Smith(史密斯)圆图阻抗匹配

合集下载

第节 Smith 圆图及应用阻抗匹配

第节 Smith 圆图及应用阻抗匹配

(1) /4阻抗变换器匹配方法
此处接/4阻抗 变换器
Z 01 Z 0 Rl
Zin Z0
Z0
第一个电压波节点 所处的位置
/4
Z0
Z01
电容性负载
l1
4
l
4
l1
Z0
Z01
Z0
Zi n=Z0
Rx=Z0/
Z0
第一个电压波腹点 所处的位置
/4
Z0
Z01
电感性负载
Zl Rl jX l
l1
4
在圆图上做直线找到P1点相对中心点对称的P2点, P2点即是归一化负载导纳(查图得其归一化导纳即为0.4-j0.2)对应位置; P2点对应的向电源方向的电长度为0.463 ;
将P2点沿等l圆顺时针旋转与匹配电导圆交于A点B 点
A点的导纳为1+j1,对应的电长度为0.159,
B点的导纳为1-j1,对应的电长度为0.338。
纯电导线
g=1 匹配圆
开路点
匹配点
短路点
纯电纳圆
下半圆电感性
b=-1电纳圆弧
《微波技术与天线》
[例1-8]设负载阻抗为Zl=100+j50接入特性阻抗为Z0=50的传输线上。要用支节 调配法实现负载与传输线匹配,试用Smith圆图求支节的长度及离负载的距离。
解:
A
B
0.463 负载阻抗归一化2+j,并在圆图上找到与相对应的点P1;
(1)支节离负载的距离为
d1=(0.5-0.463) +0.159 =0.196 d2=(0.5-0.463) +0.338 =0.375
0.159 0.125
A B
(2)短路支节的长度:

Smith(史密斯)圆图阻抗匹配

Smith(史密斯)圆图阻抗匹配
一、圆图的基本原理
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2

ZL Z0 ZL Z0
2

tan 1
RL2
2 X LZ0

X
2 L

Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X

2b
(1

2 a
)2

b2
a

2
R R 1

b2


1
2

R 1
等归一化电阻圆方程
a
12


b

1 X
2



1 X
2

等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。

阻抗匹配与史密斯(Smith)圆图:基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验: 只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图: 本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

史密斯(Smith)圆图

史密斯(Smith)圆图

阻抗匹配与史密斯(Smith)圆图: 基本原理本文利用史密斯圆图作为RF 阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF 测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:• 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

• 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

• 经验: 只有在RF 领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

•史密斯圆图: 本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

最全的阻抗匹配与史密斯(Smith)圆图基本原理

最全的阻抗匹配与史密斯(Smith)圆图基本原理

最全的阻抗匹配与史密斯(Smith)圆图基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2472工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括•计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

•手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

•经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

•史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

Smith阻抗匹配

Smith阻抗匹配

史密斯(Smith)圓圖的應用與阻抗整合前言印刷電路板的pattern 線路有很多必需是借助thruogh hole 完成線路路徑的佈局,對低頻電路而言thruogh hole 幾乎不會對該電路產生不良影響,不過高頻電路的阻抗(impedance)整合卻扮演關鍵性角色,換言之若將具有thruogh hole 的線路當作一般傳輸線路處理,就會面臨許多超乎預期的困擾,主要原因是在傳輸線路上如果設有thruogh hole,該部位就會產生非連續性點阻抗,而該點或多或少會形成反射波,最後造成電路誤動作,類比電路的精度發生誤差等嚴重後果。

該反射波的反射程度是用反射係數表示,它是用複素數處理變成複素量。

雖然電子電路經常使用複素數與admittance 等計算方式,不過實際上複素數計算相當煩瑣,其中傳輸線路與高頻電路常用的複素數計算,如果改成史密斯特性圖表(Smith chart)方式,就可輕鬆獲得相同的計算結果。

有鑑於此,本文將介紹史密斯特性圖表(Smith chart)使用上必需注意的事項。

反射係數反射係數是表示整合狀態的尺度,反射係數是負載阻抗與傳輸線路特性阻抗Z0 相異時,部份入射電力未被負載吸收,變成反射電力折返信號源時,入射電力與反射電力的比亦即反射係數可由下式求得:Γ=反射波/入射也就是說反射係數是具有大小與位相的量,它可由上式Z R 與 Z0 兩個阻抗關係求得,此外式(1)可轉換成下式:【試算例1】0 ,假設傳輸線路特性阻抗 Z0 為50Ω,負載阻抗分別是0Ω、50Ω、1kΩ、j50Ω時,反射係數Г=0.5 ㄥ45試算負載阻抗Z R 。

