单片机与触摸屏

合集下载

PIC单片机与触摸屏串行通信MODBUS协议

PIC单片机与触摸屏串行通信MODBUS协议

PIC单片机与触摸屏串行通信MODBUS协议工控中经常需要观察系统的运行状态或者修改运行参数。

触摸屏能够直观、生动地显示运行参数和运行状态,而且通过触摸屏画面可以直接修改系统运行参数,人机交互性好。

单片机广泛应用于工控领域中,与触摸屏配合,可组成良好的人机交互环境。

触摸屏和单片机通信,需要根据触摸屏采用的通信协议为单片机编写相应的通信程序。

Modbus 协议是美国Modicon 公司推出的一种有效支持控制器之间以及控制器经由网络(例如以太网)和其它设备之间进行通信的协议。

本文以PIC16F877 单片机和人机电子有限公司的eView MT510T 型触摸屏为例,介绍其通信程序的开发过程。

1 系统结构实现触摸屏与单片机的通讯,主要是解决通讯协议的问题。

本文使用开放的Modbus 通讯协议,以触摸屏作主站,单片机作从站。

eView 触摸屏本身支持Modbus 通讯协议,如果单片机也支持Modbus 协议,就可以进行通信了。

触摸屏与单片机之间采用的RS-232C 兼容接口直接连接,传输速率设置为9600kb/s。

图1 为该系统的电路图。

将PIC16F877 单片机RC6、RC7 口设置为异步串行通信模式,经过MAX232 芯片将TTL 电平转换为RS232 电平,再与eView 触摸屏PLC[RS-232]接口相连,即完成了硬件连接。

eView 触摸屏PLC[RS-232]接口的管脚2 为TXD,管脚3 为RXD。

2 Modbus 通信协议介绍Modbus 通信协议是一种串行的主从通信协议,网络里仅有一台设置可作为主机(称Master),其它设备作为从机(称Slaver),主机不需编号,从机必须编号。

协议定义了主机查询及从机应答的信息帧格式。

通信时,主机首先向从。

单片机与触摸屏

单片机与触摸屏

引言概述:单片机与触摸屏的结合在现代电子设备中得到广泛应用,这种组合可以为用户提供更加直观、便捷的人机交互方式。

在前文中,我们介绍了单片机和触摸屏的基本原理及其在电子设备中的作用。

本文将继续深入探讨单片机与触摸屏的应用领域和相关技术。

一、医疗设备领域的应用1.触摸屏的应用范围扩展:医疗设备领域对高灵敏度、无辐射、易于清洁的触摸屏有更高要求。

2.单片机的控制功能:单片机可以控制医疗设备的各种功能,如温度监控、药物输送等。

3.增加人机交互性:通过触摸屏界面,医务人员可以直接进行操作,提供便捷和高效的服务。

二、工业自动化中的应用1.生产线控制系统:单片机可以通过触摸屏控制生产线的自动化过程,实现生产的灵活性和高效性。

2.参数监控和调整:通过触摸屏可以实时监控设备的工作参数,并根据需要进行调整。

3.故障诊断和维护:触摸屏界面提供了故障诊断和维护的操作接口,方便操作人员进行维护和修理。

三、智能家居系统中的应用1.家电控制:通过单片机和触摸屏的结合,用户可以通过触摸屏界面控制家中的各种设备,如灯光、空调等。

2.安全防护系统:触摸屏可以作为智能家居系统的入口,用于控制安全防护系统,如监控、报警等。

3.节能环保:通过触摸屏界面,可以实时监控家庭能耗,并进行相应的调整,达到节能和环保的目的。

四、交通运输中的应用1.汽车仪表盘控制:单片机和触摸屏的组合可以实现对汽车仪表盘的控制和参数监控。

2.导航和娱乐系统:触摸屏界面方便驾驶员进行导航操作,并提供多媒体娱乐功能。

3.人机交互安全性考虑:触摸屏界面的设计应考虑驾驶员的安全操作,如大按钮、语音控制等。

五、教育领域的应用1.互动教学:单片机和触摸屏的组合可以为学生提供更加直观、互动的学习方式。

2.资源共享和管理:通过触摸屏界面,教师可以方便地管理和共享教学资源。

3.学生跟踪和评估:单片机可以记录学生的学习行为并进行评估,提供个性化的学习建议。

总结:单片机与触摸屏的结合在医疗设备、工业自动化、智能家居系统、交通运输和教育领域等众多应用领域中展现了巨大的潜力。

单片机中的触摸屏接口技术原理与实现

单片机中的触摸屏接口技术原理与实现

单片机中的触摸屏接口技术原理与实现触摸屏接口技术是现代电子设备中广泛应用的一项重要技术。

在单片机系统中,触摸屏接口技术可以实现用户对设备的交互操作,提升用户体验。

本文将介绍触摸屏接口技术的原理和实现方法。

触摸屏接口技术的原理触摸屏接口技术的原理是基于电容或电阻效应实现的。

常见的触摸屏包括电容式触摸屏和电阻式触摸屏。

电容式触摸屏是利用触摸屏面板上存在的感应电容实现的。

当手指或触控笔接触触摸屏面板时,触摸屏上的感应电容会发生变化。

通过测量感应电容的变化,可以确定触摸位置。

电容式触摸屏的优点是灵敏度高、触感好,适合多点触控操作。

其缺点是对温度和湿度敏感。

电阻式触摸屏是利用触摸屏面板上存在的两层导电薄膜之间的接触实现的。

当手指或触控笔按压触摸屏面板时,两层导电薄膜之间发生接触,形成电路闭合。

通过测量电路参数的变化,可以确定触摸位置。

电阻式触摸屏的优点是适应性强,可以用手指、触控笔等多种方式进行触控。

其缺点是灵敏度相对较低,多点触控能力较差。

触摸屏接口技术的实现在单片机系统中,触摸屏接口技术的实现首先需要通过硬件电路与触摸屏进行连接。

常见的连接方式有串行接口和并行接口。

串行接口是通过少量的引脚实现与触摸屏的通信。

通常采用的协议是SPI(串行外设接口)或I2C(串行总线接口)。

使用串行接口可以减少引脚数量,适用于引脚资源有限的单片机系统。

但由于数据传输速度较慢,对系统性能要求较高。

并行接口是通过多个引脚实现与触摸屏的通信。

通常采用的协议是8080或6800并行总线接口。

使用并行接口可以实现高速数据传输,适用于对数据传输速度要求较高的应用场景。

但由于引脚数量较多,对系统引脚资源有一定要求。

在接口电路中,需要实现触摸屏的电源供应、数据传输和指令控制等功能。

具体实现方式根据触摸屏的设计和单片机系统的需求而定。

触摸屏接口技术的驱动程序通常由单片机系统开发人员编写。

驱动程序主要包括触摸屏芯片的初始化配置、数据传输和触摸事件处理等功能。

PIC单片机控制触摸屏心得

PIC单片机控制触摸屏心得

PIC单片机控制触摸屏一、触摸屏基本原理:触摸屏并非液晶显示屏,而是显示屏前面的透明薄膜。

它有三层构成:X电极层、Y电极层、中间隔离层。

两电极层平常是相互绝缘的,当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D转换,并将得到的电压值与5V相比即可得触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。

