分式方程和二次根式试题和答案
数学中的二次根式与分式方程
数学中的二次根式与分式方程二次根式是数学中的一种重要概念,与之相关的分式方程也是数学中一个常见且有挑战性的问题。
本文将介绍二次根式的定义、性质以及与分式方程的关系,并通过例题进行具体说明。
一、二次根式的定义与性质1. 定义:二次根式是形如√a 的数,其中 a 为非负实数。
其中,√a 可以理解为满足b^2 = a 的非负实数b。
在二次根式中,a 称为根式的被开方数,b 称为根式的值。
2. 性质:(1)二次根式的值是不唯一的,因为一个数的平方可能有两个相反的值。
(2)二次根式的乘法:√a * √b = √(a * b)。
即根式的乘积等于被开方数的乘积的二次根式。
(3)二次根式的除法:√a / √b = √(a / b)。
即根式的商等于被开方数的除法的二次根式。
二、分式方程的概念与解法1. 概念:分式方程是一个含有分式的方程,其中方程中至少有一个变量(未知数)存在于分式中。
2. 解法:解决分式方程的关键是将方程中的分式转化为整式,从而得到更简化的等式。
下面将介绍三种常见的解法。
(1)通分法:将方程中的所有分式的分母找出最小公倍数,并使每个分式的分母都等于最小公倍数,然后将方程两边同乘以最小公倍数,消去分母。
(2)消去法:通过观察可以将分式方程进行简化,将分子或分母中某些数值相同的项通过消去的方式,从而得到一个更简单的等式,进而求解。
(3)代换法:对于某些特定的分式方程,可以通过适当的代换使得方程更加简洁,然后利用已知的数学性质求解。
三、例题分析1. 题目:求解方程 3 / (x+2) + 2 / (x-1) = 1解法:采用通分法解此方程。
首先,找到最小公倍数为 (x+2)*(x-1),然后将方程两边同时乘以(x+2)*(x-1),得到 3*(x-1) + 2*(x+2) = (x+2)*(x-1)。
经过展开和整理后,得到 7x - 7 = x^2 + x - 2。
进一步整理后变为 x^2 - 6x + 5 = 0。
中考数学《方程与不等式》专题知识训练50题-含答案
中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
八年级数学下册《二次根式》单元测试能力提升卷 含答案 (原卷+详解)
人教版数学八年级下册单元测试能力提升卷《二次根式》一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cm +D .4)cm -4.已知10a -<<( )A .2aB .22a a+ C .2a D .2a-5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =6.计算201820193)3)-的值为( )A .1B 3C 3D .3-7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x -- C .2- D .28.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错10.下列各式中,正确的是个数有()2=a b=+=A.1个B.2个C.3个D.0个11.若实数m满足|4||3|1m m-=-+,那么下列四个式子中与(m-相等的是() AB.CD.二.填空题12a为.13.若x,y4y=,则xy的值为.14.=⋯观察下列各式:请你找出其中规律,并将第(1)n n个等式写出来.15.已知m是实数,且m+1m-都是整数,那么m的值是.16.已知ABC∆的三边长分别为AB=BC=AC=其中7a>,则ABC ∆的面积为 .17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: .18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===, (1分母有理化可得 ;(2)关于x 的方程132x -的解是 .19.已知252a a +=-,225b b +=-,且a b ≠,则化简 .20.(1)(2)02(3)ππ--(3)-(4)21.已知a 为实数,且a +与1a-a 的值是 .三.解答题 22.计算:(1-(2)21)(3)解分式方程:1111x x x+=--;(4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.23.已知:12y 的值.24.若x ,y 是实数,且13y =,求2(3-的值.25.已知:a 、b 、c 是ABC ∆26.化简求值:x =,y =的值.27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a 14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a ==+-=+= (1)填空: 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题: (1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数), 则有222a m n =+,2b mn =.这样小明就找到了一种把类似a + 请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.人教版数学八年级下册单元测试能力提升卷《二次根式》答案详解版一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-【解析】去分母得,2(1)3m x -+-=, 解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解, ∴502m +>, 5m ∴>-,又1x =是增根,当1x =时,512m +=,即3m =- 3m ∴≠-,有意义,20m ∴-,2m ∴,因此52m -<且3m ≠-, m 为整数,m ∴可以为4-,2-,1-,0,1,2,其和为4-, 故选:D .2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -【解析】23a <<,∴2(3)a a =---23a a =--+ 25a =-.故选:C .3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cmD .4)cm【解析】设小长方形卡片的长为x ,宽为y ,根据题意得:2x y += 则图②中两块阴影部分周长和是2(42)2(4)4442162(2)1616()y x y x x y cm -+-=⨯--=-+=-.故选:B .4.已知10a -<<( )A .2aB .22a a+C .2a D .2a-【解析】10a -<<,∴==11()a a a a=--+2a =-.故选:D . 5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =【解析】分母有理化,可得2a =+,2b =(2(2a b ∴-=+--=A 选项错误;(2(24a b +=++=,故B 选项错误;(2(2431ab =+⨯=-=,故C 选项正确;22(2437a =+=+=+22(2437b ==-=-22a b ∴≠,故D 选项错误;故选:C .6.计算201820193)3)-的值为( )A .1B 3C 3D .3【解析】原式201820183)3)3)=⨯20183)]3)=⨯2018(109)3)=-⨯13)=⨯3=,故选:B .7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x --C .2-D .2【解析】|3|7x -,|3||4|7x x ∴-++=,43x∴-,2|4|x∴+2(4)|26|x x=+--2(4)(62)x x =+--42x=+,故选:A.8.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+【解析】代入计算可得,1f f+=,1f f+=,⋯,1f f+=,所以,原式11(1)22n n=+-=-.故选:A.9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【解析】甲同学在计算时,将分子和分母都乘以是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B .10.下列各式中,正确的是个数有( )2=a b =+= A .1个 B .2个C .3个D .0个【解析】2不能合并,故①错误,若1a =,2b =a b ≠+,故②错误,,故③正确,3a +=故选:B .11.若实数m 满足|4||3|1m m -=-+,那么下列四个式子中与(m -( )A B .C D .【解析】由|4||3|1m m -=-+得,3m ,40m ∴-<,30m -,(m ∴-故选:D . 二.填空题12a 为 2 .a 为2, 故答案为:2.13.若x ,y 4y =,则xy 的值为 2 .【解析】x ,y 4y =,210x ∴-=,4y =,则12x =,故1422xy =⨯=.故答案为:2.14.(2019秋•===,⋯观察下列各式:请你找出其中规律,并将第(1)n n (n =+===,⋯得(n =+(n =+15.已知m 是实数,且m +1m-都是整数,那么m 的值是 3-3- 【解析】22m +是整数,m a ∴=-,(其中a 为整数),∴1m ==,又1m -是整数,281a ∴-=,3a ∴=±,3m ∴=-或3m =--故答案为:3-3--.16.已知ABC ∆的三边长分别为AB =BC AC =其中7a >,则ABC ∆的面积为 168 .【解析】2AB ==BC =AC =如图,点(,24)A a ,(,24)B a --,(7,0)C11124247242168222ABC S OC OC ∆∴=⨯+⨯=⨯⨯⨯=故答案为:168.17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: 0a b += .【解析】2(1)1a ab +=,等式的两边都乘以)a b a =①,等式的两边都乘以)b -a b +②,①+b a b a =,整理,得220a b += 所以0a b += 故答案为:0a b +=18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===,(11 ;(2)关于x的方程132x -=+ 的解是 . 【解析】(11==1;(2)132x -=,132x -=,132x -=+⋯+,113122x -=+,611x -=-+6x =x =,故答案为:2.19.已知252a a +=-,225b b +=-,且a b ≠,则化简+=【解析】252a a +=-,225b b +=-,即2520a a ++=,2520b b ++=,且a b ≠,a ∴、b 可看做方程2520x x ++=的两不相等的实数根,则5a b +=-,2ab =,0a ∴<,0b <,则原式=-==(254)2-=-=故答案为:20.(1)(2)02(3)ππ--(3)-(4)【解析】(1)原式==(2)原式2(3)1ππ=---+231ππ=--++2=;(3)原式=3=;(4)原式322=-+3=.21.已知a 为实数,且a +1a-a 的值是 5-5-【解析】a +a ∴是含-1a -∴化简后为1a 为含5a ∴=-5--故答案为:5-5--. 三.解答题(共9小题) 22.计算:(1-(2)21)(3)解分式方程:1111x x x +=--; (4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =+时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.【解析】(1)原式11=-=-;(2)原式426=-=- (3)两边都乘以1x -,得:11x x -=-, 解得:1x =,检验:当1x =时,10x -=,1x ∴=是原分式方程的增根,则原分式方程无解;(4)①原式211(1)[](1)(1)(1)(1)2x x x x x x x -+=-+-+-- 22(1)(1)(1)2x x x x x -+=+--11x x +=-,当1x 时,原式===;②若代数式A 的值为3,则131x x +=-,解得2x =,当2x =时,原式没有意义,∴代数式A 的值不可能为3.23.已知:12y =的值. 【解析】180x -,18x810x -,18x,18x ∴=,12y =,∴原式4===.24.若x ,y 是实数,且13y =,求2(3-的值.【解析】x ,y 是实数,且13y ,410x ∴-且140x -,解得:14x =,13y ∴=,2(3∴-的值.2===18=25.已知:a 、b 、c 是ABC ∆【解析】a 、b 、c 是ABC ∆的三边长,a b c ∴+>,b c a +>,b a c +>,∴原式||||||a b c b c a c b a =++-+-+--()()a b c b c a b a c =++-+-++-a b c b c a b a c =++--+++- 3a b c =+-.26.化简求值:x =,y的值.【解析】22x ===-,2y ===,∴====27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a+14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a =+-=+= (1)填空: 乙 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<【解析】(1)乙的做法错误.当14a =时,10a a ->1a a =-,故乙的做法错误.故答案为:乙(2)当0a <a -;(3)35x <<,70x ∴-<,250x ->.7252x x x =-+-=+28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值. 【解析】(1)2310a a -+=,231a a ∴-=-,213a a +=,13a a +=,32232531a a a ∴--++2232(3)(3)333a a a a a a a =-+-+-+ 12(1)(1)33a a a =⨯-+-+-+12133a a a =--+-+ 14a a =-+ 34=-1=-;(2)2x =+,2x ∴-= ∴432295543x x x x x x ---+-+322(2)(2)7(2)19(2)33(2)1x x x x x x x x -+------=--======962-=32=.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.【解析】(1)原式92=-+7=;(2)22x y xy +()xy x y =+11)=+1=⨯=.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = 227m n + ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.【解析】(1)设222(72a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为227m n +,2mn ;(2)62mn =,3mn ∴=, a 、m 、n 均为正整数,1m ∴=,3n =或3m =,1n =,当1m =,3n =时,22313928a m n =+=+⨯=;当3m =,1n =时,22393112a m n =+=+⨯=;即a 的值为为12或28;(3t =,则244t =8=+8=+81)=+6=+21)=,1t ∴=.。
分式与根式
分式与二次根式—知识讲解【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.要点诠释:约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质;2.;(0)||(0)a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:00)a b =≥≥,; 5. 商的算术平方根的性质:00)a b =≥>,. 6.若0a b >≥>.要点诠释: 0(0)a ≥≥2(0)a a =≥与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而.考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43==+(2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.【典型例题】类型一、分式的意义1.使代数式有意义的的取值范围是()A. B. C.且 D.一切实数【答案】C;【解析】解不等式组得且,故选C.【点评】代数式有意义,就是要使代数式中的分式的分母不为零;代数式中的二次根式的被开方数是非负数,即需中的x0;分母中的2x-10.举一反三:【变式】当x取何值时,分式12922---xxx有意义?值为零?【答案】当2120x x--≠时,分式12922---xxx有意义,即-34x x≠≠且时,分式12922---xxx有意义.当29=0x-且2120x x--≠时,分式12922---xxx值为零,解得=3x±,且-34x x≠≠,,即=3x时,分式12922---xxx值为零.类型二、分式的性质12-xxx≥x21≠x0≥x21≠x210xx≥⎧⎨-≠⎩≥x21≠x≥≠2.已知,求下列各式的值. (1); (2). 【答案与解析】(1)因为,所以. 即.所以. (2), 所以. 【点评】观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.举一反三:【变式】已知求的值. 【答案】 由得 所以即.所以.类型三、分式的运算3.(2015•眉山)计算:. 【答案与解析】14x x+=221x x +2421x x x ++14x x +=2214x x ⎛⎫+= ⎪⎝⎭221216x x ++=22114x x +=4242222222111114115x x x x x x x x x x ++=++=++=+=2421115x x x =++111,a b a b +=+b a a b +111,a b a b +=+1,a b ab a b+=+2(),a b ab +=22a b ab +=-221b a a b ab a b ab ab+-+===-解:=•= .【点评】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式.举一反三:【变式】(2015•宁德)化简:•.【答案】解:原式=:•=.类型四、分式方程及应用4.如果方程有增根, 那么增根是 . 【答案与解析】 因为增根是使分式的分母为零的根,由分母或可得.所以增根是.答案:【点评】使分母为0的根是增根.5.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.【答案与解析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x+25)天.11322x x x-+=--20x -=20x -=2x =2x =2x =根据题意得:. 方程两边同乘以x (x+25),得30(x+25)+30x=x (x+25),即x 2﹣35x ﹣750=0.解之,得x 1=50,x 2=﹣15.经检验,x 1=50,x 2=﹣15都是原方程的解.但x 2=﹣15不符合题意,应舍去.∴当x=50时,x+25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.