概率与统计练习题
小学数学统计与概率练习题
小学数学统计与概率练习题一、选择题1. 在下列选项中,哪个是正整数?A. -3B. 0C. 2D. 1/22. 以下哪个数字是一个小数?A. 1/4B. 3C. 2/3D. 73. 一个骰子投掷一次,出现奇数的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/34. 甲、乙、丙三张卡片上分别写着“A”、“B”和“C”。
从中随机抽取一张卡片,不放回后再抽取一张,求第一张卡片是“A”且第二张卡片是“B”的概率。
A. 1/6B. 1/3C. 1/2D. 2/35. 某班共有40 位学生,其中男生占60%。
如果随机选择一位学生,请问他是男生的概率是多少?A. 0.2B. 0.3C. 0.4D. 0.6二、填空题1. 一枚硬币和一枚骰子同时抛掷,求出现正面且掷出的点数小于等于 4 的概率。
答:1/42. 一袋中有红、黄、蓝三种颜色的球,红球数目是黄球数目的两倍,黄球数目是蓝球数目的三倍。
随机摸出一球,求摸出的是红球的概率。
答:2/63. 在一副标准扑克牌中,墨绿色的牌占总牌数的20%,抽取一张牌,求抽到的是墨绿色牌的概率。
答:0.24. 从 1、2、3、4、5 五个数字中随机抽取一个,求抽取的是奇数的概率。
答:3/55. 一共有 8 个人,其中 4 人会弹钢琴,4 人会弹吉他。
现在随机抽选一位来表演,求抽中的是会弹钢琴的概率。
答:1/2三、解答题1. 有一只盒子,里面装有 3 个红球和 4 个蓝球。
现在一次从盒子中摸出两个球,求摸出的两个球颜色相同的概率。
解:总共有 C(7, 2) 种可能的取法,其中摸出的两个球颜色相同的取法为 C(3, 2) + C(4, 2) = 3 + 6 = 9。
所以,摸出的两个球颜色相同的概率为 9/21,即 3/7。
2. 甲、乙两个人玩掷硬币游戏,每人掷一次。
如果正面朝上,甲将给乙 2 元;如果反面朝上,乙将给甲 3 元。
请问这个游戏对甲来说公平吗?解:甲和乙掷出正反面的概率相等,都是 1/2。
中职数学概率统计练习题
中职数学概率统计练习题
练一:概率计算
1. 某班级有50名学生,其中30人擅长篮球,20人擅长足球,10人既擅长篮球又擅长足球。
从该班级中随机选一个学生,请计算该学生擅长篮球或足球的概率。
练二:条件概率
2. 一家电子产品公司生产电视机和电冰箱两种产品。
该公司的统计数据显示,电视机的次品率是5%,而电冰箱的次品率是3%。
另外,该公司生产的电视机和电冰箱的比例为3:2。
从该公司中随机选一个产品,请计算该产品是电视机的概率,且是次品的条件概率。
练三:二项分布
3. 一枚硬币正面向上的概率是0.6。
现在进行5次抛硬币的实验,请计算恰好有3次正面朝上的概率。
练四:正态分布
4. 某市一所高中的学生成绩服从正态分布,其平均分为80分,标准差为10分。
请计算学生中成绩大于90分的比例。
练五:抽样与估计
5. 某公司的员工数量为1000人。
为了对该公司员工的平均年
龄进行估计,从中随机抽取了100人并统计了他们的年龄。
请计算
在95%的置信水平下,对于该公司员工平均年龄的置信区间。
练六:相关与回归
6. 一个研究人员想要了解身高和体重之间的关系。
他在200名
成年男性中测量了他们的身高(单位:厘米)和体重(单位:千克)。
请计算身高和体重之间的相关系数,并解释其意义。
9.1.2概率与统计练习题
件B'∪D',依据互斥事件的概率加法公式,有P(B'∪D')=P(B')+P(D')=0
.29+0.35=0.64. ②(法一)由于A,AB型血不能输给B型血的人,所以“任找一人,其
考点整合 基础训练 典例导练 考径避陷 方法技巧 名校押题
1~6 6~9 10~12
血不能输给张三”为事件A'∪C',依据互斥事件的概率加法公式, 有P(A'∪C')=P(C')+P(A')=0.28+0.08=0.36.
①任找一人,其血可以输给张三的概率是多少? ②任找一人,其血不能输给张三的概率是多少? (2)一个箱子内有9张票,其号码分别为1,2,…,8,9,从中任取出2张,其 号码至少有一个为奇数的概率是多少? 【分析】(1)分析的是互斥事件,那么直接用公式可解决.
例题备选
(2)“至少有一个为奇数”的对立事件是“都为偶数”,那么可以 用对立事件的概率来解决. 【解析】(1)①对任一人,其血型为A,B,AB,O的事件分别记为A',B', C',D'.由已知,有P(A')=0.28,P(B')=0.29,P(C')=0.08,P(D')=0.35.因为B, O型血可以输给张三,所以“任找一人,其血可以输给张三”为事
2.特别地,若事件B与事件A互为对立事件,则A∪B为必然 事件,P(A∪B)=1.再由加法公式得P(A)=1-P(B). 3.若事件A与B互斥,则P(A∪B)=P(A)+P(B)(推广情况:如果 A1、A2、…、An彼此至斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+
数学问题练习题概率与统计的计算
数学问题练习题概率与统计的计算概率与统计是数学中一门重要的分支,通过对事件发生的可能性进行分析和数据的收集与解释,我们可以更好地理解现实世界中的各种现象和问题。
为了提升你的数学问题解决能力,下面将提供一些数学问题练习题,涉及到概率与统计的计算。
一、概率计算题1. 在一副标准的扑克牌中,从中随机抽取一张牌,求抽到黑桃的概率。
2. 一个箱子中有5个红球和3个蓝球,从中随机抽取两个球,求抽到两个红球的概率。
3. 一枚骰子投掷一次,求投掷结果为奇数的概率。
4. 一箱有8个苹果,3个梨和4个橘子,从中随机抽取一个水果,求抽到苹果或橘子的概率。
二、统计计算题1. 某班级有30名学生,他们的身高数据如下:160cm、165cm、170cm、172cm、175cm、178cm、180cm、182cm、185cm、188cm、190cm。
请计算这组数据的平均身高和中位数。
2. 某电影院观众的年龄分布如下:10岁以下的有30人,10岁到20岁的有60人,20岁到30岁的有90人,30岁到40岁的有70人,40岁以上的有50人。
请计算这组数据的众数。
3. 某次考试中,一班30位学生的成绩如下:70、75、80、68、90、85、92、78、75、82、73、87、88、69、80、72、81、76、85、83、79、88、82、90、85、78、75、71、84、91。
请计算这组数据中成绩大于80分的学生人数。
三、综合计算题1. 一批产品中,有20%的次品率。
从这批产品中随机选取5个进行检测,请计算出现至少一个次品的概率。
2. 100名学生参加一场数学考试,成绩分布如下:60分及以下的有10人,60分到70分的有20人,70分到80分的有30人,80分到90分的有25人,90分以上的有15人。
请计算成绩在70分以下或90分以上的学生所占的比例。
3. 一箱子中装有10个红球和20个蓝球,从中连续抽取3个球,不放回。
求抽到2个红球和1个蓝球的概率。
《概率论与数理统计》练习题(含答案)
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
统计与概率练习题
第10章第1节一、选择题1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析]①因为抽取销售点及地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法.2.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13 B.19C.20 D.51[答案] C[解析]由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,从而可知选C.3.(2010·山东潍坊)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000C.1200 D.1500[答案] C[解析]因为a、b、c成等差数列,所以2b=a+c,∴a +b +c3=b ,∴第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1200双皮靴.4.(2010·曲阜一中)学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,若想在这n 个人中抽取50个人,则在[50,60)之间应抽取的人数为( )A .10B .15C .25D .30[答案] B[解析] 根据频率分布直方图得总人数n =301-0.01+0.024+0.036×10=100,依题意知,应采取分层抽样,再根据分层抽样的特点,则在[50,60)之间应抽取的人数为50×30100=15.5.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于23D .不确定[答案] A[解析] 每一个个体被抽到的概率相等,等于20100=15.6.(2010·四川文,4)一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ) A .12,24,15,9 B .9,12,12,7 C .8,15,12,5D .8,16,10,6[答案] D[解析] 从各层中依次抽取的人数分别是40×160800=8,40×320800=16,40×200800=10,40×120800=6. 