ansys材料定义

合集下载

ANSYS命令流解释大全

ANSYS命令流解释大全

A N S Y S命令流解释大全Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg三、单元生死载荷步!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释。

ANSYS基本操作精讲

ANSYS基本操作精讲

ANSYS基本操作精讲
1. 新建项目:启动ANSYS后,点击“File -> New -> Project…”,输入项目名称和存储路径,选择适当的单位系统和求解器类型,然后点击“OK”按钮。

3.定义材料属性:在材料模块中,可以定义各种材料的物理特性。


择合适的材料模型并输入相应的参数。

可以通过导入材料库或自定义材料
属性来定义材料。

4.设置边界条件:在加载模块中,设置边界条件是非常重要的。

可以
设置约束条件(如固定支撑和约束)和荷载条件(如力、压力和热源)。

通过选择几何模型的面、边或节点,然后定义相应的边界条件。

5.网格划分:网格划分模块(或称为前处理模块)用于将几何模型离
散化为有限元网格。

可以选择适当的网格类型,如三角形网格或四边形网格,并选择合适的网格密度。

6. 运行求解器:在求解模块中,选择适当的求解器和求解方法。


过点击“Solve”按钮,ANSYS将自动进行求解,并输出结果。

可以通过
设置收敛准则、调整步长和监控求解过程来改进求解性能。

7.结果后处理:在后处理模块中,可以对求解结果进行可视化和分析。

可以使用绘图工具绘制各种图表和图形,并对结果进行剪切、比较和动态
显示。

以上是ANSYS的一些基本操作。

除了这些基本操作外,ANSYS还提供
了许多高级功能和工具来解决复杂的工程问题。

为了更好地使用ANSYS,
建议深入学习ANSYS的使用手册和相关教程,并进行实际的案例分析和实
践操作。

Ansys材料参数的定义问题

Ansys材料参数的定义问题

材料参数的定义问题我想用过ANSYS的人都知道:ANSYS计算结果的精度,不仅与模型,网格,算法紧密相关,而且材料参数的定义正确与否对结果的可靠性也有决定性的作用,为方便大家的学习,本人就用过的一些材料模型,作出一些总结,并给出相关的命令操作,希望对从事ANSYS应用的兄弟姐妹们有所帮助,水平有限,不对之处还望及时纠正.先给出线性材料的定义问题,线性材料分为三类:1.isotropic:各向同性材料2.orthotropic:正交各向异性材料3.anisotropic:各向异性材料1. isotropic各向同性材料的定义:这种材料比较普遍,而且定义也非常简单,只需定义两个常数:EX, NUXYNUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹性材料的话,这个参数一般不用定义.如果要定义,一定要和公式: EX/(2(1+NUXY))的值匹配,否则出错,另泊松比的定义一般推荐不要超过0.5.相关命令,例如:mp,ex,1,300e9mp,nuxy,1,0.252.orthotropic:正交各向异性材料:这种材料也是比较常见的,不过定义起来稍微麻烦一点,需定义的常数有: EX, EY, EZ, NUXY, NUYZ, NUXZ, GXY, GYZ, GXZ注意:在这里没有默认值,就是说,如果你某些参数不定义的话,程序会提示出错,比如:XY平面的平面应力问题,如果你只定义了EX, EY,程序将提示你,这是正交各向异性材料, GXY, NUXY是必须的.相关命令,例如:mp,ex,1,300e9mp,ey,1,200e9mp,nuxy,1,0.25mp,gxy,1,170e9…3.anisotropic:各向异性材料:各向异性材料定义起来较为复杂,这里我只作些简单的说明,更详细的资料,大家可以去看帮助.对于各向异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是一个对称正定阵,因而输入的值一定要为正值.弹性常数矩阵如下图所示,各向异性体只有21个独立的弹性常数,因而我们也就只需输入21个参数即可,而且对于二维问题,弹性常数缩减为10个.弹性系数矩阵可以用刚度或柔度两种形式来定义,自己根据情况选用,输入的时候,可以通过菜单或者TB命令的TBOPT选项来控制.相关的命令流,例如:tb,anel,1tbdata,1, 110e6, 120e6, 130e6, 140e6, 150e6, 160e6tbdata,7, 220e6, 230e6, 240e6, 250e6, 260e6tbdata,12, 330e6, 340e6, 350e6, 360e6tbdata,16, 440e6, 450e6, 460e6tbdata,19, 550e6, 560e6tbdata,21, 660e6另:需注意一下各个参数的编号顺序和起始位置,不要搞错了,输入的时候,是按照上三角阵来录入的,即:D11,D12,D13,D14,D15,D16,D22,D23…。

