三角形内角和教学案例与反思
《三角形的内角和》教学案例及反思
《三角形的内角和》教学案例及反思《三角形的内角和》教学案例及反思荷兰数学教育家弗赖登塔尔曾反复强调:学习数学的唯一方法就是实行再创造,也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生进行这种再创造工作,而不是把现成的知识灌输给学生。
【问题的提出】对三角形的内角和传统的教法是:在理解什么是三角形的内角后,教师提出课题:三角形的内角和是多少?同学们想不想知道?之后,教师让学生拿出印有虚线折横的三角形,按课本上的折法开始操作,并组织学生交流,讨论。
再在教师的一步步启发下,得出三角形的三个内角正好可组成一个平角,从而得出三角形的内角和是_0度。
上述教学中,学生既有操作,又有交流,应该说较好地学习了新知识,但细想每一步活动都是在教师的指挥下按部就班进行的,这样的教学形式上是热闹的,但学生的思维却是被动的。
究其原因在与教师还是着眼于知识本身,急于让学生去操作,去发现三角形的内角和定理,而忽视了比获取这一知识更重要的东西对学生主动探究新知的动机的激发与能力的培养。
如何让学生主动地探究并发现新知呢?针对这一问题,我做了如下教学尝试。
【教学尝试】投影出示,已知 1=80 、 2=70 、 3=( ) 初步让学生建立 1、 2、 3正好组成一个平角的印象。
在转入新课。
(一)激发欲望教师让学生每人画一个三角形,量出其中两个角的度数报给老师,老师不用量角器说出第三个角的度数。
(学生开始还不信,后来用量角器一量,确实如此。
)老师到底是如何知道的呢每个学生心中都产生了疑惑。
这时老师指出并不是老师有什么特殊本领,而是掌握了三角形的三个内角之间的某种规律。
学生为了了解这种规律,产生了探究新知的欲望。
(二)探究新知老师让学生交流讨论:三角形的三个内角之间到底有什么规律呢?同学们有的深思,有的在本子画着,量着,算着之后,纷纷发表意见:生1:我算了一下,老师得出的第三个内角的度数同我们报出的两个角的度数相加起来正好都是_0 度生2:我又画了一个三角形,用量角器量了一遍,它的三个角的度数和也非常接近_0 度。
关于三角形内角和180度的两个对照教学案例
关于三角形内角和180度的两个对照教学案例案例1:三角形内角和为180度的证明(面向初中一年级)【教学目标】1.了解三个角的和为180度的概念;2.学会使用直尺和量角器进行实际测量;3.培养学生的动手实践和逻辑推理能力。
【教学准备】1.教师:直尺、量角器、黑板、粉笔;2.学生:直尺、量角器、作图工具等。
【教学过程】1.引入:教师在黑板上绘制一个三角形,告诉学生三角形的三个角的和为180度,并与学生进行互动交流,引出“三角形内角和为180度”这个概念。
2.实际测量:教师发给学生纸片,让学生自行绘制一个三角形,然后使用直尺和量角器进行实际测量,验证三个角的和是否为180度。
3.讨论验证:学生完成测量后,教师引导学生进行讨论,结合实际测量结果,推理出三角形内角和为180度的规律。
4.板书总结:教师在黑板上板书总结,三角形内角和为180度的公式:“∠A+∠B+∠C=180°”,并解释其中符号的含义。
5.巩固练习:教师在黑板上给出几个三角形,要求学生计算三个角的和,检验他们是否等于180度。
6.拓展应用:教师以各种图形为背景,设计一些活动,要求学生分组进行合作,验证其他多边形内角和为多少度。
【教学反思】通过实际测量和讨论验证的方式,学生能够深刻理解三角形内角和为180度的概念,培养了他们的动手实践和逻辑推理能力。
通过拓展应用,能够提高学生的动手实践能力和合作精神。
案例2:三角形内角和为180度的证明(面向初中二年级)【教学目标】1.了解三个角的和为180度的概念;2.掌握三角形内角和为180度的证明方法;3.培养学生的逻辑思维和证明能力。
【教学准备】1.教师:直尺、量角器、幻灯片等;2.学生:直尺、量角器、笔记本等。
【教学过程】1.引入:教师使用幻灯片展示三角形的图形,告诉学生三个角的和为180度,并与学生进行互动交流,引出“三角形内角和为180度”这个概念。
2.证明方法:教师给出一个等边三角形,让学生使用量角器测量三个角,发现它们均为60度,然后引导学生思考:如果将这个等边三角形分成若干小三角形,每个小三角形的内角和是否也是180度。
三角形的内角和(教案)-四年级下册数学苏教版
三角形的内角和(教案)-四年级下册数学苏教版一、教学目标1. 让学生理解并掌握三角形的内角和是180度。
2. 培养学生运用三角形的内角和解决实际问题的能力。
3. 培养学生合作交流、动手操作的能力。
二、教学内容1. 三角形的内角和的概念。
2. 证明三角形的内角和是180度。
3. 运用三角形的内角和解决实际问题。
三、教学重点与难点1. 教学重点:三角形的内角和是180度。
2. 教学难点:证明三角形的内角和是180度。
四、教学过程1. 导入新课利用多媒体展示一些生活中的三角形图片,如:自行车的三角架、电线杆的三角形支架等,引导学生观察这些三角形的特点,从而引出三角形的内角和的概念。
2. 探究三角形的内角和(1)让学生拿出自己准备好的三角形模型,用量角器测量三角形的内角,并把数据记录下来。
(2)引导学生观察测量结果,发现三角形的内角和是180度。
(3)教师引导学生思考:为什么三角形的内角和是180度呢?组织学生进行小组讨论,引导学生运用拼图、折叠等方法进行探究。
3. 证明三角形的内角和是180度(1)教师引导学生回顾探究过程,总结出三角形的内角和是180度的结论。