7.(文)(2010·江西抚州一中)做了一次关于“手机垃圾短信”的调查,在A 、B 、C 、D 四个单位回收的问卷依次成等差数列,再从回收的问卷中按单位分层抽取容量为100的样本,若在B 单位抽取20份问卷,则在D 单位抽取的问卷份数是( ) A .30份 B .35份 C .40份D .65份[答案] C[解析] 由条件可设从A 、B 、C 、D 四个单位回收问卷数依次为20-d,20,20+d,20+2d ,则(20-d)+20+(20+d)+(20+2d)=100,∴d =10,∴D 单位回收问卷20+2d =40份. (理)(2010·广西南宁一中模考)从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽样方法种数为( ) A .C84C42 B .C83C43 C .2C86D .A84A42[答案] A[解析]抽样比68+4=12,∴女生抽8×12=4名,男生抽4×12=2名,∴抽取方法共有C84C42种.8.(2010·湖北理,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9D .24,17,9[答案] B[解析] 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.9.(2010·茂名市调研)某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚会”跑步和爬山比赛活动,每人都参加而且只参及其中一项比赛,各年级参及比赛人数情况如下表:第一级 第二级 第三级 跑步 a b c 爬山xyz其中a b c =253,全校参及爬山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三级参及跑步的学生中应抽取 ( ) A .15人 B .30人 C .40人D .45人[答案] D[解析] 由题意,全校参及爬山人数为x +y +z =2000×14=500人,故参及跑步人数为a +b +c =2000-500=1500人,又a b c =253,∴a =300,b =750,c =450,∴高三级参及跑步的学生应抽取450×2002000=45人.10.(2010·山东日照模考)某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( )产品类别 A B C 产品数量(件) 1300 样本容量(件)130A.900件B .800件C .90件D .80件[答案] B[解析] 设A ,C 产品数量分别为x 件、y 件,则由题意可得: ⎩⎪⎨⎪⎧x +y +1300=3000x -y ×1301300=10, ∴⎩⎪⎨⎪⎧ x +y =1700x -y =100,∴⎩⎪⎨⎪⎧x =900y =800,故选B. 二、填空题11.(文)(2010·瑞安中学)某校有学生1485人,教师132人,职工33人.为有效防控甲型H1N1流感,拟采用分层抽样的方法,从以上人员中抽取50人进行相关检测,则在学生中应抽取________人. [答案] 45[解析] 设在学生中抽取x 人,则 x 1485=501485+132+33,∴x =45.(理)(2010·山东潍坊质检)一个总体分为A ,B 两层,其个体数之比为41,用分层抽样法从总体中抽取一个容量为10的样本,已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数是________. [答案] 40[解析] 设x 、y 分别表示A ,B 两层的个体数,由题设易知B 层中应抽取的个体数为2, ∴C22Cy2=128,即2y y -1=128,解得y =8或y =-7(舍去),∵x y =41,∴x =32,x +y =40.12.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在第0组先随机抽取一个号码i ,则第k组抽取的号码为10k +j ,其中j =⎩⎪⎨⎪⎧i +k i +k<10i +k -10 i +k≥10,若先在0组抽取的号码为6,则所抽到的8个号码依次为__________________. [答案] 6,17,28,39,40,51,62,73[解析] 因为i =6,∴第1组抽取号码为10×1+(6+1)=17,第2组抽取号码为10×2+(6+2)=28,第3组抽取号码为10×3+(6+3)=39,第4组抽取号码为10×4+(6+4-10)=40,第5组抽取号码为10×5+(6+5-10)=51,第6组抽取号码为10×6+(6+6-10)=62,第7组抽取号码为10×7+(6+7-10)=73.13.(2010·安徽文)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是____________. [答案] 5.7%[解析] 拥有3套或3套以上住房的家庭所占比例普通家庭为50990,而高收入家庭为70100. ∴该地拥有3套或3套以上住房的家庭所占比例为99 000×50990+1 000×70100100 000=571 000=5.7%. 14.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:男 女能 178 278 不能2321 则该地区生活不能自理的老人中男性比女性约多______人. [答案] 60[解析] 由表可知所求人数为 (23-21)×15000500=60(人). 三、解答题15.(2010·山东滨州)某高级中学共有学生2000人,各年级男、女生人数如下表:高一 高二 高三 女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人? (2)已知y≥245,z≥245,求高三年级女生比男生多的概率. [解析] (1)∵x2000=0.19,∴x =380.∴高三年级学生人数为y +z =2000-(373+377+380+370)=500现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12(人). (2)设“高三年级女生比男生多”为事件A ,高三年级女生、男生数记为(y ,z). 由(1)知,y +z =500,且y ,z ∈N*,又已知y≥245,z≥245,所有基本事件为:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245).共11个.事件A 包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245).共5个. ∴P(A)=511.答:高三年级女生比男生多的概率为511.16.(文)(2010·泰安模拟)某校举行了“环保知识竞赛”,为了了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a 、b 、c 的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取6人参加社区志愿者活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号 分组 频数 频率 第1组 [50,60) 5 0.05 第2组 [60,70) b 0.35 第3组 [70,80] 30 c 第4组 [80,90] 20 0.20 第5组 [90,100)10 0.10 合计a1.00[解析] (1)a =100,b =35,c =0.30由频率分布表可得成绩不低于70分的概率约为: p =0.30+0.20+0.10=0.60.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:3060×6=3人, 第4组:2060×6=2人, 第5组:1060×6=1人,所以第3、4、5组分别抽取3人,2人,1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能抽法如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1), 其中第4组的2位同学B1、B2至少有一位同学是负责人的概率为915=35.(理)(2010·厦门三中阶段训练)某学校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185),得到的频率分布直方图如图所示.(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?[解析] (1)由题设可知,第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1. (2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为: 第3组:3060×6=3,第4组:2060×6=2, 第5组:1060×6=1,所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能.