材料力学总复习

合集下载

材料力学总复习

材料力学总复习
总复习
一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2

材料力学复习总结

材料力学复习总结

1、 材料力学的任务:强度、刚度和稳定性;应力 单位面积上的内力。

平均应力(1.1) 全应力(1.2)正应力 垂直于截面的应力分量,用符号表示。

切应力 相切于截面的应力分量,用符号表示。

应力的量纲:G Pa MPa )m /N (Pa 2、、国际单位制:22cm /kgf m /kgf 、工程单位制:线应变 单位xx 上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。

外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为(3-1)式中为该横截面的轴力,A为横截面面积。

正负号规定拉应力为正,压应力为负。

公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有xx或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力 (3-2)正应力(3-3)切应力(3-4)式中为横截面上的应力。

正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

拉应力为正,压应力为负。

对脱离体内一点产生顺时针力矩的为正,反之为负。

两点结论:(1)当时,即横截面上,达到最大值,即。

当=时,即纵截面上,==0。

(2)当时,即与杆轴成的斜截面上,达到最大值,即1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。

材料力学性能总复习-知识归纳整理

材料力学性能总复习-知识归纳整理

知识归纳整理《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、挑选题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高B.降低C.不变D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态B.软玻璃态C.高弹态D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢B.高碳钢C.白口铸铁D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞D.+∞6、Griffith强度理论适用于()。

A.金属B.陶瓷C.有机高分子D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面B.次表面C.内部D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值求知若饥,虚心若愚。

C.应力腐蚀破碎门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高B.越低C.不变D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口B.沿晶断口C.河流花样D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度B.洛氏硬度C.莫氏硬度D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

材料力学复习

材料力学复习

第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。

ασσα2cos =αστα2sin 21=σ为横截面上的应力。

横截面上的正应力为杆内正应力的最大值,而切应力为零。

与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。

纵截面上的应力为零,因此在纵截面不会破坏。

4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。

材料力学总复习公式

材料力学总复习公式

sx sy 2 sm ax sx sy 2 1 t ±( ) xy 2 2 sm 2in 或3
s
t
s x s y
sy
主 单元体
s2
sx
y
O x
txy s 1
s tmax x sy 2 2 )tx y t ±( 2 min
最大剪应力面与主平面 成45
应力
拉 (压)
s t
y x
Q
s
N ( x) s A
s max
N max [s ] A
t (r )
t max
Tr Ip
My s x Iz
QS z ty bI z
Tmax [t ] Wt
s max
M max [s ] WZ
t max [t ]
0
n 2、极限应力 : s jx {s s ,s 0.2 ,s b }
1、容许应力 :
s
s jx
变形 拉 压 L
L FN ( x) dx L EA( x )

A

B y
平 面 弯 曲 y
y( x)
q
M ( x) EI
AB
L
FN L EA
q max
Tmax [q ] GI p
对于实心圆截面: O d
对于空心圆截面:
4
Ip
d
d
32
D Ip

Wt I p R D3 16 0.2D3
32 D 4 4 (1 ) 32
4
(D4 d 4 )
64 3 d Wz Wy 32 y bh3 Iz 12 bh Wz 6