①Z R=0Ω時(負載端短路)這意味著振幅大小相等,位相 1800相異的反射波折返信號源,如圖1(b)所示。

②Z R=50Ω時(整合)Г=(50-50)/(50+50)=0 這表示成為整合狀態,未發生反射波。

③Z R=1000Ω時(不整合)Г=(1000-50)/(1000+50)=0.95④Z R=∞Ω時(負載端開放)這表示振幅大小相等,位相相等的反射波折返信號源,如圖1(a)所示。

阻抗匹配与史密斯(Smith)基本原理

阻抗匹配与史密斯(Smith)基本原理

ENGLISH•简体中文•日本語•한국最新内容产品方案设计应用技术支持销售联络公司简介Maxim > 设计资料库> 应用笔记> 无线、射频与电缆关键词: 史密斯圆图, RF, 阻抗匹配, 传输线相关型号 APP 742: Mar 23, 200下载,PDF格式(248k应用笔记742阻抗匹配与史密斯(Smith)圆图: 基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOU 与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:z计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

z手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

z经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的 格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。

• • •手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验: 只有在 RF 领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。

图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。

Smith圆图在天线阻抗匹配上的应用

Smith圆图在天线阻抗匹配上的应用

Smith圆图在天线阻抗匹配上的应用天线性能的好坏直接决定了所发射信号的强弱,在调试天线时,阻抗匹配、电压驻波比对天线的性能影响很大,在调试阻抗以及驻波比时,利用Smith圆图能够简单方便的提供帮助。

通过Smith圆图,我们能够迅速的得出在传输线上任意一点阻抗、电压反射系数、驻波比等数据。

图1-1Smith圆图如图1-1所示,Smith圆图中包括电阻圆(图中红色的,从右半边开始发散的圆)和电导圆(图中绿色的,从左半圆发散开的圆),和电阻电导圆垂直相交的半圆则称为电抗圆,其中,中轴线以上的电抗圆为正电抗圆(表现为感性),中轴线以下的为负电抗圆(表现为容性)。

一、利用Smith圆图进行阻抗匹配1、使用并联短截线的阻抗匹配我们可以通过改变短路的短截线的长度与它在传输线上的位置来进行传输网络的匹配,当达到匹配时,连接点的输入阻抗应正好等于线路的特征阻抗。

图2-1并联短截线的阻抗匹配假设传输线特征阻抗的导纳为Yin,无损耗传输线离负载d处的输入导纳Yd=Yin+jB(归一化导纳即为1+jb),输入导纳为Ystub=-jB的短截线接在M点,以使负载和传输线匹配。

在Smith圆图上的操作步骤:1.做出负载的阻抗点A,反向延长求出其导纳点B;2.将点B沿顺时针方向(朝着源端)转动,与r=1的圆交于点C和D;3.点D所在的电抗圆和圆周交点为F;4.分别读出各点对应的长度,B(aλ),C(bλ),F(kλ);5.可以得出:负载至短截线连接点的最小距离d=bλ-aλ,短截线的长度S=kλ-0.25λ。

图2-2Smith圆图联短截线的阻抗匹配2、使用L-C电路的阻抗匹配在RF电路设计中,还经常用L-C电路来达到阻抗匹配的目的,通常的可以有如下8种匹配模型可供选择:图2-3L-C阻抗匹配电路这些模型可根据不同的情况合理选择,如果在低通情况下可选择串联电感的形式,而在高通时则要选择串联电容的形式。

使用电容电感器件进行阻抗匹配,在Smith圆图上的可以遵循下面四个规则:-沿着恒电阻圆顺时针走表示增加串联电感;-沿着恒电阻圆逆时针走表示增加串联电容;-沿着恒电导圆顺时针走表示增加并联电容;-沿着恒电导圆逆时针走表示增加并联电感。

