2021东城区初三数学一模试题及答案word

合集下载

人教版_2021 年东城区初三一模数学试卷及答案

人教版_2021 年东城区初三一模数学试卷及答案

北京市东城区2021--2021学年第二学期初三综合练习(一)数学试卷 2021.5学校 班级 姓名 考号考生须知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.15-的倒数是A. 5B.15 C. 15- D. -5 2. 2021年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为A. 23×104B. 0.23×106 C . 2.3×105 D. 2.3×104 3.用配方法解方程2410x x ++=,配方后的方程是A .2(2)3x += B .2(2)3x -= C .2(2)5x -= D .2(2)5x +=4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是S 2甲=0.90,S 2乙=1.22,S 2丙=0.43,S 2丁=1.68.在本次射击测试中,成绩最稳定的是 A .甲 B .乙 C .丙 D . 丁5. 如图,下面是利用尺规作AOB ∠的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是作法:○1以O 为圆心,任意长为半径作弧,交OA ,OB 于点D ,E . ○2分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C .○3作射线OC .则OC 就是AOB ∠的平分线. A .SSS B .SAS C .ASA D .AAS6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC ,若12OC OA =,则∠C 等于A. 15°B. 30°C. 45°D. 60°7. 在一个不透明的口袋中有3个完全相同的小球,标号为1,2,3,现随机地取出一个小球,然后放回,再随机地取出一个小球,两次取得小球的标号相同的概率是ww w. A.16 B. 14 C. 13 D. 128. 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P ,Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是二、填空题(本题共16分,每小题4分)9. 已知关于x 的一元二次方程x 2﹣2x +k =0有两个相等的实数根,则k 的值为 . 10. 分解因式:316a a -=________________.11. 已知每个网格中小正方形的边长都是1,图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成. 则阴影部分的面积是 .12. 在平面直角坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于 点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2021个正方形的面积为 .ww w.三、解答题(本题共30分,每小题5分) 13.计算: 101122sin 60()(2013)3---︒+-.14.求不等式 2x +9 ≥ 3(x +2) 的正整数解.15.已知:如图,在△ABC 中,AB =AC ,点D 是BC 的中点,作∠EAB =∠BAD ,AE 边交CB的延长线于点E ,延长AD 到点F ,使AF =AE ,连结CF .求证:BE =CF .16.先化简,再求值:21)3(21)m m -++2(,其中m 是方程210x x +-=的根.17.列方程或方程组解应用题小红到离家2100米的学校参加初三联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍. (1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)18.如图,平行四边形ABCD放置在平面直角坐标系xOy中,已知A(-2,0),B(2,0),D(0,3),反比例函数kyx(x>0)的图象经过点C.(1)求此反比例函数的解析式;(2)问将平行四边形ABCD向上平移多少个单位,能使点B落在双曲线上.四、解答题(本题共20分,每小题5分)19. 中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计该市城区80 000名中学生家长中有多少名家长持赞成态度?20.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点.(1)求证:∠CED=∠DAG;的值.(2)若BE=1,AG=4,求sin AEB21. 如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连结CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.(2)若AB=4,AP∶PC=1∶2,求CF的长.22. 如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)当m为何整数时,原方程的根也是整数.24. 问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.25.在平面直角坐标系xOy 中,抛物线2229y x mx m =-+-与x 轴交于A ,B 两点(点A 在点B的左侧,且OA<OB),与y轴的交点坐标为(0,-5).点M是线段AB上的任意一点,过点M(a,0)作直线MC⊥x轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D(C,D不重合),点P是线段MC上一点,连结CD,BD,PD.(1)求此抛物线的解析式;(2)当1a=时,问点P在什么位置时,能使得PD⊥BD;(3)若点P满足14MP MC=,作PE⊥PD交x轴于点E,问是否存在这样的点E,使得PE=PD,若存在,求出点E的坐标;若不存在,请说明理由. ww w.参考答案及评分标准一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案 D DA CA BC D题 号 9 101112答 案1(4)(4)a a a -+π2-201295()4⨯三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分) 解:原式=3232312⨯+- ………………4分 32 . ………………5分 14.(本小题满分5分)解:2936x x +≥+ , ………………1分 2369x x -≥- , ………………2分3x -≥- , ………………3分 3x ≤. ………………4分∴ 不等式的正整数解为1,2,3 . ………………5分 15.(本小题满分5分)证明:∵ AB =AC ,点D 是BC 的中点,∴ ∠CAD =∠BAD . ………………1分 又∵ ∠EAB =∠BAD ,∴ ∠CAD =∠EAB . ………………2分 在△ACF 和△ABE 中,,,,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴ △ACF ≌△ABE . ………………4分 ∴ BE =CF . ………………5分16.(本小题满分5分) 解:原式=221)63m m m -+++2( =24263m m m -+++2=225m m ++2. ………………3分∵ m 是方程210x x +-=的根,∴ 210m m +-=.∴ 21m m +=.∴ 原式=2)5m m ++2(=7.………………………5分17.(本小题满分5分)解:(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分. ·· 1分 根据题意得:21002100203x x=+ . ·············································· 2分 得 70x = . ·································································· 3分经检验70x =是原方程的解 . ··················································· 4分 答:小红步行的平均速度是70米/分.(2)根据题意得:21002100404570370+=<⨯ . ∴小红能在联欢会开始前赶到. …………………………………5分18.(本小题满分5分)解:(1)∵ 平行四边形ABCD ,A (-2,0),B (2,0),D (0,3),∴ 可得点C 的坐标为(4,3).∴ 反比例函数的解析式为 12y x=. …………………………………3分 (2)将点B 的横坐标2代入反比例函数12y x=中,可得y =6. ∴ 将平行四边形ABCD 向上平移6个单位,能使点B 落在双曲线上.………5分 四、解答题(本题共20分,每小题5分)19.(本小题满分5分)解:(1)调查家长总数为:50÷25%=200人; …………………………1分(2)持赞成态度的学生家长有200﹣50﹣120=30人,故统计图为: …………………………3分(3)持赞成态度的家长有:80000×15%=12000人.………………………………5分20.(本小题满分5分)解:(1)证明:∵ 矩形ABCD ,∴AD∥BC.∴∠CED =∠ADE.又∵点G是DF的中点,∴AG=DG.∴∠DAG =∠ADE.∴∠CED =∠DAG. …………………………2分(2) ∵∠AED=2∠CED,∠AGE=2∠DAG,∴∠AED=∠AGE.∴AE=AG.∵AG=4,∴AE=4.在Rt△AEB中,由勾股定理可求AB=15.∴15sin4ABAEBAE∠==. …………………………5分21.(本小题满分5分)解:(1)证明:连结OC.∵OE⊥AC,∴AE=CE.∴F A=FC.∴∠F AC=∠FCA.∵OA=OC,∴∠OAC=∠OCA.∴∠OAC+∠F AC=∠OCA+∠FCA.即∠F AO=∠FCO.∵F A与⊙O相切,且AB是⊙O的直径,∴F A⊥AB.∴∠FCO=∠F AO=90°.∴PC是⊙O的切线.………………………………………………… 2分(2)∵∠PCO=90°,即∠ACO +∠ACP =90°.又∵∠BCO+∠ACO =90°,∴∠ACP=∠BCO.∵ BO =CO ,∴ ∠BCO =∠B .∴ ∠ACP =∠B .∵ ∠P 公共角,∴ △PCA ∽△PBC .∴ PC PA AC PB PC BC==. ∵ AP ∶PC =1∶2, ∴1=2AC BC . ∵ ∠AEO =∠ACB =90°,∴ OF ∥BC .∴ AOF ABC ∠=∠.∴ 1tan tan 2AOF ABC ∠=∠=. ∴ 1tan 2AF AOF AO ∠==. ∵ AB =4,∴ AO =2 .∴ AF =1 .∴ CF =1 . ………………5分22.(本小题满分5分)解: (1)拼接成的四边形所图虚线所示; ………………2分(2)83+; 847+. …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB =4,左右两边的长等于线段MN 的长,当MN 垂直于BC 时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为3+4)=83+当点E 与点A 重合,点M 与点G 重合,点N 与点C 重合时,线段MN 最长,等于7,此时,这个四边形的周长最大,其值为847+五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分)解:(1)证明: Δ=23)4(1)m m +-+( =26944m m m ++--=225m m ++=2(1)4m ++.∵ 2(1)m +≥0,∴ 2(1)4m ++>0.∴ 无论m 取何实数时,原方程总有两个不相等的实数根. …………2分(2) 解关于x 的一元二次方程x 2+(m +3)x +m +1=0, 得 23(1)4m m x --±++=. ………………3分 要使原方程的根是整数,必须使得2(1)4m ++是完全平方数.设22(1)4m a ++=,则(1)(1)4a m a m ++--=.∵ a +1m +和1a m --的奇偶性相同,可得12,1 2.a m a m ++=⎧⎨--=⎩或12,1 2.a m a m ++=-⎧⎨--=-⎩ 解得2,1.a m =⎧⎨=-⎩或2,1.a m =-⎧⎨=-⎩. ………………5分 将m =-1代入23(1)4m m x --±++=,得 122,0x x =-=符合题意. ………………6分∴当m=-1 时,原方程的根是整数. ……………7分24. (本小题满分7分)解:(1)猜想的结论:MN=AM+CN.……………1分(2)猜想的结论:MN=CN-AM.……………3分证明:在NC截取CF= AM,连接BF.∵∠ABC+∠ADC=180°,∴∠DAB+∠C=180°.又∵∠DAB+∠MAB=180°,∴∠MAB=∠C.∵AB=BC AM=CF,∴△AMB≌△CFB .∴∠ABM=∠CBF,BM=BF.∴∠ABM +∠ABF =∠CBF+∠ABF.即∠MBF =∠ABC.∵∠MBN=12∠ABC,∴∠MBN=12∠MBF.即∠MBN=∠NBF.又∵BN=BN BM=BF,∴△MBN≌△FBN.∴MN=NF.∵NF=CN-CF,∴MN=CN-AM.…………………7分25.(本小题满分8分)解:(1)抛物线2229y x mx m =-+-与y 轴交点坐标为(0,-5), 259m ∴-=-. 解得2m =±.抛物线2229y x mx m =-+-与x 轴交于,A B 两点(点A 在点B 的左侧,且OA OB <), 2m ∴=.∴抛物线的解析式为245y x x =--. ……….. 2 分(2)过D 点作DF x ⊥轴于点F ,ww w.//,CD MF DF MF ⊥,CD MF ∴⊥.PD BD ⊥,.PDC BDF ∴∠=∠.又=90PCD BFD ∠=∠︒,PCD BFD ∴∆∆∽. CD PC FD BF ∴=. (1,8),(3,8),(3,0),(5,0)C D F B --,设Py (1,), 28=82y +∴. 解得152y =-. ∴当P 的坐标为15(1,)2-时, PD BD ⊥. ……….. 4分(3)假设E 点存在,MC EM ⊥,CD MC ⊥,EMP PCD ∴∠=∠.PE PD ⊥,EPM PDC ∴∠=∠.,PE PD =EPM PDC ∴∆∆≌.,PM DC EM PD ∴==.设00(,)C x y ,则00(4,)D x y -,001(,)4P x y . 001244x y ∴-=-.2000124(45)4x x x ∴-=---. 解得01x =或03x =. (1,-2)(3,-2)P P ∴或. 6PC ∴=. 6ME PC ∴==. (7,0)E ∴或(-3,0)E .…………………………………………… 8分。