其中第4组的2位同学B1、B2至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(B1,B2),(A3,B2),(B1,C1),(B2,C1)共9种可能, 所以第4组至少有一名学生被甲考官面试的概率为P =915=35.17.(文)(2010·山东邹平一中模考)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率. [解析] (1)由题意,第5组抽出的号码为22. 因为2+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为 2,7,12,17,22,27,32,37,42,47. (2)因为10名职工的平均体重为x -=110(81+70+73+76+78+79+62+65+67+59) =71所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故所求概率为P(A)=410=2 5.(理)(2010·沈阳市)从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.(1)根据已知条件填写下列表格:组别一二三四五六七八样本数(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(3)在样本中,若第二组有1名男生,其余为女生,第七组有1名女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰有一男一女的概率是多少?[解析](1)由频率分布直方图得第七组频率为:1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.由各组频率可得以下数据:组别一二三四五六七八样本数 2 4 10 10 15 4 3 2(2)由频率分布直方图得后三组频率和为0.08+0.06+0.04=0.18,估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为800×0.18=144.统计及概率练习题11 / 11 (3)第二组中四人可记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组中三人可记为1、2、3,其中1、2为男生,3为女生,基本事件列表如下:a b c d 11a 1b 1c 1d 22a 2b 2c 2d 33a 3b 3c 3d所以基本事件有12个.实验小组中恰有一男一女的事件有1b,1c,1d,2b,2c,2d,3a ,共7个,因此实验小组中恰有一男一女的概率是712.。
概率论与数理统计练习题
概率论与数理统计练习题一、单项选择题1.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为( A )A .2224B .1224C C C .242!A D .2!4!2、抛一枚不均匀硬币,正面朝上的概率为23,将此硬币连抛4次,则恰好3次正面朝上的概率是( C ) A .881B .827C .3281D .343、设()0.5,()0.6,()0.4,()P A P B P B A P AB ===则=( C ) A .0. 3 B .0.6 C .0.4 D .0.84、设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,020,2)(x xx f ,则{}11≤≤-X P =( B )A .0B .0.25C .0.5D .15、已知随机变量X 的概率密度为)(x f X ,令=2Y X ,则Y 的概率)(Y f Y 为( D )A. )2(2y f X -B. )2(y f X -C. )2(21y f X --D. )2(21yf X -6.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=17.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .18.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=(C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5},9.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于(D )A .-1B .21- C .21 D .110.设二维随机变量(X ,Y )的分布律为则P{X=Y}=( A ) A .0.3 B .0.5 C .0.7D .0.811.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=412.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19D .2313.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=(B ) A .6 B .22 C .30D .4614.在假设检验问题中,犯第一类错误的概率α的意义是(C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率15.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题16.一口袋装有3只红球,2只黑球,近从中任取2只球,则这2只球恰为一红一黑的 概率是_ 0.6 _17.某射手命中率为23,他独立地向目标设计4次,则至少命中一次的概率为_80/81 _18.抛硬币5次,记其中正面向上的次数为X ,则{}4≤X P =___30/31_. 19. 设X ~N (2,4),则{}=≤2X P ___0.5___.20、设连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=2,120),1(310,31)(x x x x e x F x记X 的概率密度为f (x ),则当x <0时f (x )=__1/3ex______.21.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____0.5________. 22.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为___18/25_________.23.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____0.7________.24.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为___0.9_________.25.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=___31/32_________.三、计算题26、甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.27、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律28、设X 的概率密度为⎩⎨⎧≤≤-=其他,011,)(x x x f ,求:(1) X 的分布函数F(x);(2) {}5.0<X P ;(3){}5.0->X P29.设二维随机变量(X ,Y )的分布律为 试问:X 与Y 是否相互独立?为什么?30.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)四、证明题31、设A,B 为随机事件,且()P B >0.证明:()1()P A B P A B =- 五、综合32、设随机变量X 在区间[2 ,5]上服从均匀分布。
高三数学练习题:概率与统计
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
初中数学统计与概率专题训练50题含参考答案
初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
概率统计练习1
概率论与数理统计练习(一)一、填空题1. A 、B 、C 是三个随机事件,且A 与B 相互独立,A 与C 互不相容。
已知P( A ) = 0.2,P( B ) = 0.6,P( B | C ) = 0.5,P( BC ) = 0.4。
请计算以下事件的概率:P(A )= , P( AB ) = , P( AC ) = ,P( C ) = ,P( A+B ) = , P( C | B ) = 。
2. 假设有某种彩票叫“10选2”,每周一期。
其规则是从1到10的10个自然数中不重复地任意选2个数组成一注,每注1元。
如果所选的2个数与本期出奖的结果(也是从1到10中不重复选出的2个自然数)完全相同,则中奖,奖额为40元。
则购买一注彩票能中奖的概率是 。
引进随机变量X ,如果买1注彩票中奖了则令X 等于1,否则令X 等于0,那么X 服从 分布,X 的数学期望等于 。
3. 已知某对夫妇有三个小孩,但不知道他们的具体性别。
