函数的周期性和对称性(解析版)
函数的对称性与周期性(归纳总结)
![函数的对称性与周期性(归纳总结)](https://img.taocdn.com/s3/m/a3e8eb1aac02de80d4d8d15abe23482fb4da02bd.png)
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
高考数学重难点分析:函数的周期性与对称性(题型战法)(解析版)
![高考数学重难点分析:函数的周期性与对称性(题型战法)(解析版)](https://img.taocdn.com/s3/m/60ceae1782c4bb4cf7ec4afe04a1b0717fd5b3d4.png)
第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数; (3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①【答案】C 【解析】 【分析】根据三角函数和二次函数的性质可得. 【详解】易得sin y x =和cos y x =是周期函数,2y x 不是周期函数. 故选:C.变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =【答案】C 【解析】直接利用函数性质判断即可. 【详解】选项A 中0.5log y x =不是周期函数,故排除A; 选项B,D 中的函数均为奇函数,故排除B,D; 故选:C. 【点睛】本题考查基本初等函数的周期性和奇偶性,属于基础题. 变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称【答案】B 【解析】 【分析】设点00(,)P x y 在函数x y e =图象上,证明00(,)P x y 关于y 轴对称的点00(,)x y -在函数x y e -=的图象上.【详解】解:设点00(,)P x y 在函数x y e =图象上,则00xy e =,则00(,)P x y 关于y 轴对称的点00(,)x y -满足0()0x x y ee --==, 所以点00(,)x y -在函数x y e -=的图象上. 故选:B变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称【答案】B 【解析】 【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性. 【详解】 解:因为()()231911333333x xx x x xxxf x -++===+=+,()()33x x f x f x --=+= 易知()f x 为偶函数,所以函数()f x 的图象关于y 轴对称. 故选:B.变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴【答案】B 【解析】根据函数的奇偶性判断. 【详解】因为函数1()f x x x=+的定义域为{}|0x x ≠,关于原点对称, 又11()()f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭, 所以()f x 是奇函数,图象关于原点对称, 故选:B题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1 C .2log 6 D .23log 2【答案】A 【解析】 【分析】由已知确定函数的周期,利用周期性和奇偶性进行求解. 【详解】①()y f x =为R 上的偶函数,①(2021)(2021)f f -=, 又当0x ≥时,()(4)f x f x =+, ①(2021)(2017)(1)f f f ==⋅⋅⋅=, 当[)0,2x ∈时,2()log (1)=+f x x , ①2(2021)(1)log (11)1f f -==+=. 故选:A.变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1【答案】B 【解析】 【分析】由()()2f x f x +=可知,函数()f x 的周期为2,利用周期性把所给的自变量转化到区间[]1,1-上,代入求值即可. 【详解】由()()2f x f x +=可知,函数()f x 的周期为2,当[1,1]x ∈-时,2()1f x x =+, ①1115(2020.5)202012244f f f ⎛⎫⎛⎫=+==+= ⎪ ⎪⎝⎭⎝⎭.故选:B变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2【答案】C 【解析】 【分析】由()()2f x f x +=可得函数的周期为2,再结合函数为偶函数可得()()()()2013201410f f f f -+=+,然后由已知的解析式可求得答案【详解】①函数()f x 是(),-∞+∞上的偶函数, ①()()f x f x -=,又①对于0x ≥都有()()2f x f x +=,①2T =,①当[)0,2x ∈时,()()2log 1f x x =+,①()()()()()()201320142013201421006121007f f f f f f -+=+=⨯++⨯()()2210log 2log 11f f =+=+=,故选:C.变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2-C .4-D .2【答案】C 【解析】 【分析】求得()f x 的周期,结合奇偶性求得()2021f 的值. 【详解】依题意对x ∀∈R ,有(6)()(3)f x f x f +=+成立, 令3x =-,则()()()()33323f f f f =-+=, 所以()30f =,故()()6f x f x +=, 所以()f x 是周期为6的周期函数,故()()()()202163371112164f f f f =⨯-=-==⨯-=-. 故选:C变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5【答案】B 【解析】 【分析】根据题意,分析可得(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数,则有(2020)(0)f f =,(2021)f f =(1),由奇函数的性质求出(0)f 与f (1)的值,相加即可得答案. 【详解】解:根据题意,函数()f x 满足(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=, 即函数()f x 是周期为8的周期函数,函数()f x 是定义在R 上的奇函数,则(0)0f =,(2020)(48252)f f f =+⨯=(4)(0)0f ==, (2021)(58252)f f f =+⨯=(5)f =-(1)5=-,则(2020)(2021)(0)f f f f +=+(1)5=-, 故选:B. 【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1【答案】C 【解析】根据()1()f x f x +=-,可知:()f x 关于12x =对称,根据对称性,要求函数()f x 在[]2,0-上的最大值与最小值之和,即求函数()f x 在[]1,3上的最大值与最小值之和,代入即可得解. 