二、PIC单片机pic16f77简介:1、我所使用的是40脚封装的芯片。

管脚如下图:I/O口的方向有TRISX寄存器设置。

0是输出1是输入,若为输出,则PORTX寄存器和RXw位可以控制引脚的高低电平。

2、AD转换模块:AD转换模块有三个寄存器:ADCON0、ADCON1、ADRES。

AD转换的步骤:其中第4步中需要等待的采集时间有时不能按照文档中所说的16us左右。

如果单纯的用一路AD通道,则16us的采集时间是可以的。

但是若涉及到多通道之间的相互转换后,这个时间就不能保证采集的信号是正确的,应该延长采集时间。

我看到网上有人说用1ms 的延时,具体延时应根据实际情况测量一下。

AD转换结果位于ADRES寄存器中,8位。

3、通用串口USART:建议大家调试程序的时候多用一下USART,太好用了。

下面是有关寄存器:TXREG :发送缓冲器,RCREG :接收缓冲器。

4、中断:下面是与中断有关的寄存器:中断编程需要注意的问题:PIC单片机的编程软件是MPLAB,它只有一个中断函数,并且有interrupt关键字。

多个中断同时使能时,需要在中断函数里判断中断标志位,来判断是哪个外设发生了中断。

三、控制电路:程序设计:(1)、检测是否有触控操作:首先使T1、T3导通,T2、T4截止,AD转换ADY 的电压值,若为0或某一范围内,则认为没有触控操作,否则有触控操作。

单片机与触摸屏的接口技术及实现方法

单片机与触摸屏的接口技术及实现方法

单片机与触摸屏的接口技术及实现方法一、引言随着科技的不断发展,触摸屏已经成为现代电子设备中不可或缺的一部分。

触摸屏使用起来方便,操作灵活,广泛应用于智能手机、平板电脑、工业控制、医疗设备等领域。

而单片机作为嵌入式系统中的重要组成部分,负责接收、处理和控制各种外设设备,与触摸屏的接口技术及实现方法是我们需要关注和深入了解的内容。

二、单片机与触摸屏的接口技术1. 串行接口串行接口是常见的单片机与触摸屏的连接方式。

其中,常用的有SPI(串行外设接口)、I2C(串行外设接口)等。

串行接口具有简单、灵活、适用于长距离传输的特点。

2. 并行接口并行接口是单片机与触摸屏之间的另一种常用的连接方式。

并行接口通过多根线传输数据,使得数据传输速度更快,但是需要占用更多的引脚和硬件资源。

3. USB接口USB接口(通用串行总线接口)是一种高速、热插拔的接口方式。

通过USB接口连接单片机和触摸屏,可以快速传输数据,适用于需要高速数据传输的场合。

三、单片机与触摸屏的实现方法1. 软件实现在软件实现中,我们可以使用单片机的GPIO(通用输入输出)端口将触摸屏的接口引脚与单片机相连。

通过程序编写,实现单片机对触摸屏的控制和数据读取。

2. 硬件实现硬件实现包括通过外部电路芯片来实现单片机与触摸屏的连接。

常见的外部电路芯片有ADS7843、ADS7846等。

这些芯片可以通过SPI接口或I2C接口与单片机进行通信,实现对触摸屏的控制和数据读取。

四、单片机与触摸屏的典型应用1. 智能手机智能手机是单片机与触摸屏技术最广泛应用的领域之一。

通过单片机与触摸屏的接口技术,实现对手机触摸屏的控制和数据读取,使得用户可以通过触摸屏方便地进行操作和控制。

2. 平板电脑平板电脑是另一个需要单片机与触摸屏技术配合的领域。

通过单片机与触摸屏的接口技术,实现对平板电脑触摸屏的控制和数据读取,使得用户可以通过平板电脑触摸屏进行多点触控操作。

3. 工业控制单片机与触摸屏的结合在工业控制领域也得到了广泛应用。

触摸屏与单片机的通讯实现

触摸屏与单片机的通讯实现

触摸屏与单片机的通讯实现摘要:在当前的嵌入式设备中,触摸屏作为人机接口得到了广泛的应用。

文章讨论了基于HIT6600触摸屏模块与富士通16位单片机90F340串口通讯实现的软硬件设计。

关键词:HIT6600 90F340 触摸屏单片机1、引言随着后PC 时代的到来,嵌入式系统在信息家电、移动计算设备、网络设备、工业控制和仪器仪表等众多领域中得到了广泛的应用,在这些产品中,触摸屏因方便灵活、节省空间、直观等特点,已经逐渐取代键盘成为嵌入式计算机系统主流的输入设备。

触摸屏输入系统由触摸屏、触摸屏控制器、微控制器及其相应的驱动程序构成。

本文介绍触摸屏控制器与富士通16位单片机90f340串口通讯实现的软硬件设计。

2、触摸屏与单片机的硬件连接采用HIT6600触摸屏与90F340单片机一对多通信。

把触摸屏的COM1 9孔插座与串口通讯的90F340单片机相连接。

注意:通信电缆DB9是1-485的正极、6 -485的负极。

由于是一对多的通讯,所以增加串口通讯芯片MAX1487满足分机负载要求。

3、建立触摸屏与单片机通讯的软件设置打开触摸屏组态软件,从[应用]下拉菜单中选[设定工作参数],弹出如图1所示工作参数设置对话框。

触摸屏的系统参数中装置名称设置成ModBus Master,通信参数设置必需与单片机通信参数设置一致。

通信口/连线方式设置成COM1,数据位设置成8位,1个停止位,波特率9600,校验位设置与单片机编程一致,PLC站号是单片机定义的站地址一样,站号需从1开始。

参数设置完成,按确定键。

4、触摸屏的主态软件通讯设置编辑HIT6600触摸屏提供了一种既方便又功能强大的宏指令应用方式,使人机得以经由内部宏指令(Macro Function)功能执行数值运算,逻辑判断,流程控制,数值传递,数值转换,计时器计数器,自定通讯指令操作等等,由宏指令的使用可让人机不仅和PLC 连线通讯,同时由另一通讯口来执行同其他通讯设备连线,此功能不仅提供有效的系统整合同时成为最经济便宜的硬件应用架构。