(所需费用为:2500×50=125000(元).方案二:由甲乙两队合作完成.所需费用为:(2500+2000)×30=135000(元).【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间.(1)如果设甲工程队单独完成该工程需x 天,那么由“乙队单独完成此项工程的时间比甲队单独完成多用25天”,得出乙工程队单独完成该工程需(x+25)天.再根据“甲、乙两队合作完成工程需要30天”,可知等量关系为:甲工程队30天完成该工程的工作量+乙工程队30天完成该工程的工作量=1.(2)首先根据(1)中的结果,排除在60天内不能单独完成该工程的乙工程队,从而可知符合要求的施工方案有两种:方案一:由甲工程队单独完成;方案二:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.举一反三:【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.【答案】303015x x ++2(1)设原计划零售平均每天售出x 吨.根据题意,得, 解得x 1=2,x 2=﹣16.经检验,x=2是原方程的根,x=﹣16不符合题意,舍去.答:原计划零售平均每天售出2吨.(2). 实际获得的总利润是:2000×6×20+2200×4×20=416000(元).类型五、二次根式的定义及性质6.当x的值最小?最小值是多少?【答案与解析】,∴当9x +1=0,即3有最小值,最小值为3. 【点评】≥0(a ≥0).的最小值为0,因为3是常数,的最小值为3.类型六、二次根式的运算7.计算:1(46438)222-+÷; 【答案与解析】原式22)262264(÷+-= .232+=5)2(62006200=++-+x x ()天20226200=++913x +0,33≥19x =-03【点评】本题主要考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.分式与二次根式—巩固练习(基础)【巩固练习】一、选择题1. 下列各式与相等的是( ) A . B. C. 2xy y D. 2x y x+ 2.(2015•泰安)化简:(a+)(1﹣)的结果等于( )A .a ﹣2B .a+2C .D .3.若分式的值是0,则x 为( ) A .0 B.1 C.-1 D.±14.下列计算正确的是 ( )5.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .-=10B .-=10C .-=10D .-=10 6.函数中自变量x 的取值范围是( ) A. x ≤2 B. x =3 C. x <2且x ≠3 D. x ≤2且x ≠3x y22x y 22y x ++211x x -+13=====x 100005010000+x 5010000-x x 10000x 100005010000-x 5010000+x x1000013y x =-二、填空题7.(2014春•张家港市校级期末)下列分式中,不属于最简分式的,请在括号内写出化简后的结果,否则请在括号内打“√”.①② ③ ④ ⑤ .8.化简的结果是__________. 9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.10中,是最简二次根式的有个. 11. 若最简二次根式是同类二次根式,则x 的值为 .12.(1化简的结果是 . (2)估计的运算结果应在 之间.(填整数)三、解答题13.(2015•南京)计算:(﹣)÷.14.(1)已知:12a +=,求5361a a a a +++的值. (22=+.15.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.212293m m +-+信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知.分式与二次根式—巩固练习(提高)【巩固练习】一、选择题1.(2015春•合水县期末)二次根式、、、、、中,最简二次根式有( )个.A .1 个B .2 个C .3 个D .4个2.分式有意义的条件是( ) A .x ≠2 B.x ≠1 C.x ≠1或x ≠2 D.x ≠1且x ≠23.使分式等于0的x 的值是( ) A.2 B.-2 C.±2 D.不存在4.计算201220131)1)的结果是( )5.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( )A .B . 45282x x y x ++=+,求(1)(2)(2)(1)x x x x +---224x x +-128002800304-=x x 28002800304-=x xC .D . 6.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是( )A .甲、乙的解法都正确B .甲的解法正确,乙的解法不正确C .乙的解法正确,甲的解法不正确D .甲、乙的解法都不正确二、填空题7.若a 2-6a+9与│b-1│互为相反数,则式子÷(a+b )的值为_______________.9. ;②;③;④其中正确的是 (填序号).10.当x =__________时,分式的值为0.11.(1,则的值为. (2)若5,3,x y xy +==+的值为 . 12.(2015•科左中旗校级一模)观察下列等式:①==﹣128002800305-=x x 2800280030-=5x xa b b a-===0,0).a b =>≥33x x -+2()x y =+x y -②==﹣③==﹣… 回答下列问题:(1)化简:= ;(n 为正整数) (2)利用上面所揭示的规律计算:+++…++= .三、解答题13.(1)已知,求的值. (2)已知和,求的值.14.(2015春•东莞期末)设a=,b=2,c=. (1)当a 有意义时,求x 的取值范围.(2)若a 、b 、c 为Rt △ABC 三边长,求x 的值.15.一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?13x x +=2421x x x -+2510x x -+=0x ≠441x x+16.阅读下列材料,然后回答问题.我们可以将其进一步化简.;(一);(二);(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:221.====(四);(1)请用不同的方法化简= ;= ;(2分式与二次根式—巩固练习(基础解析)【答案与解析】一、选择题1.【答案】C;==3=1===…【解析】化简2xy y = . 2.【答案】B ;【解析】•=•=a+2.故选B .3.【答案】B ; 【解析】分式的值为0,则解得.4.【答案】A ;【解析】根据具体选项,应先进行化简,再计算. AB,C 选项逆用平方差公式可求得,而D 选项.故选A. 5.【答案】B ;【解析】设每个甲型包装箱可装x 个鸡蛋,-=10. 故选B .6.【答案】A ; 【解析】2-x ≥0,∴x ≤2,3不在x ≤2的范围内.二、填空题7.【答案】×,√,×,×,√;【解析】①=;②是最简分式;③==;④=﹣1;x y 210,10,x x ⎧-=⎨+≠⎩1x ====2+(=4-5=-1=5010000-x x10000⑤是最简分式;只有②⑤是最简分式.故答案为:×,√,×,×,√.8.【答案】;【解析】找到最简公分母为(m+3)(m-3),再通分.]9.【答案】4.8;【解析】平均速度=总路程÷总时间,设从学校到家的路程为s,则. 10.【答案】3;.11.【答案】-1;【解析】根据题意得x+3=3x+5,解得x=-1.12.【答案】(1;(2)3和4;【解析】(1)(2三、解答题13.【答案与解析】解:(﹣)÷=[﹣]×=[﹣]×=×=.14.【答案与解析】23m-22424244.8325546s s ss s s s s====++===21232 4.=++因为,∴<(1)∵233,122a a +=+= ∴a 2=a +1 原式=5326a a a a ++=526(1)a a a a ++=546a a a +=46(1)a a a +=66a a=1 (2)∵10•=1052+==.15.【答案与解析】设甲班平均每人捐款x 元,则乙班平均每人捐款x 元. 根据题意, 得,解这个方程得. 经检验,是原方程解.答:甲班平均每人捐款5元.16.【答案与解析】由二次根式的定义及分式性质,得分式与二次根式—巩固练习(提高解析)【答案与解析】一、选择题1.【答案】C ;【解析】二次根式、、、、、中, 最简二次根式有、、共3个.故选:C . 2.【答案】D ;45300232245x x =+5x =5x =2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠22287,222y ++∴==+∴===【解析】分式有意义,则且.3.【答案】D ;【解析】令得,而当时,,所以该分式不存在值为0的情形.4.【答案】D ;【解析】本题可逆用公式(ab )m =a m b m 及平方差公式,将原式化为20121)1) 1.⎡⎤--=⎣⎦故选D.5.【答案】A ;【解析】设小玲步行的平均速度为x 米/分,则骑自行车的速度为4x 米/分,依题意,得. 故选A .6.【答案】A ;【解析】甲是分母有理化了,乙是 把3化为+了.二、填空题7.【答案】 ;【解析】由已知得且,解得,,再代入求值.故答案为:0.9.【答案】③④;【解析】提示:①,.10.【答案】3;【解析】由得±3.当时,,当时,,所以当时,分式的值为0.20x -≠10x -≠20x +=2x =-2x =-240x -=28002800304-=x x 232269(3)0a a a -+=-=10b -=3a =1b =0a ≥0b >30x -=x =3x =360x +=≠3x =-3330x +=-+=3x =11.【答案】(1)2; (2; 【解析】(1,知x =1,∴(x +y )2=0,∴y =-1,∴x-y =2.(2)12.【答案】;【解析】(1)=;故答案为:;20101-. (2)+++…++ =…+1.三、解答题13.【答案与解析】 (1)因为,所以用除所求分式的分子、分母.原式. (2)由 和 ,提, 所以14.【答案与解析】解:(1)∵a 有意义,∴8﹣x≥0,∴x≤8;(2)方法一:分三种情况:5,3,0,0,x y xy x y +==∴∴=+==>>原式0x ≠2x 22221111113361()21x x x x ====--++--2510x x -+=0x ≠15x x +=24242112x x x x ⎛⎫+=+- ⎪⎝⎭2222122(52)2527x x ⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--=①当a 2+b 2=c 2,即8﹣x+4=6,得x=6,②当a 2+c 2=b 2,即8﹣x+6=4,得x=10,③当b 2+c 2=a 2,即4+6=8﹣x ,得x=﹣2,又∵x≤8,∴x=6或﹣2;方法二:∵直角三角形中斜边为最长的边,c >b∴存在两种情况,①当a 2+b 2=c 2,即8﹣x+4=6,得x=6,②当b 2+c 2=a 2,即4+6=8﹣x ,得x=﹣2,∴x=6或﹣2.15.【答案与解析】(1)设甲公司单独完成此工程x 天,则乙公司单独完成此项工程1.5x 天,根据题意,得,解之得,x=20, 经检验知x=20是方程的解且符合题意,1.5x=30,答:甲乙两公司单独完成此工程各需要20天,30天.(2)设甲公司每天的施工费y 元,则乙公司每天的施工费(y-1500)元,根据题意,得12(y+y-1500)=102000, 解之得,y=5000.甲公司单独完成此工程所需施工费:20×5000=100000(元) ,乙公司单独完成此工程所需施工费:30×(5000-1500)=105000 (元),故甲公司的施工费较少.16.【答案与解析】(1(2112-1111.512x x +===22====+++…=121)2n ++=.。
2021全国各地中考数学真题专项汇编: 分式与分式方程 (含答案解析)
专题04 分式与分式方程一、单选题 1.(2021·河北)由1122c c +⎛⎫-⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021贺州)若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A. 2 B. 3C. 4D. 5【答案】D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:∵分式方程43233m xx x +=+--有增根, ∴3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3.(2021·四川眉山)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a+ 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.5.(2021·山东临沂)计算11()()a b b a -÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A .【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键. 7.(2021·江苏扬州)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北州)分式方程3111x x x +=--的解是( ) A .1x = B .2x =- C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( )A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可. 【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +,10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数, ∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A .5- B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题. 二、填空题1.(2021·四川资阳)若210x x +-=,则33x x-=_________.【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.2.(2021·四川南充)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键. 3.(2021·四川达州)若分式方程22411x a x a x x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.4.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.5.(2021·湖南衡阳)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可. 【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 6.(2021·四川凉山州)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.三、解答题1.(2021·湖北随州市)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可.【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.2.(2021·山东菏泽市)先化简,再求值:22221244m n n m m n m mn n --+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可 【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 3.(2021·湖北宜昌市)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.4.(2021·四川达州市)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数.【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.5.(2021·湖南株洲市)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可. 【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.6.(2021·四川成都市)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +,3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式3===. 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.7.(2021·四川资阳市)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x 303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 8.(2021·四川凉山州)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xyx y -,代入计算即可.【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.9.(2021·四川遂宁市)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.10.(2021·江苏连云港市)解方程:214111x x x +-=--. 【答案】无解【分析】将分式去分母,然后再解方程即可.【详解】解:去分母得:22141x x 整理得22x =,解得1x =,经检验,1x =是分式方程的增根,故此方程无解.【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键.11.(2021·陕西)解方程:213111x x x --=+-. 【答案】12x =- 【分析】按照解分式方程的方法和步骤求解即可.【详解】解:去分母(两边都乘以()()11x x +-),得,22(1)31x x --=-. 去括号,得,222131x x x -+-=-,移项,得,222113x x x --=--+.合并同类项,得,21x -=.系数化为1,得,12x =-.检验:把12x=-代入()()110x x+-≠.∴12x=-是原方程的根.【点睛】本题考查了分式方程的解法,熟知分式方程的解法步骤是解题的关键,尤其注意解分式方程必须检验.12.(2021·山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟【分析】设走路线一到达太原机场需要x分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可.【详解】解:设走路线一到达太原机场需要x分钟.根据题意,得5253037x x⨯=-.解得:25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.【点睛】本题主要考查分式方程的应用,根据题意找出等量关系是解决本题的关键,注意分式方程需要验根.13.(2021·四川自贡市)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【答案】A型机平均每小时运送70件,B型机平均每小时运送50件【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B型机运送500件所用时间相等,列出方程解之即可.【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,根据题意得:70050020x x=-解这个方程得:x=70.经检验x=70是方程的解,∴x-20=50.∴A型机平均每小时运送70件,B型机平均每小时运送50件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(有答案解析)(1)