ANSYS命令流解释大全

ANSYS命令流解释大全

一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表这里不考虑温度:TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:afun,deg三、单元生死载荷步第一个载荷步TIME,... 设定时间值静力分析选项NLGEOM,ON 打开大位移效果NROPT,FULL 设定牛顿-拉夫森选项ESTIF,... 设定非缺省缩减因子可选ESEL,... 选择在本载荷步中将不激活的单元EKILL,... 不激活选择的单元ESEL,S,LIVE 选择所有活动单元NSLE,S 选择所有活动结点NSEL,INVE 选择所有非活动结点不与活动单元相连的结点D,ALL,ALL,0 约束所有不活动的结点自由度可选NSEL,ALL 选择所有结点ESEL,ALL 选择所有单元D,... 施加合适的约束F,... 施加合适的活动结点自由度载荷SF,... 施加合适的单元载荷BF,... 施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释;后继载荷步在后继载荷步中,用户可以随意杀死或重新激活单元;象上面提到的,要正确的施加和删除约束和结点载荷;用下列命令杀死单元:Command:EKILLGUI: Main Menu>Solution>-Load Step Opts-Other>Kill Elements用下列命令重新激活单元:Command: EALIVEGUI: Main Menu>Solution>-Load Step Opts-Other>Activate Elem第二个或后继载荷步:TIME,...ESEL,...EKILL,... 杀死选择的单元ESEL,...EALIVE,... 重新激活选择的单元...FDELE,... 删除不活动自由度的结点载荷D,... 约束不活动自由度...F,... 在活动自由度上施加合适的结点载荷DDELE,... 删除重新激活的自由度上的约束SAVESOLVE四、u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标五、Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值六、VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用七、VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择s,补选a,不选,全选all、反选inv等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如 volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为 14,17,19,21,23的五个实体u rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc 将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1.定义参数、数组,并赋值.2. /prep7进入前处理定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号;设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表存盘3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1通用后处理5./post26 时间历程后处理菜单命令7.参数化设计语言8.理论手册Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维缺省char 字符串组每个元素最多8个字符tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane当type为table时2 /prep7进入前处理定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系以Y轴为轴心n 已定义的局部坐标系u numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝;“1”不拷贝节点和单元imove:“0”生成拷贝“1”移动原关键点至新位置,并保持号码,此时itime,kinc,noelem被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPEu A, P1, P2, ……… P18 由关键点生成面u AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向;线需在某一平面内坐标值固定的面内u vsba, nv, na, sep0,keep1,keep2 用面分体u vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点非公用u vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove: 0:拷贝体1:移动体u cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型volu, area, line, kp, elem, nodeu cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称u cmlist,nameu cmdele,nameu cmplot, label1定义几个所关心的节点,以备后处理时调用节点号;u n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号;设材料线弹性、非线性特性u mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数u Tb, lab, mat, ntemp,npts,tbopt,eosopt 定义非线性材料特性表Lab: 材料特性表之种类Bkin: 双线性随动强化Bis 双线性等向强化Mkin: 多线性随动强化最多5个点Mis 多线性等向强化最多100个点Dp: dp模型Mat: 材料号Ntemp: 数据的温度数对于bkin: ntemp缺省为6mis ntemp缺省为1,最多20bis ntemp缺省为6,最多为6dp: ntemp, npts, tbopt 全用不上Npts: 对某一给定温度数据的点数u TBTEMP,temp,kmod 为材料表定义温度值temp: 温度值kmod: 缺省为定义一个新温度值如果是某一整数,则重新定义材料表中的温度值注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序若Kmod为crit, 且temp为空,则其后的tbdata数据为solid46,shell99,solid191中所述破坏准则如果kmod为strain,且temp为空,则其后tbdata数据为mkin中特性;u TBDATA, stloc, c1,c2,c3,c4,c5,c6给当前数据表定义数据配合tbtemp,及tb使用stloc: 所要输入数据在数据表中的初始位置,缺省为上一次的位置加1 每重新发生一次tb或tbtemp命令上一次位置重设为1,发生tb后第一次用空闲此项,则c1赋给第一个常数u tbpt, oper, x,y 在应力-应变曲线上定义一个点oper: defi 定义一个点dele 删除一个点x,y:坐标设置单元类型及相应KEYOPTu ET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数u Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果 ,则必须使用keyopt命令,否则也可在ET命令中输入设置网格划分,划分网格映射网格划分1.面映射网格划分条件:a. 3或4条边b.面的对边必须划分为相同的单元或其划分与一个过渡形网格的划分相匹配c. 该面如有3条边,则划分的单元不必须为偶数,并且各边单元数相等d. mahkeye. mshpattern如果多于四条边,可将线合并成Lcomb可用amap命令,先选面,再选4个关键点即可指定面的对边的分割数,以生成过渡映射四边形网格,只适用于有四条边的面2. 体映射网格划分1若将体划分为六面体单元,必须满足以下条件a. 该体的外形为块状六面体、楔形或棱形五面体、四面体b. 对边必须划分为相同的单元数,或分割符合过渡网格形式c. 如果体是棱形或四面体,三角形面上的单元分割数必须是偶数2 当需要减少围成体的面数以进行映射网格划分时,可以对面相加或连接;如果连接而有边界线,线也必须连接在一起;3体扫掠生成网格步骤:a. 确定体的拓扑是否能够进行扫掠;侧面不能有孔;体内不能有封闭腔;源面与目标面必须相对b. 定义合适的单元类型c. 确定扫掠操作中如何控制生成单元层的数目 lesized. 确定体的哪一个边界面作为源面、目标面e. 有选择地对源面、目标面和边界面划分网格3. 关于连接线和面的一些说明连接仅是映射网格划分的辅助工具4. 用desize定义单元尺寸时单元划分应遵守的级别高:lesizekesizeesizedesize用smartzing定义单元尺寸时单元划分应遵守的级别高:lesizekesizesmartsizeu LESIZE,NL1,Size, Angsiz,ndiv,space,kforc,layer1,layer2,kyndiv 为线指定网格尺寸NL1: 线号,如果为all,则指定所有选中线的网格;Size: 单元边长,程序据size计算分割份数,自动取整到下一个整数Angsiz: 弧线时每单元跨过的度数Ndiv: 分割份数Space: “+”: 最后尺寸比最先尺寸“-“: 中间尺寸比两端尺寸free: 由其他项控制尺寸kforc 0: 仅设置未定义的线,1:设置所有选定线,2:仅改设置份数少的,3:仅改设置份数多的kyndiv: 0,No,off 表示不可改变指定尺寸1,yes,on 表示可改变u ESIZE,size,ndiv 指定线的缺省划分份数已直接定义的线,关键点网格划分设置不受影响u desize, minl, minh,……控制缺省的单元尺寸minl: n 每根线上低阶单元数缺省为3defa 缺省值stat 列出当前设置off 关闭缺省单元尺寸minh: n 每根线上高阶单元数缺省为2u mshape, key, dimension 指定单元形状key: 0 四边形2D,六面体3D1 三角形 2D, 四面体3DDimension: 2D 二维3D 三维u smart,off 关闭智能网格u mshkey, key 指定自由或映射网格方式key: 0 自由网格划分1 映射网格划分2 如果可能的话使用映射,否则自由即使自由smartsizing也不管用了u Amesh, nA1,nA2,ninc 划分面单元网格nA1,nA2,ninc 待划分的面号,nA1如果是All,则对所有选中面划分u SECTYPE, ID, TYPE, SUBTYPE, NAME, REFINEKEY定义一个截面号,并初步定义截面类型ID: 截面号TYPE: BEAM:定义此截面用于梁SUBTYPE: RECT 矩形CSOLID:圆形实心截面CTUBE: 圆管I: 工字形HREC: 矩形空管ASEC: 任意截面MESH: 用户定义的划分网格NAME: 8字符的截面名称字母和数字组成REFINEKEY: 网格细化程度:0~5对于薄壁构件用此控制,对于实心截面用SECDATA控制u SECDATA, VAL1, VAL2, …….VAL10 描述梁截面说明:对于SUBTYPE=MESH, 所需数据由SECWRITE产生,SECREAD读入u SECNUM,SECID 设定随后梁单元划分将要使用的截面编号u LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM为准备划分的线定义一系列特性MAT: 材料号REAL: 实常数号TYPE: 线单元类型号KB、KE: 待划分线的定向关键点起始、终止号SECNUM: 截面类型号u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分SECID:由SECTYPE命令分配的截面编号MESHKEY:0:不显示网格划分1:显示网格划分u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元SCALE: 0:简单显示线、面单元1:使用实常数显示单元形状u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元xnode: 仅为产生surf151 或surf152单元时使用tlab: 仅用来生成接触元或目标元top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向Shape: 空与所覆盖单元形状相同Tri 产生三角形表面的目标元注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上u Nummrg,label,toler, Gtoler,actiontch 合并相同位置的itemlabel: 要合并的项目node: 节点, Elem,单元,kp: 关键点也合并线,面及点mat: 材料,type: 单元类型,Real: 实常数cp:耦合项,CE:约束项,CE: 约束方程,All:所有项toler: 公差Gtoler:实体公差Action: sele 仅选择不合并空合并注意:可以先选择一部分项目,再执行合并;如果多次发生合并命令,一定要先合并节点,再合并关键点;合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题;u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneuunselectinve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元u Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值u NSLL,type, nkey 选择与所选线相联系的节点u nsla, type, nkey: 选择与选中面相关的节点type:s 选一套新节点r 从已选节点中再选a 附加一部分节点到已选节点u 从已选节点中去除一部分nkey: 0 仅选面内的节点1 选所有和面相联系的节点如面内线,关键点处的节点u esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元Type: S: 选择一组单元缺省R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item: Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号u ALLSEL, LABT, ENTITY 选中所有项目LABT: ALL: 选所有项目及其低级项目BELOW: 选指定项目的直接下属及更低级项目ENTITY: ALL: 所有项目缺省VOLU:体高级AREA:面LINE :线KP:关键点ELEM:单元NODE:节点低级u Tshap,shape 定义接触目标面为2D、3D的简单图形Shape: line:直线Arc:顺时针弧Tria:3点三角形Quad:4点四边形………….