51单片机与触摸屏通讯实例

51单片机与触摸屏通讯实例
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
/* Table Of CRC Values for high-order byte */
uchar code auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x7ห้องสมุดไป่ตู้, 0xB5,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
/* these macro describe send or recieve allowed */
#define SEND 1 // send allowed
#define RECIEVE 0 // recieve allowed

单片机中的触摸屏技术与应用实例

单片机中的触摸屏技术与应用实例

单片机中的触摸屏技术与应用实例触摸屏技术是现代电子设备中一个常见且重要的交互方式。

在单片机(Microcontroller Unit,MCU)中,触摸屏技术的应用越来越普遍,为用户提供了更加直观、便捷的操作体验。

本文将介绍单片机中的触摸屏技术及其应用实例。

一、触摸屏技术的原理与分类触摸屏技术基于电容或压力传感器原理,通过人体的触摸操作来实现与设备的交互。

根据实现原理,触摸屏技术可分为电阻式、电容式、表面声波式和投射式等几种类型。

1. 电阻式触摸屏电阻式触摸屏是一种常见且成熟的触摸屏技术。

其原理是基于两层透明薄膜之间的电阻变化来检测触摸点位置。

通过测量不同位置处的电阻值变化,可以准确确定触摸点的坐标。

电阻式触摸屏具有价格低廉、灵敏度高等优点,适用于大部分手写和触摸操作。

2. 电容式触摸屏电容式触摸屏是目前最为常见和广泛应用的触摸屏技术。

其基本原理是利用电容变化来检测触摸位置。

电容式触摸屏又可分为静电式和互电感应式两种类型。

静电式电容触摸屏通过感应人体电荷来确定触摸位置,而互电感应式则是通过感应人体和电容屏之间的电场变化来判断触摸点位置。

电容式触摸屏具有较高的灵敏度、透光性好的优点,常用于手机、平板电脑等便携设备。

3. 表面声波式触摸屏表面声波式触摸屏通过传输声波来检测触摸位置。

触摸屏表面覆盖着一层传感器,当触摸点碰触到屏幕时,声波会发生衍射,通过检测衍射信号的变化来确定触摸位置。

表面声波式触摸屏适用于公共场所及工业控制等环境,因其具备耐用、防污等特点。

4. 投射式触摸屏投射式触摸屏是一种比较新型的触摸屏技术。

其原理是通过投射光线到屏幕上,通过光电传感器获取触摸点位置。

投射式触摸屏具有高精度、适应性强等特点,被广泛应用于大型交互显示设备。

二、单片机中触摸屏技术的应用实例1. 电子签名设备电子签名设备常用于合同、文件签名等场景中。

通过单片机和触摸屏的结合,用户可以直接在屏幕上进行签名操作,并实时显示签名效果。

单片机与触摸屏的交互设计

单片机与触摸屏的交互设计

单片机与触摸屏的交互设计在单片机与触摸屏的交互设计中,合理的界面设计和交互方式能够提高用户体验和系统的易用性。

下面从界面设计、交互设计和用户体验三个方面展开论述,探讨如何实现优秀的单片机与触摸屏的交互设计。

一、界面设计在单片机与触摸屏的交互设计中,界面设计是关键之一。

界面设计应该体现简洁、清晰、美观的原则,同时也需考虑用户的交互需求和习惯。

以下是几点界面设计的注意事项:1. 界面布局:合理的界面布局能够使用户快速找到所需信息。

主要信息应放在显著的位置,次要信息应放在次要的位置,以保持整体平衡。

2. 图标设计:图标是界面上的重要元素,能够快速传递信息。

图标设计应简洁明了,与功能对应。

同时,图标的大小和颜色也需要考虑,以确保用户的可视性。

3. 颜色搭配:颜色搭配要符合视觉美学,同时也要注意色彩的醒目度和对比度,以提高用户的界面辨识度和易用性。

二、交互设计在单片机与触摸屏的交互设计中,交互设计是至关重要的环节。

良好的交互设计可以帮助用户理解和掌握系统的操作方式,提高用户的工作效率和满意度。

以下是几点交互设计的原则:1. 易学性:系统的操作方式应该简单易学,用户能够通过直观的操作快速上手。

不需要过多的学习成本和培训。

2. 一致性:系统的交互界面应该保持一致性,相同的功能在不同界面下操作方式应该一致,以减少用户的认知负担。

3. 反馈与提示:系统应该给出明确的反馈和提示,帮助用户了解操作的结果和下一步的操作。

可以通过声音、震动等方式提醒用户。

4. 交互效率:合理的交互设计可以提高用户的操作效率,尽量减少操作的步骤和时间。

例如,可以采用滑动、拖拽等手势操作,快速完成操作。

三、用户体验用户体验是评价单片机与触摸屏交互设计好坏的关键指标。

通过提供良好的用户体验,可以增强用户对系统的好感,并提高用户的满意度。

