七年级数学下册知识点及典型试题汇总

合集下载

七年级下册数学知识点和例题整理

七年级下册数学知识点和例题整理

七年级下册数学知识点和例题整理一、有理数1. 有理数的概念有理数包括正整数、负整数、零,以及分数。

有理数在数轴上的位置可以用来表示实际问题中的正负关系。

2. 有理数的加减法有理数的加减法遵循着相同符号相加取其绝对值再加上它们的符号,不同符号相加取其绝对值相减再按绝对值大小决定结果的符号。

例题:计算:(-5) + 8 - 3/5 + 1/43. 有理数的乘除法有理数的乘法和除法和正数的规律一致,同号得正,异号得负。

例题:计算:(-4) * 5 ÷ (-2)4. 有理数的比较有理数的大小比较可根据它们在数轴上的位置进行判断,也可以转化为同分母进行比较。

例题:比较:(-3/4) 与 5/8 的大小。

二、比例和比例的应用1. 比例的概念比例是指两个相似的量之间的比值关系,可以通过等式形式表示。

2. 比例的性质比例的性质包括比例分数的相等、比例的逆比也成比例、比例可相互比较。

例题:已知:a/b = c/d,求证:b/a = d/c。

3. 比例的应用比例在日常生活中有着广泛的应用,如规划图、工程施工等领域。

例题:甲、乙、丙三人合伙做一件事,甲出资5000元,乙出资3000元,丙出资2000元。

若利润为15万元,求甲、乙、丙三人分别分得多少利润。

三、实数的乘法与除法1. 正数和负数的乘法正数和负数相乘的结果为负数,负数和负数相乘的结果为正数。

例题:计算:(-6) * 32. 正数和负数的除法正数除负数的结果为负数,负数除正数的结果为负数。

例题:计算:(-9) ÷ 33. 乘方与乘方的运算乘方是指一个数自身连乘多次,乘方的运算分为有理数指数幂、乘方分解公式等。

例题:计算:(-2)^3四、二次根式1. 二次根式的定义二次根式是指含有平方根的代数式。

2. 二次根式的基本性质二次根式包括加法、减法、乘法、除法、乘方等运算。

例题:计算:√2 * √83. 二次根式的化简化简二次根式可通过合并同类项、有理化分子分母等方法进行。

2019新人教版七年级数学下册知识点及典型试题汇总

2019新人教版七年级数学下册知识点及典型试题汇总

最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图3 a 57 8 61 3 42 b c与 是同位角; 与 是同位角; 与 是同位角。

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线的基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺和直尺画平行线的方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1和∠2是一对___________;∠2和∠3是一对___________;∠1和∠5是一对___________;∠1和∠3是一对___________;∠1和∠4是一对___________;∠4和∠5是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部)7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°.8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小和方向;一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..和距离练习:如图,已知△ABC和其平移后的△DEF.①点A的对应点是________,点B的对应点是________;②线段AC的对应线段是________;线段AB的对应线段是________;③平移的方向是__________,平移的距离是______________________.④若AC=AB=5,BC=4,平移的距离是3,则CF=________,DB=________,AE=________,四边形AEFC的周长是_________.9.★★★折叠问题方法:(1)找到折叠后和折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角和、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠FEC=64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x°,请用含x的代数式表示∠4的度数.第2章 二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.练习:方程①x -1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的是____________.2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________.(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________.3.★二元一次方程的整数解方程3x +2y =21的正整数解是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎪⎨⎪⎧x -2y =23x +2y =10 (2)⎩⎪⎨⎪⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎪⎨⎪⎧ax -2y =12x +by =5的解是⎩⎪⎨⎪⎧x =1y =a ,则b =________.(3)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值是_______.(4)请你写出一个以⎩⎪⎨⎪⎧x =3y =-1为解的二元一次方程组:_______________. (5)已知方程组⎩⎪⎨⎪⎧2x +y =5x +3y =5,则x +y 的值为___________.7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需的天数是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天和乙工程队工作1天的费用和为34000元;甲工程队工作3天和乙工程队工作2天的费用和为26000元,则两队每天工作的费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,你认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图 1 所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图 2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱 300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的 1.5 倍,这样提前 3 天超额完成了任务,且总共比原计划多加工 15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板 550 张,长方形纸板 1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板 100 张,长方形纸板a 张,全部加工成上述两种纸盒,且 150<a<168,试求在这一天加工两种纸盒时a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都是正整数)(3)积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab) n=a n b n(n都是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p=1a p(a≠0),当a是整数时,先指数变正,再倒数.当a是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(-23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就是负几次方.练习:(1)科学记数法表示0.0000103=_________________.(2)1纳米=0.000000001米,则0.33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7.2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式....的形式,叫做因式分解,也叫分解...化成几个整式的积因式.因式分解和整式乘法是互逆关系.练习:下列从左到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2 B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数和相同字母的最低次幂.Array(2)用乘法公式因式分解:①平方差公式:a2-b2=(a+b)(a-b)即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的是()A.x2-4 B.x2+2x+4 C.4x2+4x+1 D.x2+y2(2)下列多项式能用平方差公式分解因式的是()A.x2+4 B.x2+2x+1 C.x2-4x D.-x2+9(3)因式分解:①a3-9a=_____________________. ②x-xy2=_____________________.③x2-8x+16=_________________. ④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________.⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2和a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.4.十字相乘法:十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

