模拟电路课件全套课件

合集下载

模拟电路基础ppt课件可编辑全文

模拟电路基础ppt课件可编辑全文
*
1.4.3 三极管的工作状态
1. 放大状态 在上面一部分中分析了三极管的放大原理。为了使三极管有放大能力,在输入回路加基极直流电源VBB,在输出回路加集电极直流电源VCC,且VCC大于VBB,使发射结正向偏置、集电结反向偏置。此时称三极管处于放大状态,条件是发射结正向偏置、集电结反向偏置。 2. 饱和状态 如果输出回路的集电极直流电源VCC小于输入回路的基极直流电源VBB,则发射结和集电结都是正向偏置。由于发射结和集电结都是正向偏置,在开始发射结和集电结上的势垒都变窄,使发射区和集电区的自由电子同时涌入基区,但是由于基区面积很小,且掺杂浓度很低,涌入到基区的电子中只有极少部分与空穴复合,形成基极电流IB,绝大部分扩散到基区的电子堆积在发射结和集电结附近,使发射结和集电结上的势垒加宽,阻止了发射区和集电区的自由电子进一步扩散到基区,由此可见,此时三极管没有放大能力。 此种状态称三极管处于饱和状态,条件是发射结和集电结都是正向偏置。 3. 截止状态 如果在输入回路的基极直流电源VBB小于发射结的开启电压,则发射结处于零偏置或反偏置。由于外加电压没有达到发射结的开启电压,使发射区的自由电子不能越过发射结达到基区,不能形成电流,从而发射极、集电极和基极的电流都很小,也就谈不上放大了。此时称三极管处于截止状态,条件是发射结零偏置或反偏置、集电结反向偏置。
*
1.3.3 二极管的等效电阻
直流等效电阻也称静态等效电阻。如图1-9所示,在二极管的两端加直流电压UQ、产生直流电流IQ,此时直流等效电阻RD定义为 交流等效电阻表示,在二极管直流工作点确定后,交流小信号作用于二极管所产生的交流电流与交流电压的关系。在直流工作点Q一定,在二极管加有交流电压u,产生交流电流i,交流等效电阻r定义为
*
例1-1 图10(a)是由理想二极管D组成的电路,理想二极管是指二极管的导通电压U为0、反向击穿电压U为,设电路的输入电压u如图10(b)所示,试画出输出uo的波形 解:由二极管的单向导电特性,输入信号正半周时二极管导通,负半周截止,故输出uo的波形如右图所示。

模拟电子技术ppt课件

模拟电子技术ppt课件
9.1.1 功率放大电路的特点
一、主要技术指标 1. 最大输出功率Pom 输出功率 PO :输入为正弦波且不失真 。
注:交流功率,PO=UOIO POm=UOmIOm
第九章 功率放大电路
2. 转换效率η
直流功率:直流电源 电压和其输出电流平 均值的乘积
二、功率放大电路中的晶体管
晶体管工作在极限应用状态(ICM ; U(BR)CEO ; PCM)。 大功率管,散热,保护
静态:
动态:
电容电压 :
T1导通,T2截止 T2导通,T1截止
甲乙类工作状态
第九章 功率放动态电阻很小,R2 的阻值也较小。
第九章 功率放大电路
若静态 工作点 失调, 如虚焊
第九章 功率放大电路
三、OCL电路的输出功率和效率
-Vcc
第九章 功率放大电路
二、集电极最大电流
第九章 功率放大电路
三、集电极最大功耗
四、参数选择:
第九章 功率放大电路
9.4 功率放大电路的安全运行
9.4.1 功放管的二次击穿 9.4.2 功放管的散热问题
第九章 功率放大电路
9.4 功率放大电路的安全运行 9.4.1 功放管的二次击穿
第九章 功率放大电路
9.4.2 功放管的散热问题
有效值: 最大输出功率:
第九章 功率放大电路
若忽略UCES: 在忽略基极回路电流的情况下,电源提供的电流
第九章 功率放大电路
电源在负载获得最大交流信号时所消耗的平均功率:
若忽略UCES:
第九章 功率放大电路
两种互补功率放大电路性能指标的比较:
OCL电路
OTL电路
第九章 功率放大电路
四、 OTL电路中晶体管的选择 一、最大管压降