以下是几个关键点:1. 响应速度:系统的响应速度要快,用户操作时不应产生明显的延迟或卡顿。

这能够给予用户快速反馈,提高用户体验。

基于单片机的触摸屏技术研究及实现

基于单片机的触摸屏技术研究及实现

基于单片机的触摸屏技术研究及实现概述:触摸屏技术作为一种直观、方便的人机交互方式,已经广泛应用于各领域的电子产品中。

基于单片机的触摸屏技术是其中一种常见的实现方式。

本文将对基于单片机的触摸屏技术进行深入研究,包括原理、常用的触摸屏类型、控制方式和实现过程等,并通过实例演示如何实现一个简单的触摸屏控制系统。

一、原理介绍:基于单片机的触摸屏技术主要基于电容或电阻的原理实现。

电容触摸屏通过对用户手指带来的电容变化进行检测来实现触摸操作,而电阻触摸屏则是通过两层导电层之间的接触产生电阻变化来检测触摸操作。

二、常用的触摸屏类型:1. 电容触摸屏:电容触摸屏分为感应和投射两种类型。

感应电容触摸屏通过感应电场变化来检测触摸操作,常见的有表面声波电容触摸屏、面板电容触摸屏等。

投射电容触摸屏则是利用玻璃和电容板之间的投射电容来检测触摸操作,常见的有电容玻璃触摸屏、电容膜触摸屏等。

2. 电阻触摸屏:电阻触摸屏通过对两层导电层之间的电阻变化进行检测来实现触摸操作,常见的有四线电阻触摸屏、五线电阻触摸屏等。

三、触摸屏的控制方式:1. 串口(UART)方式:串口方式是一种简单且常用的触摸屏控制方式。

单片机通过串口与触摸屏进行通信,通过发送指令和接收数据来实现对触摸屏的控制和数据读取。

2. 并口方式:并口方式是另一种常见的触摸屏控制方式。

单片机通过引脚直接与触摸屏进行连接,通过设定引脚状态来实现触摸屏的控制和数据读取。

四、基于单片机的触摸屏实现:下面以一个基于单片机的电阻触摸屏实现为例,演示触摸屏的基本控制和数据读取过程。

步骤一:硬件连接将电阻触摸屏的数据线连接到单片机的引脚上,并确保引脚连接正确无误。

步骤二:初始化设置在单片机上设置相关引脚为输入或输出,并对用于触摸屏控制的引脚进行初始化设置。

步骤三:数据读取单片机通过读取触摸屏的电阻值来获取触摸操作的位置信息。

通过定时器或中断的方式,定时读取触摸屏的电阻值并进行处理。

步骤四:触摸事件处理根据读取到的触摸屏数据,判断触摸操作的类型(点击、滑动、放大缩小等),并进行相应的处理。

单片机与人机交互触摸屏按键和显示屏的应用

单片机与人机交互触摸屏按键和显示屏的应用

单片机与人机交互触摸屏按键和显示屏的应用现代科技的迅速发展,使得人机交互成为了当下热门的领域之一。

作为人类与电子设备之间的桥梁,触摸屏按键和显示屏的应用在我们的日常生活中扮演着越来越重要的角色。

而单片机则作为嵌入式系统中最为常见的控制器,与触摸屏按键和显示屏的结合,不仅提升了用户交互体验,也为我们的生活带来了便利。

本文将深入探讨单片机与人机交互触摸屏按键和显示屏的应用。

一、触摸屏按键的应用触摸屏按键是一种新型的人机交互界面,它通过电容或者压力等方式感应用户的点击动作,并将点击位置信号转换为电信号输入,从而实现对设备的控制。

单片机通过与触摸屏按键的连接,可以实现多种功能。

1.1 触摸屏按键在智能手机中的应用随着智能手机的普及,触摸屏按键已经成为了目前手机最常见的操作方式之一。

通过单片机与触摸屏的连接,我们可以轻松实现对手机屏幕的触摸操作,包括滑动、点击、放大缩小等。

这不仅提高了手机的操控性,也为用户带来了更好的使用体验。

1.2 触摸屏按键在工业控制领域的应用在工业控制领域,触摸屏按键的应用也越来越广泛。

通过与单片机的连接,我们可以将触摸屏作为控制设备的输入端口,实现对各种设备的控制和监控。

例如,在一些工厂中,工人可以通过触摸屏按键来控制生产线的开关、调整设备参数等,大大提高了生产效率。

二、显示屏的应用显示屏作为人机交互的重要组成部分,具有信息输出的功能,将数据以人类可读的形式展示出来。

单片机通过与显示屏的连接,可以实现对数据的显示和处理,提升用户交互的体验。

2.1 显示屏在计算机领域的应用在计算机领域,显示屏是我们与计算机最直接的交互方式之一。

通过单片机与显示屏的连接,我们可以输出文字、图像、视频等多种形式的信息。

这不仅使得计算机的操作更加直观,也为我们提供了更方便的信息交流方式。

2.2 显示屏在仪器仪表领域的应用在仪器仪表领域,显示屏的应用也非常广泛。

通过单片机与显示屏的连接,我们可以将各种测量数据以数字或者图形的形式显示出来,方便用户进行实时监测和数据分析。

单片机触摸屏应用

单片机触摸屏应用

单片机触摸屏应用随着科技的不断进步和单片机技术的广泛应用,触摸屏作为一种新型的人机交互界面方式,已经在各个领域得到了广泛的应用。

本文将介绍单片机触摸屏的基本原理及其应用。

一、单片机触摸屏的原理单片机触摸屏是一种通过触摸来实现信息交互的技术,其基本原理是通过传感器感知触摸位置的电压信号,并将其转换为单片机能够处理的数字信号,从而实现对触摸位置的检测及响应。