2021.5东城初三数学一模试题答案定

2021.5东城初三数学一模试题答案定

东城区2021—2021学年度第二学期初三年级统一测试(一)数学参考答案及评分标准 2020.5题号 1 2 3 4 5 6 7 8 答案 B D D C BACC9.12x ≥10.23 11. 5- 12.5 13.501030,2.x y x y +=⎧⎨+=⎩ 14315.○3○4 16.5 三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题每小题7分) 17.解:原式3112-++ -----------------4分32+. -----------------5分18.解:由○1得,x >-6. --------------2分由○2得,x ≤13. --------------4分 ∴不等式的解集为-6<x ≤13. ---------------5分19.解:错误的步骤是:第一步、第二步、第三步、第六步,理由略. --------------4分 正确的结果是1x =. ---------------5分 20.解:(1)∵关于x 的方程ax 2+2x -3=0有两个不相等的实数根,∴△>0,且a ≠0.即22-4(3)0a ⋅->,且a ≠0.∴a >13-且a ≠0. -----------------3分 (2)将1x =代入方程ax 2+2x -3=0, 解得1a =.将1a =代入方程ax 2+2x -3=0, 解方程得 121, 3.x x ==-∴ 方程的另一个根为 3.x =- -----------------5分21.解:(1)证明:∵四边形ABCD 为菱形,∴ CB =CD .又∵ BE ⊥CD 于点E ,DF ⊥BC 于点F , ∴ ∠BEC =∠DFC =90°. ∵ ∠C =∠C , ∴ △BEC ≌△DFC . ∴ EC =FC .∴ BF =DE . -----------------------------------2分(2)设AD 2a ,∵∠A =45°,∴△DEG 和△BEC 都是等腰直角三角形. ∵四边形ABCD 是菱形, ∴=DG DG DEAD BC CE=. 可求出,21)CE a DE a ==.∴=2-1DGAD.-----------------------------------5分 22.解:(1)将点A (4,1)代入m y x=, 得 4m = .∴反比例函数解析式为4y x=. ∵BE ⊥y 轴,AD ⊥y 轴, ∴∠CEB =∠CDA =90°. ∴△CDA ∽△CEB . ∴CD ADCE BE=. ∵14CD CE =, ∴BE =4AD . ∵A (1,4), ∴AD =1. ∴BE =4. ∴x B =4. ∴y B =4x =1. ∴B (4,1).将A (1,4),B (4,1)代入y =kx +b ,得, 4,4 1.k b k b +=⎧⎨+=⎩解得,k =﹣1,b =5.∴一次函数的解析式为 y =﹣x +5. ………………………………3分(2)当MN 长度最大时,点M 的坐标为(2,2). ………………………………5分 23. 解:(1) 证明:如图,连结OB ,则OB OP =.∴CPA OPB OBP ∠=∠=∠. AC AB =,ABC ACB ∠=∠∴.而l OA ⊥,即︒=∠90OAC . ︒=∠+∠∴90CPA ACB . 即︒=∠+∠90OBP ABP . ︒=∠∴90ABO ,AB OB ⊥∴,故AB 是⊙O 的切线. ………………………………2分(2)∵ 1tan 2ACB =∠, ∴ 在Rt △ACP 中,设AP =x ,AC =2x . ∵ 5=OA , ∴ 5OP x =-. ∴ 5OB x =-. AC AB =, ∴2AB x =.∵︒=∠90ABO , 由勾股定理,得222OB AB OA +=.即2225-)25x x +=((). 解得 2x =. ∴ AP =2.∴3OB OP ==. ∴4AB AC ==. ∴ CP =过O 作PB OD ⊥于D , 在ODP △和CAP △中,CPA OPD ∠=∠ ,=∠=∠90CAP ODP ∴ODP △∽CAP △.=PD OP ODPA CP CA∴=.553=⋅=∴CP PA OP PD . 5562==∴PD BP . ………………………………6分 24.解:(1)6; ----------------2分 (2)2,3.8; ------------------4分 (3)①② . -----------------6分25.解: (1)AP ,PQ ,AQ ; ------------------3分(2)如图所示:-----------------5分(3)线段AP 的长度约为3.07cm .-----------------6分26.解:(1)y =ax 2 -2ax -1=2(1)1a x a ---.∴ 抛物线顶点坐标为(1, -a -1). -----------------2分 (2)当a =21时,画出直线y =21x 和抛物线2112y x x =--围成的封闭区域W . ∴ 区域W 内的所有整点坐标分别为(1,0),(2,0),(1,-1),(3,1). -----------------4分(3)○10a >,当a =21时,区域W 内的所有整点有4个;当12a >时,区域W 内的所有整点多于3个;当1132a <<时,区域W 内的所有整点有4个;当a =13时,区域W 内的所有整点有3个;当13a 0<<时,区域W 内的所有整点多于3个.○20a <,当-10a ≤<时,区域W 内的所有整点有0个;当32a -<时,区域W 内的所有整点多于3个.∴ 区域W 内有3个整点,a 的取值范围是3-12a ≤<-. 综上,a 的取值范围是 a =31或3-12a ≤<-. -----------------6分 27. 解:(1)补全图形如图1所示. -----------------1分(2)如图2,连接BM .∵点D 与点E 关于AM 所在的直线对称, ∴AE =AD ,∠MAD =∠MAE . ∵四边形ABCD 是正方形, ∴AD =AB ,∠D =∠ABF =90°.又∵DM = BF , 图1 ∴△ADM ≌△ABF .∴AF =AM ,∠FAB =∠MAD . ∴∠FAB =∠MAE .∴∠FAB +∠BAE =∠BAE +∠MAE . ∴∠FAE =∠MAB .∴△FAE ≌△MAB (SAS ). ∴EF =BM .∵四边形ABCD 是正方形,∴BC =CD =AB =3. 图2 ∵DM =1, ∴CM =2.∴在Rt △BCM 中,BM 2213CM BC +=∴EF 13 -----------------5分(3)当点M 在CD 边上运动时,若使△AEF 为等腰三角形,则tan ∠DAM=1或12. …………………………………7分 28.(1)①如图(答案不唯一)中线弧CD 所在圆的半径r 的最小值为21. -----------------2分 ②当中线弧CD 所在圆与AC ,AB 都相切时,中线弧CD 的弧长l 最大.如图,此时中线弧CD 所在圆的圆心在BC 上,半径为33. 所以最大弧长l 1203232ππ360=⨯=. -----------------3分 (2) △ABC 的中弧线CD 所在圆的圆心P 在CD 的垂直平分线上. 如图,若中弧线CD 在CD 下方,当中弧线CD 所在圆与BC 相切时,可得圆心P 的坐标为(0,5).所以△ABC 的中弧线CD 所在圆的圆心P 的纵坐标5≥t . 如图,若中弧线CD 在CD 上方,当中弧线CD 所在圆与AC 相切时,可得圆心P 的坐标为(25,25-).所以△ABC 的中弧线CD 所在圆的圆心P 的纵坐标25-≤t . 综上,△ABC 的中弧线CD 所在圆的圆心P 的纵坐标t 的取值范围为: 5≥t 或25-≤t . ……………………………………………………7分。

东城区2022届初三一模数学试题及答案

东城区2022届初三一模数学试题及答案

东城区2021-2022学年度第二学期初三年级统一测试(一)数 学 试 卷2022.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。

1.下列立体图形中,主视图是圆的是A B C D2.国家统计局发布2021年国内生产总值达到1140000亿元,比上年增长8.1%.将1140000用科学记数法表示应为 A .411410⨯B .511.410⨯C .61.1410⨯D .51.1410⨯3.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=40°时,∠1的度数为A .30°B .40°C .50°D .60°4.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.将右图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是A B C D 5.五边形的内角和是 A .360°B .540°C .720°D .1080°6.实数,a b 在数轴上对应的点的位置如图所示,下列结论正确的是A .a b >B .a b -<C .a b <D .0a b +<7.某班甲、乙、丙三位同学5次数学成绩及班级平均分的折线统计图如下,则下列判断错误..的是A .甲的数学成绩高于班级平均分B .乙的数学成绩在班级平均分附近波动C .丙的数学成绩逐次提高D .甲、乙、丙三人中,甲的数学成绩最不稳定8.将一圆柱形小水杯固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度(cm)h 与注水时间(s)t 的函数图象大致是二、填空题(本题共16分,每小题2分)9x 的取值范围是___________. 10.分解因式:2222x y -=___________. 11.方程223x x=-的解为___________. 12.写出一个大于1且小于2的无理数___________.13.北京2022年冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”广受大家的喜爱。