【详解】根据()1()f x f x +=-,可知:()f x 关于12x =对称, 那么要求函数()f x 在[]2,0-上的最大值与最小值之和, 即求函数()f x 在[]1,3上的最大值与最小值之和,因为()()2log 31f x x =-递增,所以最小值与最大值分别为:(1)1f =,(3)3f =, (1)(3)4f f +=,故答案为:C. 【点睛】本题考查了函数的对称性,考查了转化思想,计算量较小,思路要求较高,属于中档题.变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14 B .14 C .6 D .10【答案】A 【解析】 【分析】先计算(2)+(2)f f -,再代入数值得结果. 【详解】(2)+(2)8248248f f a b a b -=+----=-,又(2)6f =,所以(2)14,f -=-故选A 【点睛】本题考查函数性质,考查基本分析求解能力,属基础题.变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1B .2C .4D .8【答案】C 【解析】 【分析】指数函数xy a =关于y 轴对称的函数为1xy a ⎛⎫= ⎪⎝⎭,由此得到124a -与a 的关系,即可求解出a 的值. 【详解】因为两函数的图象关于y 轴对称,所以124a -与a 互为倒数, 所以124aa =-,解得4a =. 故选C. 【点睛】本题考查指数函数图象对称与底数之间关系,难度较易.关于y 轴对称的指数函数的底数互为倒数.变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3【答案】D 【解析】 【详解】试题分析:因为函数()1f x x x a =++-的图象关于直线1x =对称,所以点()()1,1f --与点()(),a f a ,关于直线1x =对称,11,32aa -+==,故选D.考点: 函数的图象与性质.变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D【解析】 【分析】先由对称性求得a ,再将4π代入函数解析式即可求得答案.【详解】因为()f x 的图象关于直线3x π=对称,所以()203f f π⎛⎫= ⎪⎝⎭,即112=-,解得a =4f π⎛⎫= ⎪⎝⎭. 故选:B题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x - C .31x -+ D .21x -+【答案】C 【解析】 【分析】根据已知中函数的奇偶性和周期性,结合[]2,3x ∈时,()f x x =,可得答案. 【详解】解:∵()f x 是定义在R 上的周期为2的偶函数,[]2,3x ∈时,()f x x =,∴[]21x ∈--,时, []20,1x +∈,[]42,3x +∈,此时()()44f x f x x =+=+,[]1,0x ∈-时,[]0,1x -∈,[]22,3x -∈,此时()()()22f x f x f x x =-=-=-, 综上可得:[]2,0x ∈-时,()31f x x =-+ 故选:C .本题考查函数解析式的求法,函数的周期性,函数的奇偶性,难度中档. 变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x - C .22x + D .(2)2x -+-【答案】C 【解析】令(32)x ∈--,,则2(1,)x +∈-0,根据(1,0)x ∈-时,f (x )=2x ,可求得f (x +2)的解析式,再根据f (x +2)=f (x ),即可求得f (x )解析式. 【详解】令(32)x ∈--,,则2(1,)x +∈-0, ①当(1,0)x ∈-时,有()2x f x =, ①f (x +2)=2x +2, ①f (x +2)=f (x ),①f (x +2)=f (x )=2x +2,(32)x ∈--,. 故选:C . 【点睛】本题考查函数解析式的求法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等,考查学生的计算能力,属于基础题.变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x + B .|3|x -C .|6|x +D .|6|x -【答案】C 【解析】利用周期函数的定义求解即可. 【详解】设[]7,5x ∈--,则[]61,1x +∈-, 由题意知,()66f x x +=+,因为函数()f x 是定义在R 上周期为2的函数, 所以()()6f x f x +=,即()6f x x =+.故选: C 【点睛】本题考查周期函数的性质;熟练掌握周期函数的定义是求解本题的关键;属于常考题.变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -【答案】D 【解析】 【分析】先设出函数()f x 图像上任意点的坐标,再求出关于直线3x =对称的点,代入函数()g x 的解析式即可求解. 【详解】解:设函数()y f x =图像上的点为(,)M x y ,关于直线3x =对称的点为(6,)N x y -, 将点N 代入函数()y g x =的解析式可得:63x y -=, 故6()3x f x -=, 故选:D .变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -= C .12x y += D .22x y +=【答案】B 【解析】 【分析】设所求函数图象上任意一点为(),x y ,由其关于直线1x =的对称点()2,x y -在函数2x y =的图象上可解得结果.【详解】设所求函数图象上任意一点为(),x y ,则其关于直线1x =的对称点()2,x y -在函数2x y =的图象上,所以22x y -=.故选:B.题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>【答案】D 【解析】 【分析】由()()4f x f x +=,得到()f x 是周期为4的周期函数,得到(6)(2),(4)(0)f f f f =-=,4)f f =,结合()f x 在[]2,0-上单调递增,得到(2)4)(0)f f f -<<,即可求解. 【详解】由题意,函数()f x 满足()()4f x f x +=,即函数()f x 是周期为4的周期函数,则(6)(68)(2),4),(4)(0)f f f f f f f =-=-==,又由函数()f x 在区间[]2,0-上单调递增,可得(2)4)(0)f f f -<<,即(6)(4)f f f <<,所以c b a >>. 故选:D.变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,(1f ,112f ⎛⎫⎪⎝⎭的大小关系是( ) A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】根据已知等式判断出函数的周期性,再根据奇函数的性质和单调性进行判断即可. 