单片机触摸屏的主要组成部分包括触摸面板、传感器、控制电路和显示屏。

触摸面板通过感应人体触摸行为,并将触摸位置的电压信号传递给传感器。

传感器将电压信号转换为与触摸位置相关的电信号,并传输给控制电路。

控制电路负责解析传感器传来的信号,计算触摸位置,并将数据传递给单片机。

最后,单片机根据接收到的触摸位置数据,进行相应的处理,并通过显示屏将结果展示出来。

二、单片机触摸屏的应用1. 工业自动化领域:单片机触摸屏广泛应用于工业控制系统中。

通过触摸屏的直观操作界面,工程师可以方便地进行参数设置、设备监控和故障排查等操作,提高了工作效率。

2. 智能家居领域:单片机触摸屏可以作为智能家居系统的控制终端,实现对灯光、窗帘、空调、音乐等设备的远程控制。

用户只需通过触摸屏轻轻一触,即可实现各种操作,提高了家居生活的便利性。

3. 医疗设备领域:单片机触摸屏在医疗设备上的应用越来越广泛。

患者和医生可以通过触摸屏对医疗设备进行操作和监控,实现对生命信号、治疗参数等数据的实时监测和调整,提高了医疗设备的可靠性和实用性。

4. 汽车导航领域:单片机触摸屏在汽车导航系统中具有重要的应用价值。

驾驶员通过触摸屏可以轻松设置导航目的地、选择音乐、调节空调等操作,提高了驾驶安全性和驾驶体验。

5. 智能穿戴设备领域:单片机触摸屏还广泛应用于智能手表、智能眼镜等智能穿戴设备中。

用户可以通过触摸屏进行手势操作、查看健康数据、接听电话、发送消息等功能,方便实用。

三、单片机触摸屏的发展趋势随着科技的不断发展,单片机触摸屏将会有更多的创新和突破。

HITECH触摸屏与单片机的通信协议

HITECH触摸屏与单片机的通信协议
S nC a ) R C as ( 为 串 口发 送 接 收 函 数 ,依 据 ed hr( , x hr ) PC 8 4 2 片机 U A T口进 行 编写 .通 信 参数 设 置 应 和 I 1F 5 单 SR 触 摸屏 通 讯 协 议 设 置 保 持 一 致 ,C aTA ci si C a、 hro si 、A c2 hr i ItA ci si It C a 和 A CI 相 互 转换 函数 。 n2 si 、A e 2n 为 h r i S I码
(5 )表 示 ,即 34 ;又 如块 校 验 码 5 h 4h 05 A ,则 应 该 表 示 为 3 4 5l源自( )消 息 格式 示 例 3
函 数等 。为 保 证 数 据 传 输 的 完 整性 和 可 靠性 ,还 需 进 行 数 据 校验 编 程 。 以下 示 例代 码 为读 寄存 器 的 函数 程 序 ,其 中
无 .奇 校 验或 偶 校 验
22自定义通信 协议 .
同标 准 M d u 协 议 一 样 .使 用 主一 从 技 术 .即 仅 一 obs
设备 ( 主设备 )能初 始化传输 ( 询 ) 查 ,其它设 备 ( 从设
备 )根 据 主 设 备 查 询 提供 的数 据 作 出 相 应 反 应 。主 设 备 可 单 独 和 从 设 备 通 信 ,也 能 以 广 播 方 式 和 所 有 从 设 备 通 信 。 如 果 单 独 通 信 .从 设 备 返 回一 消息 作 为 回应 ,如 果 以 广 播 方 式 查 询 ,则 不 作任 何 回应 。 HIE H 自定 义 通 信 协 议 定 义 了 自己 的 起 始 符 、 结 束 TC 符 、功 能码 、校 验域 。 H r C 触 摸 屏 内 部定 义 了两 种 数 据格 式 :字 寄 存 器 rE H

台达触摸屏与单片机通讯说明

台达触摸屏与单片机通讯说明

台达触摸屏与单片机通讯说明1、新建项目,选择您的触摸屏型号,点下一步;
2、通讯设定:最左边的COW是根据您的具体接线选择而勾选的;在控制器下拉框中选择MODBU前片机中需写标准的MODBUS议),按照您的单片机程序进行选择,不论是ASCII或者RTU需将触摸屏选择MASTER主)。

选择好此栏后,下面的“一般”对具体的通讯参数进行设备,如站号,通讯方式(232、485),停止位、波特率等,这些选择需与单片机中的程序一致才能通讯上。

选择好后点完成,就可以编写人机画面了。

3、接线
232:触摸屏端9针母头:2(RX)、3(TX)、5(GND)
485:触摸屏端9针母头:1(D+)、6(D-)。

单片机与触摸屏的接口设计与人机交互应用案例研究

单片机与触摸屏的接口设计与人机交互应用案例研究

单片机与触摸屏的接口设计与人机交互应用案例研究在现代科技不断发展的今天,单片机与触摸屏的结合已经成为一种常见的电子产品设计方式。

单片机作为一种集成电路芯片,在微处理器中具有完整的中央处理器、存储器、I/O接口等硬件系统,而触摸屏则是一种通过人体电容来实现操作的输入设备。

单片机与触摸屏的结合,可以实现更加便捷、灵活和智能的人机交互方式,本文将通过一个实际案例来介绍单片机与触摸屏的接口设计与人机交互应用。

在本案例中,我们以一个智能家居控制系统为例进行介绍。

该系统主要包括单片机控制模块、触摸屏显示模块、以及各种传感器和执行器。

单片机控制模块负责通过接口与触摸屏显示模块进行通信,接收用户输入的指令并控制各种设备的运行状态。

触摸屏显示模块则用于显示系统的状态信息和操作界面,实现人机交互。

在该系统中,单片机与触摸屏的接口设计是非常关键的一环。

首先,我们需要选择合适的通信接口来连接单片机和触摸屏。

常见的接口有SPI接口、I2C接口等,不同的接口具有不同的特点和优缺点,需要根据实际需求进行选择。

在本案例中,我们选择了SPI接口来连接单片机和触摸屏,因为SPI接口具有高速传输、简单连接、抗干扰能力强等优点,非常适合在该系统中使用。

接着,我们需要设计合适的通信协议来实现单片机与触摸屏之间的数据交互。

通信协议可以理解为双方之间的一种约定,规定了数据的传输格式、命令的格式等,确保双方能够正常通信。

在本案例中,我们设计了一种简单的通信协议,包括数据包格式、命令格式、校验和等内容,保证数据传输的可靠性和稳定性。

除了接口设计,人机交互应用也是该系统中的一个重要环节。

触摸屏作为用户的主要操作界面,需要设计直观、友好的交互界面,方便用户进行各种操作。

在本案例中,我们设计了一个简洁明了的控制界面,包括各种开关按钮、滑动条等元素,用户可以通过触摸屏轻松地进行各种设备的控制。

总的来说,单片机与触摸屏的接口设计与人机交互应用在智能家居控制系统中起着至关重要的作用。

教你用单片机驱动大触摸液晶显示屏

教你用单片机驱动大触摸液晶显示屏

随着工业需求的不断提高,普通10.4寸,12.1寸,15寸的人机界面已经不能满足很多客户的需求,现在市面上推出了VGA组态人机界面,可以驱动多种分辨率的触摸屏显示器,22寸,42寸等宽屏都不是问题。