一、选择题1.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( ) A .1010302x x-= B .102010602x x+= C .1010302x x+= D .102010602x x-= 2.分式方程3121x x =-的解为( ) A .1x =B .2x =C .3x =D .4x =3.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y++=--有非负整数解,则满足条件的所有整数a 的和为( ) A .8B .10C .16D .184.下列各分式中是最简分式的是( ) A .2-1-1x x B .42xC .22-1xx D .-11-x x5.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠06.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 7.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=8.已知2,1x y xy +==,则y xx y+的值是( ) A .0 B .1C .-1D .29.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x ≠D .x 取任意实数10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 12.若分式211a a +-的值等于0,则a 的值为( )A .±1B .0C .1-D .无解二、填空题13.若113m n+=,则分式225m n mn m n +---的值为________ .14.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.15.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.16.使式子2x +有意义的x 的取值范围是______. 17.要使分式3x 2-有意义,则x 的取值范围是___________. 18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a ab ab a-⊗=-有下列命题:①1(3)3⊗-=; ②a b b a ⊗=⊗; ③方程1102x的解为12x =; ④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)19.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.20.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y ⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.三、解答题21.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.22.解方程:21113x x x ++=. 23.解分式方程:1212x x x -+=- 24.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =.(2)解方程:11322x x x--=--. 25.解方程:3155x x x -=-+. 26.解分式方程 (1)572x x =- (2)2162142x x x ++=--【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可. 【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得:102010602x x -=, 故选:D . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.2.C解析:C 【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验; 【详解】两边同时乘以()21x x -, 得:()312x x -= , 解得:x=3,检验:将x=3代入()210x x -≠, ∴方程的解为x=3. 故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验;3.C解析:C 【分析】先由不等式组无解,求解8,a ≤ 再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠ 再逐一确定a 的值,从而可得答案. 【详解】解:52+11{231x x a >-<()①②由①得:25x +>11,x >3,由②得:3x <1a +,x <1,3a+ 关于x 的不等式组52+11{231x x a >-<()无解,1+3,3a∴≤ 19,a ∴+≤ 8,a ∴≤34122y a y y++=--, ()342,y a y ∴-+=- 2,2a y +∴= 20,y -≠22,2a +∴≠ 2,a ∴≠关于y 的分式方程34122y a y y++=--有非负整数解, 20,2a +∴≥2,a ∴≥-22a +为整数, 2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C 【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.4.C解析:C 【分析】根据最简分式的定义即可求出答案. 【详解】解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x,故选项B 不是最简分式,不符合题意; C 、22-1xx ,是最简二次根式,符合题意; D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C . 【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型.5.D解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式.6.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A.22b ba a=不一定正确;B.22+++a ba ba b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确;D.22m nnm-=-不正确;故选:C.【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.7.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.8.D解析:D【分析】将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D . 【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.9.C解析:C 【分析】根据分式有意义的基本条件计算即可. 【详解】∵分式12x -有意义, ∴x-2≠0,∴2x ≠, 故选C . 【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解. 【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个, 依题意得:3000300052x x -= 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.12.D解析:D 【分析】根据分式的值为零的意义具体计算即可. 【详解】∵分式211a a +-的值等于0,∴21a +=0, ∵21a +≥1>0, ∴21a +=0是不可能的, ∴无解, 故选D. 【点睛】本题考查了分式的值为零的条件,熟记基本条件和实数的非负性是解题的关键.二、填空题13.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件解析:13-【分析】由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可. 【详解】解:∵113m n+=, ∴=3m nmn+,即m+n=3mn , ∴225m n mnm n+---=()()25+m n mnm n +--=2353mn mnmn ⋅--=3mn mn - =13-. 故答案为:13-. 【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键.14.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000000022=2.2×10−10, 故答案为:2.2×10−10. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】 解析:240000224000400x x =- 【分析】本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可.【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】 考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.16.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 17.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2【分析】根据分式有意义得到分母不为0,即可求出x 的范围.【详解】 解:要使分式3 x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0. 18.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b,所以②不正确; 由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④;故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.19.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.20.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②, ①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+, 则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】 此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.三、解答题21.甲每小时做32个零件,乙每小时做40个零件.【分析】设甲每小时做x 个零件,乙每小时做(x +8)个零件,根据“甲做240个零件的时间=乙做300个零件的时间”列出方程求解即可.【详解】解:设甲每小时做x 个零件,乙每小时做(x+8)个零件, 由题意可得:2403008x x =+, 解得:x =32,经检验,x =32是原方程的解,∴x +8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.【点睛】本题考查了分式方程的应用,找出正确的数量关系是本题的关键.22.43x =- 【分析】先去分母将分式方程化为整式方程,求解整式方程并验根即可.【详解】解:去分母得:3(21)13x x ++=,去括号得:6313x x ++=,移项合并同类项得:34x =-,系数化为1得:43x =-. 经检验43x =-是该方程的根. 【点睛】本题考查解分式方程.注意解分式方程一定要验根. 23.2x =-【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到方程的解.【详解】 解:1212x x x -+=- 两边同时乘以()2x x -得:223222x x x x x -++=-移项得:223 2 2 2x x x x x -+-+=-合并同类项得:2x =-检验:当2x =-时,(2)0x x -≠所以,原分式方程的解为2x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.20x =-【分析】先找出方程的最简公分母,方程的两边都乘以各自的最简公分母,化分式方程为整式方程,求解即可;【详解】解:得方程两边同乘()()55+-x x()()253525x x x x +--=-22531525x x x x +-+=-240x =-检验:当20x =-时,()()550x x +-≠,所以,原分式方程的解为20x =-.【点睛】本题考查了分式方程的解法.题目相对简单.求解本题需要注意:(1)分式方程需检验;(2)去分母时勿漏乘不含分母的项.26.(1)5x =-;(2)原分式方程无解【分析】(1)去分母化为整式方程,解这个方程得,检验即可;(2)去分母化为整式方程,解这个方程得,检验即可.【详解】解(1)572x x =-, 方程两边都乘以x(x-2) 化为整式方程:5(x-2)=7x,解得:x=-5 ,检验:当 x=-5时,x (x-2)=-5×(-7)=35≠0,所以x=-5 是原方程的解;(2)2162142x x x ++=--, 去分母得:()2216+4=x+2x -,解得:=2x ,当=2x ,2-4=4-4=0x ,所以x=2是方程的增根,原分式方程无解.【点睛】本题考查分式方程的解法,掌握分式方程的解题步骤,注意去分母时不漏乘项,解分式方程注意验根是解题关键.。
04解答题(基础题)-江苏省泰州市五年(2017-2021)中考数学真题分类汇编(含答案,13题)
04解答题(基础题)知识点分类一.二次根式的混合运算(共1小题)1.(2019•泰州)(1)计算:(﹣)×;(2)解方程:+3=.二.解分式方程(共1小题)2.(2021•泰州)(1)分解因式:x3﹣9x;(2)解方程:+1=.三.分式方程的应用(共1小题)3.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.四.解一元一次不等式组(共1小题)4.(2020•泰州)(1)计算:(﹣π)0+()﹣1﹣sin60°;(2)解不等式组:五.一次函数图象上点的坐标特征(共1小题)5.(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB 的内部,求m的取值范围.六.一次函数的应用(共1小题)6.(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?七.作图—基本作图(共1小题)7.(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.八.相似三角形的判定与性质(共1小题)8.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.九.解直角三角形的应用-仰角俯角问题(共2小题)9.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB 步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)10.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C 离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)一十.折线统计图(共2小题)11.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.观察统计图回答下列问题:(1)这5年甲种家电产量的中位数为 万台;(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 年;(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.12.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m (1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.一十一.统计图的选择(共1小题)13.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)月份789101112年份2017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 ;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.参考答案与试题解析一.二次根式的混合运算(共1小题)1.(2019•泰州)(1)计算:(﹣)×;(2)解方程:+3=.【解析】解:(1)原式=﹣=4﹣=3;(2)去分母得2x﹣5+3(x﹣2)=3x﹣3,解得x=4,检验:当x=4时,x﹣2≠0,x=4为原方程的解.所以原方程的解为x=4.二.解分式方程(共1小题)2.(2021•泰州)(1)分解因式:x3﹣9x;(2)解方程:+1=.【解析】解:(1)原式=x(x2﹣9)=x(x+3)(x﹣3);(2)方程整理得:+1=﹣,去分母得:2x+x﹣2=﹣5,解得:x=﹣1,检验:当x=﹣1时,x﹣2=﹣3≠0,∴分式方程的解为x=﹣1.三.分式方程的应用(共1小题)3.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.【解析】解:设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,依题意,得:﹣=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴(1+50%)x=75.答:走路线B的平均速度为75km/h.四.解一元一次不等式组(共1小题)4.(2020•泰州)(1)计算:(﹣π)0+()﹣1﹣sin60°;(2)解不等式组:【解析】解:(1)原式=1+2﹣×=1+2﹣=;(2)解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2.五.一次函数图象上点的坐标特征(共1小题)5.(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB 的内部,求m的取值范围.