北京市2021年中考数学一模试卷含答案解析

北京市2021年中考数学一模试卷含答案解析

中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.54.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.127.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).11.(2分)计算:=.12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.18.(5分)解不等式组,并写出它的所有整数解.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为.b可以推断出学校学生的数学水平较高,理由为.(至少从两个不同的角度说明推断的合理性)24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x 秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.【解答】解:A、正确.∠AOB=40°;B、错误.点O,边OA的位置错误;C、错误.缺少字母A;D、错误.点O的位置错误;故选:A.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【解答】解:∵如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,∴线段AB的中点为原点,即A、B对应的数分别为﹣2、2,则点C表示的数可能是3,故选:C.4.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥【解答】解:两个三角形和三个矩形可围成一个三棱柱.故选:A.5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.【解答】解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12【解答】解:由题意,得外角+相邻的内角=180°且外角=相邻的内角,∴外角=90°,360÷90=4,正多边形是正方形,故选:B.7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟【解答】解:由图象可得,赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,乌龟比兔子先到达60﹣50=10分钟,故选项C错误,乌龟追上兔子用了20分钟,故选项D正确,故选:D.8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④【解答】解:①10岁之前,同龄的女生的平均身高与男生的平均身高基本相同,故该说法错误;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生,故该说法正确;③7~15岁期间,男生的平均身高不一定高于女生的平均身高,如11岁的男生的平均身高低于女生的平均身高,故该说法错误;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大,故该说法正确.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为0.88(结果精确到0.01).【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.11.(2分)计算:=2m+3n.【解答】解:=2m+3n.故答案为:2m+3n12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.【解答】解:∵DE∥AB∴△CDE∽△CAB∴CD:CA=DE:AB∴20:60=DE:10∴DE=毫米∴小管口径DE的长是毫米.故答案为:13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是8.【解答】解:原式=2a2+a﹣(a2﹣4)=2a2+a﹣a2+4=a2+a+4,当a2+a=4时,原式=4+4=8,故答案为:8.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=2.【解答】解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.故答案为2.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD..【解答】解:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是等腰三角形三线合一.【解答】解:利用作图可得到OA=OB,PA=PB,利用等腰三角形的性质可判定OP平分∠AOB.故答案为:等腰三角形的三线合一.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.【解答】解:原式=3﹣1+﹣1﹣2×=1.18.(5分)解不等式组,并写出它的所有整数解.【解答】解:,解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为﹣1<x≤2,∴适合原不等式组的整数解为0,1,2.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.【解答】证明:∵AB=AC,∴∠B=∠C.∵EF垂直平分CD,∴ED=EC.∴∠EDC=∠C.∴∠EDC=∠B.∴DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△>0,即22﹣4(k﹣1)>0,∴k<2;(2)∵k为正整数,∴k=1,此时方程为x2+2x=0,解得x1=0,x2=﹣2.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).【解答】解:(1)∵直线y=x+1经过点A(1,a),∴a=1+1=2,∴A(1,2).∵函数y=的图象经过点A(1,2),∴k=1×2=2;(2)设点P的坐标为(x,),∵OP=OA,∴x2+()2=12+22,化简整理,得x4﹣5x2+4=0,解得x1=1,x2=﹣1,x3=2,x4=﹣2,经检验,x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,∵点P与点A不重合,∴点P的坐标为(﹣1,﹣2),(2,1),(﹣2,﹣1).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.【解答】(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠BAO=∠FAE∵∠FAE=∠BEO∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.(2)解:∵AD=BC,AF=BE,∴DF=CE.∵AF=2DF∴BE=2CE.∵AB=BE=4,∴CE=2.过点A作AG⊥BC于点G.∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=.∴CF=.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是88.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300.b可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.(至少从两个不同的角度说明推断的合理性)【解答】解:整理、描述数据:分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285故答案为:0,0,1,4,2,8,5;分析数据:经统计,乙校的数据中88出现的次数最多,故表格中m的值是88.故答案为:88;得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为400×=300(人).故答案为:300;b (答案不唯一)可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.【解答】(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是 3.0(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.【解答】解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2,∴﹣=2,即﹣=2∴b=2.(2)①∴抛物线的表达式为y=﹣x2+4x﹣3.∵A(x1,y),B(x2,y),∴直线AB平行x轴.∵x2﹣x1=3,∴AB=3.∵对称轴为x=2,∴A(,m).∴当时,m=﹣()2+4×﹣3=﹣.②当y=m=﹣4时,0≤x≤5时,﹣4≤y≤1;当y=m=﹣2时,0≤x≤5时,﹣2≤y≤4;∴m的取值范围为﹣4≤m≤﹣2.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.【解答】解:(1)补全图如图1;(2)①延长AE,交BC于点H.∵AB=AC,AE平分∠BAC,∴AH⊥BC,BH=HC.∵CD⊥BC于,∴EH∥CD.∴BE=DE;②延长FE,交AB于点M.∵AB=AC,∴∠ABC=∠ACB.∵EF∥BC,∴∠AMF=∠AFM.∴AM=AF.∴ME=EF.∵∠MBE=∠FED,在△BEM和△DEF中,,∴△BEM≌△DEF.∴∠ABE=∠FDE.∴DF∥AB;(3).证明:∵DF∥AB,∴∠EDF=∠ABD,∵EF∥BC,∴∠DEF=∠DBC,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠EDF=∠DEF,∴DF=EF,∵tan=,∴.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为60°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【解答】解:(1)∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB==4,∴∠ABO=30°,∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°,故答案为:60°;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E.∴D(4,5)或(﹣2,5).∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴P'D=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴BD=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或﹣5≤m≤﹣1.精品Word 可修改欢迎下载。

人教版_北京市东城区初三一模数学试卷及答案

人教版_北京市东城区初三一模数学试卷及答案

东城区2021-2021学年度第一次模拟检测初三数学学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴上画点C,则与点C 对应的实数是A. 2B.3C. 4D. 52. 当函数()212y x=--的函数值y随着x的增大而减小时,x的取值范围是A.x>0B.x<1C.1x>D.x为任意实数3.若实数a,b满足a b>,则与实数a,b对应的点在数轴上的位置可以是4.如图,O是等边△ABC的外接圆,其半径为3. 图中阴影部分的面积是A.πB.3π2C.2πD.3π5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°6.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做x个,那么可列方程为A.30456x x=+B.30456x x=-C.30456x x=-D.30456x x=+7.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等. 如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是A.15B.25C.12D.358.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF ;弯道为以点O为圆心的一段弧,且错误!未指定书签。

2021年中考一模考试《数学卷》含答案解析

2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。

2021年北京市东城区九年级下学期中考一模数学试卷带讲解

2021年北京市东城区九年级下学期中考一模数学试卷带讲解
A. B. C. D.
B
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】解:475000000=4.75×108.
乘出租车
乘坐
公交车
乘坐地铁
骑共享
单车
共需步行
(公里)
总用时
(分钟)
费用
(元)
方式1

2.0
47
4
方式2

56
3
方式3

1.6
78
3
方式4

1.8803方式5 Nhomakorabea√

1.5
60
6
方式6


1.6
56
6
方式7


1.7
55
6
方式8


1.5
57
6
方式9

0.2
32
41
根据表格中提供的信息,小青得出以下四个推断:
【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.
18.已知 ,求代数式 的值.
【分析】化简代数式,再整体代入即可.
【详解】解: ,
= ,
= ,
∵ ,
∴ ,
故代数式 的值为 .
【点睛】本题考查了代数式求值,解题关键是熟练化简整式,再整体代入求值.
【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.

北京市东城区2021年中考数学模拟真题含答案(附解析)

北京市东城区2021年中考数学模拟真题含答案(附解析)

北京市东城区2021年中考数学模拟真题含答案(附解析)一、单选题1、已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.2、甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【分析】由两个班的平均数相同得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C 不正确;由两个班的中位数得出选项D不正确;即可得出结论.【解答】解:A、甲、乙两班的平均水平相同;正确;B、甲、乙两班竞赛成绩的众数相同;不正确;C、甲班的成绩比乙班的成绩稳定;不正确;D、甲班成绩优异的人数比乙班多;不正确;故选:A.【点评】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.3、已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.4、小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.5、如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.6、如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.7、小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x =﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.8、式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.9、如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元【分析】根据正数与负数的意义,支出即为负数;【解答】解:收入100元+100元,支出100元为﹣100元,故选:A.【点评】本题考查正数与负数的意义;能够理解正数与负数的实际意义是解题的关键.10、观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二、填空题1、若7﹣2×7﹣1×70=7p,则p的值为﹣3 .【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.2、分式的值为0,则x的值是 1 .【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.3、不等式组的最小整数解是0 .【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为 1 .【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.5、分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.三、解答题(难度:中等)1、小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6 ;(3)7天后,小云背诵的诗词最多为23 首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.2、某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.3、如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.4、计算:(π﹣2019)0+4sin60°﹣+|﹣3|【分析】先计算零指数幂、代入三角函数值、化简二次根式、取绝对值符号,再计算乘法,最后计算加减可得.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂的规定、熟记特殊锐角三角函数值及二次根式与绝对值的性质.5、在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG ⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.6、为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.7、如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【分析】(1)将点A(﹣3,0)、B(9,0)和C(0,4)代入y=ax2+bx+c即可求出该二次函数表达式,因为CD垂直于y轴,所以令y=4,求出x的值,即可写出点D坐标;(2)设A1F交CD于点G,O1F交CD于点H,求出顶点坐标,证△FGH∽△FA1O1,求出GH的长,因为Rt△A1O1F 与矩形OCDE重叠部分的图形是梯形A1O1HG,所以S重叠部分=﹣S△FGH,即可求出结果;(3)当0<t≤3时,设O2C2交OD于点M,证△OO2M∽△OED,求出O2M=t,可直接求出S==OO2×O2M=t2;当3<t≤6时,设A2C2交OD于点M,O2C2交OD于点N,分别求出直线OD与直线A2C2的解析式,再求出其交点M的坐标,证△DC2N∽△DCO,求出C2N=(6﹣t),由S==﹣可求出S与t的函数表达式.【解答】解:(1)∵抛抛线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),∴抛物线的解析式为y=a(x+3)(x﹣9),∵点C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴抛物线的解析式为:y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4),令﹣x2+x+4=4,解得,x=0或x=6,∴点D的坐标为(6,4);(2)如图1所示,设A1F交CD于点G,O1F交CD于点H,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=﹣4=,∵GH∥A1O1,∴△FGH∽△FA1O1,∴,∴,解得,GH=1,∵Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG,∴S重叠部分=﹣S△FGH=A1O1•O1F﹣GH•FH==;(3)①当0<t≤3时,如图2所示,设O2C2交OD于点M,∵C2O2∥DE,∴△OO2M∽△OED,∴,∴,∴O2M=t,∴S==OO2×O2M=t×t=t2;②当3<t≤6时,如图3所示,设A2C2交OD于点M,O2C2交OD于点N,将点D(6,4)代入y=kx,得,k=,∴y OD=x,将点(t﹣3,0),(t,4)代入y=kx+b,得,,解得,k=,b=﹣t+4,∴直线A2C2的解析式为:y=x﹣t+4,联立y OD=x与y=x﹣t+4,得,x=x﹣t+4,解得,x=﹣6+2t,∴两直线交点M坐标为(﹣6+2t,﹣4+t),故点M到O2C2的距离为6﹣t,∵C2N∥OC,∴△DC2N∽△DCO,∴,∴,∴C2N=(6﹣t),∴S==﹣=OA•OC﹣C2N(6﹣t)=×3×4﹣×(6﹣t)(6﹣t)=﹣t2+4t﹣6;∴S与t的函数关系式为:S=.【点评】本题考查了待定系数法求解析式,相似三角形的判定与性质,三角形的面积等,解题关键是能够根据题意画图,知道有些不规则图形的面积可转化为几个规则图形的面积和或差来求出.8、如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.9、如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.。