开发过程跟普通人机界面大为相似,唯一不同的是分辨率选择,触摸屏显示器选择等。

下面介绍开发方法:组态软件编程步骤(到广州市微嵌计算机科技有限公司官方网站下载:):组态软件编程步骤:1.新建组态软件工程属性,选择最佳分辨率(比如42寸屏的分辨率是1920*1080,但是选项中没有,那就应该按照比值最近法选,因为1920除以1080等于1.7777,可选分辨率里面的1366除以768等于1.7778,而其他分辨率比值都没有这个接近,就选1366*768为最佳分辨率),选择与PLC,单片机等从设备的通讯协议,支持Modbus RTU和西门子,欧姆龙,台达,三菱,松下等主流PLC2.进入前一步所设置分辨率(1024*768)3.编程好上位机之后就可以点击“调试”菜单里面的下载到设备了至于单片机如何驱动这个触摸液晶屏,步骤如下:很多时候,工业控制或者产品设计方面受到PLC这种功能确定,扩展麻烦,成本昂贵等方面的制约因素,需要独立开发一种特殊功能,但是又需要连接触摸屏通讯,工程师在这个方面往往需要花费很大功夫,现在我要帮大家解决的问题就是单片机与人机界面触摸屏通讯的最简单,最有效的2种方法,其实就是分为2种通讯协议,即工业标准的Modbus RTU协议和工程师自己定义的自由协议。

本实例采用广州市微嵌计算机科技有限公司(公司网站:)的人机界面作为参考,因为公司提供一系列的技术支持和公布单片机源代码,加上公司的人机界面支持自由协议等等先天优势,开发工程方便有效。

方案比较:方案一modbus—rtu协议:优点:工业标准通讯协议,具有通用性,,传输数据量大缺点:需要时间去了解协议的格式和以及按照规定编写通讯程序(我们提供MODBUS-RTU源代码,客户直接移植就可以,不必费心)方案二自由协议:优点:数据格式客户自己定义,灵活多变,定制性强,可以模拟任何已知报文的通讯协议缺点:传输数据量不大,通用性不强,移植不方便工程师可以根据以上两种通讯协议的优缺点来选择理想的方案;现在我们重点介绍广州市微嵌计算机科技有限公司的人机界面的自由通讯协议。