【详解】()()()()()()22224f x f x f x f x f x f x +=-⇒++=-+⇒=+,由此可知函数()f x 的周期为4,函数()f x 是奇函数,()()2f x f x +=-,所以有:55771142333333f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,113311142222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-+=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 因为()f x 在区间[]0,1是减函数,11132<<, 所以()11132f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故选:B变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<【答案】D 【解析】由已知条件可知()f x 在[]4,8上单调递增,周期为8,对称轴为4x =.则()7a f =,()5b f =,()4c f =,再结合函数的单调性即可判断大小.【详解】解:由①知,()f x 在[]4,8上单调递增;由①知,()f x 的周期为8; 由①知,()f x 的对称轴为4x =;则()()()717a f f f =-==,()()()()1183835b f f f f =-==-=,()()202025284c f f =-⨯=,因为457<<,由函数的单调性可知,c b a <<. 故选:D. 【点睛】本题考查了函数的对称性,考查了函数的周期,考查了函数的单调性.本题的关键是由已知条件分析出函数的性质.变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>【答案】B 【解析】 【分析】由①①可得函数()f x 是周期为4的函数,且()f x 是奇函数,由①可得函数()f x 在[]0,1上单调递增,进而可得函数()f x 在[]1,1-上单调递增,从而利用周期性和单调性即可求解. 【详解】解:由题意,因为函数()1y f x =+的图象关于y 轴对称,所以()()11f x f x +=-+, 所以()()2f x f x =-,所以函数()f x 的图象关于1x =对称,又()()220f x f x ++-=,所以()()20f x f x ++=,即()()2f x f x +=-, 因为()()()222f x f x f x ++=-+=⎡⎤⎣⎦,所以函数()f x 是周期为4的函数, 所以()()20211f f =,()()()202220f f f ==,()()20231f f =-, 因为()()2f x f x +=-,且()()2f x f x +=-,所以()()f x f x -=-, 所以函数()f x 为奇函数,又因为对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立,即()()()12120x x f x f x -->⎡⎤⎣⎦, 所以函数()f x 在[]0,1上单调递增, 所以函数()f x 在[]1,1-上单调递增,因为101>>-,所以()()()202120222023f f f >>, 故选:B.变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f⎛⎫⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->>⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】 【分析】根据单调性的定义可得()f x 在0,1上单调递增,根据已知条件可得()f x 是周期为2的奇函数,根据周期性和单调性即可求解. 【详解】由()()2f x f x +=可得()f x 的周期为2, 因为()2f x -为奇函数,所以()f x 为奇函数, 因为[)0,1x ∈时,()()12120f x f x x x ->-,所以()f x 在0,1上单调递增,因为()f x 为奇函数,所以()f x 在1,0上单调递增, 所以()f x 在()1,1-上单调递增, 因为1515124222f f f ⎛⎫⎛⎫⎛⎫-=-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()44220f f f =-⨯=,1111123222f f f ⎛⎫⎛⎫⎛⎫=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11022f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即()1511422f f f ⎛⎫⎛⎫->>⎪ ⎪⎝⎭⎝⎭. 故选:C.题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( ) A .-3 B .-2 C .2 D .3【答案】D 【解析】 【分析】根据()1g x +得到()g x 关于1x =对称,得到()()2g x g x =-,结合()()()1g x x f x =-和()f x 为偶函数即可得()f x 周期为4,进而即得.【详解】因为()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =-. 即()()()()112x f x x f x -=--,即()()20f x f x +-=,()10f =也满足. 又()f x 是定义域为R 偶函数,关于y 轴对称,①()()2f x f x =--,()()()()()2,42f x f x f x f x f x +=-+=-+=, ①()f x 周期为4,①()()()()5.5 1.5 2.5 2.52f f f f ==-==, ①()()()0.5 2.5 1.5 2.53g g f -===. 故选:D.变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-【答案】D 【解析】 【分析】首先利用赋值法求出()20f =,代入等式赋值得到(4)()f x f x +=-,即对称轴为2x =,再根据函数图象的平移规律判断函数为奇函数,进一步求得函数周期,进而得到(45)(3)(3)(1)f f f f =-=-=-.【详解】因为对任意x ∈R ,都有(3)(1)9(2),f x f x f +=-+ 令1,x =- 得(2)(2)9(2),f f f =+ 解得(2)0,f = 则(3)(1),f x f x +=- 即(4)(),f x f x +=- 所以函数()f x 的图象关于直线2x =对称.又函数(9)f x +的图象关于点(9,0)-对称,则函数()f x 的图象关于点(0,0)对称, 即函数()f x 为奇函数,所以(4)()(),f x f x f x +=-=-所以(8)(4)(),f x f x f x +=-+= 所以8是函数()f x 的一个周期, 所以(45)(683)(3)(3)(1)2022,f f f f f =⨯-=-=-=-=- 故选:D.变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( ) A .4 B .3 C .2 D .1【答案】D 【解析】 【分析】根据题干条件得到()f x 为周期函数,最小正周期为4,进而得到()()20211f f =,利用()f x 是偶函数得到()()11f f -=,进而得到()211f =,结合()0f x >,得到()11f =.