2021年北京市东城区中考数学一模试卷(有答案)

2021年北京市东城区中考数学一模试卷(有答案)

2021年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×1042.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b| B.a>﹣b C.b>a D.a>﹣23.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.4.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.35.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15° B.25° C.30° D.45°6.下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.7.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.59.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣2ab+a= .12.请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是.13.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为万人次,你的预估理由是.16.下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2sin60°+(﹣π)0﹣()﹣1.18.(5分)解不等式>﹣1,并写出它的正整数解.19.(5分)先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.20.(5分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.21.(5分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,3),B (﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标(直接写出结果).22.(5分)列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)助攻(次)个人总得分(分)数据38 27 11 6 3 4 33注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.(5分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.24.(5分)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月﹣﹣2017年1月的月度用户使用情况如表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25.(5分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=a,AD:DE=4:1,写出求DE长的思路.26.(5分)在课外活动中,我们要研究一种凹四边形﹣﹣燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D 逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;…请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC 三者之间满足一定的数量关系,这个数量关系是.(直接给出结论无须证明)29.(8分)设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).(1)已知点D(2,2),E(,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.2021年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据1 314用科学记数法表示应为1.314×103,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b| B.a>﹣b C.b>a D.a>﹣2【考点】29:实数与数轴.【分析】根据数轴上点的位置,利用相反数,绝对值的性质判断即可.【解答】解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选C【点评】此题考查了实数与数轴,弄清实数a,b在数轴上的对应点的位置是解本题的关键.3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是=,故选:B.【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.3【考点】W5:众数;W4:中位数.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;该班同学年龄的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.【点评】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.5.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15° B.25° C.30° D.45°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.6.下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据几何体的三视图,可得答案.【解答】解:A主视图、左视图都是矩形,俯视图是三角形,故A不符合题意;B、主视图、左视图、俯视图都是圆,故B符合题意;C、主视图、左视图是三角形,俯视图是圆,故C不符合题意;D、主视图俯视图都是矩形,左视图是正方形,故D不符合题意;故选:B.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.7.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【考点】P3:轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【考点】C9:一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10.图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B【考点】E7:动点问题的函数图象.【分析】根据各个选项中的路线进行分析,看哪条路线符号图2的函数图象即可解答本题.【解答】解:由题意可得,当经过的路线是A→O→D时,从A→O,y随x的增大先减小后增大且图象对称,从O→D,y随x的增大先减小后增大且函数图象对称,故选项A符号要求;当经过的路线是E→A→C时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项B不符号要求;当经过的路线是A→E→D时,从A→E,y随x的增大先减小后增大,但后来增大的最大值大于于刚开始的值,故选项C不符号要求;当经过的路线是E→A→B时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项D不符号要求;故选A.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,明确各个选项中路线对应的函数图象,利用数形结合的思想解答.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣2ab+a= a(b﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.12.请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是y=x2+1 .【考点】H3:二次函数的性质.【分析】二次函数的解析式是y=ax2+bx+c(a、b、c为常数,a≠0),根据开口向上得出a为正数,根据与y轴的交点坐标为(0,1)得出c=1,写出一个符合的二次函数即可.【解答】解:答案不唯一,如:y=x2+1,故答案为:y=x2+1.【点评】本题考查了二次函数的性质,能熟记二次函数的性质内容是解此题的关键.13.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是k<1 .【考点】AA:根的判别式.【分析】根据判别式的意义得到△=4(k﹣1)2﹣4(k2﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=4(k﹣1)2﹣4(k2﹣1)>0,解得k<1.故答案为k<1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【考点】L3:多边形内角与外角.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.15.北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为0~2.4 万人次,你的预估理由是北京每年人口平均增长的人数呈减小的趋势.【考点】V5:用样本估计总体;VC:条形统计图.【分析】根据北京市2012﹣2016年常住人口增量条形统计图,判断北京每年人口平均增长的人数的变化趋势,据此得出结论.【解答】解:根据北京市2012﹣2016年常住人口增量条形统计图,可得北京每年人口平均增长的人数呈减小的趋势,故2017年北京市常住人口增量约为0~2.4万人次,故答案为:0~2.4,北京每年人口平均增长的人数呈减小的趋势.(答案不唯一)【点评】本题主要考查了用样本估计总体以及条形统计图的应用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.16.下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是垂直平分线的判定和圆的定义.【考点】N3:作图—复杂作图;M5:圆周角定理.【分析】利用基本作图可判定CD垂直平分AB,即点O为AB的中点,然后可作出以已知线段AB为直径的圆.【解答】解:由作法得CD垂直平分AB,即点O为AB的中点,所以⊙O即为所求作.故答案为垂直平分线的判定和圆的定义.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:﹣2sin60°+(﹣π)0﹣()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣2sin60°+(﹣π)0﹣()﹣1的值是多少即可.【解答】解:﹣2sin60°+(﹣π)0﹣()﹣1==【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.解不等式>﹣1,并写出它的正整数解.【考点】C7:一元一次不等式的整数解;C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5.故不等式的正整数解有1,2,3,4这4个.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•﹣=﹣=,∵2x2+4x﹣1=0.∴x2+2x=x(x+2)=,则原式=8.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出∠C=∠DAC,再由三角形内角和定理求出∠BAC的度数,根据∠BAD=∠BAC﹣∠CAD即可得出结论.【解答】解:∵由题意可得:MN是AC的垂直平分线.∴AD=DC.∴∠C=∠DAC.∵∠C=30°,∴∠DAC=30°.∵∠B=55°,∴∠BAC=95°.∴∠BAD=∠BAC﹣∠CAD=65°.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.21.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标(直接写出结果).【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=2,解之即可得出结论.【解答】解:(1)∵点A(m,3),B(﹣6,n)在双曲线y=上,∴m=2,n=﹣1,∴A(2,3),B(﹣6,﹣1).将(2,3),B(﹣6,﹣1)带入y=kx+b,得:,解得.∴直线的解析式为y=x+2.(2)当y=x+2=0时,x=﹣4,∴点C(﹣4,0).设点P的坐标为(x,0),∵S△ACP=S△BOC,A(2,3),B(﹣6,﹣1),∴×3|x﹣(﹣4)|=××|0﹣(﹣4)|×|﹣1|,即|x+4|=2,解得:x1=﹣6,x2=﹣2.∴点P的坐标为(﹣6,0)或(﹣2,0).【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(2)根据三角形的面积公式以及S△ACP=S△BOC,找出|x+4|=2.22.列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)助攻(次)个人总得分(分)数据38 27 11 6 3 4 33注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.【考点】9A:二元一次方程组的应用.【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.【考点】L5:平行四边形的性质;KM:等边三角形的判定与性质;T7:解直角三角形.【分析】(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;(2)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∴BF=CD;(2)解:∵由(1)知:AB=BF,又∵∠BFA=60°,∴△ABF为等边三角形,∴AF=BF=AB,∠ABE=60°,∵BE⊥AF,∴点E是AF的中点.∵在Rt△BEF中,∠BFA=60°,BE=,∴EF=2,BF=4,∴AB=BF=4,∵四边形BACD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠DCF=∠ABC=60°=∠F,∴CE=EF,∴△ECF是等边三角形,∴CE=EF=CF=2,∴BC=4﹣2=2,。

2021年北京各区初三数学中考一模汇编――几何综合

2021年北京各区初三数学中考一模汇编――几何综合

2021年北京各区初三数学中考一模汇编――几何综合2021年北京初三数学各区一模汇编――几何综合1、(2021东城一模)已知△ABC中,AD是?BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.⑴如图1,若?BAC?60?,①直接写出?B和?ACB的度数;②若AB=2,求AC和AH的长;⑵如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.2、(2021西城一模)正方形ABCD的边长为2. 将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN. ⑴如图1,当0°<α> 45°时,</α>①依题意补全图1;②用等式表示∠NCE与∠BAM之间的数量关系:;⑵当45°<α> 90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;⑶当0° <α> 90°时,若边AD的中点为F,直接写出线段EF的最大值. </α> </α>图1 备用图几何综合(共6 页)第1 页3、(2021海淀一模)如图,已知?AOB?60?,点P为射线OA上的一个动点,过点P作PE?OB,交OB于点E,点D在?AOB内,且满足?DPA??OPE,DP?PE?6. ⑴当DP?PE时,求DE的长;⑵在点P的运动过程中,请判断是否存在一个定点M,使得4、(2021朝阳一模)如图,在菱形ABCD中,∠DAB=60°,点E 为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD 于点F,G.⑴依题意补全图形;⑵若∠ACE=α,求∠AFC 的大小(用含α的式子表示);⑶用等式表示线段AE、AF与CG之间的数量关系,并证明.几何综合(共6 页)第2 页DM的值不变?并证明你的判断. *****B5、(2021丰台一模)如图,Rt△ABC中,∠ACB = 90°,CA = CB,过点C在△ABC外作射线CE,且∠BCE = ?,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.⑴依题意补全图形;⑵当?= 30°时,直接写出∠CMA的度数;⑶当0°CEAB6、(2021石景山一模)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.⑴依题意补全图1;⑵①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2?DQ2?2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.AB PM ABM 几何综合(共6 页)第3 页D图1CD备用图C7、(2021通州一模)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.⑴设∠ONP=α,求∠AMN的度数;⑵写出线段AM,BC之间的等量关系,并证明.8、(2021大兴一模)如图,在等腰直角△A BC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥CF于点G,连接AG.⑴求证:∠ABG=∠ACF;⑵用等式表示线段CG,AG,BG之间的等量关系,并证明.9、(2021顺义一模)如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.⑴依题意补全图形;⑵求证:∠FAC=∠APF;⑶判断线段FM与PN的数量关系,并加以证明.几何综合(共6 页)第4 页*****、(2021房山一模)如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG. ⑴依题意补全图形;αA⑵求∠AGE的度数(用含α的式子表示);⑶用等式表示线段EG与EF,AF之间的数量关系,并说明理由.BCD11、(2021怀柔一模)如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC. ⑴依题意补全图形;⑵求∠ECD的度数;⑶若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.?A?2?,DE?AB于点E,12、(2021门头沟一模)如图,在△ABC 中,AB=AC,点D是BC的中点,DF?AC于点F.⑴?EDB?_________°;(用含?的式子表示)⑵作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180??2?,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含?的锐角三角函数表示)并写出解题思路.AFEBDC几何综合(共6 页)第5 页13、(2021平谷一模)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.⑴补全图1;⑵如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);⑶如图2,当∠BAC=α时,直接写出α,DF,AE的关系.14、(2021延庆一模)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.⑴求证:∠FBC=∠CDF.⑵作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.A B图1备用图*****BCE 几何综合(共6 页)第6 页13、(2021平谷一模)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.⑴补全图1;⑵如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);⑶如图2,当∠BAC=α时,直接写出α,DF,AE的关系.14、(2021延庆一模)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.⑴求证:∠FBC=∠CDF.⑵作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.A B图1备用图*****BCE 几何综合(共6 页)第6 页。