【解析】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.六.一次函数的应用(共1小题)6.(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【解析】解:(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得,解得,∴线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m千克,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=,解得m=200或m=400,经检验,m=200,m=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.七.作图—基本作图(共1小题)7.(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【解析】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.八.相似三角形的判定与性质(共1小题)8.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.【解析】解:(1)∵PD∥AB,∴,∵AC=3,BC=4,CP=x,∴,∴CD=,∴AD=AC﹣CD=3﹣,即AD=;(2)根据题意得,S=,∴当x≥2时,S随x的增大而减小,∵0<x<4,∴当S随x增大而减小时x的取值范围为2≤x<4.九.解直角三角形的应用-仰角俯角问题(共2小题)9.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB 步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【解析】解:如图,过点C、B分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.10.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C 离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)【解析】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),答:观众区的水平宽度AB为20m;(2)作CM⊥EF于M,DN⊥EF于N,则四边形MFBC、MCDN为矩形,∴MF=BC=10,MN=CD=4,DN=MC=BF=23(m),在Rt△END中,tan∠EDN=,则EN=DN•tan∠EDN≈7.59(m),∴EF=EN+MN+MF=7.59+4+10≈21.6(m),答:顶棚的E处离地面的高度EF约为21.6m.一十.折线统计图(共2小题)11.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.观察统计图回答下列问题:(1)这5年甲种家电产量的中位数为 935 万台;(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 2020 年;(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.【解析】解:(1)这5年甲种家电产量从小到大排列为:466,921,935,1035,1046,∴这5年甲种家电产量的中位数为935万台,故答案为:935;(2)由折线统计图得,2020年甲、丙2种家电产量和小于乙种家电产量,∴2020年的扇形统计图的乙种家电产量占比对应的圆心角大于180°,故答案为:2020;(3)不同意小明的观点,理由:由折线统计图得,丙种家电的方差较小,但丙种家电的产量低,而且是下降趋势,乙种家电的方差较大,但乙种家电的产量高,而且是上升趋势,∴不同意小明的观点.12.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m (1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.【解析】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.(2)通过折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:需要对电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢.(3)由题意得,=45%,解得,m=88,经检验,m=88是分式方程的解,且符合题意.答:统计表中的m的值为88人.一十一.统计图的选择(共1小题)13.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表,根据统计表回答下列问题.2017年、2018年7~12 月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)月份789101112年份2017年2724303851652018年232425364953(1)2018年7~12月PM2.5平均浓度的中位数为 30.5 ;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请用一句话说明该同学得出这个结论的理由.【解析】解:(1)2018年7~12月PM2.5平均浓度的中位数为:(25+36)÷2=30.5;故答案为:30.5;(2)根据统计图的特点可得:更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是折线统计图;故答案为:折线统计图;(3)2018年7~12月与2017年同期相比,空气质量有所改善,理由如下:2018年7~12月每月的PM2.5平均浓度都比2017年同期每月的PM2.5平均浓度小.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(1)
一、选择题1.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x += D .6060855x x +=+- 2.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .73.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( )A .二阶分式B .三阶分式C .四阶分式D .六阶分式6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .57.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个11.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭12.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x -=+ D .420200.5x =- 二、填空题13.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.14.关于x 的分式方程211m x =-+无解,则m 的取值是_______. 15.一艘轮船在静水中的最大航速为60km/h ,它以最大航速沿江顺流航行240km 所用时间与以最大航速逆流航行120km 所用时间相同,则江水的流速为________km/h .16.已知215a a+=,那么2421a a a =++________.17.使式子2x +有意义的x 的取值范围是______. 18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-有下列命题: ①1(3)3⊗-=;②a b b a ⊗=⊗;③方程1102x 的解为12x =;④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)19.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .20.如果方程322x m x x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 24.(1)化简:22121a a a a a--+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 2.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x, 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.6.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 12.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.二、填空题13.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键.15.20【分析】由顺水船速=静水船速+水速逆水船速=静水船速﹣水速设未知数根据两不同航程时间相同列出方程即可求出答案【详解】解:设江水的流速为根据题意可得:解得:经检验:是原方程的根故答案为20【点睛】 解析:20【分析】由顺水船速=静水船速+水速,逆水船速=静水船速﹣水速,设未知数根据两不同航程时间相同列出方程即可求出答案.【详解】解:设江水的流速为/x km h ,根据题意可得:2401206060x x=+-, 解得:20x ,经检验:20x 是原方程的根,故答案为20.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b ,所以②不正确;由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④; 故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.19.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】 (1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++-=22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果;(2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可;(2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】 解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-.∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----. ∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键.。
专题5二次根式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)
2021年中考数学真题分项汇编【全国通用】(第02期)专题5二次根式姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南株洲市·中考真题)计算:4-=( )A .-B .-2C .D .【答案】A【分析】【详解】解:()44-=-=-故选:A .【点睛】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.2.(2021·湖南)下列运算正确的是( )A .236a a a ⋅=B .()235a a =C 3=D .222()a b a b +=+ 【答案】C【分析】分别根据同底数幂的乘法运算法则、幂的乘方运算法则、二次根式的性质以及完全平方公式分别计算各项后,再进行判断即可得到答案.【详解】解:A . 23235a a a a +⋅==,故选项A 计算错误,不符合题意;B . ()23326aa a ⨯==,故选项B 计算错误,不符合题意;C . |3|3=-=,此选项计算正确,故符合题意;D . 222()2a b a ab b +=++故选项D 计算错误,不符合题意;【点睛】此题主要考查了同底数幂的乘法、幂的乘方运算、二次根式的性质以及完全平方公式,熟练掌握运算法则是解答此题的关键.3.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】C【分析】 先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=512- =2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.4.(2021·山东东营市·中考真题)下列运算结果正确的是( )A .235x x x +=B .()2222a b a ab b --=++C .()23636x x =D =【答案】B【分析】根据合并同类项法则、完全平方公式、积的乘方的运算法则、二次根式的运算法则依次计算各项后即可解答.选项A ,2x 和3x 不是同类项,不能够合并,选项A 错误;选项B ,根据完全平方公式可得()()22222a b a b a ab b --=+=++,选项B 正确;选项C ,根据积的乘方的运算法则可得()23639x x =,选项C 错误;选项D 不能够合并,选项D 错误.故选B .【点睛】本题考查了合并同类项法则、完全平方公式、积的乘方的运算法则及二次根式的运算法则,熟练运用公式和法则是解决问题的关键.5.(2021·化为最简二次根式,其结果是( )A .2B .2C .2D .2【答案】D【分析】根据二次根式的化简方法即可得.【详解】解:原式=2=, 故选:D .【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.6.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.7.(2021·黑龙江绥化市·0在实数范围内有意义,则x 的取值范围是( ) A .–1x >B .1x ≥-且0x ≠C .1x >-且0x ≠D .0x ≠【答案】C【分析】 0在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可.【详解】 0在实数范围内有意义, 必须同时满足下列条件:10x +≥0≠,0x ≠,综上:1x >-且0x ≠,故选:C .【点睛】本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.8.(2021·广西柳州市·中考真题)下列计算正确的是( )A=B.3+=C=D.2=【答案】C【分析】根据二次根式的运算性质求解,逐项分析即可【详解】A.B. 3+,不是同类二次根式,不能合并,不符合题意;C. ==D.2,不是同类二次根式,不能合并,不符合题意.故选C.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.9.(2021· 1.442)A.-100B.-144.2C.144.2D.-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442=33-=--=-333(13∴-=-144.2故选B.【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.10.(2021·).A .321-+B .321+-C .321++D .321--【答案】A【分析】 根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.11.(2021·湖北恩施土家族苗族自治州·,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得: (2,==-=∵所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.12.(2021·四川达州市·中考真题)下列计算正确的是( )A =B 3±C .()110a a a -⋅=≠D .()2224436a b a b -=-【答案】C【分析】根据二次根式的性质和运算法则,负整数指数幂,积的乘方法则,逐一判断选项,即可.【详解】解:A.B. 3=,故该选项错误,C. ()110a a a -⋅=≠,故该选项正确,D. ()2224439a b a b -=,故该选项错误,故选C .【点睛】 本题主要考查二次根式的性质和运算,负整数指数幂,积的乘方法则,熟练掌握上述性质和法则,是解题的关键.13.(2021·山东临沂市·中考真题)如图,点A ,B 都在格点上,若B ,则AC 的长为( )A B C .D .【答案】B【分析】 利用勾股定理求出AB ,再减去BC 可得AC 的长.【详解】解:由图可知:AB∵BC∵AC =AB -BC = 故选B .【点睛】 本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB 的长.14.(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<<,∵263<<,∵62a =,∵小数部分624b ==-∵(((22244416106a b =⨯+=-=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.16.(2021·黑龙江鹤岗市·中考真题)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.17.(2021·湖北襄阳市·在实数范围内有意义,则x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >- 【答案】A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵在实数范围内有意义,∵x +3≥0,即:3x ≥-,故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 18.(2021·内蒙古呼和浩特市·中考真题)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 19.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥-B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠ 【答案】C【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二、填空题20.(2021·广西贺州市·中考真题)x 的取值范围是________.【答案】1x ≥-【分析】根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】有意义10x ∴+≥1x ∴≥-故答案为:1x ≥-【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.21.(2021·山东威海市·____________________.【答案】【分析】根据二次根式的四则运算法则进行运算即可求解.