七年级数学下册知识点及练习题

七年级数学下册知识点及练习题

七年级数学下册知识点及练习题七年级数学下册知识点及练习题|学习七年级数学最好把那些知识点加上着重号,以便复习时加强记忆。

为大家整理了七年级数学下册知识点,欢迎大家阅读!整式的运算一、整式1、单项式:则表示数与字母的积的代数式。

另外规定单独的一个数或字母也就是单项式。

单项式中的数字因数叫做单项式的系数。

注意系数包括前面的符号,系数是1时通常省略,是系数,的系数是单项式的次数就是指所有字母的指数的和。

2、多项式:几个单项式的和叫做多项式。

(几次几项式)每一个单项式叫作多项式的项,特别注意项包含前面的符号。

多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

3、整式;单项式与多项式泛称为整式。

(最显著的特征:分母中不不含字母)二、整式的加减:①先去括号;(注意括号前有数字因数)②再分拆同类项。

(系数相乘,字母与字母指数维持不变)三、幂的运算性质1、同底数幂相加:底数维持不变,指数相乘。

2、幂的乘方:底数不变,指数相乘。

3、内积的乘方:把积中的每一个因式各自乘方,再把税金的幂相加。

4、零指数幂:任何一个不等于0的数的0次幂等于1。

()注意00没有意义。

5、正数整数指数幂:(正整数,)6、同底数幂相除:底数不变,指数相减。

()特别注意:以上公式的正反两方面的应用领域。

常见的错误:,,,,四、单项式除以单项式:系数相加,相同的字母相加,只在一个因式中发生的字母则联同它的指数做为内积的一个因式。

五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

六、多项式除以多项式:联同各项的符号把其中一个多项式的各项除以另一个多项式的每一项。

七、平方差公式两数的和除以这两数的差,等同于这两数的平方差。

即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。

八、全然平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。

常用错误:九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。

(完整word)七年级数学下册知识点及典型试题汇总,推荐文档

(完整word)七年级数学下册知识点及典型试题汇总,推荐文档

天天学BA 初一数学下册期末复习全 第17页共17页2014年最新版人教版七年级数学下册知识点汇总第五章相交线与平行线直线相交;如果两条直线没有公共点,称这两条直线平行。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 为 对顶角。

对顶角的性质:对顶角相等。

如图 1所示, _________ 与 ___ 互为对顶角。

_=5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图 2所示,当 _ = 90°时,垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

、知识网络结构 相交线 相交线垂线 同位角、 二、知识要点1、在同一平面内,两条内错角、同旁 内角 平行线及其判定 相交线与平行线 平行线:在同一平面内 ,不相交的两条直线叫平行线定义: 判定1平行线的判定 判定2判定3 判定4 直线的位置关系有』 种:相交和平行,垂平行线的性质性质1:两直线平行,同位角 性质2:两直线平行,内错角 性质3:两直线平行,同旁内 性质4:平行于同一条直线 命题、定理平移:同位角相等,两直 :内错角相等,两直 :同旁内角互补,两 :平行于同一条直线线平行线平行 直线平行 的两直线平行直是相交的一种特殊情 况。

相等相等 角互补 的两直线平行2、在同一平面内,不相 交的两条直线叫平行 线。

如果两条直线只有 一^公共点,称这两条3、两条直线相交所构成的四个角中,有 公共顶点且有一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补。

如图1所示, 互为邻补角,与 互为邻补角。

+ 180°; _+ 180°; _+180°; _+180 °。

性质3:如图2所示,当旦丄_b_时, =90°。

七年级下数学各章知识点总结和重难点题型

七年级下数学各章知识点总结和重难点题型

七年级下各章知识点总结和重难点题型归纳第一章 整式的乘除1 、n m n m aa a +=⋅ (m,n 都是正整数) 如=⋅-23b b ________。

拓展运用n m n m a a a⋅=+ 如已知m a =2, n a =8,求n m a +。

解:___________________. 已知m a =2, n a =8,求n m a+2。

解:_____________________. 2 、mn n m aa =)( (m,n 都是正整数) 如=-4362)()(2a a _________________。

拓展应用m n n m mn a a a)()(==。

若2=n a ,则=n a 2__________。

3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。

4、n m n m aa a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。

拓展应用n m n m a a a÷=- 如若9=m a ,3=n a ,则=-n m a _____________。

5、)0(10≠=a a ;0(1≠=-a aa p p ,是正整数)。

如81)2(1)2(33-=-=-- 6、平方差公式22))((b a b a b a -=-+ (a 为相同项,b 为相反项)如22224)2()2)(2(n m n m n m n m -=--=--+-7、完全平方公式2222)(b ab a b a ++=+,2222)(b ab a b a +-=-逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-如22244)2(y xy x y x +-=-8、应用式:ab b a b a 2)(222+-=+,ab b a b a 2)(222-+=+ab b a b a 4)()(22+-=+,ab b a b a 4)()(22-+=-9、两位数 10a +b ,三位数 100a +10b +c 。