材料力学总复习

材料力学总复习

步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度

1
2
应变能

W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在

2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max

材料力学期末考试总复习

材料力学期末考试总复习

F c r =
p
E I ( m l ) 2
2
压杆的稳定性条件
l = ml
i i = I A
s
c r
s =
F £ j A
[s ]
第十三章 能量法 变形能
Ve =
外力功(线弹性)
ò
l
2 F N ( x ) dx + 2 E A (x )
ò
l
T 2 (x ) dx + 2 G I p ( x )
图解法 内力图 应力圆
实验法 机械性质 电测
单元体应力 组合变形应力
五、基本公式
应力= 内力 截面几何量
内力×杆长 变形= 截面刚度
F s = N A FN l D L = EA
T t = r I p Tl j = GI p
M s = y I z
Ml q = EI z
A C D B
3、图示悬臂梁弯曲时,靠近固定端的一段与大半径刚性圆柱 面贴合,从此以后,随着F力增大,梁内的最大弯矩 (C) 。 (A)线性增大; (B)非线性增大; (C)保持不变; (D)开始减小。
F
4、T形截面铸铁梁,设各个截面的弯矩均为正值, 则将其截面按图 (A) 所示的方式布置,梁的强度最 高。
直线等加速
K d a = 1 + g
匀速旋转
s
d
落体冲击
2 h Kd = 1 + 1 + D st
水平冲击
K d = v 2 g D st
=
g w 2 D 2
g
轴向拉伸与压缩
1 (C)
2、已知材料的比例极限s P =200MPa,弹性模量E=200Gpa, 屈服极限 s s =240 MPa,强度极限s =400 MPa,则下列

材料力学的性能总复习

材料力学的性能总复习

《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、选择题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高B.降低C.不变D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态B.软玻璃态C.高弹态D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢B.高碳钢C.白口铸铁D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞D.+∞6、Griffith强度理论适用于()。

A.金属B.陶瓷C.有机高分子D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面B.次表面C.内部D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值C.应力腐蚀破裂门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高B.越低C.不变D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口B.沿晶断口C.河流花样D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度B.洛氏硬度C.莫氏硬度D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

A.减小B.增大C.不变D.无规律14、在单向拉伸、扭转与单向压缩实验中,应力状态系数的变化规律是()。

材料力学总复习

材料力学总复习

剪力、 剪力、弯矩和分布载荷集度间外力间的微分关系 m C RA FS + + + F D E q B F RB
A
q(x)向上为正 向上为正
dF ( x) S = q( x) dx
dM( x) = FS ( x) dx
M
无荷载段: 1. 无荷载段: 2. 有荷载段q: 有荷载段 :
FS图 水平直线 q > 0:上升斜直线 q < 0:下降斜直线
m1 = 7.024kN ⋅ m m2 = 2.814kN ⋅ m m3 = 4.21kN ⋅ m 轴的扭矩图 扭矩图: ① 轴的扭矩图:
n
A 500 T
B 400
C
x
4.21kNm
7.024kNm
m1
m2 B
m3 C
由强度条件: 由强度条件:
τ max
T = ≤ [τ ] WP
π d
3
A 500 T
π 2 d 4
D ∴ = d
3
1 = 3 1.6937 = 1.192 1 − 0 .8 4
(
)
例:某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500 马力, 输出功率分别 P2 = 200马力及 P3 = 300马力, 已知:G=80GPa ,[τ ]=70M Pa,[θ ]=1º/m ,试确定: ① AB 段直径 d1和 BC 段直径 d2 ? ②若全轴选同一直径,应 为多少? ③主动轮与从动轮如何安排合理? m1 m2 m3 P 解: m = 7.024 (kN⋅ m)
Wp =
π D3
16
( − α 4) 1
1 3
16Tmax D≥ 4 1 [ π( − α )τ ]

材料力学公式总复习gszfx

材料力学公式总复习gszfx

FN ,max A
M max [ ] W
4、弯曲与扭转
M 2 T 2 r3 [ ] W
r4
M 2 0.75T 2 [ ] W
统一形式:
Mr r [ ] W
2 M r 3 M z2 M y T 2 2 M r 4 M z2 M y 0.75T 2
5、连接件的强度条件
FS [ ] AS
剪切的强度条件:
挤压强度条件:
Fbs bs [ bs ] Abs
四、压杆稳定
1、压杆稳定的概念 2、细长压杆临界力的欧拉公式
2 EI Fcr ( l ) 2
L
i

2E cr 2
— —杆的柔度(或长细比)
Tl GI P
max
Tmax 180 [ ] GI P
, [ ] max [ ] max
1、积分法 2、叠加法
FN l l EA
wmax [ w], max [ ]
二、应力状态分析.强度理论
1、一点处的应力状态 2、平面应力状态分析
r4
r3 1 3
1 1 2 2 2 3 2 1 3 2 2