根据需要耦合某些节点自由度u cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotznode1-node17: 待耦合的节点号;如果某一节点号为负,则此节点从该耦合组中删去;如果node1=all,则所有选中节点加入该耦合组;注意:1,不同自由度类型将生成不同编号2,不可将同一自由度用于多套耦合组u CPINTF, LAB, TOLER 将相邻节点的指定自由度定义为耦合自由度LAB:UX,UY,UZ,ROTX,ROTY,ROTZ,ALLTOLER: 公差,缺省为说明:先选中欲耦合节点,再执行此命令定义单元表说明:1,单元表仅对选中单元起作用,使用单元表之前务必选择一种类型的单元2,单元表各行为选中各单元,各列为每单元的不同数据u ETABLE, LAB, ITEM, COMP 定义单元表,添加、删除单元表某列LAB:用户指定的列名REFL, STAT, ERAS 为预定名称ITEM: 数据标志查各单元可输出项目COMP: 数据分量标志存盘u save, fname, ext,dir, slab 存盘fname : 文件名最多32个字符缺省为工作名ext: 扩展名最多32个字符缺省为dbdir: 目录名最多64个字符缺省为当前slab: “all”存所有信息“model”存模型信息“solv”存模型信息和求解信息3 /soluu /solu 进入求解器加边界条件u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab: ux,uy,uz,rotx,roty,rotz,allValue,value2: 自由度的数值缺省为0Nend, ninc: 节点范围为:node-nend,编号间隔为nincLab2-lab6: 将lab2-lab6以同样数值施加给所选节点;注意:在节点坐标系中讨论设置求解选项u antype, status, ldstep, substep, actionantype: static or 1 静力分析buckle or 2 屈曲分析modal or 3 模态分析trans or 4 瞬态分析status: new 重新分析缺省,以后各项将忽略rest 再分析,仅对static,full transion 有效ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数指分析点的最后一步substep: 指定从哪个子步开始继续分析;缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep说明:继续以前的分析因某种原因中断有两种类型singleframe restart: 从停止点继续需要文件:必须在初始求解后马上存盘单元矩阵或 .osav : 如果.esav坏了,将.osav改为.esavresults file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件;必须删除再做后继分析步骤: 1进入anasys 以同样工作名2进入求解器,并恢复数据库3antype, rest4指定附加的荷载5指定是否使用现有的矩阵缺省重新生成kuse: 1 用现有矩阵6求解multiframe restart:从以有结果的任一步继续用不着u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器sskey: off 不作预测当有旋转自由度时或使用solid65时缺省为offon 第一个子步后作预测除非有旋转自由度时或使用solid65时缺省为on -- :未使用变量区lskey: off 跨越荷载步时不作预测缺省on 跨越荷载步时作预测此时sskey必须同时on注意:此命令的缺省值假定solcontrol为onu autots, key 是否使用自动时间步长key:on: 当solcontrol为on时缺省为onoff: 当solcontrol为off时缺省为off1: 由程序选择当solcontrol为on且不发生autots命令时在 .log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长u NROPT, option,--,adptky 指定牛顿拉夫逊法求解的选项OPTION: AUT程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON: 使用自适应下降因子OFF:不使用自适应下降因子u NLGEOM,KEYKEY: OFF:不包括几何非线性缺省ON:包括几何非线性u ncnv, kstop, dlim, itlim, etlim, cplim 终止分析选项kstop: 0 如果求解不收敛,也不终止分析1 如果求解不收敛,终止分析和程序缺省2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为itlim: 累积迭代次数限制,缺省为无穷多etlim:程序执行时间秒限制,缺省为无穷cplim:cpu时间秒限制,缺省为无穷u solcontrol ,key1, key2,key3,vtol 指定是否使用一些非线性求解缺省值key1: on 激活一些优化缺省值缺省CNVTOL Toler=%Minref=对力和弯矩NEQIT 最大迭代次数根据模型设定在15~26之间ARCLEN 如用弧长法则用较更先进的方法PRED 除非有rotx,y,z或solid65,否则打开LNSRCH 当有接触时自动打开CUTCONTROL Plslimit=15%, npoint=13SSTIF 当NLGEOM,on时则打开NROPT,adaptkey 关闭除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在AUTOS 由程序选择off 不使用这些缺省值key2: on 检查接触状态此时key1为on此时时间步会以单元的接触状态据keyopt7的假定为基础当keyopt2=on 时,保证时间步足够小key3: 应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括查nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化查vtol:u outres, item, freq, cname 规定写入数据库的求解信息item: all 所有求解项basic 只写nsol, rsol, nload, strsnsol 节点自由度rsol 节点作用荷载nload 节点荷载和输入的应变荷载strs 节点应力freq: 如果为n,则每n步包括最后一步写入一次none: 则在此荷载步中不写次项all: 每一步都写last: 只写最后一步静力或瞬态时为缺省定义载荷步u nsubst, nsbstp, nsbmx, nsbmn, carry 指定此荷载步的子步数nsbstp: 此荷载步的子步数如果自动时间步长使用autots,则此数定义第一子步的长度;如果solcontrol打开,且3D面-面接触单元使用,则缺省为1-20步;如果solcontrol打开,并无3D接触单元,则缺省为1子步;如果solcontrol关闭,则缺省为以前指定值;如以前未指定,则缺省为1nsbmx, nsbmn:最多,最少子步数如果自动时间步长打开u time, time 指定荷载步结束时间注意:第一步结束时间不可为“0”u f, node, lab, value, value2, nend, ninc 在指定节点加集中荷载node:节点号lab: Fx,Fy,Fz,Mx,My,Mzvalue: 力大小value2: 力的第二个大小如果有复数荷载nend,ninc:在从node到nend的节点增量为ninc上施加同样的力注意:1节点力在节点坐标系中定义,其正负与节点坐标轴正向一致u sfa, area, lkey, lab, value, value2 在指定面上加荷载area: n 面号all 所有选中号lkey: 如果是体的面,忽略此项lab: presvalue: 压力值u SFBEAM, ELEM, LKEY, LAB, VALI, VALJ, VAL2I, VAL2J, IOFFST, JOFFST 对梁单元施加线荷载ELEM: 单元号,可以为ALL,即选中单元LKEY: 面载类型号,见单元介绍;对于BEAM188,1为竖向;2为横向;3为切向VALI,VALJ: I, J节点处压力值VAL2I,VAL2J: 暂时无用IOFFST, JOFFST: 线载距离I, J 节点距离u lswrite, lsnum 将荷载与荷载选项写入荷载文件中lsnum :荷载步文件名的后缀,即荷载步数当 stat 列示当前步数init 重设为“1”缺省为当前步数加“1”注意1. 尽量加面载,不加集中力,以免奇异点2. 面的切向荷载必须借助面单元求解载荷步u lssolve, lsmin, lsmax, lsinc 读入并求解多个荷载步lsmin, lsmax, lsinc :荷载步文件范围4 /post1通用后处理u set, lstep, sbstep, fact, king, time, angle, nset 设定从结果文件读入的数据lstep :荷载步数sbstep:子步数,缺省为最后一步time:时间点如果弧长法则不用nset: data set numberu dscale, wn, dmult 显示变形比例wn: 窗口号或all,缺省为1dmult, 0或auto : 自动将最大变形图画为构件长的5%u pldisp, kund 显示变形的结构kund: 0 仅显示变形后的结构1 显示变形前和变形后的结构2 显示变形结构和未变形结构的边缘u get, par, node, n, u, xy,z 获得节点n的xy,z位移给参数par等价于函数 ux,uy,uznodex,y,z: 获得x,y,z节点号arnodex,y,z:获得和节点n相连的面注意:此命令也可用于/solu模块u fsum, lab, item 对单元之节点力和力矩求和lab: 空在整体迪卡尔坐标系下求和rsys 在当前激活的rsys坐标系下求和item: 空对所有选中单元不包括接触元求和cont: 仅对接触节点求和u PRSSOL, ITEM, COMP 打印BEAM188、BEAM189截面结果说明:只有刚计算完还未退出ANSYS时可用,重新进入ANSYS时不可用item comp 截面数据及分量标志S COMP X,XZ,YZ应力分量PRIN S1,S2,S3主应力SINT应力强度,SEQV等效应力EPTO COMP 总应变PRIN 总主应变,应变强度,等效应变EPPL COMP 塑性应变分量PRIN 主塑性应变,塑性应变强度,等效塑性应变u plnsol, item, comp, kund, fact 画节点结果为连续的轮廓线item: 项目见下表comp: 分量kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘fact: 对于接触的2D显示的比例系数,缺省为1item comp discriptionu x,y,z,sum 位移rot x,y,z,sum 转角s x,y,z,xy,yz,xz 应力分量1,2,3 主应力Int,eqv 应力intensity,等效应力epeo x,y,z,xy,yz,xz 总位移分量1,2,3 主应变Int,eqv 应变intensity,等效应变epel x,y,z,xy,yz,xz 弹性应变分量1,2,3 弹性主应变Int,eqv 弹性intensity,弹性等效应变eppl x,y,z,xy,yz,xz 塑性应变分量u PRNSOL, item, comp 打印选中节点结果item: 项目见上表comp: 分量u PRETAB, LAB1, LAB2, ……LAB9 沿线单元长度方向绘单元表数据LABn : 空:所有ETABLE命令指定的列名列名:任何ETABLE命令指定的列名u PLLS, LABI, LABJ, FACT, KUND 沿线单元长度方向绘单元表数据LABI:节点I的单元表列名LABJ:节点J的单元表列名FACT: 显示比例,缺省为1kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘5 /post26 时间历程后处理u nsol, nvar, node, item, comp,name在时间历程后处理器中定义节点变量的序号nvar:变量号从2到nv根据numvar定义node: 节点号item compu x, y,zrot x, y,zu ESOL, NVAR, ELEM, NODE, ITEM, COMP, NAME 将结果存入变量NVAR: 变量号,2以上ELEM: 单元号NODE: 该单元的节点号,决定存储该单元的哪个量,如果空,则给出平均值ITEM:COMP:NAME: 8字符的变量名, 缺省为ITEM加COMPu rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标u prvar, nvar1, ……,nvar6 列出要显示的变量6 PLOTCONTROL菜单命令u pbc, ilem, ……,key, min, max, abs 在显示屏上显示符号及数值item: u 所加的位移约束rot 所加的转角约束key: 0 不显示符号1 显示符号2 显示符号及数值u /SHOW, FNAME, EXT, VECT, NCPL 确定图形显示的设备及其他参数FNAME: X11:屏幕文件名:各图形将生成一系列图形文件JPEG: 各图形将生成一系列JPEG图形文件说明:没必要用此命令,需要的图形文件可计算后再输出7 参数化设计语言u do, par, ival, fval, inc 定义一个do循环的开始par: 循环控制变量ival, fval, inc:起始值,终值,步长正,负u enddo 定义一个do循环的结束u if,val1, oper, val2, base: 条件语句val1, val2: 待比较的值也可是字符,用引号括起来oper: 逻辑操作当实数比较时,误差为1e-10eq, ne, lt, gt, le, ge, ablt, abgtbase: 当oper结果为逻辑真时的行为lable: 用户定义的行标志stop: 将跳出anasysexit: 跳出当前的do循环cycle: 跳至当前do循环的末尾then: 构成if-then-else结构。