七年级下册数学所有知识点

七年级下册数学所有知识点

七年级下册数学所有知识点
1. 平行线与一般位置的直线的夹角
2. 相交直线的夹角
3. 圆周角和弧度制
4. 三角形和其特殊线段(中线、角平分线、垂线、高线、边中线)
5. 对称性和相似性
6. 直角三角形的性质
7. 三角形的内角和定理
8. 合同三角形的性质
9. 同位角和内错角
10. 三角形的全等条件
11. 平行四边形和矩形的性质
12. 等周问题
13. 图形的面积和体积计算
14. 圆的性质
15. 圆锥和棱锥的性质
16. 线段和面的投影
17. 二次函数和其图像
18. 简单方程和方程转化
19. 笛卡尔坐标系和对称轴
20. 整式的加减和乘除
21. 一元一次方程的解
22. 正数、负数和零
23. 比例和比例的性质
24. 百分数和百分率
25. 一次函数和直线的性质
26. 线性方程组和其解法
27. 数据的整理和图表的绘制
28. 测量单位换算
29. 简单利益、满意度和邮费计算
30. 二次根式和简单根式的运算。

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。

实数具有加法、减法、乘法和除法等运算规则。

2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。

有理数之间可以进行加减乘除运算,还可以
比较大小。

3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。

无理数包括根号2、根号3等。

4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。

实数
之间可以进行大小比较。

二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。

2.计算运算结果:计算两个实数的和、差、积、商。

3.比较大小:给出两个实数,判断它们的大小关系。

4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。

5.排序实数:给出几个实数,按大小顺序排列它们。

6.选择题:根据题目描述选择符合条件的实数。

以上是七年级下册实数知识点的概括及常见题目类型。

通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。

七年级数学下知识点和例题

七年级数学下知识点和例题

七年级数学下知识点和例题在七年级数学下学习中,有很多基础知识点和例题需要掌握。

本文将会为同学们分享关于七年级数学下的知识点和例题,希望可以帮助大家更好地完成学习任务。

一、整数的概念和表示方法整数是数学中最基本的概念之一,是由自然数、0和负整数组成的集合。

在数轴上,整数被绘制在0的两侧,负整数位于0的左侧,正整数位于0的右侧。

例题:如果a为正整数,那么a+(-a)=___。

答案:0二、有理数的概念和比较大小方法有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和0。

比较两个有理数的大小,可以先通过通分将分母相同后,比较分子的大小,也可以将有理数化为小数进行比较。

例题:用大于、小于或等于号填空:-3____-2。

答案:<三、平面图形的性质平面图形是指位于同一平面内的图形,包括线段、射线、直线、角、三角形、四边形、多边形等。

学习平面图形的性质是在后续几个学习单元中的基础,要熟练掌握。

例题:如图,AC=BD,AB=BC,∠ABC=60°,则∠ACB=___°。

[图]答案:60四、一次函数的图像和函数式一次函数是指函数y=kx+b,其中k和b都是常数。

根据k的正负不同,可以绘制出不同方向的直线图像,通过观察函数式,可以判断图像的性质。

例题:已知函数y=2x-5,求其在x=3处的函数值。

答案:y=1五、比例和百分数的运用比例是指两个相同类型的量之间的比值,常用于计算和描述数量关系。

百分数是以100为基数的百分比,常用于表示比例和增长率等概念。

例题:某班级男生占总人数的40%,女生占总人数的60%,如果男生有80人,女生人数是___。

答案:120以上是七年级数学下知识点和例题的简要介绍,希望对同学们有所帮助。

在学习过程中,要注重理论知识的掌握和习题的练习,扎实基础,打好数学基础是理解和掌握高阶数学知识的关键。

(完整版)数学初中苏教七年级下册期末必考知识点真题及解析

(完整版)数学初中苏教七年级下册期末必考知识点真题及解析

(完整版)数学初中苏教七年级下册期末必考知识点真题及解析一、选择题1.下列运算正确的是( )A .(a 2)6=a 8B .a 2•a 5=a 7C .a 5﹣a 3=a 2D .a 4÷a 3=a 7 2.如图,图中的内错角的对数是( )A .3对B .4对C .5对D .6对3.若关于x 、y 的方程的解满足x+y= 0,则a 的值为 () A .-I B .-2 C .0 D .不能确定 4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .66C .76D .865.若关于x 的不等式组()2140x x a ⎧->⎨->⎩的解集为3x >,那么a 的取值范围是( ) A .3a >B .3a <C .3a ≥D .3a ≤6.下列命题中:①内错角相等;②两点之间线段最短;③直角三角形两锐角互余;④两条平行线被第三条直线所截,所得的一组内错角的角平分线互相平行.属于真命题的有( )A .1个B .2个C .3个D .4个7.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n ;(其中k 是使2k n 为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:若49n =,则第2021次“F 运算”的结果是( )A .68B .78C .88D .988.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =98︒,则∠C 的度数为( )A .40°B .41°C .42°D .43°二、填空题9.计算:(3x 3)2•(﹣x 2)3=___.10.“同位角相等”这个命题的逆命题是__,这个逆命题是__命题.11.如果一个多边形的每一个外角都等于60°,则它的内角和是__________.12.当98=-m 时,244m m -+的值为_____________13.已知11x y =⎧⎨=⎩是方程组3,.x y m x my n -=⎧⎨+=⎩的解,则3m n -=____________ 14.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为_____.15.已知一个正多边形的内角是144︒,则这个正多边形是________边形.16.如图1,将三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE 的一边与△ABC 的某一边平行(不共线)时,写出旋转角α的所有可能的度数为 . 17.计算:(1)30211(2)()()33---+; (2)2563()2x x x x -÷+⋅;(3)23322(927)(3)x y x y xy -÷;(4)2(2)(1)x x x +-+18.因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.19.解方程组(1)23323x yy x-=-⎧⎨=-⎩(2)111324x yx y-+⎧+=⎪⎨⎪+=⎩20.利用数轴解不等式组3(2)41213x xxx--≤-⎧⎪+⎨-≤⎪⎩,并判断32是否是该不等式组的解.三、解答题21.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的大小.解:∵EF∥AD,∴∠2= (两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°,∴∠AGD=110°.22.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车,据了解,3辆A型汽车和4辆B型汽车的进价共计115万元;4辆A型汽车和2辆B型汽车的进价共计120万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请试写出该公司的采购方案.23.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值; 乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值. (1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.24.