三、组合变形
1、组合变形解题步骤
①外力分析:外力向形心简化并沿主惯性轴分解; ②内力分析:求每个外力分量对应的内力图,确定危险面; ③应力分析:画危险面应力分布图,叠加; ④强度计算:建立危险点的强度条件,进行强度计算。
4、莫尔积分:

l
N ( x)N ( x) T ( x )T ( x ) dx dx l EA GI p
l

材料力学总复习

材料力学总复习
总复习
第一部分 基本变形部分 第二部分 复杂变形部分 第三部分 压杆稳定 第四部分 能量方法
第一部分
基本变形部分
§1-4 杆件变形的基本形式
内容 种类
外力特点
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
取分离体如图3, a 逆时针为正;
a 绕研究对象顺时针转为正;
由分离体平衡得:
a
a
x
图3
a a
0 0
c os2a sinacosa
或:
a a
0
2
0
2
(1cos2a sin2a
)
(合力) P
n
剪切面:
n
P (合力)
构件将发生相互的错动面,如 n– n 。
Q n
剪切面 剪切面上的内力:
变形特点
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
杆在轴向拉压时,横截面上的内力称为轴力。
轴力用 N 表示,方向与轴线重合
引起伸长变形的轴力为正——拉力(背离截面); 引起压缩变形的轴力为负——压力(指向截面)。
N
N

材料力学期末复习重点

材料力学期末复习重点

材料力学期末复习重点第一章绪论及基本概念P1构件正常工作的要求。

P5可变形固体的三个基本假设。

第二章轴向拉伸与压缩P10截面法、轴力及轴力图例题:2-1P15最大正应力公式(2-3)例题:2-2P20 拉压杆伸长公式(2-5b)例题2-5P39强度条件(2-13)*例题2-8-2-10第三章扭转P62 扭矩及扭矩图例题3-1P67扭转最大切应力公式(3-7)P68 切应力互等定理式(3-12)P72 强度条件式(3-14)例题3-4第四章弯曲应力P100 梁的剪力和弯矩例题4-1P102剪力方程与弯矩方程4-2-4-6P109弯矩、剪力与分布荷载集度间的微分关系及其应用例题4-9P116按叠加原理作弯矩图例题4-10P123任意点处的正应力(4-5)P125最大正应力(4-7b)例题4-13P126梁的正应力强度条件式(4-9)例题4-14-4-16P132 任意点的切应力式(4-10)P133 矩形截面最大切应力式(4-11)P134 工字形截面最大切应力式(4-13)例题4-17P138切应力强度条件式(4-17)例题4-18第五章梁弯曲时的位移P159梁的挠曲性近似微分方程式(5-2b)例题5-1-5-2P162积分常数的几何意义P165按叠加原理计算梁的挠度和转角例题5-5P173梁的刚度校核式(5-11)第六章简单的超静定问题P184 超静定问题及其解法6-1节,能识别超静的次数第七章应力状态和强度理论P214任意斜截面的应力(7-1)-(7-2)式P214 应力圆P216主应力与主平面(7-3)-(7-5)式例题7-2P223 空间应力状态的最大正应力(7-6)式,最大切应力(7-7)例题7-3P226广义胡克定律(7-8)式例题7-5P234 强度理论及其相当应力第一-第四强度理论及适用条件例题7-7附录I 截面的几何性质P334组合截面的静矩(I-3)式和形心(I-4)式例题I-2P336 极惯性矩、惯性矩、惯性积和惯性半径计算例题I-3P339 移轴公式(I-10)熟练利用移轴公式计算组合截面的惯性矩例题I-5-I-6。