基于单片机的简易触摸屏手机

基于单片机的简易触摸屏手机

基于单片机的简易触摸屏手机首先,我们需要了解触摸屏的工作原理。

触摸屏通常分为电阻式触摸屏和电容式触摸屏两种类型。

电阻式触摸屏通过压力使两层导电层接触,从而检测到触摸位置;而电容式触摸屏则是利用人体的电容效应来检测触摸。

对于我们的简易触摸屏手机,由于制作难度和成本的考虑,我们选择电阻式触摸屏。

接下来是单片机的选择。

单片机作为整个系统的控制核心,需要具备足够的处理能力和接口资源。

常见的单片机如 STM32 系列、Arduino 等都可以满足我们的需求。

这里以 Arduino 为例,它具有丰富的库函数和易于上手的开发环境,非常适合初学者。

硬件方面,除了单片机和触摸屏,我们还需要一些其他的组件,如显示屏、按键、扬声器、麦克风、电池等。

显示屏用于显示手机的界面和信息,按键可以用于一些快捷操作,扬声器和麦克风用于实现通话功能,电池则为整个系统提供电源。

在电路设计中,需要将各个组件与单片机正确连接。

触摸屏的接口通常包括 X、Y 轴的模拟输出,需要连接到单片机的模拟输入引脚。

显示屏可以选择常见的液晶显示屏(LCD)或者电子纸显示屏(EPD),通过串行接口(如 SPI 或 I2C)与单片机通信。

按键可以直接连接到单片机的数字输入引脚,并通过上拉电阻保证引脚在未按下时处于高电平状态。

扬声器和麦克风则需要通过音频放大器与单片机连接,以实现声音的输入和输出。

电池需要通过合适的电源管理芯片为整个系统提供稳定的电源。

软件方面,首先需要对单片机进行初始化设置,包括设置引脚模式、时钟频率等。

然后,需要编写触摸屏的驱动程序,用于读取触摸屏的坐标信息。

根据读取到的触摸坐标,可以在显示屏上相应的位置显示操作效果。

同时,还需要实现通话、短信等基本功能的逻辑控制。

对于通话功能,需要使用通信模块,如 GSM 模块或者蓝牙模块。

GSM 模块可以直接连接移动网络实现通话和短信功能,但需要插入SIM 卡并支付相应的费用。

蓝牙模块则可以与其他蓝牙设备(如蓝牙耳机)配对,实现短距离的通话功能。

单片机指令的人机交互与触摸屏控制

单片机指令的人机交互与触摸屏控制

单片机指令的人机交互与触摸屏控制在现代科技的飞速发展下,单片机已经成为电子产品中不可或缺的核心部件。

单片机通过指令的执行,实现了电子设备的功能。

而人机交互和触摸屏控制技术的应用,则使得人们更加便捷地与电子设备进行交互和控制。

本文将探讨单片机指令与人机交互以及触摸屏控制的相关内容。

一、单片机指令及其执行过程单片机指令是指用来告诉单片机具体执行什么操作的命令。

单片机指令可以分为存储器指令和I/O指令两类。

存储器指令用于对数据进行读写操作,I/O指令则用于与外部设备进行通信。

单片机指令的执行过程一般包括指令提取、指令译码、执行指令、存储结果等步骤。

首先,单片机从存储器中提取指令,并将指令送至指令译码器进行解码。

解码后的指令被送至执行器执行相应的操作,最后将执行结果存储到指定的位置。

二、人机交互与单片机指令人机交互是指人与机器之间进行信息交流和操作的过程。

在单片机中,通过合理的人机交互方式,用户可以与设备进行有效的沟通和操作。

常见的人机交互方式包括按键、数码管显示、液晶显示以及触摸屏等。

其中,触摸屏作为一种直观、方便的交互方式,得到了广泛的应用。

在单片机中,人机交互一般通过按键输入和显示输出来实现。

用户通过按键输入指令,单片机通过相应的电路和程序对按键进行扫描,并将按键信息转化为电信号,进一步处理后得到与指令相对应的操作。

三、触摸屏控制与单片机指令的结合触摸屏是一种通过触摸屏幕来完成交互操作的设备。

触摸屏控制可以与单片机指令结合,实现更加直观、灵活的人机交互。

触摸屏控制主要包括触摸屏的检测和数据处理两个部分。

在检测部分,通过感应触摸屏上的电场变化或光学反射原理,检测用户的触摸动作,获取触摸点的坐标信息。

在数据处理部分,单片机根据获得的坐标信息进行相应的计算和判断,将触摸操作转化为对应的指令。

通过触摸屏控制,用户可以直接在屏幕上进行手势操作、绘图、拖拽等,而不再需要使用传统的按键方式。

这大大提高了用户的操作体验,使得人机交互更加便捷。

单片机中的触摸屏控制技术与应用

单片机中的触摸屏控制技术与应用

单片机中的触摸屏控制技术与应用触摸屏控制技术是一种现代化的人机交互方式,它广泛应用于各种电子设备和产品中。

在单片机领域,触摸屏控制技术发挥着重要的作用,为用户提供了一种更直观、更便捷的操作方式。

本文将深入探讨单片机中的触摸屏控制技术与应用。

一、触摸屏原理及分类触摸屏是一种通过感应人体触摸手指或特定工具的电容信号来实现输入的装置。

目前主要有电容式触摸屏、电阻式触摸屏和表面声波触摸屏等多种分类。

1. 电容式触摸屏电容式触摸屏利用了人体的电容特性,通过感应装置感知到电容的变化从而确定触摸位置。

电容式触摸屏具有高灵敏度、快速反应以及支持多点触控等优点,因此被广泛应用于智能手机、平板电脑等设备上。

2. 电阻式触摸屏电阻式触摸屏是利用两层导电材料之间的电阻变化来实现触摸输入的。

用户触摸屏幕时,两层导电材料之间形成电阻变化,由控制电路测量电阻值以确定触摸位置。

电阻式触摸屏具有良好的稳定性和可靠性,并且对触控工具的适应性较强。

3. 表面声波触摸屏表面声波触摸屏是利用超声波传感技术来检测触摸位置的。

触摸屏表面布满了一个或多个超声波传感器,当用户触摸屏幕时,声波会受到阻挡并产生反射,传感器会捕捉到反射信号从而确定触摸位置。

表面声波触摸屏具有高精度和高可靠性,并且对于各种触摸工具的适应性较强。

二、单片机中的触摸屏控制技术在单片机应用中,触摸屏控制技术起到了与外界进行交互的关键作用。

单片机通过接收触摸屏的输入信号,经过处理后实现对设备的控制和操作。

下面将介绍几种常用的单片机触摸屏控制技术:1. 串口通信技术串口通信技术是一种常见的单片机和触摸屏之间进行数据传输的方式。

通过串口通信,单片机可以接收触摸屏发送的坐标数据,并进行解析和处理。

然后根据触摸位置的变化,实现对设备的控制和响应。

2. AD转换技术一些触摸屏使用电阻式原理进行输入,这就需要使用AD转换技术将触摸屏位移量转换成数字信号。

通过AD转换技术,单片机可以准确获取触摸屏坐标数据,并进行相应的处理和控制。

单片机与触摸屏的接口设计要点

单片机与触摸屏的接口设计要点

单片机与触摸屏的接口设计要点单片机是一种微型计算机,具有简洁的外部硬件接口和内部存储空间。

触摸屏则是一种输入设备,能够通过触摸屏幕来实现用户与设备的交互。

单片机与触摸屏的接口设计是将两者连接起来,使之能够进行数据传输和指令控制的过程。

接下来,我将讨论单片机与触摸屏接口设计的一些要点和注意事项。

首先,接口电压的匹配是接口设计中的重要要点。

单片机和触摸屏的工作电压需要匹配,确保它们之间能够正常工作。

一般而言,单片机可以以5V、3.3V等不同的电压工作,而触摸屏的工作电压通常为3.3V。

因此,需要选择合适的电压转换电路,将单片机的输出电压转换为触摸屏能够接受的电压,以避免因电压不匹配而造成的不良影响,如信号失真或数据传输错误。

其次,数据传输是接口设计中另一个关键要点。

单片机与触摸屏之间需要进行数据的传输,包括读取触摸屏上的触摸信息和向触摸屏发送指令控制。

为了实现可靠的数据传输,常用的方式是采用串行通信协议,如I2C(Inter-Integrated Circuit)和SPI(Serial Peripheral Interface)等。