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADP ACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.25.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).【参考答案】一、选择题1.B解析:B【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,合并同类项法则以及同底数幂的除法法则逐一判断即可.【详解】解:A .(a 2)6=a 12,故本选项不合题意;B .a 2•a 5=a 7,故本选项符合题意;C .a 5与-a 3不是同类项,所以不能合并,故本选项不合题意;D .a 4÷a 3=a ,故本选项不合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,掌握相关运算法则是解答本题的关键.2.C解析:C【分析】利用内错角的定义分析得出答案.【详解】解:如图所示:内错角有:∠FOP 与∠OPE ,∠GOP 与∠OPD ,∠CPA 与∠HOP ,∠FOP 与∠OPD ,∠EPO 与∠GOP 都是内错角,故内错角一共有5对.故选:C .【点睛】此题主要考查了内错角的定义,正确把握内错角的定义是解题关键.3.A解析:A【解析】【分析】①+②,得4x+4y=2+2a,根据 x+y= 0可求出a.【详解】①+②,得4x+4y=2+2a因为x+y= 0所以0=2+2a所以a=-1故选:A【点睛】考核知识点:加减法在二元一次方程组中的运用.灵活运用加减法是关键.4.C解析:C【分析】利用“神秘数”定义判断即可.【详解】解:∵76=38×2=(20+18)(20-18)=202﹣182,∴76是“神秘数”,而其余各数均不能表示为两个连续偶数的平方差,故选:C.【点睛】此题考查了平方差公式,正确理解“神秘数”的定义是解本题的关键.5.D解析:D【分析】分别求出各不等式的解集,再根据不等式的解集是x>3求出a的取值范围即可.【详解】()2140x x a ⎧->⎨->⎩①② ∵解不等式①得:3x >,解不等式②得:x a >,∵关于x 的不等式组()2140x x a ⎧->⎨=>⎩的解集为3x >, ∴3a ≤,故选:D .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.C解析:C【分析】根据平行线的性质、直角三角形的性质判断即可.【详解】解:①两直线平行,内错角相等,本说法是假命题;②两点之间线段最短,本说法是真命题;③直角三角形两锐角互余,本说法是真命题;④两条平行线被第三条直线所截,所得的一组内错角的角平分线互相平行,本说法是真命题;故选:C .【点睛】本题主要考查证明与命题、平行线的性质及直角三角形的性质,关键是熟记概念进行判断.7.D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F ①运算,即3×49+5=152(偶数),需再进行F ②运算,即152÷23=19(奇数),再进行F ①运算,得到3×19+5=62(偶数),再进行F ②运算,即62÷21=31(奇数),再进行F ①运算,得到3×31+5=98(偶数),再进行F ②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.B解析:B【详解】解:如图,连接AO、BO.由折叠的性质可得EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,又∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,所以∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,由三角形的内角和定理可得∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.点睛:本题以三角形为载体,以翻折变换为方法,以考查三角形的内角和定理,借助翻折变换的性质,灵活运用三角形的内角和定理来解题是关键.二、填空题9.129x【分析】根据积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘.【详解】解:(3x 3)2•(﹣x 2)3=661299x x x -=- ,故答案为:129x -.【点睛】本题考查了积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘是解题的关键.10.相等的角是同位角 假【分析】把一个命题的条件和结论互换就得到它的逆命题,由此求解即可.【详解】解:同位角相等这个命题的逆命题是相等的角是同位角,逆命题是假命题;故答案为:①相等的角是同位角②假.【点睛】本题主要考查了同位角的定义,命题的真假,写出逆命题,解题的关键在于能够熟练掌握相关知识进行求解.11.720°【分析】根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.【详解】∵一个多边形的每一个外角都等于60°,又∵多边形的外角和等于360°,∴这个多边形的边数=360°÷60°=6,∴这个多边形的内角和=180(62)720⨯-=,故答案是:720°.【点睛】本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.12.10000【分析】由题意,先把多项式因式分解,再把m 的值代入计算,即可得到答案.【详解】解:2244(2)m m m -+=-,∵98=-m ,∴22(2)(982)10000m -=--=;故答案为:10000.【点睛】本题考查了公式法因式分解,以及求代数式的值,解题的关键是正确的把多项式进行因式分解.13.7-【分析】把11x y =⎧⎨=⎩代入到方程组3x y m x my n -=⎧⎨+=⎩中得到关于m n ,的方程组,求出m n ,的值,再求出3m n -的值即可.【详解】解:∵11x y =⎧⎨=⎩是方程组3x y m x my n -=⎧⎨+=⎩的解, ∴31111m m n ⨯-=⎧⎨+⨯=⎩,解得:=2=3m n ⎧⎨⎩, ∴3=233=7m n --⨯-,故答案为:7-.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出m n ,的值是解决此题的关键.14.56米2.【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可得到草地的面积,进而得出道路的面积.【详解】将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.∴道路的面积为20×10﹣144=56米2故答案为56米2.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.15.十【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形,根据题意得:(n-2)×180°÷n=144°,解得:n=1解析:十【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:(n-2)×180°÷n=144°,解得:n=10.故答案为:十.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.16.15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△AD解析:15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的情况如下图所示:①当AD ∥BC 时,α=15°;②当DE ∥AB 时,α=45°;③当DE ∥BC 时,α=105°;④当DE ∥AC 时,α=135°;⑤当AE ∥BC 时,α=150°.故答案为15°,45°,105°,135°,150°.考点:旋转的性质.17.