材料力学复习资料

材料力学复习资料

材料力学复习资料一、选择题1、材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

这是因为对可变形固体采用了()假设。

A连续均匀性B各向同性C小变形D平面2、研究构件或其一部分的平衡问题时,采用构件变形前的原始尺寸进行计算,这是因为采用了()假设。

A平面 B 连续均匀性 C 小变形 D 各向同性3、关于截面法的适用对象和范围,下列说法正确的是:()。

A等截面直杆B直杆承受基本变形C不论基本变形还是组合变形,但限于直杆的横截面D不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况4、为使材料有一定的强度储备,安全系数取值应()。

A大于1 B 等于1 C小于1 D 都有可能5、脆性材料所具有的性质是:()。

A 试件拉伸过程中出现屈服现象B 压缩强度极限比拉伸强度极限大得多C 抗冲击性能比塑性材料好D 若极件因开孔造成应力集中现象,对强度无明显影响6、与塑性材料比,脆性材料在拉伸时,力学性能的最大特点是()。

A 强度低,对应力集中不敏感B相同拉力作用下变形小C断裂前几乎没有塑性变形D应力-应变关系严格遵循胡克定律7、下列材料中,不属于各向同性材料的有()。

A钢材B塑料C浇铸很好的混凝土D松木8、关于材料的冷作硬化现象有以下四种结论,正确的是()。

A由于温度降低,其比例极限提高,塑性降低;B由于温度降低,其弹性模量提高,泊松比减小;C经过塑性变形,其比例极限提高,塑性降低;D经过塑性变形,其弹性模量不变,比例极限降低。

9、低碳钢试样拉伸时,横截面上的应力公式σ =F N/A适用于以下哪一种情况? (a)。

A 只适用于σ ≤σ pB 只适用于σ ≤σ eC 只适用于σ ≤σ sD 在试样拉断前都适用10、关于下列四种结论,正确的是( a )。

○1同一截面上正应力与切应力必相互垂直。

○2同一截面上各点的正应力必定大小相等,方向相同。

材料力学复习资料

材料力学复习资料

材料力学复习资料(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学复习一一、选择题1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力τ分别为 。

A 、00,στττ==;B 、0,0σττ==;C 、00,στττ=-=;D 、0,0σττ=-=。

2.构件中危险点的应力状态如图所示,材料为低碳钢,许用应力为[]σ,正确的强度条件是 。

A 、[]σσ≤;B 、[]στσ+≤;C 、[],[][]/2σσττσ≤≤=;D []σ≤。

3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应力原来的最大切应力是 。

A 、2倍B 、4倍C 、6倍D 、8倍4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 。

梁和II 梁的最大挠度相同 梁的最大挠度是I 梁的2倍 梁的最大挠度是I 梁的4倍 梁的最大挠度是I 梁的1/2倍P题1-4 图5. 现有两种压杆,一为中长杆,另一为细长杆。

在计算压杆临界载荷时,如中长杆误用细长杆公式,而细长杆误用中长杆公式,其后果是 。

A 、两杆都安全; B 、两杆都不安全;C 、中长杆不安全,细长杆安全;D 、中长杆安全,细长杆不安全。

6. 关于压杆临界力的大小,说法正确的答案是 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关;C 与压杆所承受的轴向压力大小有关;D 与压杆的柔度大小无关。

4545题 1-1 图二、计算题(共5题,共70分)1、如图所示矩形截面梁AB ,在中性层点K 处,沿着与x 轴成45方向上贴有一电阻应变片,在载荷F 作用下测得此处的应变值为6451025.3-︒⨯-=ε。