设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 分布。
这对夫妇恰好有一个儿子的概率是 。
他们的孩子的男女性别比例最可能是 。
4. 假设东莞市公安机关每天接到的110报警电话次数可以用泊松(Poisson)分布)100(π来描述。
则东莞市公安机关在某一天没有接到一个110报警电话的概率为 。
东莞市公安机关平均每天接到的110报警电话次数为 次。
5. 指数分布又称为寿命分布,经常用来描述电子器件的寿命。
设某款电器的寿命(单位:小时)的密度函数为⎩⎨⎧>=-其它 ,00 ,001.0)(001.0t e t f t 则这种电器没有用到500小时就坏掉的概率为 ,这种电器的平均寿命为 小时。
6. 根据世界卫生组织的数据,全球新生婴儿的平均身长为50厘米,身长的标准差估计为2.5厘米。
设新生婴儿的身长服从正态分布,则全球范围内大约有 %新生婴儿身长超过53厘米,有 %新生婴儿身长不足48厘米,身长在49厘米到51厘米之间的新生婴儿大约占 %。
概率与统计的相关系数练习题
概率与统计的相关系数练习题一、选择题1. 相关系数是用来衡量什么之间的关系?A. 两个变量之间的依赖程度B. 样本的大小C. 数据的分布情况D. 统计推断的准确性2. 相关系数的取值范围是:A. [-1, 1]B. [0, 1]C. [0, ∞)D. (-∞, ∞)3. 以下哪一对相关系数的值表示两个变量之间强烈的正相关关系?A. 0.2B. -0.1C. 0.8D. -0.54. 当相关系数为0时,表示什么样的关系?A. 两个变量之间存在弱相关关系B. 两个变量之间存在正相关关系C. 两个变量之间不存在线性关系D. 两个变量之间存在非线性关系5. 在统计学中,相关系数常用于哪些领域或问题的分析?A. 研究商品价格的涨跌与市场销量的关系B. 研究天气变化与人口迁移的关系C. 研究人的身高和体重之间的关系D. 以上都是二、填空题1. 相关系数是以谁的名字命名的?答:卡尔·皮尔逊2. 当相关系数为正时,表示两个变量呈什么样的关系?答:正相关关系3. 相关系数的计算过程中,需要使用哪两个参数?答:协方差和标准差4. 当相关系数为负时,表示两个变量呈什么样的关系?答:负相关关系5. 以下哪个关系系数的绝对值最大,表示两个变量之间的关系最强?答:-0.9三、解答题1. 请简要解释相关系数的定义并说明其意义。
相关系数是用来衡量两个变量之间线性相关关系的强度和方向。
它的取值范围在-1到1之间,取值为-1时表示完全负相关,取值为1时表示完全正相关,取值为0时表示无线性相关。
相关系数的意义在于通过这个数值可以获取两个变量之间的相关程度。
如果相关系数接近1或-1,说明两个变量之间存在强烈的线性相关关系,可以通过一个变量的变化来推断另一个变量的变化;如果相关系数接近0,说明两个变量之间几乎没有线性关系,无法通过一个变量的变化来推断另一个变量的变化。
相关系数在统计学中被广泛应用于数据分析、建模和预测等领域。
它可以帮助研究者了解变量之间的关系,从而做出更准确的预测和决策。
高一数学概率与统计的综合练习题
高一数学概率与统计的综合练习题1. 一个骰子被掷一次,求得到奇数的概率。
解答:一个骰子有6个面,每个面都有相等的几率出现。
奇数分别是1、3、5,所以得到奇数的几率是3/6,或简化为1/2。
2. 现有一箱中装有6个红球和4个白球,从中随机取出两个球,求取出的两个球中至少有一个红球的概率。
解答:取出至少有一个红球的概率等于1减去两个球都是白球的概率。
两个球都是白球的概率可以通过计算取出第一个球是白球的概率乘以取出第二个球是白球的概率得到。
第一个球是白球的概率是4/10,第二个球是白球的概率是3/9(因为第一次取球后,剩下的球中有3个白球和6个红球)。
所以两个球都是白球的概率是4/10 * 3/9 = 2/15。
因此,取出至少有一个红球的概率是1 - 2/15 =13/15。
3. 一批产品中有10%的次品,现从中随机抽取4个产品进行检验,求这4个产品中恰好有2个次品的概率。
解答:假设抽取的4个产品分别为A、B、C、D,求恰好有2个次品的概率等于求其中一个产品是次品,另一个产品不是次品的概率,并且两种情况下的概率之和。
其中一个产品是次品,另一个产品不是次品的概率可以通过计算次品的概率乘以非次品的概率得到。
次品的概率是10%或0.1,非次品的概率是90%或0.9。
所以两个产品中恰好有2个次品的概率是C(4,2) * (0.1)^2 * (0.9)^2 =0.2916。
因此,这4个产品中恰好有2个次品的概率是0.2916。
4. 一只袋子中有6个红球和4个蓝球,现从中按次序取出3个球,求取出的3个球中至少有2个蓝球的概率。
解答:取出至少有2个蓝球的概率等于取出3个球都是蓝球的概率加上取出2个蓝球和1个红球的概率。
取出3个球都是蓝球的概率可以通过计算取出第一个球是蓝球的概率乘以取出第二个球是蓝球的概率乘以取出第三个球是蓝球的概率得到。
第一个球是蓝球的概率是4/10,第二个球是蓝球的概率是3/9(因为第一次取球后,剩下的球中有3个蓝球和6个红球),第三个球是蓝球的概率是2/8(因为前两次取球后,剩下的球中有2个蓝球和5个红球)。
《概率论与数理统计》考试练习题及参考答案
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
六年级数学统计与概率练习题
六年级数学统计与概率练习题
1. 从一个玩具袋中随机取一个玩具,这个玩具是车的概率是1/3,是娃娃的概率是2/3。
如果从袋子里取出的是车,那么取出的是娃娃的概率是多少?
2. 一箱中有4个红球,2个蓝球,3个绿球。
如果从箱子中随机取出一个球,那么取出一个红球或者蓝球的概率是多少?
3. 在一个班级里,有25个男生和20个女生。
如果从班级中随机选择一个学生,那么选择一个男生的概率是多少?
4. 一个班级做了一次数学测验,结果如下表所示:
如果从班级中随机选择一个学生,那么该学生得到60分以下的概率是多少?
5. 请列举三个例子,说明概率为0的情况。
6. 如果一个筛子投掷10次,每次投掷的结果相互独立,那么在这十次投掷中至少出现一次1点的概率是多少?
7. 在一个扑克牌的52张牌中,红桃的数量是13张。
如果从扑克牌中随机选择一张牌,那么选择一张红桃的概率是多少?
8. 一个袋子里有3个红球,4个蓝球,2个绿球。
从袋子中连续取出两个球,不放回。
那么第一次取出红球,第二次取出蓝球的概率是多少?
9. 一个骰子被投掷6次,每次投掷的结果相互独立。
如果每次投掷结果都不是6点,那么总共投掷了多少次?
10. 在一次抽奖活动中,总共有100个参与者,其中40人是男性,60人是女性。
如果从参与者中随机抽取一个人,那么该人是男性并且中奖的概率是多少?
以上是六年级数学统计与概率的练题。
统计概率专项练习
统计概率专项练习一、单选题1.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取7位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,4,则这组数据的第75百分位数是( ) A .7 B .7.5 C .8 D .92.若样本数据123x +,223x +,,823x +的方差为32,则数据128,,,x x x 的方差为( ) A .16 B .8 C .13 D .53.盒子中装有红色,黄色和黑色小球各2个,一次取出2个小球,下列事件中,与事件“2个小球都是红色”对立的事件是( )A .2个小球都是黑色B .2个小球恰有1个是红色C .2个小球都不是红色D .2个小球至多有1个是红色4.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中正确的是( )A .估计该地农户家庭年收入的平均值超过7.5万元B .估计该地有一半以上的农户,其家庭年收入不低于8.5万元C .该地农户家庭年收入低于4.5万元的农户比率估计为4%D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至7.5万元之间5.为迎接北京2022年冬奥会,小王选择以跑步的方式响应社区开展的“喜迎冬奥爱上运动”(如图)健身活动.依据小王2021年1月至2021年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制的折线图(如图),根据该折线图,下列结论正确的是( )A .月跑步里程逐月增加B .月跑步里程的极差小于15C .月跑步里程的中位数为5月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大 6.寒假来临,秀秀将从《西游记》、《童年》、《巴黎圣母院》、《战争与和平》、《三国演义》、《水浒传》这六部著作中选四部(其中国外两部、国内两部),每周看一部,连续四周看完,则《三国演义》与《水浒传》被选中且在相邻两周看完的概率为( )A .112B .16C .13D .237.为了研究某种病毒与血型之间的关系,决定从被感染的人群中抽取样本进行调查,这些感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,现用比例分配的分层随机抽样方法抽取一个样本量为n 的样本,已知样本中O 型血的人数比AB 型血的人数多20,则n =( ) A .100 B .120 C .200 D .2408.