阻抗匹配和史密斯(Smith)圆图:大体原理

阻抗匹配和史密斯(Smith)圆图:大体原理

摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。

在处置RF 系统的实际应用问题时,总会碰到一些超级困难的工作,对各部份级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与(LNA)之间的匹配、输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的)对匹配网络具有明显的、不可预知的影响。

频率在数十以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括计算机仿真:由于这种软件是为不同功能设计的而不只是用于阻抗匹配,所以利用起来比较复杂。

设计者必需熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有效数据的技术。

另外,除非计算机是专门为这个用途制造的,不然电路仿真软件不可能预装在计算机上。

手工计算:这是一种极为繁琐的方式,因为需要用到较长(“几千米”)的计算公式、而且被处置的数据多为复数。

经验:只有在RF领域工作过连年的人材能利用这种方式。

总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是温习史密斯圆图的结构和背景知识,而且总结它在实际中的应用方式。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

固然,史密斯圆图不仅能够为咱们找出最大功率传输的匹配网络,还能帮忙设计者优化噪声系数,肯定品质因数的影响和进行稳定性分析。

图1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的利用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。

最全的阻抗匹配与史密斯(Smith)圆图基本原理!

最全的阻抗匹配与史密斯(Smith)圆图基本原理!

最全的阻抗匹配与史密斯(Smith)圆图基本原理!摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2472工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

阻抗匹配与史密斯(Smith)圆图基本原理

阻抗匹配与史密斯(Smith)圆图基本原理
点击看大图(PDF, 502K)
图5.史密斯圆图上的点
现在可以通过图5的圆图直接解出反射系数画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部r和虚部i (见图6)
该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数:
1= 0.4 + 0.2j
图9.将图8网络中的元件拆开进行分析
在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)这个点记为D最后,我们回到阻抗模式增加最后一个元件(串联电感)于是我们得到所需的值,z,位于0.2电阻圆和0.5电抗圆的交点至此,得出z = 0.2 + j0.5如果系统的特性阻抗是50,有Z = 10 + j25 (见图10)
史密斯圆图是反射系数(伽马,以符号表示)的极座标图反射系数也可以从数学上定义为单端口散射参数,即s11
史密斯圆图是通过验证阻抗匹配的负载产生的这里我们不直接考虑阻抗,而是用反射系数L,反射系数可以反映负载的特性(如导纳增益跨导),在处理RF频率的问题时L更加有用
我们知道反射系数定义为反射波电压与入射波电压之比:
重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14这个方程是在复平面(r, i)上圆的参数方程(x-a)2+ (y-b)² = R²,它以(r/r+1, 0)为圆心,半径为1/1+r.

阻抗匹配与史密斯原图

阻抗匹配与史密斯原图

阻抗匹配与史密斯原图(基本原理)阻抗匹配与史密斯(Smith)圆图: 基本原理本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

•手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

•经验: 只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

•史密斯圆图: 本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

史密斯圆图及阻抗匹配专题

史密斯圆图及阻抗匹配专题

要使负载得到的功率最大, 首先要求

Xin=-Xg
此时负载得到的功率为
2
Eg Rin

dP P=(Rg Rin )2
可见当 =0时P取最大值, 此时应满足
dRin

Rg=Rin
综合上面两式得

Zin=Z*g
因此, 对于不匹配电源, 当负载阻抗折合到电源参考面
上的输入阻抗为电源内阻抗的共轭值时, 即当Zin=Z*g时, 负 载能得到最大功率值。通常将这种匹配称为共轭匹配。
由图 1- 31可知, 负载得到的功率为
P=
1 2
(zg

E
g
E
g
zin )( zg

zin ) Rin

1 2
( Rg
2
Eg Rin Rin )2 ( xg

xin )2
l
Zg
~ Eg
Z0
Zl
Zg=Rg+Xj g
~ Eg
(a)
Zin=Z*g =Rg-Xj g
(b)
图1-31 无耗传输线信源的共扼匹配
解:(1)计算归一化负载阻抗值:
1-25 1-5
1-8
1.1.6 长线的阻抗匹配
1.阻抗匹配概念
阻抗不匹配的危害:
在微波传输系统中,如果传输线与负载不匹配.传输线 上有驻波存在,这一方面会使传输线功率容量降低.另 一方面会增加传输线的衰减;如果信号源与传输线不匹 配,不仅会影响信号源的频率和输出的稳定性,而且信 号源不能给出最大功率。



arctg

(RL2

X
2 L
)
2
Z0X L

阻抗匹配与史密斯(Smith)圆图_基本原理.