已知200E GPa =,0.3μ=,求梁上的载荷F 的值。

2.(16分)圆杆AB 受力如图所示,已知直径40d mm =,112F kN =,20.8F kN =,屈服应力240s MPa σ=,安全系数2n =。

材料力学复习总结

材料力学复习总结
• 主应力:即正应力极值,或剪应力为零的微 面上的正应力,平面一般应力状态一般有 两个非零主应力 ,另一主应力为零.
• 主平面剪:应力为零的面.
主单元体:各侧面上只有正应力作用,而无剪应 力作用的单元体.
平面应力状态:两个主应力不等于零的应力状态. 三向应力状态:三个主应力不等于零的应力状态.
梁上的力既有外力也有内力( Fs 、M),利
用平衡条件即可求得截面上的剪力和弯矩。
2.内力的正负号是根据变形规定的:使梁产生 顺时针转动的剪力规定为正,反之为负;使梁 下部产生拉伸而上部产生压缩的弯矩规定为正, 反之为负。
3.画剪力、弯矩图的方法可以分为二种:根据
剪力、弯矩方程作图和利用q、Fs、M间的微分
• 叠加法的主要步骤为: 1)将组合变形按基本变形的加载条件或
相应内力分量分解为几种基本变形;
2)根据各基本变形情况下的内力分布, 确定可能危险面;根据危险面上相应内力分 量画出应力分布图,由此找出可能的危险点; 根据叠加原理,得出危险点应力状态;
3)根据构件的材料选取强度理论,由危 险点的应力状态,写出构件在组合变形情况 下的强度条件,进而进行强度计算。
若梁的弯矩分了n段,每段积分有两个常数,共有 2n个常数;而梁有2个边界条件;n段,(n-1)个内 点,每一内点有两个光滑连续条件,又有2(n-1) 个光滑连续条件,这样一共有2n定常数的条件。
由以上运算可以看出,梁的挠度曲线取决于两个 因素:受力(弯矩)和边界条件。
3.在小变形和弹性范围内,梁的位移与载荷为 线性关系,可以用叠加法求梁的位移:将梁 的载荷分为若干种简单载荷,分别求出各简 单载荷的位移,将它们叠加起来即为原载荷 产生的位移。
(第一强度理论) (第二强度理论) (第三强度理论) (第四强度理论)

材料力学复习附答案

材料力学复习附答案

材料力学复习题1.构件在外荷载作用下具有抵抗破坏的能力为材料的(强度);具有一定的抵抗变形的能力为材料的(刚度);保持其原有平衡状态的能力为材料的(稳定性)。

2.构件所受的外力可以是各式各样的,有时是很复杂的。

材料力学根据构件的典型受力情况及截面上的内力分量可分为(拉压)、(剪切)、(扭转)、(弯曲)四种基本变形。

3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是(截面法)。

4.工程构件在实际工作环境下所能承受的应力称为(许用应力),工件中最大工作应力不能超过此应力,超过此应力时称为(失效)。

5.在低碳钢拉伸曲线中,其变形破坏全过程可分为(四)个变形阶段,它们依次是(弹性变形)、(屈服)、(强化)、和(颈缩)。

6.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将会出现四个重要的极限应力;其中保持材料中应力与应变成线性关系的最大应力为(比例极限);使材料保持纯弹性变形的最大应力为(弹性极限);应力只作微小波动而变形迅速增加时的应力为(屈服极限);材料达到所能承受的最大载荷时的应力为(强度极限)。

7.通过低碳钢拉伸破坏试验可测定强度指标(屈服极限)和(强度极限);塑性指标(伸长率)和(断面收缩率)。

8.当结构中构件所受未知约束力或内力的数目n多于静力平衡条件数目m时,单凭平衡条件不能确定全部未知力,相对静定结构(n=m),称它为(静不定结构)。

9 .圆截面杆扭转时,其变形特点是变形过程中横截面始终保持( 平面 ),即符 合( 平面)假设。

非圆截面杆扭转时,其变形特点是变形过程中横截面发生( 翘 曲),即不符合( 平面)假设。

10 .多边形截面棱柱受扭转力偶作用,根据( 切应力互等 )定理可以证明其横 截面角点上的剪应力为(0 )。

11 .以下关于轴力的说法中,哪一个是错误的。

(C )(A )拉压杆的内力只有轴力;(B )轴力的作用线与杆轴重合;(C )轴力是沿杆轴作用的外力;(D )轴力与杆的横截面和材料无关12 .变截面杆AD 受集中力作用,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论一、教学目标和教学内容1.教学目标明确材料力学的任务,理解变形体的的基本假设,掌握杆件变形的基本形式。