ansys材料属性特详细

ansys材料属性特详细

ansys材料属性特详细1.材料⼀级菜单的中英⽂对照材料菜单位置:选择主菜单preferences 的preprocessor 中的material probs 的material model材料对话框中英⽂对照特殊材料材料摩擦系数材料阻尼系数热膨胀材料材料密度⾮线性材料线性材料dMaterials Specialize icient ctionCoeff F Dam ping ri Expansion T hermalDensity Nonlinear Linear 2.线性材料的中英⽂对照线性材料Linear 的下级菜单为elastic :线弹性材料的下级菜单的中英⽂对照各向异性材料正交各向异性材料各向同性材料nisotropic A c OrthotropiIsotropic Isotropic 各向同性材料的菜单中的各主要名词中英⽂对照Linear Isotropic Material properties for Material Number 1线性各向同性材料:材料1的材料属性显⽰材料属性属性删除材料在某温度下的性新增材料在某温度的属⽐材料在该温度下的泊松在该温度下材料在某温度下的属性raph ele PRXY 的弹弹性模材料G re ctTeperatuD ture AddTem pera EX es tem peratur Orthotropic 正交各向异性材料的菜单中的各主要名词中英⽂对照LinearOrthotropic Material properties for Material Number 1线性正交各向异性材料:材料1的材料属性显⽰材料属性属性删除材料在某温度下的性新增材料在某温度的属⾯的剪切模量材料⽅向的泊松⽐材料在该温度下⽅向在该温度下材料在某温度下的属性raph ele //////PRXY/PRXZ 的弹弹性模//材料//G re ctTeperatu D ture AddTem pera XZ YZ XY XZGYZ GXY Z Y X Z Y X EZ EY EX es temperatur Anisotropic 各向异性材料的菜单中的各主要名词中英⽂对照Anisotropic elastic for Material Number 1线性各向异性材料:材料1的材料属性度下的材料属性增加或删除材料在某温柔度矩阵个元素的值刚度下三⾓矩阵属性材料在某温度下的材料属性使⽤柔度矩阵定义材料料属性使⽤刚度矩阵来定义材e Temperatur A e Temperatur yFrom Flexibilit rom StiffnessF dd/Delete /66 3.⾮线性材料的属性其中strain :应变值,stress 应⼒值 ex: 弹性模量 nuxy: ⼩泊松⽐ alpx: 热膨胀系数 reft: 参考温 reft: 参考温度 prxy: 主泊松⽐gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat:材料编号(缺省为当前材料号)c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数 d 为材料常数4.特殊材料5.材料阻尼系数∑∑==++++=Nk k M j j C K K f K M C 11][]))[/((][][][πξβαa is the constant mass matrix multiplier for alpha damping (ALPHAD command):a 是α阻尼的常量质量矩阵乘法器(ALPHAD 命令)b is the constant stiffness matrix multiplier for beta damping (BETADcommand):b 是β阻尼的恒定刚度矩阵乘法器(BETAD command)x is the constant damping ratio, and f is the current frequency (DMPRAT command):x 是恒阻尼⽐,f 是当前频率(DMPRAT 命令)bj is the constant stiffness matrix multiplier for material j (MP,DAMP command):bj 是材料j(MP ,阻尼命令)的恒刚度矩阵倍增器 [Ck] is the element damping matrix for supported element types (ET and TYPEcommands):[Ck]是⽀持元素类型的元素阻尼矩阵(ET和类型命令)例1:⼀个单⾃由度系统的有阻尼⾃由振动,质量m = 0.5 kg,刚度k =5 kN/m,阻尼⽐ξ= 0.02。

ANSYS 命令流解释大全

ANSYS 命令流解释大全
,例:vsel,s,volu,,14
vsel,a,volu,,17,23,2
上面的命令选中了实体编号为 14,17,19,21,23的五个实体
u rforce, nvar, node, item, comp, name 指定待存储的节点力数据
nvar: 变量号
node: 节点号
item comp
F x, y.z
mu: 摩擦系数
dens: 质量密度
mat: 材料编号(缺省为当前材料号)
c 材料特性值,或材料之特性,温度曲线中的常数项
c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数
二、定义DP材料:
首先要定义EX和泊松比:MP,EX,MAT,……
MP,NUXY,MAT,……
定义DP材料单元表(这里不考虑温度):TB,DP,MAT
!第二个(或后继)载荷步:
TIME,...
ESEL,...
EKILL,... !杀死选择的单元
ESEL,...
EALIVE,... !重新激活选择的单元
...
FDELE,... !删除不活动自由度的结点载荷
D,... !约束不活动自由度
...
F,... !在活动自由度上施活的自由度上的约束
Command:EKILL
GUI: Main Menu>Solution>-Load Step Opts-Other>Kill Elements
用下列命令重新激活单元:
Command: EALIVE
GUI: Main Menu>Solution>-Load Step Opts-Other>Activate Elem
SAVE

ANSYS nCode DesignLife疲劳分析材料属性定义

ANSYS nCode DesignLife疲劳分析材料属性定义

nCode Material Data
• DesignLife requires specific material information – particular information depends on material type – duplicate similar material
5 Box Trick
• CAE fatigue process can be described in 5 basic steps
FE Input
Material Mapping
Load Mapping
CAE Fatigue Analysis
Fatigue Results Display
Material mapping defines the fatigue properties for the materials
• Each material in the DesignLife material library typically has either stress-life (SN) or strain-life (EN) fatigue properties, although some have both.
Rename New Material
• After duplicating > rename material
Modify Properties
• Modify propertiesand “Refresh Project”
Defining New Material
• New material is now available in Mechanical and for downstream use in DesignLife