在设计时,需要根据单片机和触摸屏的支持情况选择合适的通信协议,并合理设置通信参数,如时钟频率、数据位数和校验方式等。

此外,触摸屏的校准是接口设计中的重要步骤。

触摸屏是一种通过检测触点位置来实现用户交互的设备,因此需要进行校准以确保准确的触摸定位。

校准过程一般需要在屏幕上显示一系列标记点,用户按照指示依次触摸这些点,以使得触摸屏能够准确识别触点位置。

在接口设计中,需要在单片机程序中实现触摸屏校准算法,以便能够准确地计算出触点的坐标。

另外,触摸屏的驱动是接口设计中需要考虑的关键要点。

触摸屏通常由液晶显示屏和触摸传感器组成,其中液晶显示屏的驱动和触摸传感器的驱动需要同时进行。

在接口设计时,需要根据触摸屏的具体型号和规格选择相应的驱动芯片,并合理配置驱动参数,如屏幕分辨率、扫描方式和驱动电压等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表 1 ADS7843 的控制字及数据传输格式 根据 ADS7843 的 Datasheet,ADS7843 的控制字及数据传输格式如表 1。其中 S 为数据 传输起始标志位,该位必为“1”。A2~A0 进行通道选择。MODE 用来选择 A/D 转换的精度, “1”选择 8 位,“0”选择 12 位。SER/选择参考电压的输入模式。PD1、PD0 选择省电模式:“00” 省电模式允许,在两次 A/D 转换之间掉电,且中断允许;“01”同“00”,只是不允许中断;“10” 保留;“11”禁止省电模式。 为了完成一次电极电压切换和 A/D 转换,需要先通过串口往 ADS7843 发送控制字,转 换完成后再通过串口读出电压转换值。标准的一次转换需要 24 个时钟周期。由于串口支持 双向同时进行传送,并且在一次读数与下一次发控制字之间可以重叠,所以转换速率可以提 高到每次 16 个时钟周期。如果条件允许,CPU 可以产生 15 个 CLK 的话(比如 FPGA 和 ASIC), 转换速率还可以提高到每次 15 个时钟周期。 所以我们选择控制字 : 0x94-----X+输入得到 Y AD 值 0xe4----Y+输入得到 X AD 值 SPI 初始化程序: void spi_init(void) { SPCR = 0x53; //setup SPI
PDF 文件使用 "pdfFactory Pro" 试用版本创建
以上所需要的加参考电压断开 A/D 转换等工作都是 ADS7843 直接完成的,只需要将相 应的命令传输到 ADS7843 即可,等待转换周期完成,检测到 BUSY 信号不再忙,即可以获 得相应电压的数据。
图 4 ADS7843 和触摸屏连接图 触摸屏是一个四线电阻屏幕,可以示意出两个电阻,测量 X 方向的时候,将 X+,X-之 间加上参考电压 Vref,Y-断开,Y+作为 A/D 输入,进行 A/D 转换获得 X 方向的电压,同 理测量 Y 方向的时候,将 Y+,Y-之间加上参考电压 Vref,X-断开,X+作为 A/D 输入,进 行 A/D 转换获得 Y 方向的电压,之后再完成电压与坐标的换算。整个过程类似一个电位器, 触摸不同的位置分得不同的电压。
图 1 触摸屏 触摸屏工作时,上下导体层相当于电阻网络。当某一层电极加上电压时,会在该网络上 形成电压梯度。如有外力使得上下两层在某一点接触,则在电极未加电压的另一层可以测得 接触点处的电压,从而知道接触点处的坐标。比如,在顶层的电极(X+,X-)上加上电压,则 在顶层导体层上形成电压梯度,当有外力使得上下两层在某一点接触,在底层就可以测得接 触点处的电压,再根据该电压与电极(X+)之间的距离关系,知道该处的 X 坐标。然后,将 电压切换到底层电极(Y+,Y-)上,并在顶层测量接触点处的电压,从而知道 Y 坐标。四线 制电阻触摸屏也是目前最常用的触摸屏产品。本系统中选用 AMT9502。 触摸屏控制器硬件设计
}
读取 ADS7843 的模拟量值;
unsigned int Get_Touch_Ad(unsigned char
channel)
{
unsigned int ad_tem;
SPI_MasterTransmit(channel);//发送控制字
if(PING&&0x08==0) ; //判断 busy
单片机最小系统设计如图 2 所示。低电压版本的 Atmega 128 支持 3.3V、5V 两种供电 电压,本系统采用 5V 供电,便于供电电压统一。晶振采用常规直插晶振 7.373800M,选用 标准晶振的目的主要是为了提高 USART 通讯波特率的准确性,使单片机能够使用于比较高 的通讯波特率。复位电路采用常规的 RC 复位,没有使用特殊的复位器件,Atmega 128 已经 内置了看门狗,并且可以通过编程使看门狗在程序启动前启动,即上电后程序启动前,看门 狗已经启动,这样系统的可靠性可以得到保证,看门狗最高分频系数是 2048K,最小分频系 统是 16K。系统中 PB0(SS)已经直接接到+5V,这样硬件配置了单片机为主机,下面所有外 挂的均为从机,本系统外挂只有一个就是 ADS7843。单片机和触摸屏控制器连接如图 3 所 示,PB1(CLK) 为 SPI 时钟,PB2(MOSI)为 SPI 主机输出从机输入, PB3(MISO)SPI 主机输 入从机输出。这三根线为 SPI 总线。
PDF 文件使用 "pdfFactory Pro" 试用etup SPI
}
SPI 主机传输函数:
void SPI_MasterTransmit(char cData)
{
SPDR = cData; /* 启动数据传输 */
while(!(SPSR & (1<<SPIF))); /*等待传输 结束*/
单片机扩展触摸屏人机接口的应用实例
本文介绍了四线电阻式触摸屏控制器 BBADS7843 与 AVR 单片机 Atmega128 的硬件连 接和驱动程序设计。
触摸屏 如图 1,典型触摸屏的工作部分一般由三部分组成:两层透明的阻性导体层、两层导体 之间的隔离层、电极。阻性导体层选用阻性材料,如铟锡氧化物(ITO)涂在衬底上构成,上 层衬底用塑料,下层衬底用玻璃。隔离层为粘性绝缘液体材料,如聚脂薄膜。电极选用导电 性能极好的材料(如银粉墨)构成,其导电性能大约为 ITO 的 1000 倍。
delayms(1);
SPI_MasterTransmit(0);
delayms(1);
//等待发送完毕
ad_tem=SPDR;
ad_tem=ad_tem<<8;
SPI_MasterTransmit(0); //启动 spi 传送
delayms(1); //等待发送完毕
ad_tem|=SPDR;
ad_tem=ad_tem>>4;
PDF 文件使用 "pdfFactory Pro" 试用版本创建
此外 PENIRQ 一般需要一个上拉电阻,因为 ADS7843 是一个 OC 门输出结构,本系统 中直接使用 Atmega 128 内部的上拉电阻。单片机中断系统中将 INT0 分配给触摸屏控制器, 并且设定成低电平触发,这样可以检测按键时间,可以用按键长短处理不同的功能。
触摸屏控制器驱动程序 驱动程序的编写与硬件的设计是直接相关,驱动程序是以上面所设计的硬件为基础的。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Atmega128 单片机是 Atmel 公司的 8 位 RISC 单片机,片内有 128Kflash、4K RAM、 4K EEPROM、两个可编程的 USART、1 个可工作在主机/从机的 SPI 串行接口。此外还有丰 富的 I/O 接口,8 通道 10 位分辨率 ADC 转换器等硬件资源。
图 2 单片机最小系统图
PDF 文件使用 "pdfFactory Pro" 试用版本创建
图 3 单片机和触摸屏控制器连接图 ADS7843 是 TI 公司的触摸屏控制器芯片 专门应用于四线电阻式触摸屏,最高达到 125K 的转换率 8 位或者 12 位可编程精度。外部参考电压范围从 1V 到 VCC 均可,VCC 最 高电压为 5V,高速低功耗使得 ADS7843 非常适合于使用电阻触摸屏的手持设备。宽温度设 计使得它很适用于大量的工业现场。 ADS7843 连接触摸屏的示意图如图 4 所示。
return(ad_tem); //返回的参数
}
不同的用户还需根据自己设计的系统,做一个简单的四点校正程序,这样可以获得一个 精确度较高的触摸屏坐标体系。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
结语 本系统已经在国家重点建设项目扬州二电厂工程 2×600MW 发电机组的自动化设备中 得到应用,共使用了 64 套,运行一年以来使用情况良好。 参考文献: 1. 金春林等编著,AVR 单片机 C 语言编程实例,清华大学出版社 2. BBADS7843 Datasheet,
相关文档
最新文档