【详解】解:原式==-=,故答案为:【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.22.(2021·贵州铜仁市·中考真题)计算=______________;【答案】3【分析】先化简二次根式,再利用平方差公式展开计算即可求出答案.【详解】解:(==⨯322=⨯-3⎡⎤⎢⎥⎣⎦31=⨯=.3故答案为:3.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则,细心运算是解题的关键.23.(2021·x的取值范围是_______________.x≥【答案】7【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x-≥,解得:7x≥;故答案为7x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.24.(2021·山东聊城市·=_______.【答案】4【分析】根据二次根式的运算法则,先算乘法,再算加减法,即可.【详解】解:原式=1 642-⨯=4.故答案是:4.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.25.(2021·江苏宿迁市·x的取值范围是____________.【答案】任意实数【分析】根据二次根式有意义的条件及平方的非负性即可得解.【详解】解:∵20x≥,∵22x+>0,∵无论x∵x 的取值范围为任意实数,故答案为:任意实数.【点睛】本题考查了二次根式有意义的条件及平方的非负性,熟练掌握二次根式的定义是解决本题的关键.26.(2021·浙江衢州市·x 的值可以是_________.(写出一个即可)【答案】3【分析】由二次根式有意义的条件:被开方数为非负数可得答案.【详解】∵10x -≥,解得:1≥x ,∵x 的值可以是3,故答案为:3【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题关键.27.(2021·江苏南京市·________.【答案】2【分析】【详解】解:原式=2=;.【点睛】本题考查了二次根式的减法运算,涉及到二次根式的化简等知识,解决本题的关键是牢记二次根式的性质和计算法则等.28.(2021·江苏南京市·在实数范围内有意义,则x 的取值范围是________.【答案】x ≥0【分析】根据二次根式有意义的条件得到5x ≥0,解不等式即可求解.【详解】解:由题意得5x ≥0,解得x ≥0.故答案为:x ≥0【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件“被开方数为非负数”是解题关键.29.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解.【详解】解:由题意得:0x ≠且20x ≥, ∵0x >;故答案为0x >.【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.30.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”). 【答案】>【分析】12-,结果大于0大;结果小于0,则12大. 【详解】解:11=0222->,∵122, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.31.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b ==_____________.【答案】2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(1012213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.32.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =,b =1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n n S a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()nn n na a a ab =+++, 111nn n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.三、解答题33.(2021·湖北中考真题)(1)计算:0(346)-⨯-++ (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =.【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得;(2)先将分式方程化成整式方程,再解一元一次方程即可得.【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112x x x+=--, 方程两边同乘以21x -得:221x x -=-,移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解,故方程的解为1x =.【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.34.(2021·湖南娄底市·中考真题)计算:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭. 【答案】2【分析】直接利用零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值计算即可.【详解】解:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭1222=+-⨯112=+2=.【点睛】本题考查了零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值的运算法则,解题的关键是:掌握相关的运算法则.35.(2021·北京中考真题)计算:02sin 60(5π--.【答案】4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】解:原式=2514+-=. 【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.36.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a .【答案】11a +,3【分析】 先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可.【详解】 解:原式=1(1)(1)()aa a a a a 1(1)(1)a a a a a 1=1a +,将31a 代入,原式3===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.37.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==. 【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.38.(2021·湖南怀化市·中考真题)先化简,再求值:221262443x x x x x x x+-+⋅-++,其中2x =+.【答案】1;22x - 【分析】 先将乘法部分因式分解并约分化简,再通分合并,最后代值计算即可求解.【详解】解:原式=()()()()()223121222132222x x x x x x x x x x x x x +--++⨯=+==+----当2x =+时,原式=12x ===-故答案是:1;22x -. 【点睛】 本题考察分式的化简求值、因式分解和分母有理化,题目难度不大,属于基础计算题.解题的关键是掌握分式的计算法则.。
初三数学分式方程试题答案及解析
初三数学分式方程试题答案及解析1.分式方程的解是。
【答案】x=9。
【解析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解。
方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9。
检验:把x=9代入x(x﹣3)=54≠0。
∴原方程的解为:x=9。
故答案为:x=9。
【考点】解分式方程。
2.(7分)(1)解关于m的分式方程=-1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.【答案】(1)m=﹣2;(2)x<1.5.【解析】(1)去分母将分式方程转化为整式方程,求出m的值,检验即可;(2)将m的值代入不等式,即可求出解集.试题解析:(1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;(2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.【考点】1.解分式方程2.解一元一次不等式.3.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?【答案】8.【解析】方程的应用解题关键是找出等量关系,列出方程求解.本题利用建设任务表示出建设时间,以时间为等量关系列方程是解题关键,等量关系为:提前2年完成建设任务.试题解析:设原计划每年建造保障性住房x万套.则解得 x=8.经检验:x=8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.【考点】分式方程的应用.4.方程的解是【答案】x=3.【解析】原式可化为:2x=3(x-1)解得:x=3经检验得x=3是原方程的根所以原方程的解为x=3.故答案是x=3.【考点】解分式方程.5.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.6.计算(1)计算:(2)解方程:【答案】(1);(2)x = 4.【解析】(1)针对特殊角的三角函数值,负整数指数幂,二次根式化简,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先去掉分母,观察可得最简公分母是x(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.试题解析:(1)原式.(2)去分母得 3x2–6x–x2–2x = 0,即 2x2–8x = 0,∴ x = 0或x = 4.经检验:x = 0是增根.∴原方程的解是x = 4.【考点】1.特殊角的三角函数值;2.负整数指数幂;3.二次根式化简;4.绝对值;5.解分式方程.7.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)100,50;(2)10.【解析】(1)方程的应用解题关键是设出未知数,找出等量关系,列出方程求解. 本题设乙队每天绿化x m2,则甲队每天绿化2x m2,等量关系为:在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题不等量关系为:这次的绿化总费用不超过8万元.试题解析:(1)设乙队每天绿化x m2,则甲队每天绿化2x m2,根据题意,得.解得:x=50.经检验,x=50.是原方程的根.2x=100.答:甲、乙两工程队每天能完成绿化的面积分别是100、50m2。
第3讲 分式及二次根式 2023年中考数学一轮复习专题训练(浙江专用)(含解析)
第3讲分式及二次根式 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·江北模拟)无论x取什么数,总有意义的代数式是()A.√x2B.4xx3+1C.1(x−2)2D.√x+32.(2022·浦江模拟)若分式1x−1有意义,则x的取值范围是()A.x>1B.x>2C.x≠0D.x≠13.(2022·平阳模拟)若分式x−2x−3的值为0,则x的值为()A.-3B.-2C.0D.2 4.(2022·慈溪模拟)若二次根式√1−x在实数范围内有意义,则下列各数中,x 可取的值是()A.4B.πC.√2D.1 5.(2022·北仑模拟)若二次根式√3−x在实数范围内有意义,则x的取值范围是()A.x≠3B.x≥3C.x≤3D.x<3 6.(2022·慈溪模拟)下列计算正确的是()A.22+23=25B.23−22=2C.23⋅22=25D.2−1=−27.(2022·定海模拟)对于以下四个命题:①若直角三角形的两条边长与3与4,则第三边的长是5;②(√a)2=a;③若点P(a,b)在第三象限,则点Q(−a,−b)在第一象限;④两边及其第三边上的中线对应相等的两个三角形全等,正确的说法是()A.只有①错误,其他正确B.①②错误,③④正确C.①④错误,②③正确D.只有④错误,其他正确8.(2022·宁波模拟)二次根式√x−3中字母x的取值范围是()A.x>3B.x≠3C.x≥3D.x≤39.(2022·洞头模拟)计算2aa+2−a−22+a的结果为()A.a+2B.a−2C.1D.a−2a+210.(2021·北仑模拟)要使代数式√x−1有意义,x的取值应满足() A.x≥1B.x>1C.x≠1D.x≠0二、填空题11.(2022·台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是.先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…①=3−x+x−4=−112.(2022·丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5,AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则S四边形ABCDS矩形PQMN的值是.13.(2022·宁波模拟)若二次根式√3+x在实数范围内有意义,则x的取值范围是.14.(2022·衢江模拟)二次根式√x−4中字母x的取值范围是.15.(2022·温州)计算:x 2+xyxy+xy−x2xy=.16.(2022·金华)若分式2x−3的值为2,则x的值是.17.(2022·永康模拟)若分式1x−3有意义,则x的取值范围为.18.(2022·湖州)当a=1时,分式 a+1a 的值是 . 19.(2022·萧山模拟)计算:√3×√2= .20.(2022·宁波模拟)分式 2x−6x+1有意义的条件是 .三、计算题21.(2022·北仑模拟)先化简,直求值:(2a −1)⋅aa 2−4,共中a =√2−2.22.(2022·温州模拟)(1)计算:6÷(−3)+√4−8×2−2.(2)化简:2x x 2−4−1x−2.23.(2022·衢州模拟)计算:(1)−12+20180−(12)−1+√83; (2)a 2−b 2a−b ÷a+b 2a−2b.24.(2022·龙湾模拟)(1)计算: 2−1−(√5−1)0+|−32|−√273 . (2)化简: a 2+3a 2−a +3a−a2 .25.(2022·瓯海模拟)(1)计算:(﹣2)2×32+|﹣5|﹣√9.(2)化简:a 2a 2−2a +42a−a 2. 四、解答题26.(2022·衢州模拟)先化简,再求值:(1x−1−1x+1)÷x+2x 2−1,然后从﹣1,1,3中选择适当的数代入求值.27.(2022·台州模拟)先化简,再求值:(1﹣1a )÷a 2−1a,其中a =2020.28.(2022·衢州模拟)先化简4m 2−4−1m−2,从-2,-1,0,2四个数中选取一个合适的数代入求值.29.(2022·余杭模拟)化简: 3x−1+x−31−x 2小明的解答如下: 原式= 3x−1−x−3x 2−1=(x2-1)3x−1-(x 2-1)x−3x2−1=3(x+1)-(x-3)=2x+6小明的解答正确吗?如果不正确,请写出正确的解答过程.30.(2022·江干模拟)化简:xx−1−1x+1−1.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答.解:xx−1−1x+1−1=x(x+1)−(x−1)−1=x2+x−x+1−1=x2答案解析部分1.【答案】A【解析】【解答】解:A 、无论x 取任何数,√x 2有意义,A 选项符合题意; B 、x≠-1时,4xx 3+1有意义,B 选项不符合题意;C 、x≠2时,1(x−2)2有意义,C 选项不符合题意; D 、x≥-3时,√x +3有意义,D 选项不符合题意. 故答案为:A.【分析】根据二次根式有意义的条件,即被开方数为非负数,及分式有意义的条件,即分母不为零,逐项进行判断即可.2.【答案】D【解析】【解答】解:∵分式1x−1有意义,∴x −1≠0,解得x ≠1, 故答案为:D.【分析】分式有意义的条件:分母不为0,据此解答即可.3.【答案】D【解析】【解答】解:∵分式x−2x−3的值为0∴x ﹣2=0,x ﹣3≠0, ∴x =2. 故答案为:D.【分析】根据分式值为0的条件可得x-2=0,x-3≠0,求解即可.4.【答案】D【解析】【解答】解:由题意得1-x≥0 解之:x≤1. ∴x 可以为1. 故答案为:D.【分析】利用二次根式有意义的条件:被开方数是非负数,可求出x 的取值范围,即可求解.5.【答案】C【解析】【解答】解:要使二次根式√3−x在实数范围内有意义,必须3−x≥0,解得:x≤3.故答案为:C.【分析】根据二次根式有意义的条件是被开方数不为负数,据此可得3−x≥0,求解即可.6.【答案】C【解析】【解答】解:22+23≠25,故A不符合题意;B、23-22≠2,故B不符合题意;C、22·23=25,故C符合题意;D、2−1=12,故D不符合题意;故答案为:C.【分析】同底数幂相加减,要先算乘方,再算加法或减法,可对A,B作出判断;利用同底数幂相乘,底数不变,指数相加,可对C作出判断;利用负整数指数幂的性质,可对D作出判断.7.【答案】A【解析】【解答】解:①错误,应强调为直角三角形的两条直角边长为3与4,则第三边的长是5;②正确,隐含条件a≥0,根据二次根式的意义,等式成立;③正确,若点P(a,b)在第三象限,则a<0,b<0;则-a>0,-b>0,点Q(-a,-b)在第一象限;④正确,已知:如图,AB=A'B',AC=A'C',AD=A'D',BD=CD,B'D'=C'D',求证:△ABC≌△A'B'C';证明:过点C作CE∥AB交AD的延长线于E,∵∠BAD=∠E,∠ABD=∠ECD,∵BD=CD,∴△ABD≌△ECD(AAS),∴AB=CE,AD=DE,过点C'作C'E'∥A'B'交A'D'的延长线于E',同理:A'B'=C'E',A'D'=D'E',∵AD=A'D',AB=A'B',∴AE=A'E',CE=C'E',∵AC=A'C',∴△ACE≌△A'C'E'(SSS),∴∠CAE=∠C'A'E',∠E=∠E'=∠BAD=∠B'A'D',∴∠BAC=∠B'A'C',∴△ABC≌△A'B'C'(SAS),即:两边及第三边上的中线对应相等的两个三角形全等,正确.故答案为:A.【分析】根据勾股定理可判断①;根据二次根式有意义的条件可得a≥0,据此判断②;根据点的坐标与象限的关系可判断③;画出示意图,已知AB=A'B',AC=A'C',AD=A'D',BD=CD,B'D'=C'D',过点C作CE∥AB交AD的延长线于E,证明△ABD ≌△ECD,得到AB=CE,AD=DE,过点C'作C'E'∥A'B'交A'D'的延长线于E',证明△ACE≌△A'C'E'(SSS),得到∠CAE=∠C'A'E',∠E=∠E'=∠BAD=∠B'A'D',推出∠BAC=∠B'A'C',据此判断④.8.【答案】C【解析】【解答】解:∵√x −3,∴x-3≥0, ∴x≥3. 故答案为:C.【分析】根据二次根式被开方数为非负数,即x-3≥0,求解不等式即可得x 的取值范围.9.【答案】C【解析】【解答】解:原式=2a−a+2a+2=a+2a+2 =1.故答案为:C.