ANSYS中的24种材料属性

ANSYS中的24种材料属性

ANSYS中的24种材料属性1. 弹性模量(Young's modulus):反映了材料的刚度,描述了材料在受力时的变形程度。

单位为帕斯卡(Pa)。

2. 剪切模量(Shear modulus):反映了材料的抗剪切能力,描述了材料在受剪应力作用下的变形程度。

单位为帕斯卡(Pa)。

3. 泊松比(Poisson's ratio):描述了材料在拉伸或压缩时,横向收缩或膨胀的程度。

其值介于-1和0.5之间,无单位。

4. 密度(Density):描述了材料的质量分布情况,单位为千克每立方米(kg/m³)。

5. 导热系数(Thermal conductivity):描述了材料传导热量的能力,单位为瓦特每米开尔文(W/(m·K))。

6. 比热容(Specific heat capacity):描述了材料单位质量的温度变化的能力,单位为焦耳每千克开尔文(J/(kg·K))。

7. 线膨胀系数(Coefficient of linear expansion):描述了材料在温度变化时长度变化的程度,单位为每开尔文(K)。

8. 杨-拉格朗日系数(Lagrange-Yunge coefficient):描述了材料在剪切和旋转应力下的变形行为。

单位为帕斯卡(Pa)。

9. 杨-拉格朗日剪切系数(Lagrange-Yunge shear coefficient):描述了材料在剪切和旋转应力下的剪切变形行为。

单位为帕斯卡(Pa)。

10. 杨-拉格朗日扭曲系数(Lagrange-Yunge torsion coefficient):描述了材料在剪切和旋转应力下的扭曲变形行为。

单位为帕斯卡(Pa)。

11. 杨-拉格朗日横向伸长系数(Lagrange-Yunge lateral stretch coefficient):描述了材料在剪切和旋转应力下的横向伸长变形行为。

单位为帕斯卡(Pa)。

12. 杨-拉格朗日体积伸长系数(Lagrange-Yunge volume stretch coefficient):描述了材料在剪切和旋转应力下的体积伸长变形行为。

ANSYS超弹材料的定义-新的曲线拟合功能

ANSYS超弹材料的定义-新的曲线拟合功能

然后按照wizard的提示一步步输入单轴、双轴、剪切、体积试验数据文本文件名称,如果没有任何一种试验数据,只需将该名称处空置即可,最后选择需要拟合数据的超弹模型,程序就会自动计算出相应的参数,并立刻在图形窗口显示拟合曲线与试验曲线的比较图,如果不理想,可以点击prev回到前面的步骤重新选取模型,如果拟合结果满意,则点击update,拟合出来的材料参数就会被输入激活的材料号中,使用起来非常方便。
试验数据的文件格式需要进行说明:
单轴、等双轴、剪切数据为应变-应力数据,依次输入应变、应力值,第一列为应变,第二列为应力,每一行两个数之间用空格隔开(空格数目不限),代表一个数据点。数据符号:拉为正,压为负。
体积试验数据有所不同,每一行两个数据同样用空格隔开,第二个数为静水压力,但第一个数不是体积应变e,而是相对体积,即1+e,例如体积应变为-0.01,则应该在第一列输入0.99。而且程序假定体积试验为线性关系,拟合时也只拟合出一条直线,所以通常输入两个值即可。数据符号:使体积减小的静水压力为正,这需要注意,如下例:
此式是建立在几乎不可压缩(u接近于或等于0.5)的前提下的。为准确的公式应该如下:
剪切模量G=2(c1+c2) 体积模量k=E/(3(1-2u)) G=E/(2(1+u)) k=2/d
于是 d=2/k=6(1-2u)/(4(1+u)(c1+c2))
可以看到,如果u约等于0.5,则上式可以简化为前面的式子。
mooney还有其他一些推导基于几乎不可压缩,所以对mooney模型而言,输入参数时一定要注意其泊松比应该接近0.5,一般大于0.49。
【分享】ANSYS7.0超弹材料的定义-新的曲线拟合功能--摘自ansys用户专区

ANSYS中的24种材料属性

ANSYS中的24种材料属性

ANSYS中的24种材料属性ANSYS是一种常用的工程模拟软件,用于解决复杂工程问题,如结构分析、流体动力学、电磁场分析等。

在ANSYS软件中,各种材料的性质和行为是通过材料模型来描述的。

以下是ANSYS中常用的24种材料属性:1. 弹性模量(Young's modulus):表示材料的刚度,即材料在应力作用下的变形程度。

2. 剪切模量(Shear modulus):表示材料抵抗剪切应力的能力。

3. 泊松比(Poisson's ratio):描述材料在拉伸时横向收缩的程度。

4. 密度(Density):表示材料的质量与体积之比。

5. 线膨胀系数(Linear expansion coefficient):指材料在温度变化下的线性膨胀程度。

6. 灵敏度系数(Pound-Stress Sensitivity Coefficient):衡量材料的应力-变形灵敏度。

7. 杨氏系数(Yield strength):指材料在达到屈服点时所能承受的最大应力。

8. 屈服强度(Ultimate tensile strength):指材料在达到破断点前所能承受的最大应力。

9. 断裂韧性(Fracture toughness):描述材料在破裂时所需要的能量。

10. 硬度(Hardness):衡量材料对局部塑性变形的抵抗能力。

11. 弹性极限(Elastic limit):材料在弹性范围内所能承受的最大应力。

12. 节流应力(Buckling stress):指材料受压时失去稳定性的引发应力。

13. 热导率(Thermal conductance):指材料传导热量的能力。

14. 热膨胀系数(Thermal expansion coefficient):指材料在温度变化下的体积膨胀程度。

15. 电导率(Electrical conductance):指材料导电的能力。

16. 磁导率(Permeability):指材料对磁场的导磁能力。

ANSYS实常数和材料定义总结

ANSYS实常数和材料定义总结

【转】ANSYS实常数和材料定义总结2010-07-08 20:46定义实常数实常数用于描述那些用单元几何形状不能完全确定的几何参数。

壳单元通过四边形和三角形定义了壳的表面,实常数用来定义其厚度;而梁单元的实常数相对复杂。

主要包括截面积、截面对zz轴、yy轴的惯性短、沿z轴、y 轴的厚度(最大应力发生在离轴最远点)等。

对于简单截面梁,其几何特性这里不再赘述。

但对于实体结构复杂的复合梁,其截面特性的定义具有技巧。

在有限元建模过程中,为简化结构,减少单元数量,通常将其简化为单根梁。

如下图所示结构,经过受力分析可知,主要承力构件为4根立柱,其余斜杆只是起辅助支撑作用,因此其截面应简化如右图所示。

但是,经过计算会发现,计算结果数据中位移和应力明显偏小,与实际情况有出入。

经过分析不难发现,造成这种情况的原因是截面的选择只考虑了截面积和惯性矩,忽视了梁单元的质量,从而造成重力变形减小。

解决这个问题,不能简单增大截面积,那样会使计算应力不可信。

我们可以采取2种方法:(1)沿梁轴线均匀加载一个沿重力方向的线性载荷;(2)将梁单元材料密度乘一个系数。

上述2种方法均切实可行,也得到了工程实践的验证。

单元的材料特性定义绝大多数单元类型都需要材料特性。

根据应用的不同,材料特性可以是线性或非线性。

与单元类型、实常数一样,ANSYS软件对每一组材料特性有一个材料参考号。

但值得注意的是,材料库中的特性值是为了方便而提供的,这些数值是材料的典型值,供用户进行基本分析及一般应用场合,特殊情况用户应自己输人数据。

线性材料特性可以是常数或温度相关的,各向同性或正交异性的,对各向同性材料只需指定其一个方向的特性。

非线性材料特性通常是表格数据,如塑性数据、磁场数据、蛹变数据、膨胀数据、超弹性材料数据等。

材料特性主要由材料本身物理特性决定,在此不再赞述。

ANSYS命令详解(超全)