2021北京东城初三一模数学含答案

2021北京东城初三一模数学含答案

东城区2021届初三年级一模考试数学试卷2021.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.某几何体的三视图如图所示,该几何体是A.三棱柱B.正方体C.圆锥D.圆柱2.在平面直角坐标系x O y中,下列函数的图象不过点(1,1)的是A.B.C.D.3.2020年7月23日,中国首颗火星探测器“天问一号”成功发射.2021年2月10日,在经过长达七个月,475000000公里的漫长飞行之后,“天问一号”成功进入火星轨道.将475000000用科学记数法表示应为A.B.C.D.4.一副三角板如图放置,斜边互相平行,且每个三角板的直角顶点都在另一个三角板的斜边上.在图中所标记的角中,与∠1相等的角是A.∠2B.∠3C.∠4D.∠55.如图,△A B C经过旋转或轴对称得到△A B′C′,其中△A B C绕点A逆时针旋转60°的是6.实数a,b,c在数轴上的对应点的位置如图所示.下列式子正确的是A.B.C.D.7.如图,P A,P B是⊙O的切线,切点分别为A,B,P O的延长线交⊙O于点C,连接O A,O B,B C.若A O=2,O P=4,则∠C等于A.B.C.D.8.一个直角三角形木架的两条直角边的边长分别是30c m,40c m.现要做一个与其相似的三角形木架,如果以60c m长的木条为其中一边,那么另两边中长度最大的一边最多可达到A.60c m B.75c m C.100c m D.120c m二、填空题(本题共16分,每小题2分)9.若分式的值为0,则x的值等于.10.分解因式:=.11.用一组a,b的值说明“若,则”是假命题,这组值可以是a=,b=.12.4月23日是世界读书日.甲、乙两位同学在读书日到来之际共购买图书22本,其中甲同学购买的图书数量比乙同学购买的图书数量的2倍多1,求甲、乙两位同学分别购买的图书数量.设甲同学购买图书x本、乙同学购买图书y本,则可列方程组为.13.有人做了掷骰子的大量重复试验,统计结果如下表所示:根据上表信息,掷一枚骰子,估计“出现点数为1”的概率为.(精确到0.001)14.若一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.若关于x的一元二次方程有两个相等的实数根,则c的最小值是.16.小青要从家去某博物馆参加活动,经过查询得到多种出行方式,可选择的交通方式有地铁、公交车、出租车、共享单车等.小青的家到地铁站(或公交)有一段距离,地铁站(或公交站)到该博物馆也有一段距离,需要步行或骑共享单车.共享单车的计价规则为:每30分钟1.5元,不足30分钟的按30分钟计算.出行方式的相关信息如下表(√表示某种出行方式选择的交通工具):根据表格中提供的信息,小青得出以下四个推断:①如果使费用尽可能少,可以选择方式2,3,4;②要使用时较短,且费用较少,可以选择方式1;③如果选择公交和地铁混合的出行方式,平均用时约57分钟;④如果将上述出行方式中的“步行”改为“骑共享单车”,那么,除方式2外,其它出行方式的费用均会超过8元.其中推断合理的是.三、解答题(本题共68分,第17-19题,每小题5分,第20题6分,第21-23题,每小题5分,第24-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:18.已知,求代数式的值.19.尺规作图:如图,已知线段a,线段b及其中点.求作:菱形A B C D,使其两条对角线的长分别等于线段a,b的长.作法:①作直线m,在m上任意截取线段A C=a;②作线段A C的垂直平分线E F交线段A C于点O;③以点O为圆心,线段b的长的一半为半径画圆,交直线E F于点B,D;④分别连接A B,B C,C D,D A;则四边形A B C D就是所求作的菱形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵O A=O C,O B=O D,∴四边形A B C D是.∵A C⊥B D,∴四边形A B C D是菱形.()(填推理的依据).20.解不等式组:并写出其中的正整数解.21.解分式方程:.22.如图,在平行四边形A B C D中,过点D作D E⊥A C于点E,D E的延长线交A B于点F.过点B作B G∥D F交D C于点G,交A C于点M.过点G作G N⊥D F于点N.(1)求证:四边形N E M G为矩形;(2)若A B=26,G N=8,,求线段A C的长.23.在平面直角坐标系x O y中,直线:y=k x+b与直线y=3x平行,且过点A(2,7).(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.直线与直线关于y轴对称,直线y=m与直线,围成的区域W 内(不包含边界)恰有6个整点,求m的取值范围.24.如图,△A B C是⊙O的内接三角形,过点C作⊙O的切线交A B的延长线于点D,O E⊥B C于点E,交C D于点F.(1)求证:∠A+∠O F C=90°;(2)若,求线段C F的长.25.第24届冬季奥林匹克运动会,又称2022年北京冬奥会,将于2022年2月4日至2月20日,在北京市和张家口市同时举行.为了调查同学们对冬奥知识的了解情况,小冬从初中三个年级各随机抽取10人,进行了相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行了整理、描述和分析.下面给出了相关信息:a.30名同学冬奥知识测试成绩的统计图如下:b.30名同学冬奥知识测试成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):c.测试成绩在70≤x<80这一组的是:7073747475757778d.小明的冬奥知识测试成绩为85分.根据以上信息,回答下列问题:(1)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第;(2)抽取的30名同学的成绩的中位数为________;(3)序号为1-10的学生是七年级的,他们的成绩的方差为记;序号为11-20的学生是八年级的,他们的成绩的方差记为,序号为21-30的学生是九年级的,他们的成绩的方差记为,直接写出,,的大小关系;(4)成绩80分及以上记为优秀,若该校初中三个年级420名同学都参加测试,估计成绩优秀的同学约为人.26.在平面直角坐标系x O y中,点,在抛物线上,其中.(1)求抛物线的对称轴(用含a的式子表示);(2)①当时,求的值;②若,求的值(用含a的式子表示);(3)若对于,都有,求的取值范围.27.已知∠M A N=30 ,点B为边A M上一个定点,点P为线段A B上一个动点(不与点A,B重合),点P关于直线A N的对称点为点Q,连接A Q,B Q.点A关于直线B Q的对称点为点C,连接P Q,C P.(1)如图1,若点P为线段A B的中点.①直接写出∠A Q B的度数;②依题意补全图形,并直接写出线段C P与A P的数量关系;(2)如图2,若线段C P与B Q交于点D.①设∠B Q P=α,求∠C P Q的大小(用含α的式子表示);②用等式表示线段D C,D Q,D P之间的数量关系,并证明.28.在平面直角坐标系x O y中,已知正方形,其中,,,.为该正方形外两点,.给出如下定义:记线段的中点为,平移线段M N得到线段,使点分别落在正方形的相邻两边上,或线段与正方形的边重合(分别为点的对应点),线段长度的最小值称为线段到正方形的“平移距离”.(1)如图1,平移线段,得到正方形内两条长度为1的线段,则这两条线段的位置关系是________;若分别为的中点,在点中,连接点与点________的线段的长度等于线段到正方形的“平移距离”;(2)如图2,已知点,若都在直线B E上,记线段到正方形的“平移距离”为,求的最小值;(3)若线段M N的中点的坐标为(2,2),记线段到正方形的“平移距离”为,直接写出的取值范围.参考答案一、选择题(本题共16分,每小题2分)题号12345678答案D C B A D C B C二、填空题(本题共16分,每小题2分)9.010.11.0,-1(答案不唯一)13.0.16714.615.016.①②③三.解答题(本题共68分,第17-19题,每小题5分,第20题6分,第21-23题,每小题5分,第24-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:=………………………………………………………………4分=.……………………………………………………………………5分18.解:………………………………………………………3分.……………………………………………………………4分∵,∴.∴原式=.……………………………………………………………5分19.解:(1)尺规作图如图;……………………………………………………………………………………3分(2)平行四边形;……………………………………………………………………4分对角线互相垂直的平行四边形是菱形.……………………………………………5分20.解:由①去分母,得.去括号,得.移项,得.合并同类项,得.系数化为1,得.∴不等式①的解集为.………………………………………………2分由②移项,得.合并同类项,得.∴不等式②的解集为.………………………………………………4分所以,不等式组的解集为,………………………………………………5分其中正整数解为x=1.…………………………………………………6分21.解:去分母,得.……………………………………………………1分移项,得.………………………………………………………2分合并同类项,得.…………………………………………………………3分系数化为1,得.…………………………………………………………4分经检验,是原方程的解.所以,原方程的解为.…………………………………………………………5分22.(1)证明:∵D E⊥A C,∴∠D E C=90°.∵B G∥D F,∴∠G M E+∠D E C=180°.∴∠G M E=90°.……………………………………………………………1分∵G N⊥D F,∴∠E N G=90°.∴四边形N E M G为矩形.………………………………………………………2分(2)解:∵四边形N E M G为矩形,∴E M=N G=8.在R t△A M B中,∠A M B=90°.∵s i n∠C A B=,A B=26,∴B M=10.…………………………………………………………………3分根据勾股定理,得A M=24.∴A E=A M-E M=16.∵四边形A B C D是平行四边形,∴A D∥B C,A D=B C.∴∠D A E=∠B C M.∵∠A E D=∠C M B=90°,∴△A D E≌△C B M(A A S).∴A E=C M.∴A C=2A E+E M=40.……………………………………………………………………5分23.解:(1)∵直线与直线y=3平行,∴.…………………………………………………………………1分∵直线过点(2,7),∴.∴直线的表达式为.…………………………………………………2分(2)①当时,∵把代入,得,∴直线与直线的交点为.由图形的对称性,可知直线与直线的交点为.结合图象,可知当时,区域W内(不包含边界)整点个数小于6,不符合题意.当时,区域W内(不包含边界)恰有6个整点:(0,2),(0,3),(0,4),(-1,5),(0,5),(1,5).当时,区域W内(不包含边界)整点个数大于6,不符合题意.∴.……………………………………………………………………4分②当时,由图形的对称性,得.综上所述,,或.…………………………………………5分24.方法1:(1)证明:如图,作直径C G,连接B G,则∠G B C=90°.∵O E⊥B C,∴∠1=90°=∠G B C.∴O F∥B G.∴∠G=∠2.∵∠G=∠A,∴∠A=∠2.∵C D是⊙O的切线,∴C G⊥C D.∴∠O C F=90°.∴∠2+∠O F C=90°.∴∠A+∠O F C=90°.……………………………………………………3分(2)∵∠G=∠A=∠2,∴在R t△B C G中,B C=6,,∴B G=4.根据勾股定理,得C G=.∴O C=.在R t△O C F中,,∴.……………………………………………………………6分方法2(1)证明:如图,连接O C,O B,∵O E⊥B C,O B=O C,∴∠2=∠B O C.∴∠A=∠B O C.∴∠A=∠2.∵C D是⊙O的切线,∴C O⊥C D.∴∠2+∠O F C=90°.∴∠A+∠O F C=90°.……………………………………………………3分(2)解:∵O E⊥B C,∴C E=B C=3.∵∠3+∠O F C=90°,∠A+∠O F C=90°.∴∠A=∠3.∴在R t△C E F中,C E=3,,∴E F=.根据勾股定理,得C F=.…………………………………………6分25.解:(1)5;…………………………………………………………………………1分(2)74;…………………………………………………………………………3分(3);…………………………………………5分(4)140.…………………………………………………………………………6分26.解:(1)抛物线的对称轴为直线.………………………2分(2)①当时,;………………………3分②.……………………………………………4分(3)①当时,∵,,∴,只需讨论的情况.若,∵时,y随着x的增大而增大,∴,符合题意;若,∵,∴.∵,∴.∴.∵时,,时,y随着x的增大而增大,∴,符合题意.②当时,令,,此时,但,不符合题意;综上所述,的取值范围是.……………………………………6分27.(1)解:①∠A Q B=90°;②补全图形,如图1,.………………………………………………………………3分(2)①解:如图2,连接C Q,∵点P,点Q关于直线A N对称,点A,点C关于直线B Q对称,∴△A P Q为等边三角形.P Q=A Q.∴C Q=P Q.∴∠C=∠C P Q.…………………………………………………………5分②结论:证明:在D C 上截取D E =D Q ,连接E Q ,∴△D E Q 为等边三角形.∴Q E =Q D .∴……………………………………………7分28.解:(1)平行,;……………………………………………………2分(2)如图,连接.∵,∴C E =1,即B C =C E .∵∠A C B =45°,∴∠C B E =∠C E B =22.5°.∵,∴.∵点为的中点,∴.∴.∴过点P 1作P 1H ⊥B E 于点H ,则为等腰直角三角形.∵,∴.∵,∴.∴的最小值是.……………………………………………………5分(3)……………………………………………………7分。