某商场推出抽奖活动,在甲抽奖箱中有四张有奖奖票.六张无奖奖票;乙抽奖箱中有三张有奖奖票,七张无奖奖票.每人能在甲乙两箱中各抽一次,以A 表示在甲抽奖箱中中奖的事件,B 表示在乙抽奖箱中中奖的事件,C 表示两次抽奖均末中奖的事件.下列结论中不正确的是( )A .()2150P C = B .事件A 与事件B 相互独立 C .()P AB 与()P C 和为54% D .事件A 与事件B 互斥二、多选题9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场的进球数是3.2,全年进球数的标准差为3;乙队平均每场的进球数是1.8,全年进球数的标准差为0.3.下列说法中正确的是 ( )A .乙队的技术比甲队好B .乙队发挥比甲队稳定C .乙队几乎每场都进球D .甲队的表现时好时坏10.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站开始,在每个车站下车是等可能的,则( )A .甲、乙两人下车的所有可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13 D .甲、乙两人在不同的车站下车的概率为2311.某校为做好疫情防控,每天早中晩都要对学生进行体温检测.某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则( )A .甲同学体温的极差为0.4℃B .乙同学体温的众数为36.4℃,中位数与平均数相等C .乙同学的体温比甲同学的体温稳定D .甲同学体温的第60百分位数为36.4℃12.从高一某班抽三名学生(抽到男女同学的可能性相同)参加数学竞赛,记事件A 为“三名学生都是女生”,事件B 为“三名学生都是男生”,事件C 为“三名学生至少有一名是男生”,事件D 为“三名学生不都是女生”,则以下正确的是( )A .()18P A = B .事件A 与事件B 互斥 C .()()P C P D ≠ D .事件A 与事件C 对立三、填空题13.某人有3把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能打开门的钥匙扔掉,那么第二次才能打开门的概率为__________.14.一个总体分为,A B 两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知B 层中每个个体被抽到的概率都是112,则总体中的个体数为________.15.由于夏季炎热某小区用电量过大,据统计一般一天停电的概率为0.3,现在用数据0、1、2表示停电;用3、4、5、6、7、8、9表示当天不停电,现以两个随机数为一组,表示连续两天停电情况,经随机模拟得到以下30组数据, 28 21 79 14 56 74 06 89 53 90 14 57 62 30 93 78 63 44 71 28 67 03 53 82 47 23 10 94 02 43根据以上模拟数据估计连续两天中恰好有一天停电的概率为________.16.一所初级中学为了估计全体学生的平均身高和方差,通过抽样的方法从初一年级随机抽取了30人,计算得这30人的平均身高为154cm ,方差为30;从初二年级随机抽取了40人,计算得这40人的平均身高为167cm ,方差为20;从初三年级随机抽取了30人,计算得这30人的平均身高为170cm ,方差为10.依据以上数据,若用样本的方差估计全校学生身高的方差,则全校学生身高方差的估计值为_________. 四、解答题17.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[)40,100上,将这些成绩分成六段[)40,50,[)50,60,…,[)90,100,后得到如图所示部分频率分布直方图.(1)求抽出的60名学生中分数在[)70,80内的人数;(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数; (3)根据频率分布直方图算出样本数据的中位数.18.为普及抗疫知识,弘扬抗疫精神,某学校组织防疫知识竞赛,比赛分两轮进行,每位选手都必须参加两轮比赛,若选手在两轮比赛中都胜出,则视为该选手赢得比赛,现已知甲、乙两位选手,在第一轮胜出的概率分别为11,23,在第二轮胜出的概率分别为23,34,甲、乙两位选手在一轮二轮比赛中是否胜出互不影响.(1)在甲、乙二人中选派一人参加比赛,谁赢得比赛的概率更大? (2)若甲、乙两人都参加比赛,求至少一人赢得比赛的概率.19.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高分120分,最低分0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)如下甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数; (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差;20.在某校2022年春季的高一学生期末体育成绩中随机抽取50个,并将这些成绩共分成五组:[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,得到如图所示的频率分布直方图.在[)50,70的成绩为不达标,在[]70,100的成绩为达标.(1)根据样本频率分布直方图求a的值,并估计样本的众数和中位数(中位数精确到个位);(2)以体育成绩是否达标为依据,用分层抽样的方法在该校2022年春季的高一学生中选出5人,再从这5人中随机选2人,那么这两人中至少有一人体育成绩达标的概率是多少?21.每年的11月9日是我国的全国消防日.119为我国规定的统一火灾报警电话,但119台不仅仅是一部电话,也是一套先进的通讯系统.它可以同中国国土上任何一个地方互通重大灾害情报,还可以通过卫星调集防灾救援力量,向消防最高指挥提供火情信息.佛山某中学为了加强学生的消防安全意识,防范安全风险,特在11月9日组织消防安全系列活动.甲、乙两人组队参加消防安全知识竞答活动,每轮竞答活动由甲、乙各答一题.在每轮竞答中,甲和乙答对与否互不影响,各轮结果也互不影响.已知甲每轮答对的概率为23,乙每轮答对的概率为p,且甲、乙两人在两轮竞答活动中答对3题的概率为5 12.(1)求p的值;(2)求甲、乙两人在三轮竞答活动中答对4题的概率.22.在一个文艺比赛中,由10名专业评审、10名媒体评审和10名大众评审各组成一个评委小组,给参赛选手打分.小组A 85 91 87 93 88 84 97 94 95 86小组B 84 87 92 96 89 95 92 91 94 90小组C 95 89 95 96 97 93 92 90 89 94(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值;(2)你能依据(1)的度量值判断小组A,B与C中哪一个更象是由专业人士组成的吗?(3)已知选手小华专业评审得分的平均数和方差分别为195x=,218s=,媒体评审得分的平均数和方差分别为293x=,2212s=,大众评审得分的平均数和方差分别为391x=,2320s=,将这30名评审的平均分作为最终得分,求该选手最终的得分和方差.参考答案:1.C【分析】把该组数据从小到大排列,计算775%⨯,从而找出对应的第75百分位数; 【详解】解:依题意可得这组数据从小到大排列为4、5、5、6、7、8、9, 且775% 5.25⨯=,所以这组数据的第75百分位数为8. 故选:C 2.B【分析】根据方差的性质进行求解即可.【详解】因为样本数据12823,23,,23x x x +++的方差为32,所以数据128,,,x x x 的方差为 23282=. 故选:B 3.D【分析】根据互斥事件与对立事件的概念逐个分析可得答案.【详解】对于A ,“2个小球都是黑色”与“2个小球都是红色”是只互斥不对立事件,故A 不正确;对于B ,“2个小球恰有1个是红色” 与“2个小球都是红色”是只互斥不对立事件,故B 不正确;对于C ,“2个小球都不是红色” 与“2个小球都是红色”是只互斥不对立事件,故C 不正确; 对于D ,“2个小球至多有1个是红色” 与“2个小球都是红色”是对立事件,故D 正确. 故选:D 4.A【分析】根据频率分布直方图,即可结合选项逐一计算平均值以及所占的比重. 【详解】对于A ,估计该地农户家庭年收入的平均值为30.0240.0450.160.1470.280.290.1100.1110.04120.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+ 130.02140.027.687.5⨯+⨯=>,故A 正确,对于B ,家庭年收入不低于8.5万元所占的比例为0.10.10.040.020.020.020.3+++++=,故B 错误,对于C ,该地农户家庭年收入低于4.5万元的农户比率估计为(0.020.04)16%+⨯=,故C 错误,家庭年收入介于4.5万元至7.5万元之间的频率为0.10.140.20.440.5++=<,故D 错误. 故选:A 5.C【分析】根据折线分布图中数据的变化趋势可判断A 选项;利用极差的定义可判断B 选项;利用中位数的定义可判断C 选项;利用数据的波动幅度可判断D 选项.