(1)0;(2)x9;(3)y-3x ;(4)3x+4【解析】【分析】(1)先分别根据有理数的乘方、0指数幂及负整数指数幂的性质计算出各数,再按照从左到右的顺序进行计算;(2)原式先利用幂的乘解析:(1)0;(2)x 9;(3)y-3x ;(4)3x+4【解析】【分析】(1)先分别根据有理数的乘方、0指数幂及负整数指数幂的性质计算出各数,再按照从左到右的顺序进行计算;(2)原式先利用幂的乘方运算法则和同底数幂的乘法法则计算,再利用多项式除以单项式运算法则计算,合并后即可得到结果;(3)原式先计算乘方运算,再计算除法运算即可得到结果;(4)原式利用完全平方公式,单项式乘以多项式法则计算即可得到结果【详解】解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ = -8-1+9=0;(2)()52632x x x x -÷+⋅=1092x x x -÷+=992x x -+=9x ;(3)()()223329273x y x y xy -÷ =()2332229279x y x y x y -÷=y-3x ;(4)()()2+21x x x -+=2244x x x x ++--=3x+4.故答案为:(1)0;(2)x 9;(3)y-3x ;(4)3x+4.【点睛】本题考查整式的混合运算,涉及的知识有:完全平方公式,有理数的乘方,0指数幂及负整数指数幂,单项式乘以多项式以及多项式除以单项式的法则,熟练掌握公式及法则是解题的关键. 18.(1)2b(a-2b) 2;(2)(m ﹣n )( a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b ,再利用完全平方公式分解因解析:(1)2b (a -2b ) 2;(2)(m ﹣n )( a +3)(a -3);(3)(3x +2)(3x -2)(9x 2+4);(4)(m +1)2(m -1)2【分析】(1)先提取2b ,再利用完全平方公式分解因式即可;(2)先提取(m ﹣n ),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b (a 2-4ab +4b 2)=2b (a 2-4ab +4b 2)=2b (a -2b ) 2;(2)原式=a 2(m ﹣n )-9(m ﹣n )=(m ﹣n )( a 2-9)=(m ﹣n )( a +3)(a -3);(3)原式=(9x 2﹣4)(9x 2+4)=(3x +2)(3x -2)(9x 2+4);(4)原式=[(m 2+5)-6]2=(m 2-1)2=(m +1)2(m -1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键. 19.(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2解析:(1)33x y =⎧⎨=⎩;(2)73x y =⎧⎨=-⎩ 【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)23323x y y x -=-⎧⎨=-⎩①②, 将②代入①得:()23233x x --=-,解得:3x =,代入②中,解得:3y =,∴方程组的解为:33x y =⎧⎨=⎩; (2)方程组化简得2354x y x y +=⎧⎨+=⎩①②, ②×3-①得:7x =,代入②中,解得:3y =-,∴方程组的解为:73x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得解析:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断32是否在此范围即可.【详解】解:3(2)41213x xxx--≤-⎧⎪⎨+-≤⎪⎩①②,解不等式①,得:x≥1,解不等式②,得:x≤4,将不等式的解集表示在数轴上如下:∴不等式组的解集为1≤x≤4,∵324,∴32【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题21.∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补【分析】根据平行线性质推出∠1=∠3,根据平行线判定推出AB∥DG,根据平行线判定推出∠BAC+∠AGD=180°,把∠BA解析:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补【分析】根据平行线性质推出∠1=∠3,根据平行线判定推出AB∥DG,根据平行线判定推出∠BAC+∠AGD=180°,把∠BAC=70°代入计算求出即可.【详解】∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB ∥DG (内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°.故答案为:∠3;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键. 22.(1)A 型汽车进价为25万元/辆,B 型汽车进价为10万元/辆;(2)该公司有两种购买方案,方案1:购进A 型汽车2辆,B 型汽车15辆;方案2:购进A 型汽车4辆,B 型汽车10辆【分析】(1)设型汽车解析:(1)A 型汽车进价为25万元/辆,B 型汽车进价为10万元/辆;(2)该公司有两种购买方案,方案1:购进A 型汽车2辆,B 型汽车15辆;方案2:购进A 型汽车4辆,B 型汽车10辆【分析】(1)设A 型汽车进价为x 万元/辆,B 型汽车进价为y 万元/辆,根据“3辆A 型汽车和4辆B 型汽车的进价共计115万元;4辆A 型汽车和2辆B 型汽车的进价共计120万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,则购进B 型汽车5(20)2m -辆,根据购进的B 种型号的新能源汽车数量多于A 种型号的新能源汽车数量,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再结合m 、5(20)2m -均为正整数,即可得出各购买方案.【详解】解:(1)设A 型汽车进价为x 万元/辆,B 型汽车进价为y 万元/辆,依题意得:3411542120x y x y +=⎧⎨+=⎩, 解得:2510x y =⎧⎨=⎩. 答:A 型汽车进价为25万元/辆,B 型汽车进价为10万元/辆.(2)设购进A 型汽车m 辆,则购进B 型汽车200255(20)102m m -=-辆, 依题意得:5202m m ->, 解得:407m <. 又m 、5(20)2m -均为正整数,2m ∴=或4m =.当2m =时,520152m -=;当4m =时,520102m -=.∴该公司有两种购买方案, 方案1:购进A 型汽车2辆,B 型汽车15辆;方案2:购进A 型汽车4辆,B 型汽车10辆.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,,①解析:(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB , ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D , ∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F , ,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②, ∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠ 90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠ 90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠ AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.25.阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结 解析:阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-.【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.【详解】解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DGCF . ∵DGMN , ∴MN CF .∵BH MN , ∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠,由(1)得FC ∥MN ,∴FC ∥HP ,∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD ,∴∠ECG=20°+1MAB 2∠,∴∠FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