(2)教师引导学生思考:如何证明三角形的内角和是180度呢?组织学生进行小组讨论,引导学生运用几何图形的性质进行证明。
4. 运用三角形的内角和解决实际问题(1)教师出示一些实际问题,如:一个三角形的一个内角是60度,另外两个内角的和是多少度?引导学生运用三角形的内角和进行解答。
(2)教师引导学生思考:如何运用三角形的内角和解决更多实际问题?组织学生进行小组讨论,引导学生总结出解题方法。
五、课堂小结1. 让学生回顾本节课所学内容,总结三角形的内角和的概念、证明方法及应用。
2. 强调三角形的内角和在日常生活中的重要性,激发学生学习数学的兴趣。
六、课后作业(略)七、教学反思(略)注:本教案适用于四年级下册数学苏教版教材,教学过程中可根据实际情况进行调整。
《三角形内角和定理》优秀教学案例
课题:《三角形内角和定理》(第1课时)一.内容和内容解析【内容】三角形内角和定理【内容解析】本课是鲁教版版七年级下册第八章第六节三角形内角和定理第一课时,是在学习平行线之后,全等三角形之前;本节课主要研究三角形内角和及其证明,教材中引导学生探讨如何进行三角形内角和定理的证明,展示了一个完整的证明过程,让学生看到证明的表达形式,为学生进行逻辑推理的训练作好准备。
【三角形内角和概念的核心】(1)三角形的内角和等于180度;(2)三角形内角和定理的证明。
【教学重点】三角形内角和定理的证明二.目标和目标解析【目标】会证明三角形内角和定理,并能运用三角形内角和定理答解决实际问题。
【目标解析】通过添加辅助线证题,增强学生的观察、猜想和理论证明的能力,感受探索三角形内角和定理的证明过程,培养学生有条理地思考问题和表达问题的能力,通过渗透"化归"的数学思想,培养学生解决数学问题的基本方法。
通过师生的共同探究活动,培养学生的概括、总结能力,激发学生探索问题的兴趣。
三.教学问题诊断分析【学生已有的知识结构】“三角形的内角和等于180度”,这一结论在小学,初一都介绍过,学生会用拼图的方法已知道三角形的三个内角的和等于180°,本节课是在此的基除上,进一步地了解这个结论成立的道理.启发学生得出说明证明这个结论正确的方法,而证明的过程中需用到的平行线的性质与平角的定义等均在前几章学习。
【学生学习的困难】本节课学生感到比较困难的是如何利用所学知识将三角形的三个角移在一起?由于学生的空间想象能力、推理论证能力有待进一步加强,在三角形内角和定理的证明过程中,不知如何添加辅助线,导致证明过程中无从着手或发生错误。
【本节课的难点】引导学生添加辅助线解决问题,并进行合乎情理地思考,有条理地表达。
四.教学支持条件分析为了有效实现教学目标,可准备投影仪,多媒体课件,三角板辅助教学。
五.教学过程设计(一)学生回忆,引出课题问题1:小学、初一时是怎样说明三角形内角和是1800?设计意图:鉴于学生对三角形内角和已经有初步认识,在教学过程设计上没有从学生身边熟悉的事例创设情境,让学生观察并亲自动手,而是对三角形内角和的知识加以回忆。
《三角形的内角和》教学案例评析与教学反思1
《三角形的内角和》教学案例评析与教学反思最近,在区教研室的支配下,我在全区新课改教材培训会上讲了一节示范课,内容是人教版试验教材第八册《三角形的内角和》。
这节课课前得到了区教研室专家的细心指导,课后受到学生和听课老师的相同好评。
我想这节的胜利之处就在于给学生一个开放的学习环境,给学生一个探究的学习天地,让学生“启思质疑引探新知”。
纵观本课,猜测的提出、验证,方法、结论的得出,都是学生个体主动参加、合作探究的结果。
这样的数学课堂教学过程,充溢了视察、试验、猜测、验证、推理与沟通等丰富多彩的数学活动,造就了学生的探究精神,并在探究过程中获得丰富的情感体验。
教学内容:义务教育课程标准试验教科书数学第八册〔人教版〕【片段1】创设情景,提醒课题。
出示多媒体课件:如图1图1师:同学们视察到什么?生1:两条直线相交形成四个角。
生2:这四个角有两个锐角、两个钝角。
生3:因为∠1和∠2组成一个平角,所以∠1+∠2=180°;同样道理,∠3+∠4=180°。
生4:∠1+∠2+∠3+∠4=360°出示多媒体课件:如图2图2师:什么变了?什么没变?生1:∠1和∠2的大小都变了,但∠1和∠2的和还是180°;∠3和∠4的大小都变了,但∠3和∠4的和还是180°。
它们的和没变。
生2:∠1+∠2+∠3+∠4=360°,这四个角的总和也没变。
师:教师把其中一条直线接着旋转,如图3,让∠1变成了一个直角,你们知道其它三个角的是什么角吗?各是多少度?图3生1:其它四个角都是直角,都等于90°。
师:想一想,哪些平面图形中有四个直角。
生:长方形和正方形。
多媒体课件出示一个图片:如图4。
图4师:我们把长方形和正方形里的四个直角叫做内角。
师:想一想,什么叫做内角和?生:〔略〕师:三角形有几个内角?生:〔略〕师:什么是三角形的内角和?生:〔略〕师:三角形的内角和会是多少度呢?是锐角三角形的内角和大还是钝角三角形的内角和大呢?请同学猜一猜。
教案:《三角形的内角和》
教案:《三角形的内角和》一、教学目标1.让学生理解三角形的内角和定理,掌握三角形内角和的计算方法。
2.培养学生运用三角形内角和定理解决实际问题的能力。
3.激发学生对几何学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点1.教学重点:三角形内角和定理的理解与应用。
2.教学难点:三角形内角和定理的证明过程。