模拟电路基础ppt课件

模拟电路基础ppt课件
NPN型三极管驱动蜂鸣器
NPN型三极管驱动蜂鸣器
1.4 场效应管 1.4.2 绝缘栅型场效应管
由金属、氧化物和半导体制成。称为金属-氧 化物-半导体场效应管,或简称 MOS 场效应管。
特点:输入电阻可达 109 以上。
栅极 G

类型
N 沟道 P 沟道
加强型 耗尽型
加强型 耗尽型
源极 S S
SiO2 G
Rb IB b c
VBB
+e
UB E_
c IB
当 UCE = 0 时,基极和 VBB 发射极之间相当于两个 PN
+b
UB
E_ e
结并联。所以,当 b、e 之间 加正向电压时,应为两个二
IB/ A
UCE0
极管并联后的正向伏安特性。
O
UBE / V
(2) UCE > 0 时的输入特性曲线 当 UCE > 0 时,这个电压有利于将发射区分散
图4.12 H桥驱动电路
对三极管导通。例如,如图4.13所示, 当Q1管和Q4管导通时,电流就从电 源正极经Q1从左至右穿过电机,然后 再经Q4回到电源负极。按图中电流箭 头所示,该流向的电流将驱动电机顺 时针转动。当三极管Q1和Q4导通时, 电流将从左至右流过电机,从而驱动 电机按特定方向转动〔电机周围的箭
e
eI
E
1.3.3 三极管的特性曲线
输入特性:
IBf(UB )EUCE常 数
Rc IC
输出特性:
ICf(UCE )IB常数
VBB
mA
+
Rb
IB
c
A
输入 回路
b
V UB E
UCE输U出C e- V回路E

模拟电路ppt课件

模拟电路ppt课件
(4-10)
例:求Au =?
i2 R2 M R4 i4
i3 R3
i1 ui
R1
_ +
+
RP
虚短路
u u 0
i1= i2
虚开路
uo
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
(4-11)
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
Au
uo ui
)
RF
2
RF1 R4
( ui1 R1
ui 2 R2
)
ui3 R5
(4-29)
五、三运放电路
ui1 +
A+
+
ui2
A+
uo1
R
R1
a
RW b
R
R1
uo2
R2
+
uo
A+
R2
(4-30)
ui1 +
A+
+
ui2
A+
uo1
R a
RW b
ua ui1 ub ui2
uo1 uo2 ua ub
t
思考:如果输入是正弦波,输出波形怎样,请 自己计算。运放实验中请自己验证。
(4-36)
积分电路的主要用途: 1. 在电子开关中用于延迟。 2. 波形变换。例:将方波变为三角波。 3. A/D转换中,将电压量变为时间量。 4. 移相。
其他一些运算电路:对数与指数运算电路、乘 法与除法运算电路等,由于课时的限制,不作 为讲授内容。

模拟电路基础教程PPT完整全套教学课件全

模拟电路基础教程PPT完整全套教学课件全

返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。

模拟电路PPT课件

模拟电路PPT课件
起隔直作用。为了减小传递信号的电压损失,Cl、C2应 选得足够大,一般为几微法至几十微法,通常采用电解
电容器。
共发射极放大电路的实用电路
RB
C1 +
+
Rs
us+-
ui -
RC
+UCC C2
+
V
+
RL uo

2 共发射极基本放大电路的静态分析
静态是指无交流信号输入时,电路中的电流、电压都 不变的状态,静态时三极管各极电流和电压值称为静 态工作点Q(主要指IBQ、ICQ和UCEQ)。静态分析主要 是确定放大电路中的静态值IBQ、ICQ和UCEQ。
③输出电阻
B
Ib
Ic C I +
Rs
RB rbe
RC
U
Ib

E
Ro 的计算方法是:信号源U s 短路,断开负载 RL ,在输 出端加电压U ,求出由U 产生的电流 I ,则输出电阻 Ro 为:
Ro
U I
RC
对于负载而言,放大器的输出电阻Ro越小,负载电阻RL的 变化对输出电压的影响就越小,表明放大器带负载能力越
反相输入端
Δ
A
u-

uo
+
u+
+
同相输入端
2 集成运算放大器的主要参数及种类
1、集成运放的主要参数
(1)差模开环电压放大倍数 Ado。指集成运放本身(无外加反馈回路)的
差模电 压放大 倍数, 即
Ado
uo u u
。 它体 现了集 成运放 的电压 放大能 力, 一
般在 104~107 之间。Ado 越大,电路越稳定,运算精度也越高。