【精品】2019新人教版七年级数学下册知识点及典型试题汇总

【精品】2019新人教版七年级数学下册知识点及典型试题汇总

最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图3a 57 8 61 3 4 2b c②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

七年级数学-下学期期末复习知识归纳总结与典型例题

七年级数学-下学期期末复习知识归纳总结与典型例题

七年级数学-下学期期末复习知识归纳总结与典型例题引言期末考试是检验学生一学期学习成果的重要环节。

为了帮助七年级学生更好地复习和准备期末考试,本文档将总结本学期所学的数学知识点,并提供一些典型例题。

一、代数基础1. 代数表达式单项式:由数字和字母相乘组成的代数式。

多项式:由多个单项式相加组成的代数式。

2. 代数方程一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

解方程:找到使方程左右两边相等的未知数的值。

典型例题例题1:解一元一次方程 (3x - 7 = 2x + 5)。

二、几何基础1. 线与角直线:无限延伸的一维图形。

射线:有一端固定,另一端无限延伸的一维图形。

角度:由两条射线在一点相交形成的图形。

2. 三角形三角形的分类:按边分类(等边、等腰、不等边),按角分类(锐角、直角、钝角)。

典型例题例题2:在一个等腰三角形中,底边长度为10,两腰的长度相等,求两腰的长度。

三、数的运算1. 有理数正数:大于0的数。

负数:小于0的数。

有理数的四则运算:加、减、乘、除。

2. 绝对值绝对值:一个数距离数轴原点的距离。

典型例题例题3:计算 (|-8| + 5 - 3) 的值。

四、数据的收集与处理1. 数据的收集调查法:通过问卷、访谈等方式收集数据。

2. 数据的图表表示条形统计图:用条形的高度表示数据大小。

折线统计图:用折线的升降表示数据的变化趋势。

典型例题例题4:根据给定的数据,绘制一个条形统计图。

五、概率初步1. 随机事件必然事件:一定会发生的事件。

不可能事件:一定不会发生的事件。

随机事件:可能发生也可能不发生的事件。

2. 概率的计算概率:事件发生的可能性。

典型例题例题5:在一个装有3个红球和2个蓝球的袋子里,随机抽取一个球,计算抽到红球的概率。

结论通过对七年级数学下学期期末复习知识归纳总结,学生可以更加系统地回顾和巩固所学知识,为期末考试做好充分的准备。

教师和家长应鼓励学生积极参与数学学习,培养他们的逻辑思维和问题解决能力。

(word完整版)人教版七年级下册数学各章知识点及练习题,.docx

(word完整版)人教版七年级下册数学各章知识点及练习题,.docx

第一讲相交线与平行线1.两直相交所成的四个角中,有一条公共,它的另一互反向延,具有种关系的两个角,互_____________.2.两直相交所成的四个角中,有一个公共点,并且一个角的两分是另一个角两的反向延,具有种关系的两个角,互------________ 角的性:______ ______3.两直相交所成的四个角中,如果有一个角是直角,那么就称两条直相互_______.垂的性:⑴ 一点 ______________一条直与已知直垂直 .⑵ 接直外一点与直上各点的所在段中,_______________.4.直外一点到条直的垂段的度,叫做________________________.5.两条直被第三条直所截,构成八个角,在那些没有公共点的角中,⑴如果两个角分在两条直的同一方,并且都在第三条直的同,具有种关系的一角叫做___________ ;⑵如果两个角都在两直之,并且分在第三条直的两,具有种关系的一角叫做 ____________ ;⑶如果两个角都在两直之,但它在第三条直的同一旁,具有种关系的一角叫做_______________.6.在同一平面内,不相交的两条直互相 ___________.同一平面内的两条直的位置关系只有________与_________两种 .7. 平行公理:直外一点,有且只有一条直与条直______.推:如果两条直都与第三条直平行,那么_____________________.8.平行的判定:⑴ _____________________________________.⑵___________________________⑶ __________________________________.9. 平行的性:⑴_________________.(2) _______________________________. ⑶__________________________________ . 10.把一个形整体沿某一方向移,会得到一个新形,形的种移,叫做_______.平移的性:⑴把一个形整体平移得到的新形与原形的形状与大小完全______.⑵新形中的每一点,都是由原形中的某一点移后得到的,两个点是点.接各点的段_________________.11.判断一件事情的句,叫做_______.命由 ________和 _________两部分成。

初一下册数学知识点总结归纳精选6篇

初一下册数学知识点总结归纳精选6篇

初一下册数学知识点总结归纳精选6篇初一下册数学知识点总结归纳精选6篇知识产业、知识经济和知识社会是当今发达国家社会转型的重要标志。

知识在现代国家治理和公共管理中扮演着重要的角色。

下面就让小编给大家带来初一下册数学知识点总结归纳,希望大家喜欢!初一下册数学知识点总结归纳1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。

同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。

8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题1.两条相交的直线所形成的四个角中,有一条公共边,而它们的另一条边则互为反向延长线。

如果两个角具有这种关系,那么它们互为相邻角。

2.两条相交的直线所形成的四个角中,有一个公共顶点,而一个角的两条边则分别是另一个角两条边的反向延长线。

如果两个角具有这种关系,那么它们互为对顶角,且具有相等的角度。

3.如果两条相交的直线中有一条直线与另一条直角,则这两条直线互为垂直线。

垂线的性质:⑴经过一点且垂直于已知直线的直线是唯一的。