ANSYS命令详解(超全)

一‎、定义材料‎号及特性‎mp‎,lab,‎mat,‎co, ‎c1,……‎.c4 ‎lab:‎待定义的‎特性项目(‎e x,al‎p x,re‎f t,pr‎x y,nu‎x y,gx‎y,mu,‎d ens)‎‎ex: ‎弹性模量‎‎n uxy:‎小泊松比‎‎alpx‎:热膨胀‎系数‎ re‎f t: 参‎考温度‎ r‎e ft: ‎参考温度‎‎p rxy:‎主泊松比‎‎gxy:‎剪切模量‎‎mu: ‎摩擦系数‎‎d ens:‎质量密度‎mat‎:材料编‎号(缺省为‎当前材料号‎)c ‎材料特性值‎,或材料之‎特性,温度‎曲线中的常‎数项c‎1-c4:‎材料的特‎性-温度曲‎线中1次项‎,2次项,‎3次项,4‎次项的系数‎‎二、定义D‎P材料:‎首先‎要定义EX‎和泊松比:‎M P,EX‎,MAT,‎……‎‎‎‎‎‎‎ M‎P,NUX‎Y,MAT‎,……‎定义DP材‎料单元表(‎这里不考虑‎温度):T‎B,DP,‎M AT‎进入单元表‎并编辑添加‎单元表:T‎B DATA‎,1,C ‎‎‎‎‎‎‎‎‎‎TBDA‎T A,2,‎ψ‎‎‎‎‎‎‎‎‎ TB‎D ATA,‎3,…… ‎如定义:‎E X=1E‎8,NUX‎Y=0.3‎,C=27‎,ψ=45‎的命令如下‎:MP‎,EX,1‎,1E8 ‎MP,N‎U XY,1‎,0.3 ‎TB,D‎P,1‎T BDAT‎A,1,2‎7TB‎D ATA,‎2,45这‎里要注意的‎是,在前处‎理的最初,‎要将角度单‎位转化到“‎度”,即命‎令:*af‎u n,de‎g‎三、单元‎生死载荷步‎!‎第一个载荷‎步T‎I ME,.‎.. !设‎定时间值(‎静力分析选‎项)‎N LGEO‎M,ON ‎!打开大位‎移效果‎NROP‎T,FUL‎L !设定‎牛顿-拉夫‎森选项‎ESTI‎F,...‎!设定非‎缺省缩减因‎子(可选)‎ES‎E L,..‎. !选择‎在本载荷步‎中将不激活‎的单元‎EKIL‎L,...‎!不激活‎选择的单元‎ES‎E L,S,‎L IVE ‎!选择所有‎活动单元‎NSL‎E,S !‎选择所有活‎动结点‎NSEL‎,INVE‎!选择所‎有非活动结‎点(不与活‎动单‎‎‎‎‎‎‎元相‎连的结点)‎D,‎A LL,A‎L L,0 ‎!约束所有‎不活动的结‎点自由度(‎可‎‎‎‎‎‎‎选)‎NSE‎L,ALL‎!选择所‎有结点‎ESEL‎,ALL ‎!选择所有‎单元‎D,...‎!施加合‎适的约束‎F,.‎.. !施‎加合适的活‎动结点自由‎度载荷‎SF,.‎.. !施‎加合适的单‎元载荷‎BF,.‎.. !施‎加合适的体‎载荷‎S AVE ‎SOL‎V E‎请参阅TI‎M E,NL‎G EOM,‎N ROPT‎,ESTI‎F,ESE‎L,EKI‎L L,NS‎L E,NS‎E L,D,‎F,SF和‎B F命令得‎到更详细的‎解释。

Ansys Workbench自定义和系统材料的添加

Ansys Workbench自定义和系统材料的添加

Ansys Workbench自定义和系统材料的添加
(1、自定义材料为45号钢,其参数为密度7890 kg/m^-3,杨氏模量为2.09*10^11,泊松比为0.269;2、系统自带材料添加)
1.双击下图engineering data或右击点edit(或者任何一个模块下都可以)
2.通过view打开outline和properties选项,点击下图A2
3.会出现下面的图,点*空白处(click here to add new material)
4.新建,输入45
5.左键双击击toolbox内的density(密度)和Isotropic Elasticity(各向同性弹性)
6.出现下图
7.输入值密度、弹性模量、泊松比
8.左键单击A3
9.出现下图
10.左键单击点A5后面的出现
11.左键单击下图A2会看到Concrete被添加了进来。

12.左键单击下图的
13.导入几何体或绘制几何体,然后对图1中的model左键双击或右键单击选edit 在新的窗口中展开model-geometry左键单击几何体出现details.
14.左键单击上图中的Material下的Assignment入下图
15.选中45或者Concrete(45为自定义材料/Concrete为系统材料添加)
设置完成。

(整理)ANSYS材料模型.

(整理)ANSYS材料模型.

(整理)ANSYS材料模型.第七章材料模型ANSYS/LS-DYNA包括40多种材料模型,它们可以表⽰⼴泛的材料特性,可⽤材料如下所⽰。

本章后⾯将详细叙述材料模型和使⽤步骤。

对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第⼗六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。

线弹性模型·各向同性(#1)·正交各向异性(#2)·各向异性(#2)·弹性流体(#1)⾮线弹性模型·Blatz-ko Rubber(#7)·Mooney-Rivlin Rubber(#27)·粘弹性(#6)⾮线性⽆弹性模型·双线性各向同性(#3)·与温度有关的双线性各向同性(#4)·横向各向异性弹塑性(#37)·横向各向异性FLD(#39)·随动双线性(#3)·随动塑性(#3)·3参数Barlat(#36)·Barlat各向异性塑性(#33)·与应变率相关的幂函数塑性(#64)·应变率相关塑性(#19)·复合材料破坏(#22)·混凝⼟破坏(#72)·分段线性塑性(#24)·幂函数塑性(#18)压⼒相关塑性模型·弹-塑性流体动⼒学(#10)·地质帽盖材料模型(#25)泡沫模型·闭合多孔泡沫(#53)·粘性泡沫(#62)·低密度泡沫(#57)·可压缩泡沫(#63)·Honeycomb(#26)需要状态⽅程的模型·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9)·Zerilli-Armstrong(#65)·Steinberg(#11)离散单元模型·线弹性弹簧·普通⾮线性弹簧·⾮线性弹性弹簧·弹塑性弹簧·⾮弹性拉伸或仅压缩弹簧·麦克斯韦粘性弹簧·线粘性阻尼器·⾮线粘性阻尼器·索(缆)(#71)刚性体模型·刚体(#20)7.1定义显⽰动态材料模型⽤户可以采⽤ANSYS命令 MP, MPTEMP, MPDATA,TB, TBTEMP和 TBDATA以及ANSYS/LS-DYNA命令 EDMP来定义材料模型。

ansys材料定义

ansys材料定义
NUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹性材料的话,这个参
数一般不用定义.如果要定义,一定要和公式: EX/(2(1+NUXY))的值匹配,否则出错,另泊松比的定义一般
推荐不要超过0.5.
相关命令,例如:
mp,ex,1,300e9
mp,nuxy,1,0.25
2.orthotropic:正交各向异性材料:
这种材料也是比较常见的,不过定义起来稍微麻烦一点,需定义的常数有: EX, EY, EZ, NUXY, NUYZ,
NUXZ, GXY, GYZ, GXZ
注意:在这里没有默认值,就是说,如果你某些参数不定义的话,程序会提示出错,比如:XY平面的平面应
多大。同样建模时壳单元仅是一个面,也不知道面的几何属性。因此梁单元和壳单元都要设置实常数。
至于linear Isotropic,这是线性、各向同性材料,一般问题只要设置弹模、泊松比即可,不知你所
说的“选择”是什么意思。
各向异性材料定义起来较为复杂,这里我只作些简单的说明,更详细的资料,大家可以去看帮助.对于各向
异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是一个对称正定阵,因而输入的值一定要为正值.
Hale Waihona Puke 弹性常数矩阵如下图所示,各向异性体只有21个独立的弹性常数,因而我们也就只需输入21个参数即可,
而且对于二维问题,弹性常数缩减为10个.弹性系数矩阵可以用刚度或柔度两种形式来定义,自己根据情况
即:D11,D12,D13,D14,D15,D16,D22,D23…
Solid45单元是空间六面体8结点单元,这个单元不需要设置实常数(real constants),因为单元的