模拟电路讲义PPT课件

模拟电路讲义PPT课件

1.1.1功率放大器(Power Amplifier)
一.分类
(a)甲类放大电路 1.直接藕荷功率放大电路 (b)乙类互补对称功率 电放 路大
(c)甲、乙类互补对称 放功 大率 电路
2.变压器耦合功率放大电路
OT电 L 路 (单电源加)电藕合 3.其他类型的功率放大电路 BT电 L 路 ,由两个差动 OC 输 电 L出 路的 组成
ICEO0 ,
V C V E C 2 , Q I C C 0 , V Q C V E C 2 , Q I C C V C Q R E L V C Q 2 R L C
. 图1-2-1 图解分析
二.输出集电极电流和电压
ic IC Q iC IC Q Icm co ts
二.功率放大器的性能要求
1.最主要的要求是:安全、高效率和不失真(失真可在允许 的范围内)地输出信号功率。 2.最重要的性能指标是:集成电极效率 c
c
PO PD
PO
PO PC
(1-1-1)
式中:PD直流电 ,PO 源 输功 出率 信 ,PC 号 功功 率率 管的 . 耗
3.功率放大器的本质是:在输入信号作用下,将直流电源的 直流功率转换为输出信号功率,所以用 c 来评价这种转换能 力。
2.功率合成技术
首先介绍输入变压器的工作原理及其功能,
然后重点讨论用传输线变压器构成的魔T混合网
络实现功率合成及功率分配的原理。
3础上,简单介绍半联型、开关型稳压 器的工作原理及稳压性能。
4.为了开设实验内容,首先进行相关实验仪器、仪表 的介绍,并让学生初步学会使用及进行简单操作, 然后安排2学时的实验课。
Vce ,ic 管子未发烫就已损坏,是 不可逆的。
12.产生二次击穿的原因及过程 ①原因:管内结面不均匀,晶格缺陷等。 ②过程:结面某些薄弱点电流密度

模拟电路ppt课件

模拟电路ppt课件
1. 开环差模电压放大倍数Aod 无外加反馈回路的差模放大倍数。一般在
105 107之间。理想运放的Aod为。
2. 共模抑制比KCMR 常用分贝作单位,一般100dB以上。
3. 差模输入电阻rid
ri>1M, 有的可达100M以上。
(4-22)
4. 输出电阻ro
ro =几-几十。
5. 最大共模输入电压UIcmax 6. 最大差模输入电压UIdmax 7. -3dB带宽fH
第四章 结束
(4-26)
由镜像关系: Δ iC3= Δ iC4;
-VEE
所以: Δ io= Δ iC4 -Δ iC2= Δ iC1 –(-Δ iC1)=2 Δ iC1
此时,单端输出的放大 倍数接近于双端输出:
Aiu
iO uI
2iC1 2iB1rbe1
1 rbe1
(4-20)
§4.3 集成运放电路简介
(4-21)
§4.4 集成运放的性能指标及低频等效电路 4.4.1 主要性能指标
ln IR IC1
可用图解法或累试法求解
例:P177
(4-15)
4.2.2 改进型电流源电路
一、加射极输出器的电流源
+VCC
IR R
IB
IC0
T0
2
T2
IE2 IB1
IB0
Re2
特点:利用T2管的电流放大 作用,减小了基极电流IB0和 IC1 IB1对基准电流IR的分流。
IC1 IC0 IR IB2
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
(4-2)
集成电路内部结构的特点:
1. 电路元件制作在一个芯片上,元件参数偏差方 向一致,温度均一性好。