【详解】对于A 选项,1月至2月、6月至8月、10月至11月月跑步里程逐月减少,A 错; 对于B 选项,月跑步里程的极差约为2552015-=>,B 错;对于C 选项,月跑步里程由小到大对应的月份分别为:2月、8月、3月、4月、 1月、5月、7月、6月、11月、9月、10月,所以,月跑步里程的中位数为5月份对应的里程数,C 对;对于D 选项,1月至5月的月跑步里程的波动幅度比6月至11月的月跑步里程的波动幅度小,故1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更小,D 错. 故选:C. 6.B【分析】首先计算出没有任何限制条件的所有可能,再计算《三国演义》与《水浒传》被选中且在相邻则用捆绑法,再从三部国外著作中选两部然后再分配到每周即可得到结果.【详解】三部国内三部国外各选两部再全排列共有224334C C A ;由于要选《三国演义》与《水浒传》被选中且在相邻两周看完,则将两本书看成一个整体,有22A 种;从三部国外著作中选出两部有23C 种,此时将四本书分布在四周转化为三整体分布在三空中,先从中选一个为《三国演义》与《水浒传》有13C ,剩下两本书再排列有22A 种.综上:22122332224334A C C A 1C C A 6P ==故选:B 7.B【分析】由题知422043324332n n -=++++++,再解方程即可得答案. 【详解】解:因为感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,所以,抽取样本量为n 的样本中,O 型血的人数为44332n +++, AB 型血的人数为24332n +++,所以,422043324332n n -=++++++,解得120n = 故选:B 8.D【分析】分别求出()P A ,()P B ,进一步求出()P C 与()P AB ,从而判断AC 选项,在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,判断BD 选项.【详解】()42105P A ==,()310P B = 在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,B 项正确()321(1)(1)510502C P =--=,故A 正确()()()325P AB P A P B ==()P AB ()2754%50P C +==,故C 正确 事件A 与事件B 相互独立而非互斥,故D 错误. 故选:D. 9.BCD【分析】根据平均数、方差的知识,对四个说法逐一分析,由此得出正确选项 【详解】因为甲队每场进球数为3.2,乙队平均每场进球数为1.8, 甲队平均数大于乙队较多,所以甲队技术比乙队好,所以A 不正确;因为甲队全年比赛进球个数的标准差为3,乙队全年进球数的标准差为0.3, 乙队的标准差小于甲队,所以乙队比甲队稳定,所以B 正确; 因为乙队的标准差为0.3,说明每次进球数接近平均值, 乙队几乎每场都进球,甲队标准差为3, 说明甲队表现时好时坏,所以C ,D 正确, 故选:BCD. 10.ABD【分析】由题意,根据分步乘法计数原理,可得A 的答案;根据古典概型的概率计算公式,可得B 、C 、D 的答案.【详解】对于A ,甲下车的情况有第2号站、第3号站,第4号站,共3种,同理可得,乙下车的情况数也是3,由题意,甲乙两人下车互不影响,则总情况数为339⨯=,故A 正确;对于B ,甲、乙两人同时在第2号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故B 正确; 对于C ,甲、乙两人同时在第4号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故C 错误;对于D ,甲、乙两人在相同车站下车的情况数为3,则在不同车站下车的情况数为936-=,即概率为62=93,故D 正确.故选:ABD. 11.ABC【分析】根据图中数据,依次分析各选项即可得答案.【详解】解:对于A 选项,甲同学体温的极差为36.636.20.4-=℃,故A 选项正确; 对于B 选项,乙同学体温为36.4,36.3,36.5,36.4,36.4,36.3,36.5,其众数为36.4℃,中位数、平均数均为36.4℃,故B 选项正确;对于C 选项,根据图中数据,甲同学的体温平均数为36.4℃,与乙同学的体温平均数相同,但甲同学的体温极差为0.4℃,大于乙同学的体温极差0.2℃,而且从图中容易看出乙同学的数据更集中,故乙同学的体温比甲同学的体温稳定,C 选项正确;对于D 选项,甲同学的体温从小到大排序为36.2,36.2,36.4,36.4,36.5,36.5,36.6,760% 4.2⨯=,故甲同学体温的第60百分位数为36.5℃,故D 选项错误. 故选:ABC 12.ABD【分析】由独立乘法公式求()P A ,根据事件的描述,结合互斥、对立事件的概念判断B 、C 、D 即可.【详解】由所抽学生为女生的概率均为12,则311()()28P A ==,A 正确;,A B 两事件不可能同时发生,为互斥事件,B 正确;C 事件包含:三名学生有一名男生、三名学生有两名男生、三名学生都是男生,其对立事件为A ,D 正确;D 事件包含:三名学生都是男生、三名学生有一名男生、三名学生有两名男生,与C 事件含义相同,故()()P C P D =,C 错误; 故选:ABD13.13【分析】分析试验过程,利用概率的乘法公式即可求出概率. 【详解】记事件A :第二次才能打开门.因为3把钥匙中有2把能打开门,而第一次没有打开,第二次必然能打开.所以()121323P A =⨯=.故答案为:13.14.240【分析】根据分层抽样每个个体抽到的概率相等,即可求出结论 【详解】因为用分层抽样方法从总体中抽取一个容量为20的样本.由B 层中每个个体被抽到的概率都为112 ,知道在抽样过程中每个个体被抽到的概率是112,所以总体中的个体数为12024012÷=.故答案为:240.15.25##0.4【分析】根据题意从30个数据中找出恰有一天停电的情况,再利用古典概型的概率公式可求得结果.【详解】由题意可知恰有一天停电的情况有:28,14,06,90,14,62,30,71,28,03,82,23,共12种,所以连续两天中恰好有一天停电的概率为122305=,故答案为:2516.64.4【分析】利用方差及平均数公式可得()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑, 进而即得.【详解】初一学生的样本记为1x ,2x ,…,30x ,方差记为21s ,初二学生的样本记为1y ,2y ,…,40y ,方差记为22s ,初三学生的样本记为1z ,2z ,…,30z ,方差记为23s .设样本的平均数为ω,则301544016730170164100ω⨯+⨯+⨯==,设样本的方差为2s .则()()()30403022221111100i i i i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑ ()()()3040302221111100i i i i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑ 又()303011300i i i i x x x x ==-=-=∑∑,故()()()()303011220i ii i x x x x x x ωω==--=--=∑∑,同理()()40120i i y yy ω=--=∑,()()30120ii z z z ω=--=∑,因此,()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑ ()()()2222221231303040403030100s x s y s z ωωω⎡⎤=+-++-++-⎢⎥⎣⎦()()(){}222130301541644020167164301017016464.4100⎡⎤⎡⎤⎡⎤=⨯⨯+-+⨯+-+⨯+-=⎣⎦⎣⎦⎣⎦.故答案为:64.4. 17.(1)15人 (2)135人 (3)76【分析】(1)根据频率的和等于1求出成绩在[)70,80内的频率,计算对应的频数即可.(2)计算小于85分的频数即可.(3)根据中位数平分频率直方图的面积,求出即可. 【详解】(1)解:由题意得:在频率分布直方图中,小矩形的面积等于这一组的频率,频率的和等于1, 成绩在[)70,80内的频率()10.0050.010.020.0350.005100.25-++++⨯= 人数为0.256015⨯=人;(2)估计该校的优秀人数为不小于85分的频率再乘以样本总量600,即0.0356000.005101352⎛⎫⨯+⨯=⎪⎝⎭人; (3)分数在[)70,80内的频率为0.25,∵分数在[)40,70内的频率为()0.0050.0100.020100.350.5++⨯=<, ∴中位数在[)70,80内,∵中位数要平分方图的面积,∴中位数为0.50.3570760.025-+= 18.(1)甲赢得比赛的概率更大 (2)12【分析】(1)根据独立事件概率乘法公式可分别计算甲、乙赢得比赛的概率,对比即可得到结论;(2)首先求得二人都没有赢得比赛的概率,根据对立事件概率公式可求得结果.