三、教学过程(一)导入1.利用多媒体展示三角形图片,引导学生观察三角形的特征。
2.提问:同学们,你们知道三角形有什么特征吗?3.学生回答:三角形有三条边、三个角。
(二)新课讲解1.引导学生回顾已学的角的分类知识,如直角、锐角、钝角等。
2.提问:同学们,你们知道三角形的内角和是多少吗?3.学生回答:不知道。
4.教师讲解三角形内角和定理:三角形内角和等于180度。
5.利用多媒体展示三角形内角和定理的证明过程,让学生直观地感受定理的正确性。
(三)案例分析1.展示案例1:一个等边三角形,求它的内角和。
2.学生独立思考,尝试运用三角形内角和定理解决问题。
3.学生回答:等边三角形的内角和为180度。
4.展示案例2:一个直角三角形,求它的内角和。
5.学生独立思考,尝试运用三角形内角和定理解决问题。
6.学生回答:直角三角形的内角和为180度。
(四)课堂练习1.布置练习题,让学生独立完成。
2.练习题包括:求不同类型三角形的内角和、运用三角形内角和定理解决实际问题等。
3.学生完成后,教师批改并讲解答案。
2.提问:同学们,你们还能想到哪些与三角形内角和有关的问题?3.学生回答:四边形的内角和、多边形的内角和等。
4.教师布置课后作业:研究四边形、五边形等图形的内角和。
四、课后作业1.复习三角形内角和定理,理解其证明过程。
2.完成课后练习题,巩固所学知识。
3.研究四边形、五边形等图形的内角和,尝试运用所学知识解决实际问题。
五、教学反思本节课通过多媒体展示、案例分析、课堂练习等多种教学方法,使学生掌握了三角形内角和定理,并能够运用该定理解决实际问题。
《三角形的内角和》教学反思2篇
《三角形的内角和》教学反思《三角形的内角和》教学反思精选2篇(一)在教学《三角形的内角和》这个题目时,我注意到了一些学生的困惑和错误。
首先,有一些学生混淆了三角形的内角和与三角形的外角和的概念。
他们无法正确区分内角和与外角和的关系,导致在计算内角和时出现了错误。
为了解决这个问题,我决定更加直观地介绍三角形的内角和和外角和的概念。
我使用了图示和示意图来帮助学生理解这两个概念的区别。
我解释说,三角形的内角和是指三个角度之和,而三角形的外角和是指以三个角度为顶点的角度之和。
通过这种方式,我希望学生能够更加清楚地理解内角和与外角和的概念。
另外,我还发现一些学生在计算三角形的内角和时出现了错误。
他们将角度的度数直接相加,忽略了角度的正负问题。
因此,我决定在讲解中强调三角形内角和的计算方法,即将三个角度的度数相加,并确保结果在180度范围内。
我给学生提供了一些练习题,让他们在计算内角和时熟练掌握这个方法。
此外,我还发现一些学生在理解过程中遇到了困难,对于什么是内角和以及它的含义并不清楚。
因此,在讲解概念时,我特别强调三角形内角和的意义和作用,例如它与三角形的性质和分类的关系。
我告诉学生,通过计算内角和,我们可以判断三角形的类型和性质,例如锐角三角形、钝角三角形和直角三角形等。
总的来说,在教学《三角形的内角和》这个题目时,通过更加直观地介绍概念,并提供多种练习机会,我希望学生能够更加清楚地理解内角和的概念和计算方法,并能够正确应用它们。
在以后的教学中,我将继续注重帮助学生建立深刻的概念理解,并提供更多的练习和实际应用的机会,以 consolida their understanding.《三角形的内角和》教学反思精选2篇(二)在教授《三角形的特性》的过程中,我发现以下几点需要反思和改进的地方:1. 缺乏足够的引入和预览:在开始教学前,我没有给学生一个清晰的预览或引导,没有让学生理解为什么学习三角形的特性是重要的,并没有激发他们的兴趣。
《三角形的内角和》教学反思
《三角形的内角和》教学反思《三角形的内角和》教学反思1背景:在课前学生已备好了直尺、三角板、量角器、剪刀和三角形纸板数张。
在老师引导学生经过猜想三角形内角和为180度后。
师:请你用你自己的方法去验证结论……于是乎学生兴趣浓厚,积极性非常高,只见学生在剪剪,画画,拼拼,好像非要弄一个明白不可…。
一会儿,师示意学生停止了验证、探索,接着老师用多媒体课件演示教材上的拼剪方法验证…。
请你从小组合作学习的角度谈谈对以上教学片段的看法。
张彦彬这是一节非常好的让学生动手实践、亲自操作、亲身体验的课题。
恰当有效的开展小组合作学习,有利于学生探究能力和合作意识的培养。
但是在这一片段中存在许多值得我们思考的地方。
密士娜片段中虽然“学生兴趣浓厚,积极性非常高”,但给人的感觉是学生的活动有些流于形式,没能较好的发挥好小组学习的优势。
四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力。
因此,我认为本节课的重点是引导学生从“猜测―——验证”展开学习活动,让学生感受这种重要的数学思维方式。
而在开展小组验证活动时,我认为要分三步:首先,可以提出:“你有什么方法可以验证?”(结合学生实际情况,教师要予以点拨)。
然后,在学生独立思考的基础上,提出分小组探究验证的方法。
此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到验证的切入点,体验成功。
最后,就是要注重学生的小组汇报,在汇报中培养学生的数学语言表达能力。