【分析】直接根据同分母分式减法法则进行计算即可.10.【答案】B【解析】【解答】解:由题意得:{x −1≥0x −1≠0,解得x >1.故答案为:B.【分析】依据被开方数大于等于0及分母不为零,列出不等式组,求解即可.11.【答案】5【解析】【解答】解:原式=3−x x−4+x−4x−4=−1x−4∵最后所求的值是正确的∴−1x−4=-1 解之:x=5经检验:x=5是方程的解. 故答案为:5.【分析】先通分计算,再由题意可得到−1x−4=-1;然后解方程求出x 的值. 12.【答案】(1)a-b(2)3+2√2【解析】【解答】解:(1)∵①和②能够重合,③和④能够重合,AE=a ,DE=b ,∴PQ=AE+DE-2ED=a+b-2b=b ,故答案为:a-b ; (2)∵a 2- 2ab- b 2=0, ∴a 2-b 2=2ab , 则(a-b)2=2b 2,∴a=(√2+1)b 或(1-√2)b(舍去),∵四个矩形的面积都是5,AE=a ,DE=b , ∴EP=5a ,EN=5b,∴S四边形ABCD S矩形PQMN=(a+b )(5a +5b )(a−b )(5b −5a)=a 2+2ab+b2a 2−2ab+b 2=a 2b2=(√2+1)2b2b2=3+2√2.故答案为:3+2√2.【分析】(1)直接根据线段和差关系,结合两组全等矩形的边相等,列式计算可得结论;(2)解关于a 的二元一次方程:a 2-2ab-b 2=0, 得到a=(√2+1)b ,根据四个矩形的面积都是5分别表示小矩形的宽,再利用含a 、b 的代数式表示S四边形ABCDS 矩形PQMN,化简后,再代入a=(√2+1)b ,即可解答.13.【答案】x≥-3【解析】【解答】解:由题意得: 3+x ≥0,解得: x ≥−3, 故答案为: x ≥−3.【分析】根据二次根式的被开方数不能为负数可得3+x≥0,求解即可.14.【答案】x≥4【解析】【解答】解:由题意,得x-4≥0, 解得:x≥4. 故答案为:x≥4.【分析】根据二次根式有意义的条件是被开方数不能为负数,可得x-4≥0,求解即可.15.【答案】2【解析】【解答】解:原式=x 2+xy+xy−x 2xy=2..故答案为:2.【分析】利用同分母分式相加,分母不变,把分子相加,然后化简即可.16.【答案】4【解析】【解答】解:∵分式2x−3的值为2,∴2x−3=2, ∴2=2x-6, ∴x=4. 故答案为:4.【分析】由分式2x−3的值为2,得2x−3=2,再解分式方程即可求出x 的值.17.【答案】x≠3【解析】【解答】解:由题意得x-3≠0 解之:x≠3. 故答案为:x≠3.【分析】利用分式有意义的条件:分母不等于0,可得到关于x 的不等式,然后求出不等式的解集.18.【答案】2【解析】【解答】解:把a=1代入分式中, ∴a+1a =1+11=2.故答案为:2.【分析】把a=1代入分式中,化简求值即可求解.19.【答案】√6【解析】【解答】解:√3×√2,=√3×2, =√6; 故答案为:√6.【分析】直接根据二次根式的乘法法则进行计算.20.【答案】x≠-1【解析】【解答】解:要使分式有意义,则x+1≠0,∴x≠-1.故答案为:x≠-1.【分析】分式有意义的条件是分母不等于零,依此列式求解,即可解答.21.【答案】解:(2a −1)⋅a a 2−4=2−a a ⋅a (a+2)(a−2)=−1a+2 当a =√2−2时,原式=1√2−2+2=1√2=−√22 【解析】【分析】对括号中的式子进行通分,对括号外分式的分母进行分解,然后约分即可对原式进行化简,接下来将a 的值代入计算即可.22.【答案】(1)解:6÷(−3)+√4−8×2−2=−2+2−8×14=−2+2−2=−2(2)解:2x x 2−4−1x−2 =2x −(x +2)(x +2)(x −2)=x −2(x +2)(x −2)=1x +2 【解析】【分析】(1)根据算术平方根的概念、负整数指数幂的运算性质及有理数的除法法则分别计算,然后计算乘法,再计算加减法即可;(2)对第一个分式的分母进行分解,然后通分,再约分即可.23.【答案】(1)解:−12+20180−(12)−1+√83 =﹣1+1﹣2+2=0;(2)解:a 2−b 2a−b ÷a+b 2a−2b=(a+b)(a−b)a−b ÷a+b 2(a−b) =(a+b)(a−b)a−b×2(a−b)a+b =2(a −b)=2a ﹣2b.【解析】【分析】(1)根据乘方、开方、零指数幂及负整数幂的性质分别h 进行计算,然后根据有理数的加减法法则算出答案即可;(2)先将分子、分母进行因式分解,再将除法转化为乘法,然后约分即可.24.【答案】(1)解:原式=12-1+32-3=-2. (2)解:原式=a 2+3a 2−a −3a 2−a=a 2a (a−1)=a a−1. 【解析】【分析】(1)根据负整数指数幂的性质、零指数幂的性质、立方根的定义进行化简,再计算加减法,即可得出答案;(2)先通分,再计算分式的减法,即可得出答案.25.【答案】(1)解:(﹣2)2×32+|﹣5|﹣√9 =4×32+5﹣3 =6+5-3=8(2)解:a 2a 2−2a +42a−a 2=a 2a(a−2)+4a(2−a)=a 2a(a −2)−4a(a −2)=a 2−4a(a −2)=(a +2)(a −2)a(a −2)=a+2a .【解析】【分析】(1)根据有理数的乘方法则、绝对值的性质以及算术平方根的概念可得原式=4×32+5-3,然后计算乘法,再计算加减法即可; (2)对两个分式的分母进行分解,然后结合同分母分式减法法则进行计算.26.【答案】解:(1x−1−1x+1)÷x+2x 2−1=x+1−x+1(x−1)(x+1)÷x+2(x−1)(x+1)=2(x−1)(x+1)×(x−1)(x+1)x+2 =2x+2; ∵x −1≠0,x +1≠0,x +2≠0,∴x ≠±1,x ≠−2,当x =3时,2x+2=23+2=25【解析】【分析】对括号中的式子进行通分,对括号外分式的分母进行分解,然后将除法化为乘法,再约分即可对原式进行化简,接下来选择一个使分式有意义的x 的值代入计算即可.27.【答案】解:原式=a−1a ·a (a+1)(a−1)=1a+1当a=2020时,原式=12021【解析】【分析】对括号中的式子进行通分,将第二个分式的分子分解因式,同时除法化为乘法,再进行约分即可对原式进行化简,接下来将a 的值代入计算即可.28.【答案】解:原式=4(m+2)(m−2)−1m−2=4−(m +2)(m +2)(m −2)=2−m (m +2)(m −2)=−1m +2要使分式有意义,则m 2−4≠0且m −2≠0解得m≠±2,∴只能选择-1或0当m=-1时,原式=−1当m=0时,原式=−1 2【解析】【分析】对第一个分式的分母进行分解,再通分后按同分母分式的加减法进行计算,并进行约分即可对原式进行化简,然后选取一个使分式有意义的m的值代入进行计算.29.【答案】解:不正确原式=-=-==【解析】【分析】根据分式加法法则,先通分,化为同分母的分式相加减,再进行计算,即可得出答案.30.【答案】解:不正确,正确解答如下:xx−1−1x+1−1=x(x+1)x2−1−x−1x2−1−x2−1x2−1=x2+x−x+1−x2+1x2−1=2x2−1.【解析】【分析】首先第一项的分子、分母都乘以(x+1),第二项的分子、分母都乘以(x-1),第三项的分析分母都乘以(x+1)(x-1)进行通分,然后根据同分母分式减法法则进行计算。
全国2024年中考数学试题精选50题分式二次根式含解析
2024年全国中考数学试题精选50题:分式、二次根式一、单选题1.(2024·绵阳)若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣12.(2024·淄博)化简的结果是()A. a+bB. a﹣b C.D.3.(2024·威海)人民日报讯,2024年6月23日,中国胜利放射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. B.C.D.4.(2024·威海)分式化简后的结果为()A. B.C.D.5.(2024·滨州)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B.米 C.米 D. 米6.(2024·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.7.(2024·赤峰)2024年6月23日9时43分,我国胜利放射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为()A. B.C.D.8.(2024·云南)下列运算正确的是()A. B.C. D.9.(2024·南通)下列运算,结果正确的是()A. B.C. D.10.(2024·上海)下列各式中与是同类二次根式的是()A. B.C.D.11.(2024·呼和浩特)下列运算正确的是()A.B.C. D.12.(2024·包头)的计算结果是()A. 5B.C.D.13.(2024·包头)下列计算结果正确的是()A. B.C. D.14.(2024·长沙)下列运算正确的是()A. B.C. D.15.(2024·邵阳)下列计算正确的是()A.B.C.D.16.(2024·郴州)下列运算正确的是()A. B.C. D.17.(2024·郴州)年月日,北斗三号最终一颗全球组网卫星在西昌卫星放射中心点火升空.北斗卫星导航系统可供应高精度的授时服务,授时精度可达纳秒(秒= 纳秒)用科学记数法表示纳秒为()A. 秒B.秒 C.秒 D. 秒18.若关于x的分式方程=+5的解为正数,则m的取值范围为()A. m<﹣10B. m≤﹣10 C. m≥﹣10且m≠﹣6 D. m>﹣10且m≠﹣6二、填空题19.(2024·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.20.(2024·东营)2024年6月23日9时43分,“北斗三号”最终一颗全球组网卫星放射胜利,它的授21.(2024·永州)在函数中,自变量x的取值范围是________.22.(2024·南县)若计算的结果为正整数,则无理数m的值可以是________.(写出一个符合条件的即可)23.(2024·昆明)要使有意义,则x的取值范围是________.24.(2024·营口)(3 + )(3 ﹣)=________.25.(2024·山西)计算:________.26.(2024·呼和浩特)分式与的最简公分母是________,方程的解是________.27.(2024·包头)计算:________.28.(2024·包头)在函数中,自变量的取值范围是________.29.(2024·邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.21 6330.(2024·郴州)若分式的值不存在,则________.31.(2024·黑龙江)在函数中,自变量x的取值范围是________.三、计算题32.(2024·眉山)先化简,再求值:,其中.33.(2024·烟台)先化简,再求值:÷ ,其中x=+1,y=﹣1.34.(2024·滨州)先化筒,再求值:其中35.(2024·呼伦贝尔)先化简,再求值:,其中.36.(2024·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满意a2+2a﹣15=0.37.(2024·赤峰)先化简,再求值:,其中m满意:.38.(2024·永州)先化简,再求值:,其中.39.(2024·南县)先化简,再求值:,其中40.(2024·云南)先化简,再求值:,其中.41.(2024·营口)先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2024·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.43.(2024·南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)44.(2024·娄底)计算:45.(2024·郴州)计算:46.(1)计算:sin30°+ ﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣4847.(2024·长沙)先化简,再求值,其中48.(2024·娄底)先化简,然后从,0,1,3中选一个合适的数代入求值.49.(2024·山西)(1)计算:(2)下面是小彬同学进行分式化简的过程,请仔细阅读并完成相应任务.第一步其次步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第________步是进行分式的通分,通分的依据是________或填为________;②第________步起先出现不符合题意,这一步错误的缘由是________;(3)任务二:请干脆写出该分式化简后的正确结果;解;.任务三:除订正上述错误外,请你依据平常的学习阅历,就分式化简时还须要留意的事项给其他同学提一条建议.50.(2024·通辽)用※定义一种新运算:对于随意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.答案解析部分一、单选题1.【答案】 A【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】干脆利用二次根式有意义的条件分析得出答案.2.【答案】 B【解析】【解答】解:原式====a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.3.【答案】 B【解析】【解答】,故答案为:B.【分析】依据科学记数法的表示形式(n为整数)进行表示即可求解.4.【答案】 B【解析】【解答】解:故答案为:B.【分析】依据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再依据同分母分式相加减的法则计算.5.【答案】 C【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所确定.6.【答案】 D【解析】【解答】解:依据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故答案为:D .【分析】依据二次根式的性质,被开方数大于或等于0,可以求出x的范围.7.【答案】 C【解析】【解答】解:0. 000 000 009 9用科学记数法表示为.8.【答案】 D【解析】【解答】解:A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故答案为:D.【分析】依据一个正数的正的平方根就是该数的算术平方根即可推断A;依据与互为倒数即可推断B;依据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可推断C;依据同底数幂的除法,底数不变,指数相减即可推断D.9.【答案】 D【解析】【解答】解:A. 与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C. ,此选项错误;D. ,此选项计算正确.故答案为:D.【分析】(1)由同类二次根式的定义可知与不是同类二次根式,所以不能合并;(2)同理可知不能合并;(3)由二次根式的除法法则可得原式=;(4)由二次根式的乘法法则可得原式=.10.【答案】 C【解析】【解答】解:A、和是最简二次根式,与的被开方数不同,故A选项不符合题意;B、,3不是二次根式,故B选项不符合题意;C、,与的被开方数相同,故C选项符合题意;D、,与的被开方数不同,故D选项不符合题意;故答案为:C.【分析】依据同类二次根式的概念逐一推断即可.11.【答案】 C【解析】【解答】解:A、,不符合题意;B、,不符合题意;C、=== ,符合题意;D、,不符合题意;故答案为:C.【分析】分别依据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则推断即可.12.【答案】 C【解析】【解答】= ,故答案为:C.【分析】依据二次根式的运算法则即可求解.13.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】依据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的学问逐项解除即可.14.【答案】 B【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】依据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用解除法求解.15.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】分别运用二次根式、整式的运算、分式的运算法则逐项解除即可.16.【答案】 A【解析】【解答】A. ,计算符合题意,符合题意;B. ,故本选项不符合题意;C. ,故本选项不符合题意;D. 不能计算,故本选项不符合题意;故答案为:A.【分析】依据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行推断即可.17.【答案】 A【解析】【解答】∵1秒=1000000000纳秒,∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.故答案为:A.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.18.【答案】 D【解析】【解答】解:去分母得,解得,由方程的解为正数,得到,且,,则m的范围为且,二、填空题19.【答案】 k>-2且k≠2【解析】【解答】解:方程两边同乘(x-2)得,1+2x-4=k-1,解得,,且故答案为:且【分析】利用解分式方程的一般步骤解出方程,依据题意列出不等式,解不等式即可.20.【答案】【解析】【解答】因为,故答案为:.【分析】依据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定,进而求解.21.【答案】x≠3【解析】【解答】∵在函数中,x-3≠0,∴x≠3.故答案是:x≠3.【分析】依据分式有意义的条件,即可求解.22.【答案】(答案不唯一)【解析】【解答】解:∵ ,∴ 时的结果为正整数,故答案为:(答案不唯一).【分析】依据为12,即可得到一个无理数m的值.23.【答案】x≠﹣1【解析】【解答】解:要使分式有意义,需满意x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】依据分式的分母不能为0,建立不等式即可求解.24.【答案】 12【解析】【解答】解:原式=(3 )2﹣()2=18﹣6=12.故答案为:12.【分析】干脆利用平方差公式去括号,再依据二次根式的性质化简,最终利用有理数的减法计算得出答案.25.【答案】 5【解析】【解答】原式=2+2 +3−2 =5.故答案为5.【分析】敏捷运用完全平方公式进行求解.26.【答案】;x=-4【解析】【解答】解:∵ ,∴分式与的最简公分母是,方程,去分母得:,去括号得:,移项合并得:,变形得:,解得:x=2或-4,∵当x=2时,=0,当x=-4时,≠0,∴x=2是增根,∴方程的解为:x=-4.【分析】依据最简公分母的定义得出结果,再解分式方程,检验,得解.27.【答案】【解析】【解答】解:=== .故答案为.【分析】先将乘方绽开,然后用平方差公式计算即可.28.【答案】【解析】【解答】在函数中,分母不为0,则,即,故答案为:.【分析】在函数中,分母不为0,则x-3≠0,求出x的取值范围即可.29.【答案】【解析】【解答】解:由题意可知,第一行三个数的乘积为:,设其次行中间数为x ,则,解得,设第三行第一个数为y ,则,解得,∴2个空格的实数之积为.故答案为:.【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最终一行的三个数相等都是,即可求解.30.