【详解】1(2)()f x f x +=,则1()(2)f x f x =-,所以1(2)(2)()f x f x f x +==-,即()()4f x f x +=,()f x 为周期函数,最小正周期为4,则()()()2021505411f f f =⨯+=,令1x =-得:1(12)(1)f f -+=-,即()()111f f =-,又因为()f x 为偶函数,所以()()11f f -=,故()()111f f =,即()211f =,因为()0f x >,所以()11f =.故选:D变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( )A .2026B .4044C .2022-D .4044-【答案】C 【解析】 【分析】根据题意可知函数是奇函数,进而推导()f x 的周期,然后求出函数值即可. 【详解】()()0f x f x -+=,()()f x f x ∴-=-,()f x ∴是奇函数,x R ∈,(0)=0f ∴.(5)(5)f x f x -=+,()(10)f x f x ∴-=+,由()()()(10)f x f x f x f x ,()(20)f x f x ∴=+,()f x ∴的周期为20T =.0(1)202()20=f f =,.(0)(1)020222022(2020)(2021)f f f f ∴-=-=--=.故选:C变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3 B .-3C .6D .-6【答案】A 【解析】 【分析】由题设可知()f x 为偶函数且(2)(2)2(2)f f f =-+,即可得(2)0f =,易知()f x 是周期为4的函数,利用周期性求(2021)f 即可. 【详解】①(1)f x +的图象关于1x =-对称, ①()f x 关于y 轴对称,即()f x 为偶函数,又(2)(2)2(2)f f f =-+,即(2)(2)0f f +-=,而(2)(2)f f =-, ①(2)(2)0f f =-=,故,(4)()x R f x f x ∀∈+=, ①()f x 是周期为4的函数,综上,(2021)(45051)(1)3f f f =⨯+==. 故选:A。
函数与导数之对称性与周期性(解析版)
![函数与导数之对称性与周期性(解析版)](https://img.taocdn.com/s3/m/489d91fbcc7931b764ce15cb.png)
专题05 奇偶性周期性单调性对称性的综合应用一.考情分析函数的性质是整个高中数学的核心内容,所有高中数学内容,都可以围绕这一主线考查学生。
单调性与奇偶性更是高考的必考内容,在高考命题中函数常与方程、不等式等其他知识结合考查,而且考查的形式不一,简单的题目也有出现,但是压轴题目是肯定会对函数的性质进行考查的。
二.经验分享1.周期性的常用结论—对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=()1f x ,则T =2a (a >0).(3)若f (x +a )=-()1f x ,则T =2a (a >0).(4)若()()()2f x a f x a f x +=+-,则T =6a (a >0).(5)若f (x +a )=()()11f x f x -+,则T =2a (a >0).(6)若f (x +a )=()()11f x f x +-,则T =4a (a >0).2.函数对称性与函数周期性的关系(类比三角函数) (1)若函数()f x 的图象既关于直线x a =对称,又关于直线x b =对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(2)若函数()f x 的图象既关于点(),0a 对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(3)若函数()f x 的图象既关于直线x a =对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()4b a -是它的一个周期. 3. 复合函数设()[]x g f y =是定义在M 上的函数,若()f x 与()g x 的单调性相反,则()[]x g f y =在M 上是减函数;若()f x 与()g x 的单调性相同,则()[]x g f y =在M 上是增函数,简称同增异减.4. 对称性的一般结论①若()()f a x f b x +=-,则()f x 图像关于直线2a bx +=对称;②c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(cb a + 对称. 三、题型分析(一) 函数单调性的灵活应用例1.【北京卷】已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)7【答案】C【解析】依题意,有0<a <1且3a -1<0,解得0<a <13,又当x <1时,(3a -1)x +4a >7a -1, 当x >1时,log a x <0,所以7a -1≥0解得x ≥17,故选C.【变式训练1】若函数()()⎪⎩⎪⎨⎧<-⎪⎭⎫ ⎝⎛≥-=2,1212,2x x x a x f x是R 是的单调递减函数,则实数a 的取值范围是( )A. ()2,∞-B. ⎪⎭⎫⎢⎣⎡2,813C.()2,0D. ⎥⎦⎤⎝⎛∞-813,【答案】D【解析】要使)(x f 为R 上的减函数,则⎪⎩⎪⎨⎧-≥-⎪⎭⎫ ⎝⎛<-)2(2121022a a ,解得813≤a 【变式训练2】已知()f x 是R 上的减函数, ()()3,1,0,1A B -是其图像上两个点,则不等式()1ln 1f x +<的解集是__________ . 【答案】21,e e⎛⎫ ⎪⎝⎭(二) 函数奇偶性的灵活应用例2.已知函数()211log e xf x x e e⎛⎫=+-⎪⎝⎭,则使得()()121f x f x +<-的x 的范围是( ) A .()0,2 B .(),0-∞ C .()(),02,-∞+∞ D .()2,+∞【答案】A【解析】由于()()f x f x -=,所以函数为偶函数,且在()0,+∞上为减函数.要()()121f x f x +<-,则需121x x +>-,解得()0,2x ∈.【变式训练1】【2017年第一次全国大联考(山东卷)】已知函数1log (2),0()(),0a x x f x g x x -+≥⎧=⎨<⎩是奇函数,则方程()2g x =的根为( ) A .32-B .6- C. 6-,32- D .16,32【答案】B【解析】因为函数()f x 为R 上的奇函数,所以(0)0f =,即1log 20a -=,解得2a =.所以21log (2),0()(),0x x f x g x x -+≥⎧=⎨<⎩.方程()2g x =,即()()2f x g x -=-=-.当0x <时,有21log (2)2x --+=-,整理得2log (2)3x -=,解得6x =-.综上,方程的根为6-,故选B.