2.教学内容○1材料力学的特点○2材料力学的任务○3材料力学的研究对象○4变形体的基本假设○5材料力学的基本变形形式二、重点难点构件的强度、刚度、稳定性的概念;杆件变形的基本形式、变形体的基本假设。

三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时1.5学时五、讲课提纲1、材料力学的任务材料力学是研究构件强度、刚度和稳定性计算的学科。

工程中各种机械和结构都是由许多构件和零件组成的。

为了保证机械和结构能安全正常地工作,必须要求全部构件和零件在外力作用时具有一定的承载能力,承载能力表现为1.1强度强度是指构件抵抗破坏的能力。

构件在外力作用下不被破坏,表明构件具有足够的强度。

1.2刚度刚度是指构件抵抗变形的能力。

构件在外力作用下发生的变形不超过某一规定值,表明构件具有足够的刚度。

1.3稳定性稳定性是指构件承受在外力作用下,保持原有平衡状态的能力,构件在外力作用下,能保持原有的平衡形态,表明构件具有足够的稳定性。

材料力学的任务:以最经济为代价,保证构件具有足够的承载能力。

通过研究构件的强度、刚度、稳定性,为构件选择合适的材料、确定合理的截面形状和尺寸提供计算理论。

2、材料力学的研究对象2.1研究对象的几何特征构件有各种几何形状,材料力学的主要研究对象是杆件,其几何特征是横向尺寸远小于纵向尺寸,如机器中的轴、连接件中的销钉、房屋中的柱、梁等均可视为杆件,材料力学主要研究等直杆。

2.2研究对象的材料特征构件都是由一些固体材料制成,如钢、铁、木材、混凝土等,它们在外力作用下会产生变形,称变形固体。

其性质是十分复杂的,为了研究的方便,抓住主要性质,忽略次要性质材料力学中对变形固体作如下假设:♦均匀连续性假设: 假设变形固体内连续不断地充满着均匀的物质,且体内各点处的力学性质相同。

♦各向同性假设: 假设变形固体在各个方向上具有相同的力学性质。

♦小变形假设: 假设变形固体在外力作用下产生的变形与构件原有尺寸相比是很微小的,称“小变形”。

在列平衡方程时,可以不考虑外力作用点处的微小位移,而按变形前的位置和尺寸进行计算。

3、杆件的几何特征3.1轴线:截面形心的连线3.2横截面:垂直于轴线的截面3.3杆的分类:4、杆件变形的基本形式杆件在不同受力情况下,将产生各种不同的变形,但是,不管变形如何复杂,常常是如下四种基本变形或是它们的组合。

1.拉伸和压缩:变形形式是由大小相等、方向相反、作用线与杆件轴线重合的一对力引起的,表现为杆件长度的伸长或缩短。

如托架的拉杆和压杆受力后的变形。

2.剪切:变形形式是由大小相等、方向相反、相互平行的一对力引起的,表现为受剪杆件的两部分沿外力作用方向发生相对错动。

如连接件中的螺栓和销钉受力后的变形。

3.扭转:变形形式是由大小相等、转向相反、作用面都垂直于杆轴的一对力偶引起的,表现为杆件的任意两个横截面发生绕轴线的相对转动。

如机器中的传动轴受力后的变形。

4.弯曲:变形形式是由垂直于杆件轴线的横向力,或由作用于包含杆轴的纵向平面内的一对大小相等、方向相反的力偶引起的,表现为杆件轴线由直线变为受力平面内的曲线。

如单梁吊车的横梁受力后的变形。

杆件同时发生几种基本变形,称为组合变形。

第二章轴向拉伸与压缩一、教学目标和教学内容1、教学目标正确理解内力、应力、应变等基本概念,熟练掌握截面法。

正确理解并熟练掌握轴向拉压正应力公式、胡克定律、强度条件,掌握拉压杆的强度计算方法。

掌握拉压时材料的力学性能,弄清材料力学解决问题的思路和方法。

2、教学内容○1截面法、内力、应力○2轴力、轴力图○3正应力、应力集中的概念○4轴向拉(压)时斜截面上的应力○5拉压杆的变形、胡克定律、泊松比⑥拉压杆的强度计算⑦材料拉压时的力学性能⑧拉压杆件系统的超静定问题⑨连接件的实用计算二、重点难点1、内力和截面法,轴力和轴力图。