周晓芹在片段中注重了小组的合作学习,抓住了合作的时机,但是在小组合作的过程中真正发挥了每个学生的主观能动性吗?在学生进行要验证的时候,教师首先应该放手,通过学生自己发现、验证,这样的合作才能发展学生的思想,学生才会有学习的动力,才能让学生经历思考、探究、验证的过程,其次,注重学生的个人认识和小组认识的结合,最后,综合认识,让学生的思想进行碰撞、交流,达到合作的有效性。
三角形的内角和的课教案
三角形内角和的课教案教学目标:1. 让学生理解三角形内角和的概念。
2. 引导学生通过实际操作探究三角形内角和的特点。
3. 培养学生运用几何知识解决实际问题的能力。
教学重点:1. 三角形内角和的概念。
2. 三角形内角和的计算方法。
教学难点:1. 理解三角形内角和为180度的原因。
2. 运用三角形内角和解决实际问题。
教学准备:1. 三角板2. 量角器3. 几何画图工具教学过程:一、导入(5分钟)1. 向学生介绍三角形内角和的概念。
2. 提问:同学们,你们知道三角形内角和是多少度吗?二、探究三角形内角和(15分钟)1. 让学生分组,每组使用三角板和量角器进行实验。
2. 让学生通过实际操作,测量三角形的内角和。
3. 引导学生发现三角形内角和都等于180度。
三、讲解三角形内角和(15分钟)1. 向学生讲解三角形内角和为180度的原因。
2. 通过几何画图工具,演示三角形内角和的证明过程。
四、练习运用三角形内角和(10分钟)1. 让学生运用三角形内角和的知识,解决实际问题。
2. 出示一些练习题,让学生进行练习。
五、总结与拓展(5分钟)1. 对本节课的内容进行总结。
2. 引导学生思考:三角形内角和的知识还可以用在哪些地方?教学反思:通过本节课的教学,学生应该能够理解三角形内角和的概念,并能够运用三角形内角和的知识解决实际问题。
在教学过程中,要注意引导学生通过实际操作,发现三角形内角和的特点,从而达到理解三角形内角和为180度的原因。
也要注重学生的练习,提高学生运用几何知识解决实际问题的能力。
六、课堂活动与互动(10分钟)1. 让学生通过小组合作,用纸折出不同类型的三角形,并用量角器测量其内角和。
2. 邀请几组学生分享他们的实验结果,并讨论三角形内角和的特点。
3. 教师引导学生总结三角形内角和的概念及其应用。
七、案例分析与解决(15分钟)1. 出示一道实际问题:一个多边形由三个三角形组成,其中一个三角形的内角和为120度,两个三角形的内角和分别为135度和150度。
三角形内角和教学案例及反思
人教小学四年级数学下册《三角形的角和》教学案例及反思片段一:创设问题情境,引发思考师出示一长方形的纸。
师:这是我们什么图形?它有什么特征?生1:这是长方形,它有四条边四个直角。
生2:老师我要给他补充一点,长方形的对边相等,四个角相等。
师:我们把这四个角叫这个长方形的角,那你们知道长方形的角和是多少度吗?生1:我知道是360度,因为长方形的四个角都是90度,所以90乘4就等于360度。
师:你反应真快,计算速度也很快。
师:现在请你们把手里的长方形沿着对角线对折再剪开会怎样呢?学生动手操作。
生1:我把长方形沿着对角线剪开,得到了两个三角形而且都是直角三角形。
生2:我也得到了两个完全相同的直角三角形。
师:其他同学也是这样的吗?(全班齐答:是)举起来互相看看。
师:谁能大胆猜想一下其中的一个三角形的角和是多少度呢?生1:我觉得是90度左右。
生2:根本不可能是90度左右,直角三角形已经有一个角是90度了,还有两个角不可能是几度吧。
生3:我想可能是180度,因为我手里的这块三角板就是一个直角三角形,一个角是90度,另两个角是60度和30度,加起来就是180度。
生4:我也赞同他的猜想,我手里的三角板是等腰直角三角形两个角是45度,加起来是90度,再加一个90度也是180度。
生5:老师,我猜是180度,我们把长方形平均分成了两个直角三角形,也就是把360度平均分成了两份,那一份就是180度。
[猜想已经成为学生学习数学的一种重要方式,从心理学角度看,是一项思维活动,是学生有方向的猜想与判断,包含了理性的思考和直觉的推断;从学生的学习过程来看,猜想是学生有效学习的良好准备。
学生一旦做出某种猜想,他就会把自己的思维与所学的的知识连在一起,会急切地想知道自己的猜想是否正确,于是就会主动的去探索新知识,这时的学习是发自心的需求。
]师:你们的猜想有一定的道理,那直角三角形的角和到底是不是180度呢?同学们能用什么方法来验证吗?片段二:动手操作,验证猜想师:只有猜想没有行动,那只能是空想,同学们把你的猜想用行动证明出来吧。
三角形内角和的教学案例三角形内角和的教案汇总
三角形内角和的教学案例三角形内角和的教案汇总一、教学目标1.让学生掌握三角形内角和的概念。
2.培养学生运用三角形内角和定理解决实际问题的能力。
3.激发学生对几何学习的兴趣,提高学生的空间想象力和逻辑思维能力。
二、教学内容1.三角形内角和的概念2.三角形内角和定理3.三角形内角和的应用三、教学过程1.导入新课(1)教师展示一个三角形,引导学生观察三角形的三个内角。
(2)提问:同学们,你们知道三角形的三个内角有什么关系吗?(3)引导学生思考并回答:三角形的三个内角之和等于180度。
2.探究三角形内角和定理(1)教师展示几个不同类型的三角形,让学生分别测量三个内角的度数。
(2)引导学生发现:无论三角形的形状如何,其内角和都是180度。
3.演示三角形内角和定理的应用(1)教师展示一个等边三角形,让学生计算三个内角的度数。
(2)引导学生发现:等边三角形的三个内角都是60度。
(3)教师提问:如果知道一个三角形的两个内角分别是30度和60度,那么第三个内角是多少度?(4)引导学生运用三角形内角和定理解决问题。