【变式训练2】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围是( )A .),2()1,(+∞--∞B .),1()2,(+∞--∞C .)2,1(-D .)1,2(- 【答案】D(三) 函数对称性的灵活应用例3.【2017届湖南师大附中高三上学期月考三】已知两定点()1,0A -和()1,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A B C. D 【答案】A【解析】()1,0A -关于直线:3l y x =+的对称点为()3,2A '-,连接A B '交直线l 于点P ,则椭圆C 的长轴长的最小值为A B '=所以椭圆C 的离心率的最大值为5c a ==,故选A. 【点评】求解本题的关键是利用对称性求距离的最小值【变式训练1】已知定义在R 上的函数)(x f 满足)2(x f -为奇函数,函数)3(+x f 关于直线1=x 对称,则下列式子一定成立的是( )A. )()2(x f x f =-B. )6()2(+=-x f x fC. 1)2()2(=+⋅-x f x fD.0)1()(=++-x f x f 【答案】B【分析】由题中函数)(x f 满足)2(x f -为奇函数,结合奇函数的定义转化可得:()(4)f x f x =--,再由条件:函数)3(+x f 关于直线1=x 对称,结合对称性的规律可得:(4)(4)f x f x -=+,最后由周期性的概念可转化为:()(4)(8)f x f x f x =-+=+,可见函数的周期为8,即可求解.【解析】因为(2)f x -为奇函数,所以(2)(2)f x f x -=-+,则()(4)f x f x =--.又因为(3)f x +关于直线1x =对称,所以()f x 关于4x =对称,所以(4)(4)f x f x -=+,则()(4)(8)f x f x f x =-+=+,于是8为函数()f x 的周期,所以(2)(6)f x f x -=+,故选B .【变式训练2】已知函数()y f x =为奇函数,且对定义域内的任意x 都有(1)(1)f x f x +=--.当(2,3)x ∈时,2()log (1)f x x =- 给出以下4个结论:①函数()y f x =的图象关于点(k,0)(k ∈Z)成中心对称;②函数|()|y f x =是以2为周期的周期函数; ③当(1,0)x ∈-时,2()log (1)f x x =--; ④函数(||)y f x =在(k,k+1)( k ∈Z)上单调递增. 其一中所有正确结论的序号为 【答案】①②③【解析】由题设()y f x =为奇函数,其图象关于原点中心对称,又对定义域内的任意x 都有(1)(1)f x f x +=--,所以其图象还关于点()1,0,据此可判断函数()f x 为周期函数,最小正周期2T =,又当(2,3)x ∈时,2()log (1)f x x =-,因此可画出函数()f x 的图象大致如下图一所示,函数|()|y f x =的图象如下图二所示,函数(||)y f x =的图象如下图三所示,由图象可知①②正确,④不正确;另外,当()1,0x ∈-时,()22,3x -∈所以,()()()222log 21log 1f x x x -=--=-,又因为()f x 是以2这周期的奇函数所以,()()()2f x f x f x -=-=-,所以,()()2log 1f x x -=-,所以,()()()2log 1,1,0f x x x =--∈-,所以③也正确,故答案应填:①②③ (四) 函数周期性的灵活应用例4.设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D ⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 . 【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况, 在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.【变式训练1】设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________. 【答案】3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==. (五) 函数性质的综合应用例5.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 【解析】 作出函数()f x 与()g x 的图像如图所示,由图可知,函数()f x 与1()(12,34,56,78)2g x x x x x =-<<<<仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则()f x =(0,2]x ∈与()(2)g x k x =+,(0,1]x ∈的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>,因为两点(2,0)-,(1,1)连线的斜率13k =, 所以11322k <,即k的取值范围为1[3.【变式训练1】. 设()f x R 是上的奇函数,且对任意的实数,a b 当0a b +≠时,都有()()0f a f b a b+>+(1)若a b >,试比较(),()f a f b 的大小;(2)若存在实数13,22x ⎡⎤∈⎢⎥⎣⎦使得不等式2()()0f x c f x c -+->成立,试求实数c 的取值范围.【答案】(1)()()f a f b >;(2)(.【解析】(1)由已知得()()()()0()f a f b f a f b a b a b -+-=>-+-,又 a b >,∴0a b ->()()0f a f b ∴->,即()()f a f b >(2))(x f 为奇函数,∴2()()0f x c f x c -+->等价于2()()f x c f c x ->- 又由(1)知()f x 单调递增,∴不等式等价于2x c c x ->-即22c c x +< 由于存在实数13,22x ⎡⎤∈⎢⎥⎣⎦使得不等式22c c x +<成立,∴23c c +<∴c的取值范围为11()22+-四、迁移应用1.已知函数23,1,()2, 1.x x x f x x x x ⎧-+⎪=⎨+>⎪⎩≤设a ∈R ,若关于x 的不等式()||2xf x a +≥在R 上恒成立,则a 的取值范围是A .47[,2]16-B .4739[,]1616-C.[- D.39[]16- 【答案】A【解析】解法一 根据题意,作出()f x 的大致图象,如图所示x当1x ≤时,若要()||2xf x a +≥恒成立,结合图象,只需23()2x x x a -+-+≥,即2302x x a -++≥,故对于方程2302x x a -++=,21()4(3)02a ∆=--+≤,解得4716a -≥;当1x >时,若要()||2x f x a +≥恒成立,结合图象,只需22x x a x ++≥,即22x a x +≥,又222x x +≥,当且仅当22x x=,即2x =时等号成立,所以2a ≤,综上,a 的取值范围是47[,2]16-.选A . 2.若函数e ()x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M性质,下列函数中具有M 性质的是 .①()2x f x -= ②2()f x x = ③()3x f x -= ④()cos f x x = 【答案】①④【解析】①()2()2xxxx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②()3()3xxx x ee f x e -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3()x x e f x e x =⋅,令3()x g x e x =⋅,则322()3(2)x x x g x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22xg x ex=+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.3.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC ∆,ECA ∆,FAB ∆分别是以BC ,CA ,AB 为底边的等腰三角形。