北京市东城区2021年中考数学一模试卷附答案

北京市东城区2021年中考数学一模试卷附答案

中考数学一模试卷一、单选题(共8题;共16分)1.2019年上半年北京市实现地区生产总值15212.5亿元,同比增长6.3%.总体来看,经济保持平稳运行,高质量发展.将数据15212.5用科学记数法表示应为()A. 1.52125×105B. 1.52125×104C. 0.152125×105D. 0.152125×1062.如图是某几何体的三视图,则该几何体是()A. 长方体B. 正方体C. 圆柱D. 球3.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A. 48°B. 78°C. 92°D. 102°4.把分解因式,结果正确的是( )A. B. C. D.5.点在数轴上的位置如图所示,为原点,,.若点所表示的数为,则点所表示的数为()A. B. C. D.6.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A. CP∥OBB. CP=2QCC. ∠AOP=∠BOPD. CD⊥OP7.将4张长为a、宽为b(a>b)的长方形纸片按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积之和为S1,阴影部分的面积之和为S2.若S1=S2,则a,b满足()A. 2a=5bB. 2a=3bC. a=3bD. a=2b8.党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断错误的是()A. 2018年中部地区农村贫困人口为597万人B. 2017﹣2019年,农村贫困人口数量都是东部最少C. 2016﹣2019年,农村贫困人口减少数量逐年增多D. 2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低二、填空题(共8题;共9分)9.若在实数范围内有意义,则x的取值范围是________.10.随机从1,2,3,4中任取两个不同的数,分别记为a和b,则a+b>4的概率是________.11.若x2+x﹣3=0,则代数式2(x﹣2)(x+2)﹣x(x﹣1)的值是________.12.如果一个正n边形的每个内角为108°,那么这个正n边形的边数为________.13.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为________.14.如图,半径为的⊙与边长为的等边三角形的两边、都相切,连接,则________.15.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所有正确判断的序号是________.16.从﹣1,0,2,3四个数中任取两个不同的数(记作a k,b k)构成一个数对M k={a k,b k)(其中k=1,2,…,s,且将{a k,b k}与{b k,a k}视为同一个数对),若满足:对于任意的M i={a i,b i}和M j={a j,b j)(i≠j,1≤i≤s,1≤j≤s)都有a i+b i≠a j+b j,则s的最大值是________.三、解答题(共12题;共102分)17.计算:|﹣|﹣(3﹣π)0+2cos60°+()﹣1.18.解不等式组:.19.观察下列分式方程的求解过程,指出其中错误的步骤,说明错误的原因,并直接给出正确结果.解分式方程:1﹣=.解:去分母,得2x+2﹣(x﹣3)=3x,…步骤1去括号,得2x+2﹣x﹣3=3x,…步骤2移项,得2x﹣x﹣3x=2﹣3,…步骤3合并同类项,得﹣2x=﹣1,…步骤4解得x=.…步骤5所以,原分式方程的解为x=.…步骤620.已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根.(1)求a的取值范围;(2)若此方程的一个实数根为1,求a的值及方程的另一个实数根.21.如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.(1)求证:BF=DE;(2)分别延长BE和AD,交于点G,若∠A=45°,求的值.22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象在第一象限内交于点A,B,且该一次函数的图象与y轴正半轴交于点C,过A,B分别作y轴的垂线,垂足分别为D,E.已知A(1,4),=.(1)求m的值和一次函数的解析式;(2)若点M为反比例函数图象在A,B之间的动点,作射线OM交直线AB于点N,当MN长度最大时,直接写出点M的坐标.23.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连接CP并延长,交⊙O于点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若tan∠ACB=,求线段BP的长.24.人口数据又称为人口统计数据,是指国家和地区的相关人口管理部门通过户口登记、人口普查等方式统计得出的相关数据汇总.人口数据对国家和地区的人口状况、管理以及各项方针政策的制定都具有重要的意义.下面是关于人口数据的部分信息.a.2018年中国大陆(不含港澳台)31个地区人口数量(单位:千万人)的频数分布直方图(数据分成6组:0≤x<2,2≤x<4,4≤x<6,6≤x<8,8≤x<10,10≤x≤12):b.人口数量在2≤x<4这一组的是:2.2 2.4 2.5 2.5 2.6 2.73.1 3.6 3.7 3.8 3.9 3.9c.2018年中国大陆(不含港澳台)31个地区人口数量(单位:千万人)、出生率(单位:‰)、死亡率(单位:‰)的散点图:d.如表是我国三次人口普查中年龄结构构成情况:e.世界各国的人口出生率差别很大,出生率可分为五等,最高>50‰,最低<20‰,2018年我国人口出生率降低至10.94‰,比2017年下降1.43个千分点.根据以上信息,回答下列问题:(1)2018年北京人口为2.2千万人,我国大陆(不含港澳台)地区中,人口数量从低到高排列,北京排在第________位.(2)人口增长率=人口出生率﹣人口死亡率,我国大陆(不含港澳台)地区中人口在2018年出现负增长的地区有________个,在这些地区中,人口数量最少的地区人数为________千万人(保留小数点后一位).(3)下列说法中合理的是________.①我国人口基数较大,即使是人口出生率和增长率都缓慢增长的前提下,人口总数仍然是在不断攀升的,所以我国计划生育的基本国策是不变的;②随着我国老龄化越来越严重,所以出台了“二孩政策”,目的是为了缓解老龄化的压力.25.如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120°得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如表:在AP,PQ,AQ的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为________cm.26.在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.直线y=ax与抛物线y=ax2﹣2ax﹣1(a≠0)围成的封闭区域(不包含边界)为W.(1)求抛物线顶点坐标(用含a的式子表示);(2)当a=时,写出区域W内的所有整点坐标;(3)若区域W内有3个整点,求a的取值范围.27.如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.28.在△ABC中,CD是△ABC的中线,如果上的所有点都在△ABC的内部或边上,则称为△ABC 的中线弧.(1)在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点.①如图1,若∠A=45°,画出△ABC的一条中线弧,直接写出△ABC的中线弧所在圆的半径r 的最小值;②如图2,若∠A=60°,求出△ABC的最长的中线弧的弧长l.(2)在平面直角坐标系中,已知点A(2,2),B(4,0),C(0,0),在△ABC中,D是AB的中点.求△ABC的中线弧所在圆的圆心P的纵坐标t的取值范围.答案解析部分一、单选题1.【解析】【解答】15212.5用科学记数法表示应为1.52125×104,故答案为:B.【分析】利用科学记数法的定义及书写要求求解即可。