《模拟电路》PPT课件

《模拟电路》PPT课件

2〕求If :If
R Rf
RIS
3〕求AVSF:
AVSF
Vo VS
IS Ii
RL RS
IS(Rd //RL) If RS
(1Rf )Rd //RL R RS
七、功率放大器
1.互补对称功率放大电路:
1〕OCL电路:双电源,无输出电容.分为:
乙类互补对称功率放大电路:电路简单,但有交越失真.
利用"虚短"和"虚断"的概念,分析电路输出电压与
输入电压的关系. 1〕比例运算电路,反相比例:
vo
Rf R1
vS
反相器: vo=- vs
同相比例:
vo
(1
Rf R1
)vS
电压跟随器: vo=vs
2〕反相加法电路vo:(R R 1 fvS1R R 2 fvS2R R 3 fvS3)
3〕减法电路〔差分比例运算电路〕: vo(1R R 1 f)R 2R 3R 3vs2R R 1 fvs1
工作点偏高,输出波形容易出现饱和失真; 要求由输出波形能判断是什么失真. 静态分析:确定静态值:IB、IC、VCE.
有两种方法,图解法:了解. 估算法:重点.
静态偏置电路有三种:<要求掌握两种>
a〕固定偏置电路1: 先求IB IC VCE
IBVCC RBVBEVRCBC
IB
V CE V C CICR C b〕射极偏置电路: VB IE〔IC〕 IB VCE
稳幅环节:形成负反馈;
选频网络 :
3〕利用相位平衡条件判断电路能否起振 RC振荡电路: 采用RC串、并联网络, f = 0o
采用三节RC移相电路, f =180o
LC振荡电路:变压器反馈式 电感三点式LC振荡器 电容三点式LC振荡器<了解>

模拟电子技术PPT课件

模拟电子技术PPT课件
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs

Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL



Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo

–O

输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0

放大电路
IT
+ VT

Vo AVOVi

模拟电路设计知识ppt课件

模拟电路设计知识ppt课件
一般
这里取值为47μF
三、光控电子开关的设计与调试
2.项目设计——音频光控电子开关
元器件参数设计
+
+
-
uo
ui
+
-
+
-
RL
V3
V1
V2
C
U
② 二极管V2参数计算
由于二极管V2在这里起到开与关的作用,考虑到其与发光二极管串接,其导通电流必然满足要求。因此只要选择开关速度比较快的二极管即可,其中的电流以发光二极管的电流为参照。
测试电路:如图所示,其中二极管VD为光电二极管,R为1k。
③ 接入电源电压U=10V,观察二极管中有无电流流过,有无输出电压,并记录 。 ④ 改变光照强度,使光照强度由强变弱,此时的输出电压或电流将变(大/小) 。
T↑
IR↑
通常
三、光控电子开关的设计与调试
2.项目设计——音频光控电子开关
(根据给定的条件和要求)确定电路总设计指标
①启动光照强度E≤100 lx;关断光照强度E≥1000 lx。 (开关模式:有光闭合,无光关断) ②音频输入峰峰值Uip-p≤1V ③负载(耳机)阻抗RL=2k ④开关失真度THD≤5% ⑤开关损耗L≤3dB ⑥关断泄漏D≤40 dB(0.01倍) ⑦开关稳态响应时间td≤10ms
① 直接用万用表测量光电二极管的反向电阻值,并比较在不同光照情况下的差异,并记录:光电二极管在光照较强时的反向电阻值(大于/小于) 光照较弱时的电阻值。 ② 按图接好电路,并串接电流表。
二、光电二极管的特性测试
4.项目测试——光电二极管的特性测试
结论
光电二极管正常工作时处于反偏状态,只有这样才能起到光控的作用。

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程
常使用的二极管,是不允许出现这种现象的。
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三

模电课件ppt

模电课件ppt
线性系统分析
研究非线性电路的静态和动态特性,如分岔、混沌等现象。
非线性系统分析
利用控制理论和方法研究电路系统的反馈控制和自动调节。
控制系统分析
通过最优化算法和数学规划方法,寻求电路性能的最佳设计方案。
最优化系统分析
模拟电路元件
总结词
电阻是模拟电路中最基本的元件之一,用于限制电流。
详细描述
电阻的阻值大小由其材料、长度和横截面积决定,通常用欧姆(Ω)作为单位。在电路中,电阻用于调节电流和电压,实现各种不同的功能。
总结词
不同类型的电阻具有不同的特性,如碳膜电阻、金属膜电阻、水泥电阻等。
详细描述
碳膜电阻具有较好的稳定性,适用于高精度的测量和控制系统;金属膜电阻具有较低的温度系数和稳定的性能,适用于高频电路;水泥电阻则具有较大的功率容量,适用于大电流电路。
01
02
03
04
总结词:电容是模拟电路中用于存储电荷的元件,具有隔直流通交流的特性。详细描述:电容的容量大小由其电极面积和间距决定,通常用法拉(F)作为单位。在电路中,电容用于滤波、旁路、耦合等作用,能够平滑电流或电压的波动。总结词:不同类型的电容具有不同的特性,如电解电容、陶瓷电容、薄膜电容等。详细描述:电解电容具有较大的容量和较低的价格,适用于低频电路;陶瓷电容具有较高的绝缘性能和稳定的温度系数,适用于高频电路;薄膜电容具有较小的体积和较高的可靠性,适用于小型化和便携式设备。
电压放大倍数是指输出电压与输入电压的比值,用于衡量模拟电路的放大能力。
电压放大倍数是模拟电路的重要性能指标之一,它反映了电路对输入信号的放大能力。在理想情况下,电压放大倍数越大,电路的放大能力越强。然而,在实际应用中,过高的放大倍数可能导致信号失真和稳定性问题。因此,需要根据实际需求选择合适的放大倍数。