高考数学讲义微专题05函数的对称性与周期性(含详细解析)
![高考数学讲义微专题05函数的对称性与周期性(含详细解析)](https://img.taocdn.com/s3/m/c5abb892b14e852458fb57ba.png)
微专题05 函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
专题05 函数周期性,对称性,奇偶性问题(解析版)
![专题05 函数周期性,对称性,奇偶性问题(解析版)](https://img.taocdn.com/s3/m/a2a995fcfc0a79563c1ec5da50e2524de518d0e0.png)
【详解】因为 f (x 1) 为偶函数,所以 f (x 1) f (x 1) ,所以 f (x 2) f (x) , 因为 f (x 2) 为奇函数,所以 f (x 2) f (x 2) ,
所以 f (x 2) f (x) ,所以 f (x 4) f (x 2) f (x) ,
专题 05 函数周期性,对称性,奇偶性问题
一、结论(同号周期,异号对称.)
1、周期性:
已知定义在 R 上的函数 f (x) ,若对任意 x R ,总存在非零常数T ,使得 f (x T ) f (x) ,则称 f (x)
是周期函数, T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下: (1)如果 f (x a) f (x) ( a 0 ),那么 f (x) 是周期函数,其中的一个周期 T 2a
所以 f x 关于 3,0 对称,所以 f x f 6 x 0 ,
因为 f x f 2 x , f x f 6 x 0 ,
所以 f 6 x f 2 x ,故 f x f x 4 f x 8 ,故 f x 的周期为 8,
因为 f x 关于 x 1 对称,关于 3,0 对称,所以 f x 关于 x 5 对称,
所以 f (x 2) f (x) ,从而 f (x 4) f (x 2) f (x) , f (x) 是周期函数,且周期为 4,所以 f (2k 1) 0, k Z , 因为 f (x) 的图象关于直线 x 2 对称,也关于点 (1, 0) 对称, 所以 f (x) 的图象关于点 (3, 0) 对称,所以 f (2) f (4) 0 , 所以 f (2) f (3) f (4) f (5) 0 ,
所以 f (x) 是以 4 为周期的周期函数, 由 f (x 2) f (x 2) ,令 x 0 ,得 f (2) f (2) ,则 f (2) 0 , 又 f (1) f (2) 2 ,得 f (1) 2 , 由 f (x 2) f (x 2) ,令 x 1 ,得 f (1) f (3) ,则 f (3) 2 , 由 f (x 2) f (x) ,令 x 2 ,得 f (4) f (2) 0 , 则 f (1) f (2) f (3) f (4) 0 ,
函数的周期性、对称性(解析版)
![函数的周期性、对称性(解析版)](https://img.taocdn.com/s3/m/7487a1f977a20029bd64783e0912a21614797f60.png)
函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。
高中函数对称性和周期性全解析
![高中函数对称性和周期性全解析](https://img.taocdn.com/s3/m/18bad2f56294dd88d0d26b82.png)
高中函数对称性和周期性全解析一、单个函数的对称性性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2a b x +=对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线 2a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a b x +=对称。
(注:特别地,a =b =0时,该函数为偶函数。
)性质2:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b +,2c )对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点 (2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时, 1111()[()]()f a b x c f b b x c f x c y +-=---=-=-即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点(2a b +,2c )对称。
(注:当a =b =c =0时,函数为奇函数。
)性质3:函数()y f a x =+的图象与()y f b x =-的图象关于直线2b a x -=对称。
证明:在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b a x -=对称点(1b a x --,y 1)。
2025新高考函数压轴小题专题突破——专题3 函数的周期性、对称性(解析版)
![2025新高考函数压轴小题专题突破——专题3 函数的周期性、对称性(解析版)](https://img.taocdn.com/s3/m/0ab66b50773231126edb6f1aff00bed5b9f37381.png)