【答案】 -1【解析】【解答】∵分式的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【分析】依据分式无意义的条件列出关于x的方程,求出x的值即可.31.【答案】【解析】【解答】解:函数中:,解得:.故答案为:.【分析】干脆利用二次根式和分式有意义的条件列出不等式组求解即可.三、计算题32.【答案】解:原式,,.当时,原式【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.33.【答案】解:÷=÷=×=当x=+1,y=﹣1时原式==2﹣.【解析】【分析】依据分式四则运算依次和运算法则对原式进行化简÷ ,得到最简形式后,再将x=+1、y=﹣1代入求值即可.34.【答案】解:,,,;∵ ,所以,原式.【解析】【分析】干脆利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.35.【答案】解:原式== ,将代入得:原式=-4+3=-1,故答案为:-1.【解析】【分析】先依据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.36.【答案】(1)解:解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)解:原式=====,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.【解析】【分析】(1)分别求出每一个不等式的解集,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先依据分式的混合运算依次和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.37.【答案】解:原式为==== ,又∵m满意,即,将代入上式化简的结果,∴原式= .【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并依据m所满意的条件得出,将其代入化简后的公式,即可求得答案.38.【答案】解:当时,原式【解析】【分析】先依据分式的混合运算步骤进行化简,然后代入求值即可.39.【答案】解:时,原式=【解析】【分析】先利用分式的运算法则化简,然后代入计算即可.40.【答案】解:当上式【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.41.【答案】解:原式===﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【解析】【分析】先通分计算括号内异分母分式的减法,再将能分解因式的分子、分母分解因式,化除法为乘法进行约分化简,然后依据分式有意义的条件取x的值,代入求值即可.42.【答案】解:原式=÷( ﹣)=÷=·=,当x=﹣2时,原式===.【解析】【分析】先通分计算括号内异分母分式的减法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式,最终将x的值代入计算可得.43.【答案】(1)解:原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)解:原式====.【解析】【分析】(1)依据完全平方公式,平方差公式去括号,再合并同类项即可;(2)括号内先通分计算,将各个分式的分子、分母能分解因式的分别分解因式,然后变除为乘,进行约分即可.44.【答案】原式.【解析】【分析】先计算肯定值运算、特别角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.45.【答案】.【解析】【分析】依据负整指数幂的性质,特别角的三角函数值,肯定值,零指数幂的性质,干脆计算即可.46.【答案】(1)sin30°+ ﹣(3﹣)0+|﹣|=+4﹣1+=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).【解析】【分析】(1)先用特别角的三角函数值、零指数幂的性质、肯定值的性质、算术平方根的学问化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.四、解答题47.【答案】.将x=4代入可得:原式= .【解析】【分析】先将代数式化简,再代入值求解即可.48.【答案】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式.【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可.五、综合题49.【答案】(1)原式(2)三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号(3)解:答案不唯一,如:最终结果应化为最简分式或整式;约分,通分时,应依据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【解析】【解答】(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;故答案为:五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;【分析】(1)先分别计算乘方,与括号内的加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,依据同分母分式的加减法进行运算,留意最终的结果必为最简分式或整式.50.【答案】(1)===(2)∵ ,∴解得:将解集表示在数轴上如下:【解析】【分析】(1)依据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)依据新定义列出关于x的不等式,解不等式即可得.。
八年级数学暑假专题—二次根式、解一元二次方程、分式方程 人教版
一 教学内容:暑假专题——二次根式、解一元二次方程、分式方程二 重点、难点重点:二次根式的基本概念,基本性质以及运算律;一元二次方程的4种解法;分式方程的换元法;难点:二次根式的混合运算;一元二次方程的因式分解的解法;分式方程的换元法。
三 知识要点1 二次根式(1)a a ()≥0:双非负性(2)最简二次根式:①被开方数不含有开得尽方的因数或因式;②被开方数不含有分母。
(3)同类二次根式:化成最简二次根式后被开方数相同的二次根式。
(4)运算律:a b ab a b a b a b a b ·,,=≥≥=≥>⎧⎨⎪⎩⎪()()0000(5)分母有理化:a a a a a a a 20000==>=-<⎧⎨⎪⎩⎪||,,, 2 一元二次方程的解法(1)ax bx c a 200++=≠():一般式,各项名称。
(2)直接开平方法:()x a b +=2(3)配方法: ax bx c a x b a x c 22++=+⎛⎝ ⎫⎭⎪+=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥+-⎛⎝ ⎫⎭⎪+a x b a x b a b a c 22224=+⎛⎝ ⎫⎭⎪+-=a x b a ac b a244022 (4)公式法:∆=-≥=-±-b ac x b b ac a 224042时,(5)因式分解法:3 分式方程基本方法:去分母化成整式方程;换元法:注意:检验⎧⎨⎪⎩⎪【典型例题】例1 当是怎样的实数时,下列各式在实数范围内有意义(1)23x -(2)4412x x -+ (3)x x +--112解:(1)由230x -≥,得x ≥32 ∴≥当x 32时,23x -有意义(2)由44121022x x x -+=-≥()得为任意实数 ∴当为任意实数时,4412x x -+在实数范围内有意义(3)由x x +≥->⎧⎨⎩1020,得-≤<12x∴-≤<当12x 时,x x +--112在实数范围内有意义。
分式方程和二次根式试题和答案
分式方程和二次根式专项讲解一.知识框架二.知识概念1、分式:形如BA,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
分式方程的意义:分母中含有未知数的方程叫做分式方程.二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。
当a >0时,√a 表示a 的算数平方根,其中√0=0 2、分式有意义的条件:分母不等于03、分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C 为整式,且C≠0) 5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、分式的四则运算:①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加 减.用字母表示为:cba cbc a ±=± ②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbcad d c b a ±=± ③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdacd c b a =* ④分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bc ad d c b a =÷(2).除以一个分式,等于乘以这个分式的倒数: cd b a d c b a *=÷ 7、 理解并掌握下列结论: (1)()0≥a a 是非负数; (2)()()02≥=a a a ; (3)()02≥=a a a ;三、知识讲解【例1】(2009年黔东南州)当x_____时,11+x 有意义.(1-≠x )★直通中考:1、(2009年漳州)若分式12x -无意义,则实数x 的值是 x=2 . 2、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 x=2 .3、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( B ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 4、已知有意义,则在平面直角坐标系中,点P (m ,n )位于第 __四__ 象限.【例2】(2009年成都)分式方程2131x x =+的解是 x=2 ★直通中考:1、(2009年潍坊)方程3123x x =+的解是 .(x=9) 2、(2009宁夏)解分式方程:1233x x x +=--.(37=x ) 【例3】(2009 年佛山市)化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭ (y 2)★直通中考:1、(2009年湖南长沙)分式111(1)a a a +++的计算结果是( C ) A .11a + B .1a a +C .1aD .1a a+ 2、(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= (1+a a) 3、(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ (yx y -2) 4、(2010广东广州)若a <1,化简2(1)1a --=( D )A .a ﹣2B .2﹣aC .aD .﹣a5、已知2<x <5,化简2(2)x -+2(5)x -=________.(3) 【例4】(2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.(528) ★直通中考:1、(2009烟台市)设0a b >>,2260a b ab +-=,则a bb a+-的值等于.(2) 2、(2009年枣庄市)已知a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P = Q (填“>”、“<”或“=”).3、(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.(81)4、(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m2=________.(53)5、(2010四川广安)若|2|20x y y -++=,则xy 的值为( A ) A .8 B . 2 C .5 D .6-6、已知522+-+-=x x y ,则x y =________.(52) 【例5】(2009年河北)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.解:化简后1++b a ,代入可得2112=+-★直通中考:1、(2009年莆田)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.解:化简后x -,代入可得-12、(2009年衡阳市)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a .解:化简后13-a ,代入可得01313=-⨯3、(2011年中考)已知x 是一元二次方程0132=-+x x 的实数根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.解:化简后)3(31+x x ,因为0132=-+x x 可化为1)3(=+x x ,故原式可得314、(2009湖北省荆门市)已知x =2+3,y =2-3,计算代数式2211()()x y x y x y x y x y+----+的值.解:化简后xy 4-,代入可得()()34-32324-=-+5、如图,点A 的坐标为(﹣,0),点B 在直线y=x 上运动,当线段AB 最短时点B 的坐为( A )A .(﹣,﹣)B .(﹣,﹣)C .(,)D . (0,0)6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下: 依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是 ;(103)(3) 若购买乒乓球门票的总款数占全部门票总款数的61,求每张乒乓球门票的价格。
初中数学分式方程精选试题(含答案和解析)
初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。
100道解分式方程及答案
100道解分式方程练习题(带答案)解答:一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系.答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0.5小时.请同学依据上述等量关系列出方程.答案:方法1 设这名学生骑车追上队伍需x小时,依题意列方程为15x=2×15 x+12.方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为15x-15 2x=12.解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.方程两边都乘以2x,去分母,得30-15=x,所以x=15.检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.所以骑车追上队伍所用的时间为15千米30千米/时=12小时.答:骑车追上队伍所用的时间为30分钟.指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按速度找等量关系列方程,所列出的方程都是分式方程.例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.答案:方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为2(1x+1x3)+x2-xx+3=1.指出:工作效率的意义是单位时间完成的工作量.方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程2x+xx+3=1.方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程1-2x=2x+3+x-2x+3.用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.三、课堂练习1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.答案:1.甲每小时加工15个零件,乙每小时加工20个零件.2.大,小汽车的速度分别为18千米/时和45千米/时.四、小结1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程135 x+5-12:135x=2:5.解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了.五、作业1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.2.列方程解应用题.(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.2.(1)第二次加工时,每小时加工125个零件.(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.(3)江水的流速为4千米/时.课堂教学设计说明1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程.这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯.这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间.2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么.学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路.3.通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器.方程的思想方法可以用“以假当真”和“弄假成真”两句话形容.如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量.通过找等量关系列方程,此时是把已知量与假设的未知量平等看待,这就是“以假当真”.通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”.解分式方程的例题及答案第2 篇一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式)(2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为= (其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
初一数学分式试题答案及解析
初一数学分式试题答案及解析1.(1)(-3)2-+(-1)0+2cos30º;(2)化简:.【答案】(1)(2)【解析】(1)原式==(2)本题涉及了整式的计算和分式的化简,该题较为简单,是常考题,主要考查学生对整式的计算,如0次幂,三角函数值和分式的化简的掌握。