⑵连接直线外一点与直线上各点的线段中,与已知直线垂直的线段长度最短。

4.直线外一点到这条直线的垂线段的长度称为该点到直线的距离。

5.如果两条直线被第三条直线所截,构成八个角,在没有公共顶点的角中,⑴如果两个角分别在两条直线的同侧,并且都在第三条直线的同侧,那么它们互为内错角;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,那么它们互为同旁内角;⑶如果两个角都在两直线之间,但它们在第三条直线的同一侧,那么它们互为对顶角。

6.不相交的两条直线在同一平面内互为平行线。

同一平面内的两条直线的位置关系只有平行和相交两种。

7.平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么它们互相平行。

8.平行线的判定:⑴如果两条直线与第三条直线的对应角互为相等角,则这两条直线平行。

⑵如果一条直线与第三条直线平行,另一条直线与这条直线对应的内角为直角,则这两条直线平行。

⑶如果两条直线与第三条直线平行,则这两条直线互相平行。

9.平行线的性质:⑴平行线之间的距离相等。

⑵平行线与第三条直线所构成的内错角互为相等角。

⑶平行线与第三条直线所构成的同旁内角互为补角。

10.把一个图形整体沿某一方向移动,会得到一个新图形,这种移动称为平移。

平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状和大小完全相同。

新图形中的每个点都是原图形中某个点移动后得到的,这两个点是对应点。

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。

(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。

4、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)内错角相等,同旁内角互补。

5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,则……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。

2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

(完整版)人教版七年级下册数学各章知识点及练习题

(完整版)人教版七年级下册数学各章知识点及练习题

第一讲相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为--- _______ 对顶角的性质: ____3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____ .垂线的性质:⑴过一点一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,______________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做______________ .6. 在同一平面内,不相交的两条直线互相.同一平面内的两条直线的位置关系只有______与 ________ 两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_____ .推论:如果两条直线都与第三条直线平行,那么____________________ .8. 平行线的判定:⑴.⑵ _________________________ ⑶____________________________________ .9. 平行线的性质:⑴.( 2)____________________________ . ⑶_________________________________ . 10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____ .平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 .⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段________________ .11. 判断一件事情的语句,叫做____ _____________ . 命题由___ 和两部分组成。

最新七年级数学下册知识点及典型试题汇总

最新七年级数学下册知识点及典型试题汇总

2014年最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

图3中,共有 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图3a5 7 86 13 4 2 bc对内错角: 与 是内错角; 与 是内错角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 与 平行 ,垂直就是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角就是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别就是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个就是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥ 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。

图3中,共有 对同位角: 与 就是同位角;与 就是同位角; 与 就是同位角; 与 就是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

图3中,共有 对图21 3 42 ab 图3a57 8 6 1 3 42 b c内错角: 与 就是内错角; 与 就是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。

图3中,共有 对同旁内角: 与 就是同旁内角; 与 就是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