专题3函数的周期性、对称性1.函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,当[]01x ∈,时,()12f x x =,若函数()()g x f x x b =--恰有一个零点,则实数b 的取值集合是()A .112244k k k z ⎛⎫-+∈ ⎪⎝⎭,,B .152222k k k z ⎛⎫++∈ ⎪⎝⎭,C .114444k k k z ⎛⎫-+∈ ⎪⎝⎭,,D .1154444k k k z ⎛⎫++∈ ⎪⎝⎭,2.设函数y=f (x)是定义域为R 的奇函数,且满足f (x-2)=-f (x)对一切x ∈R 恒成立,当-1≤x≤1时,f (x)=x 3,则下列四个命题:①f(x)是以4为周期的周期函数.②f(x)在[1,3]上的解析式为f (x)=(2-x)3.③f(x)在33(,(22f 处的切线方程为3x+4y-5=0.④f(x)的图象的对称轴中,有x=±1,其中正确的命题是()A .①②③B .②③④C .①③④D .①②③④3.设函数为定义域为R 的奇函数,且=2−,当∈0,1时,=sin ,则函数g =cos B −在区间−52)A .6B .7C .13D .144.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为()A .15B .16C .17D .185.已知偶函数()f x 满足()()33f x f x +=-,且当[]0,3x ∈时,()2xf x xe-=,若关于x 的不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,则实数t 的取值范围是()A .120,e -⎛⎫ ⎪⎝⎭B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎫ ⎪⎝⎭D .112,2e e --⎛⎫ ⎪⎝⎭6.已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数2025新高考函数压轴小题专题突破——专题3 函数的周期性、对称性(解析版)()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为()A .1-或12B .1或12-C .1-或2D .2-或17.已知函数()f x 为R 上的奇函数,且图象关于点(3,0)对称,且当x ∈(0,3)时,1()()12xf x =-,则函数()f x 在区间[2019,2024]上的()A .最小值为34-B .最小值为78-C .最大值为0D .最大值为788.已知()f x 是定义在R 上的奇函数,满足()()1f x f x =-+,当102x ≤≤时,()f x =论错误的是()A .方程()f x x a -+=0最多有四个解B .函数()f x 的值域为[22,22-]C .函数()f x 的图象关于直线12x =对称D .f (2020)=09.已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为()A .12B .1C D .210.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .611.已知()f x 、()g x 都是定义域为R 的连续函数.已知:()g x 满足:①当0x >时,()0g x '>恒成立;②R x ∀∈都有()()g x g x =-.()f x 满足:①R x ∀∈都有(1)(1)f x f x +=-;②当[1,1]x ∈-时,3()33f x x x =-.若关于x 的不等式2[()](3g f x g a a ≤-+对48[,33x ∈恒成立,则a 的取值范围是()A .RB .[1,)+∞C .[0,1]D .(,0][1,)-∞+∞ 12.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则()A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点13.已知定义域为(0,)+∞的函数()f x 满足:对任何(0,)+∞,都有(3)3()f x f x =,且当(1,3]x ∈时,()3f x x =-,在下列结论中,正确命题的序号是________①对任何m ∈Z ,都有(3)0m f =;②函数()f x 的值域是[0,)+∞;③存在n ∈Z ,使得(31)17n f +=;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是“存在k ∈Z ,使得1(,)(3,3)k k a b +⊆”;14.定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =,当(]1,2x ∈时,()2f x x =-,给出如下结论,其中所有正确结论的序号是:____.①对m Z ∀∈,有()20m f =;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使得()219nf +=;15.已知定义域为R 的函数()f x 既是奇函数,又是周期为3的周期函数,当3(0,2x ∈时,()sin f x x π=,则函数()f x 在区间[0,6]上的零点个数是__________.16.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为__________.17.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.18.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=;②函数()f x 在()1,2上递减,在()2,3上递增;③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________.19.已知数列{}n a 满足12a =-,且32n n S a n =+(其中n S 为数列{}n a 前n 项和),()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=,则2021()f a =___________.20.给出定义:若1122M x M -<≤+(其中M 为整数),则M 叫做离实数x 最近的整数,记作{}x M =.在此基础上给出下列关于函数(){}f x x x =-的四个结论:①函数() y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数() y f x =的图象关于直线()2kx k Z =∈对称;③函数() y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数;④函数() y f x =是偶函数;其中正确结论的是________.(把正确的序号填在横线上).专题3函数的周期性、对称性1.函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,当[]01x ∈,时,()12f x x =,若函数()()g x f x x b =--恰有一个零点,则实数b 的取值集合是()A .112244k k k z ⎛⎫-+∈ ⎪⎝⎭,,B .152222k k k z ⎛⎫++∈ ⎪⎝⎭,C .114444k k k z ⎛⎫-+∈ ⎪⎝⎭,,D .1154444k k k z ⎛⎫++∈ ⎪⎝⎭,【解析】函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,()(),(1)(1)f x f x f x f x -=---=-,(2)((1)1)()()f x f x f x f x -=--=-=-,即(2)(),(4)(2)()f x f x f x f x f x +=-∴+=-+=,()f x ∴的周期为4.