2、应力的概念,轴向拉压时横截面上的应力,轴向拉压时的变形。

3、材料拉、压时的力学性能。

4、轴向拉压的强度计算。

5、应力集中的概念,拉、压静不定问题。

三、教学方式采用启发式教学和问题式教学法结合,通过提问,引导学生思考,让学生回答问题,激发学生的学习热情。

四、建议学时12.5 学时五、讲课提纲1、轴向拉伸(压缩)的概念受力特点:作用于杆件上外力合力的作用线与杆件轴线重合。

变形特点:构件沿轴线方向的伸长或缩短。

2、内力、截面法2.1内力的概念内力是构件因受外力而变形,其内部各部分之间因相对位移改变而引起的附加内力。

众所周知,即使不受外力作用,物体的各质点之间依然存在着相互作用的力,材料力学的内力是指在外力作用下上述相互作用力的变化量,是物体内部各部分之间因外力引起的附加的相互作用力,即“附加内力”。

它随外力的增大而增大,达到某一限度时就会引起构件破坏,因而它与构件强度是密切相关的。

2.2截面法截面法四部曲: 截(切开)、取(取分离体)、代(代替)、平(平衡)3、轴力、 轴力图3.1轴向拉压时的内力—— 轴力轴力——垂直于横截面、通过截面形心的内力。

轴力的符号规则——轴力背离截面时为正,指向截面为负。

3.2轴力图形象表示横截面上轴力沿杆轴线变化规律的图形。

4、正应力、应力集中的概念4.1应力的概念:定义:内力在截面上的分布集度。

数学表示: AP A ∆∆∆lim 0→ 应力的三要素:截面、点、方向应力分量;⎩⎨⎧与截面相切的应力。

剪应力与截面正交的应力。

正应力::τσ 正应力的代数符号规定:拉应力为正,压应力为负。

应力的单位: Pa (N/m 2)4.2轴向拉(压)时横截面上的正应力:应力计算公式: AN =σ 公式的适用范围: (1)外力作用线必须与杆轴线重合,否则横截面上应力将不是均匀分布;(2) 距外力作用点较远部分正确,外力作用点附近应力分布复杂,由于加载方式的不同,只会使作用点附近不大的范围内受到影响(圣维南原理)。

因此,只要作用于杆端合力作用线与杆轴线重合,除力作用处外,仍可用该公式计算。

(3) 必须是等截面直杆,否则横截面上应力将不是均匀分布,当截面变化较缓慢时,可近似用该公式计算。

4.3应力集中的概念、圣维南原理:局部应力——截面突变处某些局部小范围内的应力。

应力集中——在截面突变处出现局部应力剧增现象。

应力集中对于塑性、脆性材料的强度产生截然不同的影响,脆性材料对局部应力的敏感性很强,而局部应力对塑性材料的强度影响很小。

圣维南原理——外力作用在杆端的方式不同,只会使杆端距离不大于横向尺寸的范围内应力分布受到影响。

5、轴向拉(压)杆斜截面上的应力ασατασασαααα2sin 2sin cos cos 2====p p 6、拉压杆的变形、胡克定律、泊松比6.1纵向变形:绝对变形l l l -=∆1相对变形(线应变)ll ∆=ε 拉伸ε为“+”,压缩ε为“-” 6.2横向变形及泊松比:绝对变形横向尺寸1a a → a a a -=∆1相对变形(横向应变)aa ∆='ε 拉伸ε'为“-”,压缩ε为“+” 柏松比(横向变形系数)实验表明:在弹性范围内 εεμ'= μ是反映材料性质的常数,由实验确定,一般在-1——0.5之间。