ansys_非线性材料的定义

ansys_非线性材料的定义
注意: 使用MP命令来定义弹性模量 弹性模量也可以是与温度相关的 切向斜率不可以是负数,也不能大于弹性模量
在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。 • 1、 定义弹性模量 • 2、 激活双线性随动强化选项 • 3、 使用数据表来定义非线性特性
• 双线性等向强化(BIS0),也是使用双线性 来表示应力-应变曲线,在此选项中,等 向强化的Von Mises 屈服准则被使用,这个 选项一般用于初始各向同性材料的大应变 问题。需要输入的常数与BKIN选项相同。
• 其材料特性的定义步骤如下: • 1、 定义弹性模量 • 2、 定义MISO数据表 • 3、 为输入的应力-应变数据指定温度值 • 4、 输入应力-应变数据 • 5、 画材料的应力-应变曲线 • 与MKIN 数据表不同的是,MISO的数据表对不同的温度可以有不同
的应变值,因此,每条温度曲线有它自己的输入表。

TBTEMP,20

TBDATA,,300E6,370E6,380E6

TBTEMP,100

TBDATA,,250E6,310E6,330E6
• 多线性等向强化(MISO)使用多线性来表示使用Von Mises屈服 准则 的等向强化的应力-应变曲线,它适用于比例加载的情况和大应变分 析。
• 需要输入最多100个应力-应变曲线,最多可以定义20条不同温度下 的曲线。
屈服准则规定材料开始塑性变形的应力状态, 它是应力状态的单值度量(标量),以便与单轴状态 比较,ANSYS主要使用Von.Mises屈服准则和Hill屈 服准则。
• Mises屈服准则(也称八面体剪应力或变形能准则)
可写为:
c y 0
式中, c为等效应力; y为屈服应力。

8 ansys定义材料

8 ansys定义材料

INTRODUCTION TO ANSYS 11.0

不保存指定的材料和相关的数据。 只保存你喜欢的模板来注册 ANSYS文件,以便后面的分析。ity Menu > List > Properties > All Materials – 或使用 MPLIST命令
第8章– 定义材料
练习
• 本专题包含两个练习: W8A. 用户输入材料 W8B. 从材料库输入
Training Manual
INTRODUCTION TO ANSYS 11.0
无需告诉 ANSYS 所使用的单位制,只需确定要使用的单位制,在输入 时保持输入数据单位一致即可。
– 例如,如果几何模型的尺寸是英尺,确保其他输入数据 — 材料性质,实常 数,荷载等 — 也以英制为单位。
• •
ANSYS 不进行单位换算! 它只简单的接受所输入的数据,不怀疑它们的 合理性。 命令 /UNITS 允许指定单位制,但它只是作一个记录,让使用模型的用 户知道所采用的单位。
Training Manual
定义材料
第8章
第8章– 定义材料
概述

Training Manual
本章讨论单位、输入 ANSYS 定义的材料,以及如何定义用户的材料。
INTRODUCTION TO ANSYS 11.0
第8章– 定义材料
单位
单位制注释 •
Training Manual
INTRODUCTION TO ANSYS 11.0
INTRODUCTION TO ANSYS 11.0
第8章– 定义材料
…ANSYS 定义材料
– 然后从库中输入一种材料。 • Main Menu > Preprocessor > Material Library > Import Library – 选择单位制,这仅用来筛选 后续对话框所列文件, ANSYS 本身没有单位制概

ANSYS中非线性材料的定义

ANSYS中非线性材料的定义

ANSYS中非线性材料的定义ANSYS中非线性材料的定义ANSYS中定义材料非线性包括如下步骤:1.定义材料的弹性模量(MP或MPDATA命令);2.激活非线性材料属性表并定义(TB族命令,包括:TB + TBTEMP + TBDATA或TBPT等)即:ANSYS中材料非线性定义命令流:1.定义材料的弹性模量:①MP, ! (该命令中应含有材料号)或①MPTEMP,MPDATA, ! (该命令中应含有材料号, MPTEMP+MPDATA是连续的)2. 激活非线性材料属性表并定义②TB, ! (该命令中应含有材料号, 三个命令是连续的)TBTEMP,TBDATA,或②TB, ! (该命令中应含有材料号, 三个命令是连续的)TBTEMP,TBPT,详述如下:1. 利用MP或MPDATA命令定义材料的弹性模量MP,Lab,MAT,C0,C1,C2,C3,C4说明:定义材料的属性(Material Property),材料属性为固定值时,其值为C0,当随温度变化时,由后四个参数控制。

MAT:对应ET所定义的号码(ITYPE),表示该组属性属于ITYPE。

Lab:材料属性类别,任何元素具备何种属性在元素属性表中均有说明。

例如:杨氏系数(Lab=EX,EY,EZ),密度(Lab=DENS),泊松比(Lab=NUXY,NUXYZ,NUZX),剪切模数(Lab=GXY,GYZ,GXZ),热膨胀系数(Lab=ALPX,ALPY,ALPZ)等。

2. 利用TB命令激活非线性材料属性表,并利用TBTEMP及TBDATA或TBPT命令定义属性表中数据TB, Lab, mat, ntemp,npts,tbopt,eosopt 激活非线性材料特性表的定义TBTEMP,temp,kmod 为材料表定义温度值(每一个温度对应一个材料非线性公式或应力-应变曲线)TBDATA, stloc, c1,c2,c3,c4,c5,c6 给当前数据表定义数据或TBPT,oper, x,y 在应力-应变曲线上定义一个点上述两个命令要配合TB及TBTEMP使用。

ansys材料定义

ansys材料定义

ansys材料定义混凝土$*材料弹性塑料水力1,2.3,0.13,3.2e-4,,-5美元。

e-5,1美元,,三2,2.4,0.126,2.5e-4,,-5.e-5,0.4,,3.*eos_ugruneisen2,0.2500,1.0,0。

,0.,1.9,0.00., 1.$$国际单位*材料弹性、塑料、水力剥离1,2.3,0.13,3.2e-4,5美元。

e-5,1美元,,三2,2.4e+03,0.126e+11,2.5e+7,,-5.e+6,0.4e+11,,3.*厄俄斯·格鲁内森2,0.2500e+4,1.0,0.,0.,1.9,0.00.,1.$具体参数密度2.4g/cm剪切模量12.6cpa屈服应力25mpa抗拉强度gruneisen状态方程参数c=2500m/ss1=1.0s2=0s3=0ω=1.9a=0e0=0v0=1sdyyds混凝土随动硬化模型*mat_plastic_kinematic321003.00e+100.182.0e+07000.002*材料塑料226004.75e+100.186.0e+074.75e+09099.31.940.0045MPa失效应变0.4取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*mat_johnson_holmquist_concrete4,2.4,0.123,0.79,1.60,0.007,0.61,2.4e-42.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.10.04,1.0,0.174,0.388,0.298取自龚自明防护工程blu-109b侵彻厚混凝土靶体的计算与分析*mat_johnson_holmquist_concrete4,2.4,0.132,0.79,1.60,0.007,0.61,3.22e-43.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.10.04,1.0,0.174,0.388,0.298取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的fe-sph方法*mat_johnson_holmquist_concretemidrogabcnfc1,2.2,0.164,0.75,1.65,0.007,0.61,4. 4e-4TEPS0EFMINSFMAXPUCPLUL2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土$*MAT_ELASTIC_PLASTIC_HYDRO$1,2.3,0.13,3.2E-4,,-5.E-5,1.$,,32,2.4,0.126,2.5E-4,,-5.E-5,0.4,,3.*EOS_GRUNEISEN2,0.2500,1.0,0.,0.,1.9,0.00.,1.$$国际单位*MAT_ELASTIC_PLASTIC_HYDRO_SPALL$1,2.3,0.13,3.2E-4,,-5.E-5,1.$,,32,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11,,3.*EOS_GRUNEISEN2,0.2500E+4,1.0,0.,0.,1.9,0.00.,1.$混凝土参数密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1sdyyds混凝土随动硬化模型*mat_plastic_kinematic3 2100 3.00e+10 0.18 2.0e+07 0 00.002*mat_plastic_kinematic2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 099.3 1.94 0.004取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-42.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.10.04,1.0,0.174,0.388,0.298取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析*MAT_JOHNSON_HOLMQUIST_CONCRETE4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-43.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.10.04,1.0,0.174,0.388,0.298取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETEmid RO G A B C N FC1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4T EPS0 EFMIN SFMAX PC UC PL UL2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1D1 D2 K1 K2 K3 FS0.03,1.0,0.174,0.388,0.298取自凤国爆炸与冲击《大应变。