【详解】(1)甲赢得比赛的概率为121233⨯=,乙赢得比赛的概率为131344⨯=,1134>,∴甲赢得比赛的概率更大. (2)若二人都没有赢得比赛,则概率为112311134342⎛⎫⎛⎫-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,∴甲、乙至少一人赢得比赛的概率为11122-=.19.(1)平均数为100;100;中位数99;99 (2)55.25;29.5【分析】(1)利用平均数、中位数定义及公式直接求即可; (2)利用方差公式直接求即可 【详解】(1)甲学校人民满意度的平均数为:()1961129710810010386981008x =+++++++=甲,甲校:86,96,97,98,100,103,108,112甲学校人民满意度的中位数为10098992+=; 乙学校人民满意度的平均数为:1(10810194105969897106)1008x =+++++++=乙,乙校:93,94,96,97,101,105,106,108乙学校人民满意度的中位数为10197992+=. (2)甲学校人民满意度的方差:()2222222221412380314255.258S =+++++++=甲,乙学校人民满意度的方差:()222222222181********.58S =+++++++=乙.20.(1)0.020a =,众数为65,中位数为73;(2)910.【分析】(1)根据各组频率和为1可求出a 的值,然后根据众数和中位数的定义求解即可;(2)根据分层抽样的概念可知不达标的学生有2人,达标的学生有3人,然后利用列举法,根据古典概型概率公式即得. 【详解】(1)由题知()0.0040.0080.0320.036101a ++++⨯=, 得0.020a =,由直方图可知众数为65;因为()0.0040.036100.4+⨯=,()0.0040.0320.036100.72++⨯=,设中位数为x ,则()0.004100.03610700.0320.5x ⨯+⨯+-⨯=,得73.12573x =≈, 所以中位数为73;(2)分层抽样的方法从不达标和达标的学生中共选出5人,则不达标的学生有2人记为,A B ,达标的学生有3人记为,,a b c ,从这5人中选2人的情况有,,,,,,,AB Aa Ab Ac Ba Bb Bc ab ,,ac bc 共10种,这两人中至少有一人是“达标”的情况有,,Aa Ab Ac ,,,,,,Ba Bb Bc ab ac bc 共9种,设M =“这两人中至少有一人达标”,则()910P M =,所以,这两人中至少有一人达标的概率是910.21.(1)34(2)3196【分析】(1)利用相互独立事件概率的乘法公式列方程求解;(2)分甲有两题没有答对,乙有两题没有答对,甲乙各有一题没有答对三种情况,利用相互独立事件的概率以及独立重复事件的概率的乘法公式求出概率. 【详解】(1)设事件A =“甲第一轮猜对” ,事件B =“乙第一轮猜对” ,事件C =“甲第二轮猜对” ,事件D “乙第二轮猜对 ,∴甲、乙两人在两轮竞答活动中答对3题的概率为 ()P ABCD ABCD ABCD ABCD +++()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P C P D =+++()2533331212221p p p p ⎡⎤=⨯⨯⨯+⨯-⨯⨯=⎢⎥⎣⎦解得34p =或54p =(舍去)34p ∴=; (2)三轮竞答活动中甲乙一共答6题,甲、乙两人在三轮竞答活动中答对4题,即总共有2题没有答对,可能甲有两题没有答对,可能乙有两题没有答对,可能甲乙各有一题没有答对. 甲、乙两人在三轮竞答活动中答对4题的概率32322211223333231321213131C C +C C 344433334496P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 22.(1)答案见解析 (2)C 组(3)90分;160【分析】(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.根据方差公式计算出各组的方差即可.(2)根据第(1)问的结果,方差最小的即为结果.(3)根据题意每一组各有10人,所以选手的最终得分为123101010303030x x x x =++,同理方差为()()(){}2222222112233*********s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,代入计算即可得到结果.【详解】(1)(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.小组A 的平均数1(85918793888497949586)9010A x =+++++++++=,答案第7页,共7页 小组A 的方差2222221[(8590)(9190)(8790)(9390)(8890)10A s =-+-+-+-+- 22222(8490)(9790)(9490)(9590])19(8690)+-+-+-+-=-+,小组B 的平均数1(84879296899592919490)9110B x =+++++++++=, 小组B 的方差2222221[(8491)(8791)(9291)(9691)(8991)10B s =-+-+-+-+- 22222(9591)(9291)(9191)(9491)(90]12.91)2+-+-+-+-+-=,小组C 的平均数1(95899596979392908994)9310C x =+++++++++=, 小组C 的方差2222221[(9593)(8993)(9593)(9693)(9793)10C s =-+-+-+-+- 22222(9393)(9293)(9093)(8993)]7(9493).6+-+-+-+-+=-.(2)由于专业评委给分更符合专业规则,相似程度应该高,即方差小,因而C 组评委更像是专业人士组成的.(3)小华的得分12310101010101095939193303030303030x x x x =++=⨯+⨯+⨯=分. 方差()()(){}2222222112233110101030s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, {}22221108(9593)1012(9393)1020(9193)30s ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎣⎦⎣⎦⎣⎦, 2160s =.。
概率论与数理统计练习题
概率论与数理统计练习题一、填空题1、已知P (A )=0.3,P (B )=0.4,P (AB )=0.2,则P (B|A+B )= 。
2、设随机变量ξ在[]5,2上服从均匀分布,则()43≤≤ξP = 。
3、设随机变量ξ服从Poisson 分布,若()()()4,21====ξξξP P P 则= 。
4、设随机变量ξ的密度函数为()xe x p -=21,()∞+∞-x ,则E ξ= ,D ξ= 。
5、某射手中靶的概率为0.6,他首次中靶的射击次数为偶数的概率为______。
6、设α服从()4,2-上的均匀分布,方程0122=++x x α有两个相异实根的概率为______。
7已知随机变量Y X ,,有{}730,0=≥≥Y X P ,{}0≥X P ={}0≥Y P =74,(){}0,max ≥Y X P =______。
8设n X X X ,,21是来自总体()2,~σμNX 的样本,且()∑=+-ni i i X Xc 11为2σ的无偏估计,则c =_______。
9设事件A 当且仅当互不相容的事件B 1,B 2,……B n 中的任一事件发生时才可能发生,已知事件i B 的概率是)(i B P 及事件A 在i B 已发生的条件下的条件概率是)(i B A P ,则计算事件A 的全概率公式是____________。
10事件A 与事件B 是独立的,则事件B 与事件A 是_____________。
11超几何分布的概率函数是_____________。
12正态分布),(2σμN 的分布函数是______________。
二、是非判断题1、若事件A ,B 相互独立,则P ()()()B P A P B A =。
( )2、随机变量ξ的密度函数()x p 在某点a 处的数值,表示ξ取这个值的概率。
( )3、凡只有两个可能结果的随机试验,皆可用两点分布的随机变量。
( )4、设b a ,为常数,ξ为随机变量,则()b aD b a D +=+ξξ。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计练习题(出题人 董贞)一、填空题1、小明五次测试成绩如下:91、89、88、90、92,则这五次测试成绩的平均数是_______________。
2五名同学目测同一本教科书的宽度时,产生的误差如下(单位:㎝):2、-2、-1、1、0,则这组数据的极差为_________________㎝。
3、十位同学分别购买如下尺码的鞋子:20、20、21、22、22、22、22、23、23、24(单位:㎝)这组数据的平均数、中位数、众数三个指标中,鞋店老板最喜欢的是______________。