6.3胡克定律:在弹性范围内: εσ∝ 即 ,εσE = P σσ≤ 胡克定律E ——弹性模量(Pa )将 A N =σ 和 l l ∆=ε 代入得 EAl N l .=∆ 胡 克定律的另一形式 EA —抗拉(压)刚度,反映杆件抵抗拉伸(压缩)变形的能力,其它条件相同。

7、材料在拉伸和压缩时的力学性能7.1低碳钢拉伸时的力学性能:试件:圆截面: d l 10= d l 5=矩形截面: l =11.3A l =5.65Al —工作段长度(标距) d —直径 A —横截面积低碳钢拉伸时变形发展的四个阶段:(1)弹性阶段(oa )应力特征值:比例极限p σ—材料应力应变成正比的最大应力值(服从虎克定律)弹性极限e σ—材料只出现弹性变形的应力极限值εσ,成比αεσtg E ==(比例系数) E 为与材料有关的比例常数,随材料不同而异。

当1=ε时,E =σ,由此说明表明材料的刚性的大小;αεtg =说明几何意义。

(2)屈服阶段(bc )当应力超过弹性极限后,应变增加很快,但应力仅在一微小范围波动,这种应力基本不变,应变不断增加,从而明显地产生塑性变形的现象称为屈服(流动)。

现象:磨光试件表面出现与轴线成45︒倾角条纹——滑移线,是由于材料晶格发生相对滑移所造成。

材料产生显著塑性变形,影响构件正常使用,应避免出现。

应力特征值:屈服极限s σ——衡量材料强度的重要指标(3)强化阶段(cd )强化现象:材料恢复抵抗变形的能力,要使应变增加,必须增大应力值。

εσ-曲线表现为上升阶段。

应力特征性:强度极限b σ——材料能承受的最大应力值。

冷作硬化——材料预拉到强化阶段,使之发生塑性变形,然后卸载,当再次加载时弹性极限e σ和屈服极限s σ提高、塑性降低的现象。

工程上常用冷作硬化来提高某些材料在弹性范围内的承载能力,如建筑构件中的钢筋、起重机的钢缆绳等,一般都要作预拉处理。

(4)颈缩阶段(df ) 在某一局部范围内,A (急剧)、ε ,用A 计算的σ , 试件被拉断。

7.2塑性变形的两个指标:延伸率(伸长率)δ:%1001⨯-=l l l δ 材料分类⎩⎨⎧<>%5%5δδ脆性材料塑性材料 截面收缩率ψ: %1001⨯-=AA A ψ A 1——颈缩处的最小面积7.3其它材料拉伸时的力学性能:16Mn 钢也有明显的四个阶段;H62(黄铜)没有明显的屈服阶段,另三阶段较明显;T10A (高碳钢)没有屈服和颈缩阶段,只有弹性和强化阶段。

铸铁拉伸时是一微弯曲线,没有明显的直线部分,拉断前无屈服现象,拉断时变形很小是典型的脆性材料。

对于没有明显的屈服阶段的材料,常以产生0.2%的塑性变形所对应的应力值作为屈服极限,称条件屈服极限,用2.0σ表示。

7.4材料压缩时的力学性能:低碳钢压缩时的力学性能:压缩时εσ-曲线,在屈服阶段以前与拉伸时相同,s p E σσ,,都与拉伸时相同,当σ达到s σ后,试件出现显著的塑性变形,越压越短,横截面增大,试件端部由于与压头之间摩擦的影响,横向变形受到阻碍,被压成鼓形。

得不到压缩时的强度极限。

因此,钢材的力学性质主要时用拉伸试验来确定。

铸铁压缩时的力学性能:与塑性材料相反脆性材料在压缩时的力学性质与拉伸时有较大差别。

铸铁在压缩时无论是强度极限还是伸长率都比拉伸时;曲线中直线部分很短;大致沿45︒的斜面发生剪切错动而破坏,说明铸铁的抗剪能力比抗压差。

相关文档
最新文档