20种最常见模拟电路课件

20种最常见模拟电路课件

信息科学与技术学院
20
17.RC振荡电路
❖ 1、振荡电路的组成;振 荡电路的作用;振荡电 路起振的相位条件;振 荡电路起振和平衡幅度 条件;
❖ 2、RC 电路阻抗与频率 的关系曲线;相位与频 率的关系曲线;
❖ 3、RC 振荡电路的相位 条件分析;振荡频率; 如何选择元器件?
2024/7/25
信息科学与技术学院
17
14.运算放大电路
❖ 1、理想运算放大器的概念; 运放的输入端虚拟短路;运 放的输入端的虚拟断路;
❖ 2、反相输入方式的运放电 路的主要用途;输入电压与 输出电压信号的相位关系是?
❖ 3、同相输入方式下的增益 表达式分别是?输入阻抗分 别是?输出阻抗分别是?
2024/7/25
信息科学与技术学院
❖ 2、LC 串联和并联电 路的阻抗计算,幅频 关系和相频关系曲线。
❖ 3、画出通频带曲线; 计算谐振频率。
2024/7/25
信息科学与技术学院
7
4.微分和积分电路
❖ 1、电路的作用,与滤波器的区别和相同点。 ❖ 2、微分和积分电路电压变化过程分析,画出电压
变化波形图。 ❖ 3、计算:时间常数,电压变化方程,电阻和电容
2024/7/25
信息科学与技术学院
3
主要内容
❖ 15 差分输入运算放大电路 ❖ 16 电压比较电路 ❖ 17 RC振荡电路 ❖ 18 LC振荡电路 ❖ 19 石英晶体振荡电路 ❖ 20 功率放大电路
2024/7/25
信息科学与技术学院
4
1.桥式整流电路
❖ 1、二极管的单向导电性;伏安特性曲线;理想开 关模型和恒压降模型;
参数的选择。
2024/7/25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅二极管 锗二极管

正极 引线




负极 引线

铝合金 小球 正极引线 PN 结 N型锗
N 型锗片
金锑 合金
底座
外壳
触丝 负极引线
正极 负极 引线 引线
点接触型
面接触型
P N
P 型支持衬底
集成电路中平面型












1.2.2 二极管的伏安特性 一、PN 结的伏安方程
玻尔兹曼 常数






反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。 热击穿 — PN 结烧毁。
反向击穿原因: 齐纳击穿: 反向电场太强,将电子强行拉出共价键。 (Zener) (击穿电压 < 6 V,负温度系数)
反向电场使电子加速,动能增大,撞击 雪崩击穿: 使自由电子数突增。 (击穿电压 > 6 V,正温度系数) 击穿电压在 6 V 左右时,温度系数趋近零。
1.1.1 本征半导体
半导体 — 导电能力介于导体和绝缘体之间的物质。
本征半导体 — 纯净的半导体。如硅、锗单晶体。 载流子 — 自由运动的带电粒子。 共价键 — 相邻原子共有价电子所形成的束缚。





术 硅(锗)的共价键结构
硅(锗)的原子结构
自 由 电 子 空 穴
简化 模型 惯性核
价电子 (束缚电子)
+4 +4 +4
空穴为少数载流子
+4 磷原子 +5 +4 自由电子
载流子数 电子数






1.1.2 杂质半导体
一、N 型半导体和 P 型半导体
P型
+4 +4 +4
空穴 — 多子 电子 — 少子
+4 硼原子
+3
+4 空穴
载流子数 空穴数