4、已知一组数据:-2、-2、3、-2、x 、-1,若这组数据的平均数是0.5,则这组数据的中位数是____________。
5、小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,根据图中的信息,估计两人中谁的方差小___________________。
6、抛掷两枚分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件是___________________。
7、长度分别是1、3、5、7、9的五条线段,从中任取三条,则恰能围成三角形的概率是______________________。
8、小明和小丽按如下规则做游戏:桌上放有5支铅笔,每一次取一只或两只,有小明先取,最后取完铅笔的人获胜。
如果小明获胜的概率为1,那么小明第一次应该取走___________只。
9、下表示对某校10名女生进行身高测量的数据表(单位:厘米),但其中一个数据不慎丢失(有x 表示)。
从这10名女生中任意抽出一名身高不低于162㎝的事件的可能性,可以用下图中的点____表示 (在A 、B 、C 、D 、E 五个字母中选择一个符合题意的) 。
10、某路公交车每20分钟一班,王义由于要急着上班,他最多只有5分钟的候车时间,否则他只能打出租车上班,那么他打出租车上班的概率是_________。
二、选择题11、十字路口的信号灯每分钟红灯亮30秒,绿灯亮秒25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是( )12、一个均匀的立方体六个面上分别标有数1、2、3、4、5、6。
如图是这个立方一半的概率是( )。
13、甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( )。
A 、3种 B 、4种 C 、6种 D 、12种14、王大爷在工商银行存入5000元人民币,并在存单上留下4位数的密码,每个数字都是0~9这十个数字中的一个,但由于年龄的原因,王大爷忘了密码中间的两个数字,那么王大爷最多可能试验( )次,才能正确输入密码。
A 、1次 B 、50次 C 、100次 D 、200次15、体育课上,八年级一班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的是( )。
A 、频率分布B 、平均数C 、方差D 、众数身高/㎝156 162 x1651571681651631701590 1 23 4 5 6 7 8 9 1024 6 8 10 · · · · · · ·· · · ◎◎ ◎ ◎ ◎◎◎ ◎◎ ◎ ·小张 ◎小李 2 1 6 4 5 316、某同学为了解大连火车站今年春运期间每天乘车人数,随机抽查了其中5天的乘车人数,所抽查的这5天中每天的乘车人数是这个问题的()。
A、总体B、个体C、样本D、样本容量17、用不同颜色的马赛克片覆盖一个圆形台面,估计15°圆心角的扇形部分大约需要34片马赛克。
已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()。
A、5~6箱B、6~7箱C、7~8箱D、8~9箱18、4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这事件()A、可能发生B、不可能发生C、很可能发生D、必然发生三、解答题19、某村共用生产用地2200亩,村委会在制定明年农业生产结构调整的指导意见时,对市场价格情况调查结果如下:考虑到保障村民的基本生活需求和规避市场风险等因素,对粮食、蔬菜、水果的种植面积的比例,村委会制定了两种指导意见,分别是:⑴30%、40%、30%;⑵35%、25%、40%。
请你计算一下,哪种意见的收益较高?20、某开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:⑴该公司“高级技工”有__________人。
⑵所有员工月工资的平均数为 2500元,中位数为______元,众数为________元。
⑶小张到这家公司应聘普通工作人员。
请你回答图中小张的问题,并指出用⑵中的哪个数据向小张介绍员工的月工资实际水平更合理些。
⑷去掉四个管理人员的工资后,请你计算出资 (结果保留整数),并判断能否反映该公司员工的月工资水平。
yxy21、小明在公园游玩时,见到如图所示的转盘游戏:游戏规则是每转动一次需交1元,当转盘停止后,指针落在红色区域内时,退还1元并奖励2元;当指针落在黄色区域时,退还1元;当指针落在其他颜色的区域内时进行下一次的转动(下一次转动还要交1元)。
该游戏对游戏者有利吗?转动多次后,游戏者平均每次将获利或损失多少元?22、一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色以外没有任何区别。
⑴小王通过大量的反复实验(每次取一个球,放回搅匀再去第二个)发现取出黑球的频率稳定在左右,计算口袋中有多少个黑球?⑵若小王第一个取出的是白球,将它放在桌子上,闭上眼睛从袋中余下的球中再任意取出一个球,取出红球的概率是多少?23、一家小吃店原有三个品种的馄饨,其中菜馅馄饨的售价为3元/碗,鸡蛋馅馄饨的售价为4元/碗,肉馅馄饨的售价为5元/碗,每碗有10个馄饨.该店新增了混合馄饨,每碗3个菜馅、3个鸡蛋馅、4个肉馅的。
⑴算一算混合馄饨每碗的定价该是多少元?⑵如果混合馄饨每碗的定价是3.8元,你认为三个品种的馄饨应该如何搭配才合理?请写出你认为合理的所有方案。
1 424、某养鱼户搞池塘养鱼已三年,第一年放养鲢鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾鱼,称得每尾的重量如下:(单位:千克)0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8⑴如果把这塘鲢鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入多少元?⑵已知该养鱼户第三年的纯收入为48400元,求第二、第三年平均每年的增长率是多少?25、甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示;乙公司每月通话的收费如表所示。
⑴①观察图形,写出甲公司用户,月通话时间不超过400分钟时应负的话费金额。
②求出甲公司的用户通话400分钟后,每分钟的通话费。
⑵王先生由于工作需要,从4月份开始经常去外市出差,估计每月各种通话时间的比例是:本地接听时间:本地拨打时间:外地通话时间=2:1:1,你认为王先生的月通话时间不少于多少分钟时,入乙通讯公司更合算?请说明理由。
)家公司每月收费标准答案一、填空1、90;2、4;3、众数;4、5、小李;6、略 ;7、8、2;9、D ;10、二、11、A ;12、A ;13、D ;14、C ;15、C ;16、C ;17、B ;18、D 。
三、解答题19、⑴粮食:269280元;蔬菜;677600元;水果:567600元;合计:1514480元。
⑵粮食:314160元;蔬菜;423500元;水果: 756800元;合计:1494460元。
根据计算知,⑴的收益较高。
20、⑴、16;⑵、1700;1600 ⑶、这个经理的介绍不能反映该公司员工的月工资水平。
用⑵中的1700元或1600元向小张介绍员工的月工资实际水平更合适。
⑷、 ≈1713元, 可以反映该公司员工的月工资实际水平。
21、⑴、该游戏对游戏者没有利。
∵P (红)= P (黄)= P (其他)= ∴对游戏者没利。
⑵、转动多次后,平均每次获利为×2- ×1+0× =- <0 ∴转动多次后,游戏者平均每次将损失 元。
22、⑴、设袋中有x 个黑球由题意的 = ∴ x=5⑵、23、⑴、混合馄饨每碗定价为 3×0.3+3××0.4+4×0.5=4.1(元)⑵、设每碗馄饨中有x 个菜馅的、y 个鸡蛋馅的、(10-x ―y )个肉馅的。
由题意得 0.3x+0.4y+0.5(10-x ―y )=3.8 ∴y=12-2x 又 得2<x <6 ∵x 、y 、(10-x-y )是整数∴x=3、4、5当x=3时 y=6 10-x-y=1 当x=4时 y=4 10-x-y=2 当x=5时 y=2 10-x-y=3所以应有以下三种搭配:①3个菜馅、6个鸡蛋馅、1个肉馅;②4个菜馅、4个鸡蛋馅、2个肉馅;③5个菜馅、2个鸡蛋馅、3个肉馅; 24、⑴、 =1 56000元; 40000元; ⑵、10%25、⑴、①月通话时间不超过400min 应付30元;②根据图形知,400min 后100min 的通话费用为40元,所以400min 后每分钟的通话费用为0.4元;⑵、设王先生通话时间为4t min ,要使乙公司的通话费更合算,需t ≥100,设甲、乙公司的月通话费用分别为y 1、y 2元,显然4t >400甲公司的通话费用和时间的函数关系是:y 1=1.6t-130(4t >400) 乙公司的通话费用与时间的函数关系是:y 2=50+0.1t+0.9t=t+50由题意得 y 1≥y 2 即1.6t-130≥t+50 解得t ≥300 4t ≥1200 所以 当王先生月通话时间不少于1200min 时,入乙公司通讯网更合算。
y y 121 6 1 12 9 12 1 12 9 6 1 12 7912 79x 20 41 196 x >0y >0 10-x-y >0x。