2021-2022学年北京市东城区普通校中考数学最后一模试卷含解析

2021-2022学年北京市东城区普通校中考数学最后一模试卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.2.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤3.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=12AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A .3B .5C .7D .224.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .22C .32D .335.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .3n mileB .2 n mileC .3n mileD .2 n mile8.计算﹣2+3的结果是( ) A .1B .﹣1C .﹣5D .﹣69.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5)10.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154 C .83D .103二、填空题(本大题共6个小题,每小题3分,共18分) 11.如图,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = __________.12.π﹣3的绝对值是_____.13.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 14.如图,二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴相交于点A 、B ,若其对称轴为直线x =2,则OB –OA 的值为_______.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x 个,则根据题意,可列出方程:__________. 16.函数 2y x =-的定义域是__________.三、解答题(共8题,共72分)17.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,AB =5,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使AE =4,连接OA ,OE ; (2)在BC 边上取点F ,使BF =______,连接OF ; (3)在CD 边上取点G ,使CG =______,连接OG ;(4)在DA 边上取点H ,使DH =______,连接OH .由于AE =______+______=______+______=______+______=______.可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .18.(8分)如图,直线y =﹣x +4与x 轴交于点A ,与y 轴交于点B .抛物线y =﹣12x 2+bx +c 经过A ,B 两点,与x 轴的另外一个交点为C 填空:b = ,c = ,点C 的坐标为 .如图1,若点P 是第一象限抛物线上的点,连接OP 交直线AB 于点Q ,设点P 的横坐标为m .PQ 与OQ 的比值为y ,求y 与m 的数学关系式,并求出PQ 与OQ 的比值的最大值.如图2,若点P 是第四象限的抛物线上的一点.连接PB 与AP ,当∠PBA +∠CBO =45°时.求△PBA 的面积.19.(8分)如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F . (1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)20.(8分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG最小值.21.(8分)计算:2sin30°﹣(π﹣2)0+|3﹣1|+(12)﹣122.(10分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?23.(12分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)24.已知如图,直线y=﹣3x+43与x轴相交于点A,与直线y=33x相交于点P.(1)求点P的坐标;(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出:S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM 之比为1:3若存在直接写出Q点坐标。

2021.5东城区九年级数学一模试题及答案(word版)

2021.5东城区九年级数学一模试题及答案(word版)

2021.5东城区九年级数学一模试题及答案(word版)2021.5东城第二学期初三综合练习(一)数学试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的...1.与?2的和为0的数是 A.?2 B.?1 2 C.1 2 D.22.2021年元旦期间,北京各大公园接待游客达245 000万人次。

其中,“冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是 A.24.5?10 B.2.45?1045 C.2.45?10 D.0.245?10663.一个几何体的三视图如图所示,则这个几何体是 A.圆柱B.球 C.圆锥 D.棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是人数 1 2 8 13 14 4 A. 70,80 B. 70,90 C. 80,90 D. 80,1005.在六张卡片上分别写有π,的概率是 A.1,1.5,?3,0,32六个数,从中任意抽取一张,卡片上的数为无理数1112 B. C. D. 63236.正五边形的每个外角等于A. 36?B. 60?C. 72?D. 108? 7.如图,AB是O的直径,点C在O上,过点C作O的切线交AB的延长线于点D,连接OC,AC. 若?D?50?,则?A的度数是A. 20? B.25?C.40? D.50?8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y(单位:千米)与行驶时间t(单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为A. 43.5B. 50C. 56D. 5819. 如图,已知∠MON =60°,OP是∠MON的角平分线,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是 A.3 B.2 C.23 D.410. 如图1,△ABC和△DEF都是等腰直角三角形,其中?C??EDF?90?,点A与点D重合,点E在AB上,AB?4,DE?2.如图2,△ABC保持不动,△DEF沿着线段AB从点A向点B移动,当点D与点B重合时停止移动.设AD?x,△DEF与△ABC重叠部分的面积为S,则S关于x的函数图象大致是图1 图2 A B C D二、填空题(本题共18分,每小题3分)11.分解因式:mx?4my? . 12.计算8?27?2+3的结果为.13. 关于x的一元二次方程x?3x?m?0有两个不相等的实数根,则实数m的取值范围是.222214. 北京的水资源非常匮乏,为促进市民节水,从2021年5月1日起北京市居民用水实行阶梯水价,实施细则如下表: 北京市居民用水阶梯水价表单位: 元/立方米其中户年用水量分档水量(立方米)第一阶梯第二阶梯第三阶梯 0-180(含)181-260(含) 260以上 5.00 7.00 9.00 水价自来水费 2.07 4.07 6.07 1.57 1.36 水资源费处理费污水某户居民从2021年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费元. 15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.第15题图第16题图 2.2441.516.在平面直角坐标系xOy中,记直线y?x?1为l.点A1是直线l与y轴的交点,以AO1为边做正方形AOC11B1,使点C1落在在x轴正半轴上,作射线C1B1交直线l于点A2,以A2C1为边作正方形A2C1C2B2,使点C2落在在x轴正半轴上,依次作下去,得到如图所示的图形.则点B4的坐标是,点Bn的坐标是.三、解答题(本题共30分,每小题5分)DC17.如图,AC与BD交于点O,OA?OC,OB?OD.O 求证:DC∥AB.AB?1?18. 计算:?3?π??3tan60???????4.?3?0?1?2x?1>3?x?1?,?19.解不等式组:?5?x<x?4.??232a2?4a?4a?2??20.先化简,再求值:,其中a?2?1. 2a?1a?1a?121.列方程或方程组解应用题:2021年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元? 22.在平面直角坐标系xOy中,过点A??4,2?向x轴作垂线,垂足为B,连接AO.双曲线y?边AO的中点C,与边AB交于点D.(1)求反比例函数的解析式;(2)求△BOD的面积.四、解答题(本题共20分,每小题5分)23.如图,△ABC中,?BCA?90?,CD是边AB上的中线,分别过点C,D作BA,BCk经过斜x 的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC?2DE,求sin?CDB的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.4O中,AB为直径,OC?AB,弦CD与OB交于点F,过点D,A分别作⊙O的切线交于点25. 如图,在⊙G,且GD与AB的延长线交于点E.(1)求证:?1??2;F O的半径为3,求AG的长.(2)已知:OF:OB?1:3,⊙26. 在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG?BE于点G,交BD于点F.(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是 .(2) 如图2,若四边形ABCD是菱形, ?ABC?120?,请参考明明思考问题的方法,求 ADAF 的值. BEOFGBEC图1 图25感谢您的阅读,祝您生活愉快。

【中考冲刺】2021年北京市东城区中考数学模拟试卷(附答案)