阻抗匹配与史密斯(Smith)圆图_基本原理.

阻抗匹配与史密斯(Smith)圆图: 基本原理本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验: 只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图: 本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

Smith圆图和阻抗匹配网络PDF格式讲义

Smith圆图和阻抗匹配网络PDF格式讲义

中较大的那个Q值。
• π型匹配网络的有载Q值
电路 Q 值
Q=
Lω 0 Ri
=
L1ω 0 Ri
+
L2ω 0 Ri
= Q1 + Q2
网络有载 Q 值
Qe
=
Lω 0 2Ri
=
L1ω 0 2Ri
+
L2ω 0 2Ri
=
1 2
Q 1
+
1 2
Q 2
= Qe1 + Qe2
20
• 当RS/Ri>>1, RL/Ri >>1时
L = X L = X L1 + X L2 = 0.675mH
解 已知RL>RS
Ls
L1
RS
计算Q值:Q =
RL RS
−1
=
58 −1 =1.96 12
VS
计算L网络并联支路电抗:X P
=
RL Q
= 58 = 29.6Ω 1.96
计算L网络串联支路电抗:XS = QRS =1.96×12 = 23.5Ω

电容
CP
=
1 2πfXP
=

1 ×1.5×109 × 29.6
3dB带宽为 BW ≈ f0 / Qe
ω0 与 Q 的关系为 ω0 =
1 LC
1

1 Q2
=
1 LC
1

1 4Qe2
17
– L匹配网络举例
• 已知信号源内阻RS=12Ω,并串有寄生电感LS=1.2nH。负载电阻 RL=58Ω,并带有并联的寄生电容CL=1.8pF,工作频率为
f=1.5GHz。设计L匹配网络,使信号源和负载达到共轭匹配。

阻抗匹配与史密斯(Smith)圆图基本原理

阻抗匹配与史密斯(Smith)圆图基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括•计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

•手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

•经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

•史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

阻抗匹配与史密斯(Smith)圆图:基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

∙经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

∙史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

Smith(史密斯)圆图阻抗匹配

Smith(史密斯)圆图阻抗匹配
电流反射系数
与阻抗的关系
与导纳的关系
两个公式在形式上是完全相同的,所以导纳
圆图与阻抗圆图在图形坐标的数值、符号和曲线 形状上是相同的,可以把阻抗圆图当作导纳圆图 来使用,但是图上各点所代表的物理含义要作不 同的解释。
1、导纳圆图的特点
jb' B 0.5
B0
容性
B 1
G 0.5
G 1
X

2b
(1

2 a
)2

b2
a

2
R R 1

b2


1
2

R 1
等归一化电阻圆方程
a
12


b

1 X
2



1 X
2

等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
2、导纳圆图的另一构成方法
jb P
P’
旋转构图方法:
阻抗圆图上P与P'点关 于原点对称,根据/4阻抗 变换特性可知,这两点阻抗 a 互为倒数,即P'点的阻抗为 P点的导纳。
因此,可以将阻抗圆图 旋转180°就可以得到一种 新的导纳圆图。
第二种导纳圆图的特点
jb'
B0
感性
B 1
B 0.5
(0,0)
(1,
电流波节 Gmin=K B 0.5
B 1
电流波腹 Gmax=S
感性
B0
Y (z ') G(z ') jB(z ')
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ( z ') 1 ( z ')
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。 1、反射系数曲线坐标(极坐标): 等反射系数模值圆 反射系数相角射线 2、归一化阻抗曲线坐标: 等归一化电阻圆 等归一化电抗圆
1、反射系数曲线坐标
R2
a
R
圆心都在实轴a上; 圆心坐标与半径之和恒 等于1; 均与直线a=1在(1,0)相 切; 实轴交点的对称性