二、杂质半导体的导电作用 I
IN
IP
两种载流子的运动 自由电子(在共价键以外)的运动 空穴(在共价键以内)的运动
1. 本征半导体中电子空穴成对出现,且数量少;
2. 半导体中有电子和空穴两种载流子参与导电;
3. 本征半导体导电能力弱,并与温度有关。






1.1.2 杂质半导体 一、N 型半导体和 P 型半导体
N型
电子为多数载流子
i D I S (e
反向饱 和电流
uD / UT
1)
温度的 电压当量
kT UT q
电子电量
当 T = 300(27C):
UT = 26 mV






二、二极管的伏安特性
iD /mA
0 U Uth
iD = 0
U (BR) IS
正向特性
uD /V
Uth = 0.5 V (硅管) 0.1 V (锗管)






第 1 章 半导体器件
1.1 半导体的基础知识 1.2 半导体二极管 1.3 1.4 1.5 1.6 二极管电路的分析方法 特殊二极管 双极型半导体三极管 场效应管 小 结






1.1
半导体的基础知 识
1.1.1 本征半导体 1.1.2 杂质半导体
1.1.3 PN结












三、PN 结的伏安特性
I I S (e
反向饱 和电流
u /UT
1)
电子电量
玻尔兹曼 常数
温度的 电压当量
当 T = 300(27C): UT = 26 mV
kT UT q
I /mA
加正向电压时 加反向电压时 i≈–IS
反 向 击 穿
正向特性
O u /V






1.2






iD / mA
15 10 5
– 50 – 25 –0.01 0 0.2 –0.02
iD / mA
60 40
20
–50 –25 – 0.02 – 0.04 0 0.4 0.8 u / V D
0.4
uD / V
硅管的伏安特性
锗管的伏安特性






温度对二极管特性的影响
iD / mA
60 40
空穴
空穴可在共 价键内移动






本征激发: 在室温或光照下价电子获得足够能量摆 脱共价键的束缚成为自由电子,并在共价键 中留下一个空位(空穴)的过程。

合: 自由电子和空穴在运动中相遇重新结合 成对消失的过程。

移: 自由电子和空穴在电场作用下的定向运
动。






两种载流子 电子(自由电子) 空穴 结论:
90C 20C
20
–50 –25 0 – 0.02
0.4
uD / V
T 升高时,
UD(on)以 (2 2.5) mV/ C 下降






1.2.3 二极管的主要参数
半导体二极管
1.2.1 半导体二极管的结构和类型 1.2.2 二极管的伏安特性 1.2.3 二极管的主要参数






1.2.1 半导体二极管的结构和类型 构成: PN 结 + 引线 + 管壳 = 二极管(Diode) 符号: A (anode) 按材料分 分类: 点接触型 按结构分 面接触型 平面型 C (cathode)






3. 扩散和漂移达到动态平衡
扩散电流 等于漂移电流,
总电流 I = 0。 二、PN 结的单向导电性
1. 外加正向电压(正向偏置) — forward bias





术 扩散运动加强形成正向电流 外电场使多子向 PN 结移动, IF 。 中和部分离子使空间电荷区变窄。
IF
P区
N区
外电场
U Uth iD 急剧上升 反 反向特性 O Uth 向 击 UD(on) = (0.6 0.8) V 硅管 0.7 V 死区 穿 电压 (0.1 0.3) V 锗管 0.2 V U(BR) U 0 U < U(BR) iD = IS < 0.1 A(硅)几十 A (锗) 反向电流急剧增大 (反向击穿)
内电场
IF = I多子 I少子 I多子
限流电阻
2. 外加反向电压(反向偏置) — reverse bias IR
P区 N区 内电场 外电场 漂移运动加强形成反向电流 IR 外电场使少子背离 PN 结移动, I =I 空间电荷区变宽。 0
R 少子
PN 结的单向导电性:正偏导通,呈小电阻,电流较大; 反偏截止,电阻很大,电流近似为零。
I = IP + IN N 型半导体 I IN P 型半导体 I IP






三、P 型、N 型半导体的简化图示
负离子
多数载流子
少数载流子 正离子
多数载流子 少数载流子






1.1.3 PN 结
一、PN 结(PN Junction)的形成
1. 载流子的浓度差引起多子的扩散
内建电场 2. 复合使交界面形成空间电荷区 (耗尽层) 空间电荷区特点: 无载流子, 阻止扩散进行, 利于少子的漂移。
相关文档
最新文档