4.练习与应用(1)教师布置一些有关三角形内角和的练习题,让学生独立完成。
(2)教师选取一些典型题目进行讲解,帮助学生巩固知识点。
(3)教师引导学生运用三角形内角和定理解决实际问题,如测量物体的高度等。
(1)教师引导学生回顾本节课所学内容,巩固三角形内角和定理。
(2)教师提问:通过本节课的学习,你们有什么收获?(3)学生分享自己的学习心得,教师给予鼓励和指导。
四、教学评价1.课后作业:布置一些有关三角形内角和的练习题,检查学生对知识点的掌握情况。
2.课堂表现:观察学生在课堂上的积极参与程度、思考问题和解决问题的能力。
3.学习成果:通过检测学生运用三角形内角和定理解决实际问题的能力,评价教学效果。
五、教学反思本节课通过引导学生探究三角形内角和定理,让学生在实践中掌握知识,培养学生的逻辑思维能力和空间想象力。
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
在教学过程中,我还注重引导学生运用三角形内角和定理解决实际问题。例如,我设计了一些实际问题,让学生运用所学知识进行解答。这样不仅能够巩固学生对三角形内角和定理的理解,还能够培养他们学以致用的能力。
在教学过程中,我注重培养学生的动手操作能力和合作意识。设计了小组讨论和动手实践环节,让学生在合作中发现问题、解决问题。同时,我还运用多媒体教学手段,展示了三角形内角和定理的证明过程,使学生更加直观地理解定理的含义。
针对不同学生的学习情况,我采用了分层教学法,设置了不同难度的题目,让每个学生都能在课堂上发挥自己的优势。对于学困生,我给予了耐心指导,帮助他们克服学习困难;对于优秀生,我则引导他们拓展思维,提升解题能力。
(二)过程与方法
1.培养学生独立思考、合作探讨的学习方式,提高他们的自主学习能力。
2.引导学生运用图形直观分析问题,培养他们的几何直观能力。
3.培养学生运用三角形内角和定理解决实际问题的能力,提高他们的实践操作能力。
为了实现上述目标,我在教学过程中采用了以下方法:
首先,我采用了启发式教学法。通过设计富有挑战性的问题,引导学生独立思考,激发他们的学习兴趣。同时,我鼓励学生积极参与课堂讨论,培养他们的合作精神。
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
一、案例背景
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例,以三角形内角和定理为核心内容。本节课主要让学生掌握三角形内角和定理,即三角形的三个内角之和等于180度。通过学习,学生能够理解并运用三角形内角和定理解决实际问题。
《三角形的内角和》教学反思(10篇)
《三角形的内角和》教学反思(10篇)《三角形的内角和》教学反思篇一本节课采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
“大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。
在学生已有知识的基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。
亲身体验所得的知识,会掌握得更加牢固。
引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的能力。
探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。
《三角形内角和》数学教案篇二教材分析教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。
大多数学生会想到用测量角的方法,此时就可以安排小组活动。
每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。
最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。
二是把三个内角折叠在一起,发现也能组成一个平角。
每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
案例分析(三角形内角和定理)
课题:《三角形内角和定理》一、教学目标知识技能:1、理解“三角形的内角和等于180°”.2、运用三角形内角和结论解决问题.数学思考:1、通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理 性,发展合情推理能力和语言表达能力.2、理解三角形内角和的计算、验证,其本质就是把三个内角集中在一起转化为一个平角,其方法可以用拼合的方法,也可以用引平行线的方法.解决问题:1、学会运用三角形内角和定理解决实际问题,如在航海测量、几何计算等方面的应用2、通过介绍“三角形内角和定理及其证明”,让学生初步了解什么是几何证明,并感 受证明几何问题的基本结构和推导过程.情感态度:在观察、操作、推理、归纳等探索过程中,发展同学们的合情推理能力,逐步养成和获得数学说理的习惯与能力.二、教学重点难点三角形内角和定理的证明及如何利用定理解决生活中的实际问题。