高应变率及高压下混凝土的计算模型〉*MAT_JOHNSON_HOLMQUIST_CONCRETE2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-44.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.10.04,1.0,0.85,-1.71,2.08取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法*MAT_JOHNSON_HOLMQUIST_CONCRETE1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-44.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.10.04,1.0,0.174,0.388,0.298*Mat_johnson_holmquist_concrete$ 材料数据取自1998 年Johnson-Holmquist 会议论文, 失效采用拉伸失效============$ MID RO G A B C N FC1 2.25E-3 1.64E+04 0.75 1.65 -0.007 0.76 48.0$ T EPS0 EFMIN SFMAX PC UC PL UL2.4 1.0 0.01 11.7 13.6 5.8E-4 1.05E+3 0.1$ D1 D2 K1 K2 K3 FS0.03 1.0 1.74E+4 3.88E+04 2.98E+04钢纤维混凝土*MAT_JOHNSON_HOLMQUIST_CONCRETE1,2.452,0.279,0.75,1.6,0.007,0.61,5.6e-48.2e-5,1.0e-6,0.015,10.5,2.3e-4,7.4e-4,1.05e-2,0.0680.045,1.0,*MAT_JOHNSON_HOLMQUIST_CONCRETE1,2.551,0.332,0.79,1.6,0.007,0.61,7.17e-411.4e-5,1.0e-6,0.020,12.5,3.0e-4,8.8e-4,1.15e-2,0.0700.050,1.0,jzbaiH-J-C模型该模型主要应用于高应变率、大变形下的混凝土模拟。

在DYNA中H-J-C模型的定义方式为:*MAT_JOHNSON_HOLMGUIST_CONCRETE,材料编号为111。

H-J-C模型综合考虑了大应变、高应变率、高压效应,其等效屈服强度是压力、应变率及损伤的函数,而压力是体积应变(包括永久压垮状态)的函数,损伤积累是塑性体积应变、等效塑性应变及压力的函数。

下面是一个例子:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$H-J-C g-cm-us*MAT_JOHNSON_HOLMQUIST_CONCRETE2,2.4,0.1486,0.79,1.60,0.007,0.61,0.000484e-5,1e-6,0.01,7.0,0.00016,0.001,0.0080,0.100.04,1.0,0.85,-1.71,2.08 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$sdyydsEPS0采用千克,米,秒是为1,采用克,微秒,厘米是1.0e-6.爬格子的人*MAT_JOHNSON_HOLMQUIST_CONCRETE2,2.4,0.1486,0.79,1.60,-0.007,0.61,0.00048-4e-5,1e-6,0.01,7.0,0.00016,0.001,0.0080,0.100.04,1.0,0.85,-1.71,2.08,0.1*MAT_ADD_EROSION1,1234.0-4e-5 ,234.0,1234.0,1234.0 ,1234.01234.0,1234.0duanmengsun我后来试试了,改*MAT_ADD_EROSION的第一参数对结果影响不大,但是如果设定第一主应力为失效变量(第二个参数),会产生径向裂缝的,但是很怪异,也不知对不对。

casio24第一主应力取负值吗?取负值我的模型除炸药外其他材料单元全部失效了。

没有了。

还有说主应力的时候是拉正压负吧?爬格子的人为什么添加拉伸破坏准则后,看不到结构的拉伸破坏,只是看到单元被拉长,但是不能删除单元呢?相反取掉拉伸破坏准则,则能看到断裂现象;如果定义拉伸不定义压缩破坏,则看到单元被拉长,但是没有提示单元被删除的信息!不知道是什么原因呢?同时定义了拉伸以后察看拉伸单元的信息,其应力值仍然是Fc,而不是T的值,由此可见,mat-111在960中并不完善,欢迎不吝指教!lieut2003看你有这么雄心壮志,我在提供一些资料,出成果记得共享一下,To the best of my knowledge, Material Model 72 Mat_Concrete_Damage is an extension of Material Model 16 Mat_Pseudo_TENSOR due to Malvar, Crawford, Wesevich, and Simons, 'A Plasticity Concrete Material Model for DYNA3D,' Int J of Impact Engineering, Vol 19, Nos 9-10, pp 847-873, 199716 model:*MAT_PSEUDO_TENSOR$ Mode II Concrete Model Option with automatic EOS2,2.247E-04,,0.2205000,-13.000E+07,0.200,6.000E+04,4.031E+06,0.000E+00,0.000E+00$ 3rd example concrete that requires an equation-of-state (EOS)*MAT_PSEUDO_TENSOR3,2.247E-04,,0.220500.,1.250E+03,0.333,6.667E-05,500.,1. 50,1.25,0.7703.000E+07,0.200,6.000E+04,4.031E+06,0.000E+00,0.000E+000.000E+00,8.620E-06,2.150E-05,3.140E-05,3.950E-04,5.170E-04,6.380E-04,7.980E-049.670E-04,1 .410E-03,1.970E-03,2.590E-03,3.270E-03,4.000E-03,4.790E-03,0.9090.309,0.543,0.8 40,0.975,1.00,0.790,0.630,0.4690.383,0.247,0.173,0.136,0.114,8.600E-02,5.600E-0 2,0.000E+00lucyhulu*MAT_CONCRETE_DAMAGE4 2.6000000 0.25000005.5E-04 0.100E-04 0.0000000 0.10000000.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.20 2.1000000 0.3000000 3.350E-03 0.0000000 0 00.0000000 0.0000001 0.0000002 0.0000003 0.0000004 0.0000005 0.0000006 0.0000007 0.0000008 0.0000009 0.0000010 0.0000011 0.00000120.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 huangfei这段话的意思是可以与*MAT_CONCRETE_DAMAGE配合使用的状态方程只能是 eos 8, eos 9 and eos 11 这几种suiyuerufeng*MAT_BRITTLE_DAMAGE1 0.250E+04 3.000E+10 1.67E-01 6.00e+06 1.400e+07 1.40E+02 0.037.2389e+5 0.004E+00 2.100E+11 3.00E+06 1.00e+10 0.750e+00 3.20E+07geneone*MAT_JOHNSON_HOLMQUIST_CONCRETE$H-J-C g-cm-us$* mid ro g a c n fc2 2.400000 0.148600 0.790000 0.007000 0.6100004.8000e-04$* t eps0 efmin sfmax pc uc pl ul4.0000e-051.0000e-06 0.010000 7.0000001.6000e-04 0.001000 0.008000 0.100000 $* d1 d2 k1 k2 k3 fs0.040000 1.000000 0.850000 -1.710000 2.080000 -0.10000sjy贴一种#72材料模型,#CONCRETE DAMAGE MODEL,该材料模型是我将近一年的研究成果,但还需要试验验证,有兴趣的朋友可以讨论一下。

相关文档
最新文档