如图4所示,如果a ∥b, 则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。

如图4所示,如果a ∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。

如图4所示,如果a ∥b,则 + = 180°; + = 180°。

性质4:平行于同一条直线的两条直线互相平行。

如果a ∥b,a ∥c,则 ∥ 。

8、平行线的判定:判定1:同位角相等,两直线平行。

如图5所示,如果 = 或 = 或 = 或 = ,则a ∥b 。

判定2:内错角相等,两直线平行。

如图5所示,如果 = 或 = ,则a ∥b 。

判定3:同旁内角互补,两直线平行。

如图5所示,如果 + = 180°; + = 180°,则a ∥b 。

判定4:平行于同一条直线的两条直线互相平行。

如果a ∥b,a ∥c,则 ∥ 。

9、判断一件事情的语句叫命题。

命题由 题设 与 结论 两部分组成,有 真命题 与 假命题 之分。

如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。

真命题的正确性就是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 与 大小 完全相同。

平移后得到的新图形中每一点,都就是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等③对应角相等 二、练习:1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A.50°B.60°C.140°D.160°2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数就是( )A.70°B.100°C.110°D.130° 3、已知:如图3,,垂足为,为过点的一条直线,则与的关系一定成立的就是( )A.相等B.互余C.互补D.互为对顶角图4a5 7 86 1 3 42 b c 图5a5 7 86 1 3 42b c D BAC 1a1 2OABC DE F2 1 OB EDA CF87654321DCBA图11A B Cab12 3 C ABD E图1 图2 图3 4、如图4,,,则( )A.B. C. D.图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应就是( )A.右转80° B.左转80° C.右转100° D.左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的就是( )A.∠3=∠7;B.∠2=∠6 C 、∠3+∠4+∠5+∠6=1800 D 、∠4=∠8 7、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角就是( )A.;B. 都就是;C.或;D. 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( ) A.①、②就是正确的命题;B.②、③就是正确命题;C.①、③就是正确命题 ;D.以上结论皆错 9、下列语句错误的就是( )A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,与等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等 10、如图7,,分别在上,为两平行线间一点,那么( )A.B.C.D.11、如图8,直线,直线与相交.若,则图8 图9 图10 12、如图9,已知则______.abM P N123 12ba c bac d 12 3 4ABCDE13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______ 14、如图11,已知,,,则15、如图12所示,请写出能判定CE ∥AB 的一个条件 . 16、如图13,已知,=____________17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则 ∥ ( ) ②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O 、求∠2、∠3的度数、19、已知:如图AB ∥CD,EF 交AB 于G ,交CD 于F,FH 平分∠EFD,交AB 于H ,∠AGE=500,求:∠BHF 的度数.20、观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角、(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角第六章 实数【知识点一】实数的分类1、按定义分类:2、按性质符号分类: 注:0既不就是正数也不就是负数、 【知识点二】实数的相关概念 1、相反数图a图b图c(1)代数意义:只有符号不同的两个数,我们说其中一个就是另一个的相反数.0的相反数就是0、(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称、(3)互为相反数的两个数之与等于0、a、b互为相反数a+b=0、2、绝对值|a|≥0.3、倒数(1)0没有倒数(2)乘积就是1的两个数互为倒数.a、b互为倒数、▲▲平方根【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3、正数的平方根有两个,它们互为相反数;0的平方根就是0;负数没有平方根。

4、平方根与算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根就是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6、正数有一个正的立方根;0的立方根就是0;负数有一个负的立方根。

7、求一个数的平方根(立方根)的运算叫开平方(开立方)。

8、立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数与0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0、9、一般来说,被开放数扩大(或缩小)倍,算术平方根扩大(或缩小)倍,例如、10、平方表:(自行完成)12= 62= 112= 162= 212=22= 72= 122= 172= 222=32= 82= 132= 182= 232=42= 92= 142= 192= 242=52= 102= 152= 202= 252=题型规律总结:1、平方根就是其本身的数就是0;算术平方根就是其本身的数就是0与1;立方根就是其本身的数就是0与±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个就是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、本身为非负数,有非负性,即≥0;有意义的条件就是a≥0。

4、公式:⑴()2=a(a≥0);⑵=(a取任何数)。

5、区分()2=a(a≥0),与=6、非负数的重要性质:若几个非负数之与等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【知识点三】实数与数轴数轴定义: 规定了原点,正方向与单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1、对于数轴上的任意两个点,靠右边的点所表示的数较大、2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小、3、无理数的比较大小:【知识点五】实数的运算1、加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2、减法:减去一个数等于加上这个数的相反数.3、乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4、除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5、乘方与开方(1)a n所表示的意义就是n个a相乘,正数的任何次幂就是正数,负数的偶次幂就是正数,负数的奇次幂就是负数.(2)正数与0可以开平方,负数不能开平方;正数、负数与0都可以开立方.【典型例题】1、下列语句中,正确的就是( )A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不就是正数就就是负数D.立方根就是这个数本身的数共有三个2、下列说法正确的就是( )A.-2就是(-2)2的算术平方根B.3就是-9的算术平方根C16的平方根就是±4 D 27的立方根就是±33、已知实数x,y满足+(y+1)2=0,则x-y等于4、求下列各式的值(1);(2);(3);(4)5、已知实数x,y满足+(y+1)2=0,则x-y等于6、计算(1)64的立方根就是(2)下列说法中:①都就是27的立方根,②,③的立方根就是2,④。

相关文档
最新文档