三、教学过程设计(一)学生回忆,引出课题问题1:复习平行线的性质如图1(1),已知:直线上有一点A ,过点A 作射线AM 、AN ,1、若∠DAM=30°,∠EAN=70°,则∠1等于多少度,为什么?2、若在AM 上任取一点B ,过点B 作BC ∥DE 交AN 于点C 如图1(2),则:(1)∠2等于多少度?为什么?(2)∠3等于多少度?为什么?(3)∠1+∠2+∠3等于多少度?为什么?师生活动:师:在第五章我们学习了相交线与平行线的相关知识,你还记得吗?请同学们完成以下练习,看看谁完成的又快又准。
生:1、∠1=80º,理由是: 平角的定义;2、(1)∠2=30º, 理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(2) ∠3=70º,理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(3)∠1+∠2+∠3等于180度,三角形内角和等于180度;(二)通过设疑,引出课题N M 70︒30︒1E D A 图1(1) N M 70︒30︒321E D C A B 图1(2)问题2:三角形内角和是1800是真命题吗?如何证明?师生活动:师:对于任意一个三角形的三个内角的和等于180度.我们是在小学已经知道了这个结论,那时侯,大家是怎样知道的呢?生:通过度量的方法,或者剪拼实验,能够验证一些具体的三角形的三个内角和都等于180º。
《三角形内角和》教案
《三角形内角和》教案教学目标:1.了解三角形的定义及性质。
2.掌握三角形内角和的计算方法。
3.能够运用所学知识解决相关问题。
教学重点:1.三角形内角和的概念。
2.三角形内角和的计算方法。
教学难点:1.如何理解三角形内角和的概念。
2.如何运用所学知识解决相关问题。
教学准备:1.教师准备:黑板、彩色粉笔、教学PPT。
2.学生准备:课本、作业本、笔等。
教学过程:一、导入(5分钟)教师提问:什么是三角形?举例说明。
学生回答后,教师引导学生讨论三角形的定义及性质,引出三角形内角和的概念。
二、讲解(15分钟)1.三角形内角和:教师通过图示和示例,讲解三角形内角和的定义,即三角形的三个内角之和等于180度。
2.计算方法:教师讲解如何计算三角形内角和,可以通过以下公式进行计算:内角和=第一个角+第二个角+第三个角。
3.案例分析:教师通过几个案例讲解如何应用所学知识计算三角形内角和。
三、练习(25分钟)1.基础练习:学生进行基础的计算练习,如计算各种角度和为180度的三角形。
2.拓展练习:学生进行一些拓展性的练习,如寻找三角形内角和不等于180度的特殊情况。
3.讨论疑难问题:学生对遇到的疑难问题进行讨论,教师进行指导和解答。
四、总结(10分钟)1.教师对本节课内容进行总结,强调三角形内角和的计算方法及相关性质。
2.学生对本节课所学内容进行复习总结,并提出问题。
五、作业布置(5分钟)1.布置相关练习题目,巩固所学知识。
2.提醒学生认真复习课堂内容,做好作业准备下节课。
教学反思:通过本节课的教学,学生对三角形内角和的概念有了更深入的理解,掌握了相关的计算方法,能够运用所学知识解决相关问题。
在教学过程中,学生的参与度和积极性较高,对课堂内容有了较深的印象。
教师需要在后续的教学中继续巩固学生对三角形相关知识的理解和掌握,帮助他们建立数学思维,提高解决问题的能力。
三角形内角和教学案例及点评
探索与发现(一)——三角形内角和教学案例及点评一、案例背景:官底镇中心小学刘玭2010年9月,本着构建最本色最简洁最实用的模式以整体提高小学数学课堂教学效率,提高学生各方面学习能力的初衷,针对小学数学新授课课堂教学的特点,我校在已有的小组合作学习模式的基础上做了进一步的完善,提出了小学数学“学、交、练、评”课堂教学模式。
这种教学模式着力追求数学教学的高效性,旨在提高学生的自主学习能力。
经过近年来的研究、实施、改进,这种小学数学课堂教学模式的优越性已逐步体现。
1、教材分析:本课是北师大版小学四年级数学下册第二单元《认识图形》第三节课的内容,是在学生学习了角的分类、三角形分类的基础上进行学习的,为以后探索其它平面图形的特点做好了准备。
因此,学习、掌握三角形的内角和是180°这一性质具有重要意义。
教材创设了两个不同形状的三角形的发生矛盾冲突的问题情境,以此导入新课,激发学生的学习兴趣。
引导学生通过画一画、量一量、算一算的方法探究三角形的内角和,再利用拼一拼、折一折活动来验证三角形的内角和为180°这一性质,并利用此性质解决问题,让学生在动手操作、积极探索的活动过程中掌握知识,积累数学经验,发展学生的空间观念。
2、学情分析:学生在前面的学习中对角的分类、三角形的分类、角的测量已经有了一定的知识基础,同时也具备了一定的动手操作和合作交流的能力,可以通过一系列的操作活动探索发现三角形内角和的性质。
3、教学目标:⑴、让学生通过画、量、剪、拼等一系列直观操作活动,探索三角形内角和的性质。
⑵、能运用三角形内角和的性质解决一些简单的实际问题。
⑶、通过小组合作、动手实践活动培养学生动手操作的能力、探索能力和合作的意识。
4、教学重难点:重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程,知道三角形的内角和是180°,并且能用它解决一些简单的实际问题。
难点:⑴、“三角形内角和等于180°”的探索和验证。
三角形内角和180度教学案例分析
三角形内角和180度教学案例分析三角形是最常见的平面几何图形之一,而三角形内角和定理即指三角形所有内角的和应该等于180度,它的表达形式如下:∑ A, B, C = 180°任何一个三角形的内角和都为180度,是数学中的一个重要定理,这一定理尤其受到数学专家的高度重视,而许多的学校教学中也将其作为教学内容,以使学生了解其中的重要性。