R
1R
归一化电抗圆
j b
X 1
a=1
X 4
X 0.5
X 0 X 0.5
a
X
圆心都在直线a=1上; 圆心纵坐标与半径相等; 与实轴a在(1,0)相切; 三种对称关系:
电刻度起点的约定:(1, 0)点
45
2、归一化阻抗曲线坐标
1 a j b Z ( z ') R ( z ') jX ( z ') 1 a jb
上式为分式线性变换式,实现由复平面上的圆到归 一化阻抗平面上的圆或直线(半径无限大的圆)的变换。 2 2b 1 2 a b X R 2 2 2 2 2 (1 2 ) (1 a ) b a b
2、导纳圆图的另一构成方法
j b
旋转构图方法:
阻抗圆图上P与P'点关 于原点对称,根据/4阻抗 变换特性可知,这两点阻抗 互为倒数,即P'点的阻抗为 P点的导纳。 因此,可以将阻抗圆图 旋转180°就可以得到一种 新的导纳圆图。
P a
P’
第二种导纳圆图的特点
' j b
B0
பைடு நூலகம்
感性
B 1
B 0.5 G 0.5
一、圆图的基本原理
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
( z ') 2e j 2 z ' 2 e j (2 2 z ')
Z L Z0 2 Z L Z0
Z ( z ') R jX
1
构成反射系数复平面
2 X L Z0 2 tan 2 2 2 RL XL Z0
R 1 2 b a R 1 R 1
2
2 2
等归一化电阻圆方程
2
1 1 2 a 1 b X X
等归一化电抗圆方程
归一化电阻圆
j b
R0
a=1
R 0.5
R 1
(,) 短路点 电流波腹 Gmax=S
G 1
(1,0)
匹配点
(0,0) 开路点
'a
B 1
与阻抗圆图相比,其 图的形状、数值和符 号都发生了变化。 图中各点的物理含义 并不改变。

电流波节 B 0.5 Gmin=K 容性
B0
四、应用举例
例1、已知负载归一化阻
抗 Z L,求S和2。

X 1
X 4
X 圆弧关于实轴对称; X 与 1 X 圆与单位圆的交点 关于虚轴对称; X 与 1 X 圆与单位圆的交 点关于原点对称;
3、阻抗圆图的特点
并联电感 串联电感
j b
串联电容 并联电容
X 0
感性
(0,0) 短路点 电压波节 Rmin=K
(1,0)
匹配点
(,) 开路点 电压波腹 Rmax=S
Rmax S
j b
XL
2
a
2
RL
2 2 e j2
S 1 2 S 1
Rmax
电流反射系数 与导纳的关系
两个公式在形式上是完全相同的,所以导纳 圆图与阻抗圆图在图形坐标的数值、符号和曲线 形状上是相同的,可以把阻抗圆图当作导纳圆图 来使用,但是图上各点所代表的物理含义要作不 同的解释。
1、导纳圆图的特点
' j b
B0
B 0.5
B 1
容性
G 0.5
(0,0) 开路点
(1,0)
匹配点
G 1
(,) 短路点 电流波腹 Gmax=S
'a
电流波节 Gmin=K B 0.5
B0
B 1
导纳圆图使用原则: 同一张圆图,即可以 当作阻抗圆图来用, 也可以当作导纳圆图 来用,但是在进行每 一次操作时,若作为 阻抗圆图用则不能作 为导纳圆图。
感性
Y ( z ') G( z ') jB( z ')
a
上半圆阻抗为感抗, 下半圆阻抗为容抗; 单位圆为纯电抗; 实轴为纯电阻; 实轴的右半轴为电压 波腹,左半轴为电压 波节; 匹配点、开路点和短 路点。

X 0
容性
三、导纳圆图
Z ( z ') 1 ( z ') Z ( z ') 1
电压反射系数 与阻抗的关系
Y ( z ') 1 '( z ') Y ( z ') 1
令 ( z ') 2 e j a jb
2
2 a 2 b 2
可得
且 2 1
jb j | |=0.5 S=3
等反射系数模值圆的方程
||=1, =0 开路点 a
1
1 | |=0.2 S=1.5
| |=1, = 短路点
j
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b
j b 向电源 135 180 180 135 向负载 90
电刻度 起点
反射系数相角射线方程
特点:
45 a 0
90
z'变化 /4 ,变化, z'变化 /2 , 变化2,故绕圆一周相当于考察 点在线上移动/2。 旋转方向:向电源移动,z'增加, 顺时针旋转;向负载移动,z'减小, 逆时针旋转。
相关文档
最新文档