【中考冲刺】2021年北京市东城区中考数学模拟试卷(附答案)
则取出的2个球都是白球的概率是: .
故答案为: .
【点睛】
本题考查了列表法与树状图法.利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
12. .
【分析】
设这种商品的年平均增长率为x,根据题意列方程即可.
【详解】
解:设这种商品的年平均增长率为x,
【点睛】
本题考查了等边三角形的性质,旋转的性质,等腰三角形的性质,三角形内角和定理,熟练掌握旋转的性质是解题的关键.
15.3
【分析】
根据题意A、B的纵坐标相同,先根据A的横坐标求得纵坐标,把纵坐标代入解析式,解关于x的方程即可求得.
A.线段 B.线段 C.线段 D.线段
8.如图所示,在矩形纸片上剪下一个扇形和一个圆形,使之恰好能围成一个圆锥模型.若扇形的半径为 ,圆的半径为 ,则 与 满足的数量关系是()
A. B. C. D.
二、填空题
9.写出一个二次函数,使其满足:①图象开口向下;②当 时, 随着 的增大而减小.这个二次函数的解析式可以是______.
∴需要测量线段AB的长度,
故选C.
【点睛】
本题考查了圆中三角形的相似,熟练运用同圆或等圆中,同弧或等弧上的圆周角相等是解题的关键.
8.D
【分析】
利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.
【详解】
解:扇形的弧长是: ,
圆的半径为r,则底面圆的周长是2πr,
圆锥的底面周长等于侧面展开图的扇形弧长则得到: =2πr,
故答案是:y=x2+2或y=x2-2.
【点睛】
本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东城区 2021-2021 学年度第一次模拟检测初三数学一、选择题(本题共16 分,每小题2 分)下面各题均有四个选项,其中只有一.个.是符合题意的1.如图,若数轴上的点A,B 分别与实数-1,1 对应,用圆规在数轴上画点C,则与点C 对应的实数是()A. 2B. 3C. 4D. 52. 当函数y =(x -1)2- 2 的函数值y 随着x 的增大而减小时,x 的取值范围是()A.x>0 B.x<1 C.x>1 D.x为任意实数3.若实数a,b满足a>b,则与实数a,b对应的点在数轴上的位置可以是()4.如图,e O是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是()C.2πD.3πA.πB.3π25.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x 轴对称B.关于y 轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°6.甲、乙两位同学做中国结,已知甲每小时比乙少做6 个,甲做30 个所用的时间与乙做45 个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做x 个,那么可列方程为()A.30=45 B.30=45 C.30=45 D.30=45 x x + 6x x - 6x - 6 x x + 6 x7.第24 届冬奥会将于2022 年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高ft滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是()A . 1 5B . 2 5C . 1 2D . 358.如图 1 是一座立交桥的示意图(道路宽度忽略不计), A 为入口, F ,G 为出口,其中直行道为 AB ,CG ,EF ,且 AB =CG =EF ;弯道为以点 O 为圆心的一段弧,且 B »C , C »D , D »E 所对的圆心角均为90°.甲、乙两车由 A 口同 时驶入立交桥,均以 10m/s 的速度行驶,从不同出口驶出. 其间两车到点 O 的距离 y (m )与时间 x (s)的对应关系如图 2 所示.结合题目信息,下列说法错.误.的是 ( )A. 甲车在立交桥上共行驶 8sB. 从 F 口出比从 G 口出多行驶 40mC. 甲车从 F 口出,乙车从 G 口出D. 立交桥总长为 150m二、填空题(本题共 16 分,每小题 2 分)9.若根式x -1 有意义,则实数x 的取值范围是.10.分解因式: m 2n - 4n =.11.若多边形的内角和为其外角和的 3 倍,则该多边形的边数为 .⎛ 12. 化简代数式 x +1+ 1 ⎫ ÷x ,正确的结果为.x -1⎪2x - 2⎝⎭13. 含 30°角的直角三角板与直线 l 1,l 2 的位置关系如图所示,已知 l 1//l 2,∠1=60°. 以下三个结论中正确的是(只填序号).① AC = 2BC ; ②△BCD 为正三角形; ③ AD = BD14. 将直线 y =x 的图象沿 y 轴向上平移 2 个单位长度后,所得直线的函数表达式为 ,这两条直线间的距离为 . 15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选派 (填 “甲”或“乙”),理由是.年份 选手2015 上半年 2015 下半年 2016 上半年 2016 下半年 2017 上半年2017 下半年甲290(冠军) 170(没获奖)292(季军) 135(没获奖)298(冠军) 300(冠军)乙285(亚军) 287(亚军) 293(亚军) 292(亚军) 294(亚军) 296(亚军)3 3 16.已知正方形 ABCD .求作:正方形 ABCD 的外接圆. 作法:如图,(1)分别连接 AC ,BD ,交于点 O ; (2) 以点 O 为圆心,OA 长为半径作e O .e O 即为所求作的圆.请回答:该作图的依据是.三、解答题(本题共 68 分,第 17-24 题,每小题 5 分,第 25 题 6 分,第 26-27,每小题 7 分,第 28 题 8 分)⎛ 1 ⎫-217.计算: 2sin 60︒-(π-2)+ ⎪ ⎝⎭ + 1- .⎧4x +6>x , 18. 解不等式组⎪ x + 2并写出它的所有整数解.⎨ ≥x , ⎪⎩ 319. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点 D . BF 平分∠ABC 交 AD 于点 E ,交 AC 于点 F . 求证:AE =AF .20.已知关于x的一元二次方程x2 -(m +3)x+m +2 = 0 .(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m 的值.21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E,使AE= AB,连接DE,AC.(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O. 若AC=AB=3,cos B =1,求线段CE 的长.322. 已知函数y =3 (x>0)的图象与一次函数y =ax - 2(a ≠ 0)的图象交于点A x(3, n).(1)求实数a 的值;(2) 设一次函数y =ax -2(a ≠0)的图象与y 轴交于点B.若点C 在y 轴上,且S△ABC =2S△AOB,求点 C 的坐标.23.如图,AB 为e O 的直径,点C,D 在e O 上,且点C 是B»D的中点.过点C 作AD 的垂线EF 交直线AD 于点E.(1)求证:EF 是e O 的切线;(2)连接BC. 若AB=5,BC=3,求线段AE 的长.24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对 2014 年至 2018 年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计 2019 年春运期间动车组发送旅客量占比约为 ,你的预估理由是.25. 如图,在等腰△ABC 中,AB =AC ,点 D ,E 分别为 BC , AB 的中点,连接 AD .在线段 AD 上任取一点 P ,连接 PB ,PE . 若 BC =4,AD =6,设 PD =x (当点 P 与点 D 重合时,x 的值为 0),PB +PE =y . 小明根据学习函数的经验,对函数 y 随自变量 x 的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:(说明:补全表格时,相关数值保留一位小数).(参考数据: ≈ 1.414 ,≈1.732 , ≈ 2.236 )(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;2 3 5 x 0 1 2 3 4 5 y5.24.24.65.97.6(3)函数y 的最小值为(保留一位小数),此时点P 在图1 中的位置为.(a ≠0)与x 轴26.在平面直角坐标系xOy 中,抛物线y =a x2 -4ax +3a -2交于A,B 两点(点A 在点B 左侧).(1)当抛物线过原点时,求实数a 的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4 时,求实数 a 的取值范围.27. 已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点 C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC = 60︒①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P(M,O,N 三点不共线,且P,O 在直线MN 的异侧),当∠MPN+∠MON=180°时,则称点P 是线段MN 关于点O 的关联点.图1 是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,⎛ 2 2 ⎫⎛M , ,N 2, - 2 ⎫.在A(1,0),B(1,1),2 2 ⎪ 2 2 ⎪⎪⎝⎭⎝⎭C ()三点中, 是线段MN 关于点O 的关联点的是;20,⎪⎛ (2)如图 3, M (0,1),N 3 , - 1 ⎫⎪,点 D 是线段 MN 关于点 O 的关联点. 2 2 ⎝ ⎭①∠MDN 的大小为 °;②在第一象限内有一点 E( 3m , m ),点 E 是线段 MN 关于点 O 的关联点,判断△MNE 的形状,并直接写出点 E 的坐标;③点 F 在直线 y = -3x + 2 上,当∠MFN ≥∠MDN 时,求点 F 的横坐标 x的取值范围.3F东城区 2017-2018 学年度第一次模拟检测初三数学试题参考答案及评分标准 2018.5一、选择题(本题共 16 分,每小题 2 分) 题号 1 2 3 4 5 6 7 8 答案BBDDCABC二、填空题(本题共 16 分,每小题 2 分) 9. x ≥110. n (m + 2)(m - 2)11. 8 12. 2x 13. ②③14. y = x + 2 , 15. 答案不唯一 ,理由须 支撑推断结论16. 正方形的对角线相等且互相平分,圆的定义三、解答题(本题共 68 分,17-24 题,每题 5 分,第 25 题 6 分,26-27 题,每 小题 7 分,第 28 题 8 分)17.解:原式=2⨯3-1+9+ 3-1----------4 分2=2 3+7------------------------5 分⎧4x +6>x , ① 18. 解: ⎪⎨ x+ 2≥x ,② ⎩⎪ 3由①得, x >-2 ,------------------1 分 由②得, x ≤1, ------------------2 分 ∴不等式组的解集为-2<x ≤1.2所有整数解为-1, 0, 1. ---------------------5 分19.证明:∵∠BAC=90°,∴∠FBA+∠AFB=90°. -------------------1 分∵AD⊥BC,∴∠DBE+∠DEB=90°.---------------- 2 分∵BE 平分∠ABC,∴∠DBE=∠FBA. -------------------3 分∴∠AFB=∠DEB. -------------------4 分∵∠DEB=∠FEA,∴∠AFB=∠FEA.∴AE=AF. -------------------5 分20. (1)证明:∆=(m+3)2 -4(m+2)= (m+1)2∵(m+1)2 ≥0 ,∴无论实数m 取何值,方程总有两个实根. -------------------2 分(m + 3)±(m +1),(2)解:由求根公式,得x1,2 =2∴ x1 =1,x2 =m+2 .∵方程有一个根的平方等于4,∴(m+2)2=4.解得m=-4 ,或m=0 . -------------------5 分21.(1) 证明:∵平行四边形 ABCD , ∴ AB =DC , AB ∥DC .∵AB =AE , ∴ AE =DC , AE ∥DC .∴四边形 ACDE 为平行四边形. ------------------2 分 (2) ∵ AB =AC , ∴ AE =AC .∴平行四边形 ACDE 为菱形. ∴AD ⊥CE .∵ AD ∥BC , ∴BC ⊥CE.在 Rt △EBC 中,BE =6, cos B =BC = 1,∴ BC =2 .BE 3根据勾股定理,求得 BC =4 2 .----------------------5 分 22.解:(1)∵点 A (3, n ) 在函数 y = 3(x >0) 的图象上,x∴ n =1,点 A (3,1) .∵直线 y = ax - 2(a ≠ 0)过点 A (3,1) , ∴ 3a - 2 = 1 . 解得 a = 1.----------------------2 分(2)易求得 B (0, -2) .如图, S = 1OB ⋅ x , S1⋅ x△AOB2A △ABC= 2BC A∵ S △ABC =2S △AOB ,∴BC =2OB = 4 . ∴ C 1 (0, 2) ,或C 2 (0, -6) . ----------------------5 分 23. (1)证明:连接 OC .∵ C »D = C »B∴∠1=∠3. ∵ OA = OC , ∴∠1=∠2. ∴∠3=∠2. ∴ AE ∥OC . ∵ AE ⊥EF , ∴ OC ⊥EF .∵ OC 是e O 的半径,∴EF 是e O 的切线. ----------------------2 分 (2)∵AB 为e O 的直径,∴∠ACB =90°.根据勾股定理,由 AB =5,BC =3,可求得 AC =4.== ∵ AE ⊥EF ,∴∠AEC =90°. ∴△AEC ∽△ACB .AEAC ∴.ACABAE 4∴. 4 5∴ AE =16 . ----------------------5 分524. 解:(I):56.8%;----------------------1 分(II)折线图;----------------------3 分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据 61%左右.--------5 分25.解:(1)4.5 . --------------------2 分 (2)--------------------4 分(3) 4.2,点P 是AD 与CE 的交点. --------------------6 分3 ⎨⎨26.解:(1) ∵点O (0, 0)在抛物线上,∴ 3a - 2 = 0 , a = 2.--------------------2 分3(2)①对称轴为直线 x = 2 ;②顶点的纵坐标为 (3) (i )当a >0时,-a - 2 .--------------------4 分 ⎧-a - 2<0,依题意, ⎩3a - 2≥0. 解得a ≥ 2.3(ii )当a <0时, ⎧-a - 2>0,依题意, ⎩3a - 2≤0. 解得a <-2.综上, a <- 2 ,或 a ≥ 2.--------------------7 分327. (1)① ∠B = 75︒ , ∠ACB = 45︒ ;--------------2 分②作 DE ⊥AC 交 AC 于点 E .Rt △ADE 中,由∠DAC = 30︒ ,AD=2可得 DE =1,AE = .Rt △CDE 中,由∠ACD = 45︒ ,DE=1,可得 EC =1.3 ∴AC = 3 +1 .Rt △ACH 中,由∠DAC = 30︒ ,可得 AH =3 + 23 ; -----------4 分(2)线段 AH 与 AB +AC 之间的数量关系:2AH =AB +AC证明: 延长 AB 和 CH 交于点 F ,取 BF 中点 G ,连接 GH .易证△ACH ≌△AFH . ∴ AC = AF , HC = HF . ∴ G H ∥BC . ∵ AB = AD ,∴ ∠ABD = ∠ADB . ∴ ∠AGH = ∠AHG . ∴ AG = AH .∴ AB + AC = AB + AF = 2AB + BF = 2(AB + BG ) = 2AG = 2AH . --------7 分 28. 解:(1)C ; --------------2 分(2)① 60°;② △MNE 是等边三角形,点 E 的坐标为( 3,1);--------------5 分③ 直线 y = - 3x + 2 交 y 轴于点 K (0,2),交 x 轴于点T (2 3,0).∴ OK = 2 , OT = 2 .∴ ∠OKT = 60︒ .333 , ⎪2 ) 作 OG ⊥KT 于点 G ,连接 MG . ∵ M (0,1) ,∴OM =1.∴M 为 OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG = 3 .∴ G ⎛⎝ 3 ⎫⎪.2 ⎭∵ ∠MON =120︒ , ∴ ∠GON = 90︒ .又OG = 3 , ON = 1,∴ ∠OGN = 30︒ . ∴ ∠MGN = 60︒ .∴G 是线段 MN 关于点 O 的关联点.经验证,点 E( 3,1 在直线 y = - 3x + 2 上. 结合图象可知, 当点 F 在线段 GE 上时 ,符合题意.∵ x G ≤x F ≤x E , ∴ 3≤x ≤ .--------------8 分 2F.3。

相关文档
最新文档