本文将从实际教学案例出发,分析三角形内角和定理及其在教学中的重要性。
一、三角形内角和定理三角形内角和定理是一个由古希腊数学家欧几里德首次提出的定理,也是几何学中一个重要的定理,它指出了任何一个三角形形状内所有角之和都为180度。
这一定理是由古希腊数学家欧几里德于其《几何学》一书中提出,之后也被英国数学家和物理学家爱普斯特整理制定出来,被认为是数学中的一个重要定理,如今它在数学教学中也十分重要,得到了许多学校的重视。
二、三角形内角和的教学案例为了使学生能够更好地了解三角形内角和定理,许多教师在教学实践中都采用了不同的教学方法,其中包括实物演示、视频教学、游戏式教学等。
以下讨论一具体案例,介绍了使用实物和图形结合的教学方法传授三角形内角和定理。
1.先,教师定义三角形可以用以下的几种方式:以三条线连接三个点形成的图称为三角形,三角形是一种具有三个内角的几何图形;2.着,教师将三角形折叠起来,从而使它形成两个角,然后让学生用一根线把这两个角连接起来,从而使三角形完全折叠,也就是说,学生已经把三个角变成了一个角,且所得角的角度为180度;3.后,教师再次把三角形折叠起来,然后用纸片分别把每个内角和外角所对应的角度给学生,由此让学生总结出三角形内角和定理的表达形式,并加深对定理的理解。
三、教学重要性以上案例介绍了教师使用实物演示的学方法,通过这种方式,让学生可以从一个实际的角度更加深刻地理解三角形内角和定理,使之可以在日后遇到类似的考试题目时灵活运用。
三角形内角和定理由数学家发现,是数学中极为重要的定理,因此它在数学教学中至关重要,如何让学生更好地理解这一定理也是教师应该思考和努力的方向。
《三角形的内角和》教案
一、教学内容
《三角形的内角和》教案,本节课将依据人教版小学数学四年级下册第七章《角的度量》中的内容进行展开。主要内容包括:
1.三角形的定义及特性;
2.三角形内角和的概念;
3.探索三角形内角和等于180度的原理;
4.运用三角形内角和知识解决实际问题;
5.练习计算不同类型三角形的内角和。
在教学过程中,教师应针对重点和难点内容,采用不同的教学方法和策略,帮助学生扎实掌握三角形内角和的知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算图形角度的情况?”(例如,拼图游戏中的角度计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和的奥秘。
2.实践活动:分组讨论和实验操作环节,同学们积极参与,课堂氛围良好。通过实际操作,他们更好地理解了三角形内角和的计算方法。然而,部分引导学生发现问题、解决问题的能力。
3.小组讨论:同学们在讨论三角形内角和在实际生活中的应用时,提出了很多有趣的例子。这表明他们能够将所学知识运用到实际中,学以致用。但在讨论过程中,部分同学表现不够积极,我需要思考如何激发他们的参与热情。
5.培养学生数学思维能力,让学生在探索三角形内角和的过程中,形成严密的数学思维。
三、教学难点与重点
1.教学重点
(1)掌握三角形的定义及特性,能够识别不同类型的三角形;
(2)理解三角形内角和的概念,熟练运用三角形内角和等于180度的规律;
(3)学会运用三角形内角和知识解决实际问题。
举例:
-通过直观的图形展示,让学生了解三角形的定义,强调三角形有三条边和三个角;
三角形的内角和教案设计
三角形的内角和教案设计一、教学目标1. 让学生理解三角形内角和的性质,掌握三角形内角和定理。
2. 培养学生运用几何知识解决实际问题的能力。
3. 激发学生对几何学科的兴趣,培养学生的观察、思考、交流和合作能力。
二、教学内容1. 三角形内角和的性质2. 三角形内角和定理的证明3. 运用三角形内角和定理解决实际问题三、教学重点与难点1. 教学重点:三角形内角和的性质,三角形内角和定理的证明。
2. 教学难点:三角形内角和定理的证明,运用三角形内角和定理解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生探究三角形内角和的性质。
2. 运用几何画板软件,动态展示三角形内角和的变化,帮助学生理解内角和定理。
3. 案例分析法,让学生通过解决实际问题,巩固三角形内角和定理的应用。
4. 小组讨论法,培养学生的合作交流能力。
五、教学过程1. 导入:通过几何画板软件展示三角形内角和的变化,引发学生对三角形内角和性质的兴趣。
2. 新课讲解:讲解三角形内角和的性质,引导学生探究内角和定理。
3. 案例分析:运用内角和定理解决实际问题,巩固学生对定理的理解。
4. 课堂练习:设计相关练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,拓展学生思维。
6. 课堂小结:通过提问方式,检查学生对三角形内角和定理的掌握情况。
7. 课后作业:布置适量作业,巩固所学知识。
8. 教学反思:对课堂教学进行总结,针对学生的掌握情况,调整教学策略。
9. 课堂评价:学生互相评价,总结自己在课堂上的表现。
10. 教学改进:根据学生反馈和教学反思,改进教学方法,提高教学质量。
六、教学评价1. 评价目标:通过学生作业、课堂表现、小组讨论等方式,评价学生对三角形内角和定理的理解和运用能力。
2. 评价方法:a) 作业评价:检查学生作业的完成情况,关注学生的解题思路和答案的正确性。
