友们!今天咱就来好好唠唠数列求和的七种超厉害的方法。

先来说说第一个方法,那就是公式法呀!这就好比是一把万能钥匙,专门开那些有固定公式的数列求和大门。

等差数列、等比数列啥的,都有它们自己的公式,直接套用,那答案不就乖乖出来啦!就像你知道了开门的密码,轻轻一转,门就开啦,神奇吧!然后呢,是分组求和法。

这就好像把一堆杂乱的东西分成几类,然后分别去处理。

把数列拆分成几个容易求和的部分,然后各自相加,最后再汇总起来。

就像是把不同颜色的糖果分开,然后数清楚每种有多少颗,加起来就知道总数啦!接着是裂项相消法。

哇哦,这个方法可有意思啦!就像是把一个整体拆成很多小块,然后通过巧妙的计算,让一些项相互抵消掉。

就好比你要把一堵墙拆了,然后有些砖头之间的缝隙刚好可以让它们相互抵消,最后剩下的就是你要的结果啦。

还有错位相减法。

这就像是一场精彩的舞蹈,两个数列在那里跳来跳去,通过错位相乘再相减,得出求和的结果。

是不是很神奇呀?倒序相加法也不能落下呀!想象一下,你从前往后走,再从后往前走,然后把两次走的过程加起来,是不是会有不一样的发现呢?这就是倒序相加法的奇妙之处呀!并项求和法呢,就像是把一些相似的东西合并在一起算。

把相邻的几项合并成一项,然后再去求和,是不是很有创意呀?最后说说归纳猜想法。

有时候啊,我们可以先通过计算前面几项,然后大胆地去猜测后面的结果,再去验证。

这就像是摸着石头过河,虽然有点冒险,但有时候会有意外的惊喜哦!哎呀呀,这七种方法各有各的妙处,就看你怎么去运用啦!在数学的世界里,它们就像是七种不同的武器,帮助我们攻克数列求和这个难关。

大家可得好好掌握呀,说不定哪天就派上大用场啦!总之,数列求和的方法多种多样,只要我们用心去学,就一定能把它们玩转得团团转!加油吧,朋友们!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的求和一、教学目标:1.熟练掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算;3.熟记一些常用的数列的和的公式.二、教学重点:特殊数列求和的方法. 三、教学过程:(一)主要知识:1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)2.公式法:222221(1)(21)1236nk n n n k n =++=++++=∑2333331(1)1232nk n n kn =+⎡⎤=++++=⎢⎥⎣⎦∑ 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+- 的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==k k k k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++= (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

2.错位相减法求和例2.已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。

思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列120,,,,-n a a a a 对应项积,可用错位相减法求和。

解:()1)12(53112--++++=n n a n a a S ()2)12(5332nn a n a a a aS -++++=()()n n na n a a a a S a )12(22221)1(:21132--+++++=---当nn n n a a a S a a )12()1()1(21)1(,121----+=-≠-时 21)1()12()12(1a a n a n a S n n n --++-+=+ 当2,1n S a n ==时 3.裂项相消法求和例3.求和)12)(12()2(534312222+-++⋅+⋅=n n n S n 思路分析:分式求和可用裂项相消法求和. 解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22+--+=+-+=+-+-=+-=k k k k k k k k k k a k12)1(2)1211(21)]121121()5131()311[(2121++=+-+=+--++-+-+=+++=n n n n n n n n a a a S n n 练习:求n n a n a a a S ++++= 32321 答案: ⎪⎪⎩⎪⎪⎨⎧≠----=+=)1()1()1()1()1(2)1(2a a a a n a a a n n S n n n4.倒序相加法求和例4求证:n nn n n nn C n C C C 2)1()12(53210+=+++++ 思路分析:由mn n m n C C -=可用倒序相加法求和。

证:令)1()12(53210n n n n nn C n C C C S +++++=则)2(35)12()12(0121n n n n n n nn C C C C n C n S ++++-++=- mn n m n C C -=nn n n n n C n C n C n C n S )22()22()22()22(2:)2()1(210++++++++=+∴ 有 n n n n n n n n C C C C n S 2)1(])[1(210⋅+=+++++=∴ 等式成立5.其它求和方法还可用归纳猜想法,奇偶法等方法求和。

例5.已知数列{}n n n n S n a a 求],)1([2,---=。

思路分析:n n n a )1(22---=,通过分组,对n 分奇偶讨论求和。

解:nn n a )1(22-+-=,若∑=-+++++-===mk km n m S S m n 212)1(2)2321(2,2 则)1(2)12()2321(2+-=+-=++++-=n n m m m S n若)12(22)12(])1(2[22)12(,1222212-++-=--++-=-==-=-m m m m m m a S S S m n m m m m n 则22)1()1(224222---=-+++-=-+-=n n n n m m⎩⎨⎧---+-=∴)(2)()1(2为正奇数为正偶数n n n n n n S n 预备:已知n n n a a a a x a x a x a x f ,,,,)(321221且+++=成等差数列,n 为正偶数,又n f n f =-=)1(,)1(2,试比较)21(f 与3的大小。

解:⎩⎨⎧=+-+-+-=-=++++=-n a a a a a f n a a a a f n n n 13212321)1()1( ⎩⎨⎧==+∴⎪⎩⎪⎨⎧==+∴2222)(121d n a a n d n n na a n n 12122)1(111-=∴=∴⎩⎨⎧==-++∴n a a d nd n a a nnnn f x n x x x x f )21)(12()21(5)21(321)21()12(53)(3232-++++=-++++=可求得n n n f )21)(12()21(3)21(2---=-,∵n 为正偶数,3)21(<∴f(四)巩固练习:1.求下列数列的前n 项和n S :(1)5,55,555,5555,…,5(101)9n -,…; (2)1111,,,,,132435(2)n n ⨯⨯⨯+;(3)n a =; (4)23,2,3,,,n a a a na ;(5)13,24,35,,(2),n n ⨯⨯⨯+; (6)2222sin 1sin 2sin 3sin 89++++.解:(1)555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++-235505[10101010](101)9819n n n n =++++-=--. (2)∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352n S n n =-+-+-++-+1111(1)2212n n=+--++. (3)∵n a===∴11n S n =++++1)(1n =++++1=.(4)2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…n na + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.(5)∵2(2)2n n n n +=+,∴ 原式222(123=+++…2)2(123n ++⨯+++…)n +(1)(27)6n n n ++=.(6)设2222sin 1sin 2sin 3sin 89S =++++,又∵2222sin 89sin 88sin 87sin 1S =++++,∴ 289S =,892S =. 2.已知数列{}n a 的通项65()2()n nn n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列; 当n 为奇数时,奇数项有12n +项,偶数项有12n -项, ∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-, 当n 为偶数时,奇数项和偶数项分别有2n项, ∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.四、小结:1.掌握各种求和基本方法;2.利用等比数列求和公式时注意分11≠=q q 或讨论。

相关文档
最新文档