2.在代数式①;②;③;④中,属于分式的有()A.①②B.①③C.①③④D.①②③④【答案】B【解析】分式的定义:分母中含有字母的式子叫做分式.属于分式的有①,③,故选B.【考点】分式的定义点评:本题属于基础应用题,只需学生熟练掌握分式的定义,即可完成.3.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等.(1)设,,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.【答案】(1)(2)逆向”问题一:已知,,求A.解答:=(等等,答案不唯一)【解析】(1)==(2)“逆向”问题一:已知,,求A.解答:=“逆向”问题二:已知,,求B.解答:= = =“逆向”问题三:已知,,求.解答:.===. 等注:只要将“”作为条件之一的数学问题,都是问题(1)的“逆向”问题.【考点】分式运算点评:本题难度中等,主要考查学生对分式运算知识点的掌握,根据分式性质和整式性质综合运算能力。
为计算题常考题型,要求学生牢固掌握。
4.若用m表示3.14,-,,,-6.31的五个实数中分数的个数,那么m的值是()A.2B.3C.4D.5【答案】C【解析】根据分数的定义找出其中的分数,数出个数即可得到结果;注意含的数是无理数. 由题意分数有3.14,-,,-6.31共4个,故选C.【考点】分数的定义点评:本题属于基础应用题,只需学生熟练掌握分数的定义,即可完成.5.计算: .【解析】解:6.计算:=____________.【答案】【解析】解:7.计算【答案】解:原式【解析】先对分式部分化简,再通分即得结果。
专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编
专题06二次根式(24题)一、单选题1(2024·湖南·中考真题)计算2×7的结果是()A.27B.72C.14D.14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2×7=14,故选:D2(2024·内蒙古包头·中考真题)计算92-62所得结果是()A.3B.6C.35D.±35【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:92-62=81-36=45=35;故选C.3(2024·云南·中考真题)式子x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥0C.x<0D.x≤0【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x在实数范围内有意义,∴x的取值范围是x≥0.故选:B4(2024·黑龙江绥化·中考真题)若式子2m-3有意义,则m的取值范围是()A.m≤23B.m≥-32C.m≥32D.m≤-23【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得2m-3≥0,即可求解.【详解】解:∵式子2m-3有意义,∴2m-3≥0,解得:m≥3 2,故选:C.5(2024·四川乐山·中考真题)已知1<x<2,化简x-12+x-2的结果为()A.-1B.1C.2x -3D.3-2x【答案】B【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.先根据a 2=a 化简二次根式,然后再根据1<x <2去绝对值即可.【详解】解:x -1 2+x -2 =x -1 +x -2 , ∵1<x <2,∴x -1>0,x -2<0,∴x -1 +x -2 =x -1+2-x =1,∴x -12+x -2 =1,故选:B .6(2024·重庆·中考真题)已知m =27-3,则实数m 的范围是()A.2<m <3B.3<m <4C.4<m <5D.5<m <6【答案】B【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m =27-3=12,即可求出m 的范围.【详解】解:∵m =27-3=33-3=23=12,∵3<12<4,∴3<m <4,故选:B .7(2024·江苏盐城·中考真题)矩形相邻两边长分别为2cm 、5cm ,设其面积为Scm 2,则S 在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S =2×5=10,∵9<10<16,∴9<10<16,∴3<10<4,即S 在3和4之 间,故选:C .8(2024·安徽·中考真题)下列计算正确的是()A.a 3+a 5=a 6B.a 6÷a 3=a 2C.-a2=a 2D.a 2=a【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A、a3与a5不是同类项,不能合并,选项错误,不符合题意;B、a6÷a3=a3,选项错误,不符合题意;C、-a2=a2,选项正确,符合题意;D、当a≥0时,a2=a,当a<0时,a2=-a,选项错误,不符合题意;故选:C9(2024·重庆·中考真题)估计122+3的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵122+3=26+6,而4<24=26<5,∴10<26+6<11,故答案为:C10(2024·四川德阳·中考真题)将一组数2,2,6,22,10,23,⋯,2n,⋯,按以下方式进行排列:则第八行左起第1个数是()A.72B.82C.58D.47【答案】C【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有1+2+3+4+5+6+7=28个数,则第八行左起第1个数是2×29=58,故选:C.二、填空题11(2024·江苏连云港·中考真题)若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2【详解】根据二次根式被开方数必须是非负数的条件,要使x-2在实数范围内有意义,必须x-2≥0,∴x≥2.故答案为:x≥212(2024·江苏扬州·中考真题)若二次根式x-2有意义,则x的取值范围是.【答案】x≥2【详解】解:根据题意,使二次根式x-2有意义,即x-2≥0,解得:x≥2.故答案为:x≥2.【点睛】本题主要考查使二次根式有意义的条件,理解二次根式有意义的条件是解题关键.13(2024·贵州·中考真题)计算2⋅3的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=2×3=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a⋅b=ab(a≥0,b>0)是解题关键.14(2024·北京·中考真题)若x-9在实数范围内有意义,则实数x的取值范围是.【答案】x≥9【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得x-9≥0,解得:x≥9.故答案为:x≥9【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15(2024·天津·中考真题)计算11-1的结果为.11+1【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式=11-1=10.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16(2024·四川德阳·中考真题)化简:-32=.【答案】3【分析】根据二次根式的性质“a2=a ”进行计算即可得.【详解】解:-32=-3=3,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17(2024·黑龙江大兴安岭地·中考真题)在函数y=x-3x+2中,自变量x的取值范围是.【答案】x≥3/3≤x【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,x-3≥0,且x+2≠0,解得,x≥3,故答案为:x≥3.18(2024·山东烟台·中考真题)若代数式3x-1在实数范围内有意义,则x的取值范围为.【答案】x>1/1<x【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:x-1>0,解得:x>1;故答案为:x>1.19(2024·山东威海·中考真题)计算:12-8⋅6=.【答案】-23【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:12-8⋅6=23-43=-23故答案为:-23.20(2024·黑龙江齐齐哈尔·中考真题)在函数y=13+x+1x+2中,自变量x的取值范围是.【答案】x>-3且x≠-2【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3+x>0 x+2≠0,解得x>-3且x≠-2,故答案为:x>-3且x≠-2.三、解答题21(2024·内蒙古包头·中考真题)(1)先化简,再求值:x+12-2x+1,其中x=22.(2)解方程:x-2x-4-2=xx-4.【答案】(1)x2-1,7;(2)x=3【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)x+12-2x+1=x2+2x+1-2x-2=x2-1,当x=22时,原式=222-1=7;(2)x-2x-4-2=xx-4去分母,得x-2-2x-4=x,解得x=3,把x=3代入x-4=3-4=-1≠0,∴x=3是原方程的解.22(2024·上海·中考真题)计算:|1-3|+2412+12+3-(1-3)0.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:|1-3|+2412+12+3-(1-3)0=3-1+26+2-3(2+3)(2-3)-1 =3-1+26+2-3-1=26.23(2024·甘肃·中考真题)计算:18-12×3 2.【答案】0【分析】根据二次根式的混合运算法则计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】18-12×32=18-12×32=18-18=0.24(2024·河南·中考真题)(1)计算:2×50-1-30;(2)化简:3a-2+1÷a+1a2-4.【答案】(1)9(2)a+2【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式=100-1=10-1=9;(2)原式=3a-2+a-2 a-2÷a+1a+2a-2=a+1 a-2⋅a+2a-2a+1=a+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程和二次根式专项讲解一.知识框架二.知识概念1、分式:形如BA,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
分式方程的意义:分母中含有未知数的方程叫做分式方程.二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。
当a >0时,√a 表示a 的算数平方根,其中√0=0 2、分式有意义的条件:分母不等于03、分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C 为整式,且C≠0) 5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、分式的四则运算:①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加 减.用字母表示为:cba cbc a ±=± ②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbcad d c b a ±=± ③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdacd c b a =* ④分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bc ad d c b a =÷(2).除以一个分式,等于乘以这个分式的倒数: cd b a d c b a *=÷ 7、 理解并掌握下列结论: (1)()0≥a a 是非负数; (2)()()02≥=a a a ; (3)()02≥=a a a ;三、知识讲解【例1】(2009年黔东南州)当x_____时,11+x 有意义.(1-≠x )★直通中考:1、(2009年漳州)若分式12x -无意义,则实数x 的值是 x=2 . 2、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 x=2 .3、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( B ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 4、已知有意义,则在平面直角坐标系中,点P (m ,n )位于第 __四__ 象限.【例2】(2009年成都)分式方程2131x x =+的解是 x=2 ★直通中考:1、(2009年潍坊)方程3123x x =+的解是 .(x=9) 2、(2009宁夏)解分式方程:1233x x x +=--.(37=x ) 【例3】(2009 年佛山市)化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭ (y 2)★直通中考:1、(2009年湖南长沙)分式111(1)a a a +++的计算结果是( C ) A .11a + B .1a a +C .1aD .1a a+ 2、(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= (1+a a) 3、(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ (yx y -2) 4、(2010广东广州)若a <1,化简2(1)1a --=( D )A .a ﹣2B .2﹣aC .aD .﹣a5、已知2<x <5,化简2(2)x -+2(5)x -=________.(3) 【例4】(2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.(528) ★直通中考:1、(2009烟台市)设0a b >>,2260a b ab +-=,则a bb a+-的值等于.(2) 2、(2009年枣庄市)已知a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P = Q (填“>”、“<”或“=”).3、(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.(81)4、(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m2=________.(53)5、(2010四川广安)若|2|20x y y -++=,则xy 的值为( A ) A .8 B . 2 C .5 D .6-6、已知522+-+-=x x y ,则x y =________.(52) 【例5】(2009年河北)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.解:化简后1++b a ,代入可得2112=+-★直通中考:1、(2009年莆田)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.解:化简后x -,代入可得-12、(2009年衡阳市)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a .解:化简后13-a ,代入可得01313=-⨯3、(2011年中考)已知x 是一元二次方程0132=-+x x 的实数根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.解:化简后)3(31+x x ,因为0132=-+x x 可化为1)3(=+x x ,故原式可得314、(2009湖北省荆门市)已知x =2+3,y =2-3,计算代数式2211()()x y x y x y x y x y+----+的值.解:化简后xy 4-,代入可得()()34-32324-=-+5、如图,点A 的坐标为(﹣,0),点B 在直线y=x 上运动,当线段AB 最短时点B 的坐为( A )A .(﹣,﹣)B .(﹣,﹣)C .(,)D . (0,0)6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下: 依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是 ;(103)(3) 若购买乒乓球门票的总款数占全部门票总款数的61,求每张乒乓球门票的价格。
解:61501000308002020=⨯+⨯+x x 得x=740★直通中考:1、已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,△BCD 为等边三角形,且AD=,求梯形ABCD 的周长.2、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。
当地一公司收获这种蔬菜140吨,其加工厂生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。
但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这蔬菜全部销售或加工完毕,为此公司初定了三种可行方案: 方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售; 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为哪种方案获利最多?为什么?解:方案一:4500×140=630000(元)方案二:15×6=90(吨) 90×7500+(140-90)×1000=725000(元) 方案三:设精加工的蔬菜为x 吨,则粗加工的蔬菜为15-x 吨,依题意得: 6x+(15-x )×16=140 解得x=10故利润为7500×10+4500×5=97500(元) 因此,方案三获利最多。
2、(2009年本溪) “五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍. (1)求步行同学每分钟...走多少千米?(0.1) (2)右图是两组同学前往水洞时的路程y (千米) 与时间x (分钟)的函数图象. 完成下列填空: ①表示骑车同学的函数图象是线段 AM ;②已知A 点坐标(300),,则B 点的坐标为( 50,0 ).M N AB x y (千米)(分钟) 65432 1 10 20 30 O 解: AD ∥BC ,∠A=90°且△BCD 为等边三角形,AD=∴∠ABC=90°,∠ABD=30°∴在Rt △ABD 中,ABAB AD 230tan ==︒ ∴AB=6又BDBD AD 230sin ==︒ ∴BD=22梯形ABCD 的周长为27622326+=⨯++4、先观察下列等式,再回答下列问题: ①;②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).解:(1)2011141-4115141122=++=++验证:略 (2)())1(1111-11111122+=++=+++n n n n n n (n 为正整数)5、学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天? 解:设规定日期是x 天,若整个工程为“1”,则甲的工作效率为x 1,乙的工作效率为31+x , 依题意得1)2(312311=-++⨯++x x x x )( 解得x=6 故规定日期为6天。