b) 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内角和教学案例与反思
教学案例:
教学过程:
一、动手量一量
1.在全班交流的过程中,一个小组用“量”的方法。
即用量角器分别量出三角形的三个内角的度数,把它们加起来在180°左右。
(他们的测量结果如下表)
2.小组活动记录表:
这个小组在交流的时候,首先说明了大小钝角三角形指的是形状的大小,接着根据测量结果得出了一个结论:大的三角形内角和比180°大,小的三角形内角和比180°小。
这个小组的意见有一个小组赞成。
话音未落,覃程菘站起来说,这个结论还需要验证,请再画一个更小的三角形试一试。
他边说边在黑板上画了很小的锐角三角形,大家摒住呼吸看着他测量,最后得出测量的结果184°结论推翻。
覃程菘得意洋洋回到了座位,这时候,问题又出现了。
“覃程菘,请问你为什么说结论推翻了呢?”
“我觉得这个结论只要举出一个不正确的例子,就可以知道它是不对的,就可以推翻。
”我很高兴,学生不自觉的就开始有了用反例来推翻结论的思想,真是难得,而反例正是数学证明中一个很重要的方法。
二、质凝:教材中的结论错了?
学生在撕和拼的过程中,每两个角之间总是有空隙,这个问题引起了大家的争论,从而我们又回过头来看前面“量”和“折”的方法,也是有很大的误差,这时候,岑睿臻提出了自己的疑问:我们用这三种方法来验证三角形内角和是180°,但结果总是不理想,因此我觉得书上的结论是错的,我们只能得到三角形三个内角和在180°左右。
除非我们能准确计算出来三角形内角和是180°。
三、一张长方形纸的启示
教室里有片刻的安静,怎样准确计算出三角形的内角和是180°,怎样启发学生利用原有的认知去获得结论呢?
我手拿一张长方形纸,提醒学生一个直角是90°,这个长方形有4个直角,那么它的内角和是360°,这个长方形纸可以折成两个大小一样的直角三角形,从中可以知道什么?
片刻后,学生欢呼,立刻悟道可以计算出直角三角形的内角和是180°。
这个发现让学生兴奋,我抛出了一个具有挑战性的问题给学生:能利用直角三角形的内角和是180°这个结论,计算出钝角三角形和锐角三角形的内角和是180°吗?只有这样才能验证所有的三角形的内角和是180°。
四、放手后的精彩
学生的研究经历5分钟后,居然研究出来了,虽然只是个别学生,我还是很兴奋。
黄凌云:我们可以沿锐角三角形一个顶点向对边作高。
这样就把一个锐角三角形变成了两个直角三角形,多了四个角,其中两个是直角,两个是锐角,两个锐角其实就是原来三角形的一个内角,这样就等于多了两个直角,所以这个锐角三角形的内角和就是:180°+180°-90°-90°=180°。
黄凌云在展台前边算边讲的时候,学生不断地点头,表示理解,全班出现了恍
教学反思:
三角形内角和”是苏教版数学四年级下册第二单元认识图形的一节探索与发现课,使学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。
根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围。
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。
“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。
我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是3600入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是1800。
猜测以下是不是各种形状、大小不同的三角形内角和都是1800呢?再组织学生去探究,动手验证,并得出结论。
生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。
这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究。
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。
“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。
通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。
然后再小组汇报研究结果以及存在问题。
教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。
例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难。
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。
第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。
第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。
练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足。
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。
在设计教案时要了解学生,深入教材,精心设计。