[]01x ∈,时,()12f x x ==,[]12,[0,1],()()1,0()x f x x x f x -∈-=-=-∈-,()f x ∴=(1)(1),()(2)f x f x f x f x --=-∴=-- ,()f x 周期为4,()(2)(2)f x f x f x ∴=--=-+,当[1,2],2[0,1],()(2)x x f x f x ∈-+∈=-+=,当[2,3],2[1,0],()(2)x x f x f x ∈-+∈-=-+=,做出函数()f x 图像,如下图所示:令()()0g x f x x b =--=,当[1,0]x ∈-,()()0g x f x x b x b =--=-=,x b --=22(21)0x b x b +++=,221(21)4410,4b b b b ∆=+-=+==-,此时直线与()f x 在[1,0]x ∈-函数图像相切,与函数有两个交点,同理154b =-,直线与()f x 在[4,5]x ∈函数图像相切,与函数有两个交点,则要使函数()f x 在[1,4]内与直线y x b =+只有一个交点,则b 满足15144b -<<-,()f x 周期为4,b 范围也表示为11544b <<,所以所有b 的取值范围是1154444k b k k Z +<<+∈.故选:D.2.设函数y=f (x)是定义域为R 的奇函数,且满足f (x-2)=-f (x)对一切x ∈R 恒成立,当-1≤x≤1时,f (x)=x 3,则下列四个命题:①f(x)是以4为周期的周期函数.②f(x)在[1,3]上的解析式为f (x)=(2-x)3.③f(x)在33(,(22f 处的切线方程为3x+4y-5=0.④f(x)的图象的对称轴中,有x=±1,其中正确的命题是()A .①②③B .②③④C .①③④D .①②③④【解析】()(2)(4)4f x f x f x T =--=-∴=当13x ≤≤时,33()(2)[(2)](2)f x f x x x =--=--=-当13x ≤≤时,23331()3(2)()()2428f x x k f f =--∴=-'='=,所以切线方程为133()3450842y x x y -=--∴+-=()(2)(2),(2)()()f x f x f x f x f x f x =--=--=-=-∴ f(x)的图象关于x=±1对称,因此选D.3.设函数为定义域为R 的奇函数,且=2−,当∈0,1时,=sin ,则函数g =cos B −在区间−52)A .6B .7C .13D .14【解析】由题意,函数o −p =−op ,op =o2−p ,则−o −p =o2−p ,可得o +4)=op ,即函数的周期为4,且=op 的图象关于直线=1对称.op =|cos(πp|−op 在区间[−52,92]上的零点,即方程|cos(πp|=op 的零点,分别画=|cos(πp|与=op 的函数图象,∵两个函数的图象都关于直线=1对称,∴方程|cos(πp|=op 的零点关于直线=1对称,由图象可知交点个数为6个,可得所有零点的和为6,故选A .4.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为()A .15B .16C .17D .18【解析】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4 f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-== (),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D5.已知偶函数()f x 满足()()33f x f x +=-,且当[]0,3x ∈时,()2xf x xe -=,若关于x 的不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,则实数t 的取值范围是()A .120,e -⎛⎫ ⎪⎝⎭B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎫⎪⎝⎭D .112,2e e --⎛⎫⎪⎝⎭【解析】因为偶函数()f x 满足()()33f x f x +=-,所以()()()6f x f x f x -==-,即()()6+f x f x =,所以函数()f x 是以6为周期的周期函数,当[]0,3x ∈时,()2x f x xe -=,所以()22xx f x e -'=(1-,当02x ≤<时,()0f x '>,函数()f x 递增;当23x <≤时,()0f x '<,函数()f x 递减;当当2x =时,函数()f x 取得极大值()2f x e=,作出函数()f x 在(3,3]-上的图象,如图所示:因为不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,所以不等式()()20fx tf x ->在(3,3]-上有且只有3个整数解,当()0f x =时,不符合题意,故不等式()f x t >在(3,3]-上有且只有3个整数解,因为()()1322133,f e f e --==,所以()()3311f f e=>,即()()13f f <,故不等式()f x t >在(3,3]-上的3个整数解分别为-2,2,3,所以,()()13f f t <<,即32123t ee --<<,故选:B6.已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为()A .1-或12B .1或12-C .1-或2D .2-或1【解析】解:已知()()sin xg x h e x x x ++=-,①且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin xx g x e x x h -+---=++,得:()()sin xex x g x h x --=-+,②①+②得:()2x xe e g x -+=,由于2020x -关于2020x =对称,则20203x -关于2020x =对称,()g x 为偶函数,关于y 轴对称,则()2020g x -关于2020x =对称,由于()()20202320202x f g x x λλ-=---有唯一零点,则必有()20200f =,()01g =,即:()()0223021202020f g λλλλ=--=--=,解得:1λ=-或12.故选:A.7.已知函数()f x 为R 上的奇函数,且图象关于点(3,0)对称,且当x ∈(0,3)时,1()()12xf x =-,则函数()f x 在区间[2019,2024]上的()A .最小值为34-B .最小值为78-C .最大值为0D .最大值为78【解析】函数()f x 的图像关于点()3,0对称,()()6f x f x ∴+=--.又函数()f x 为奇函数,()()6f x f x ∴+=,∴函数()f x 是6T =的周期函数,201933763=⨯-Q ,202433762=⨯+,由周期性可知,函数()f x 在区间[2019,2024]上的图像与在区间[]3,2-上的图像一样,又当(0,3)x ∈时,1()()12xf x =-,由指数函数性质知()f x 在区间(0,3)上单调递减,又函数()f x 为R 上的奇函数,故当(3,0)x ∈-时,()12x f x =-,故()f x 在()3,0-上单调递减,且()00f =,所以()f x 在区间()3,3-上单调递减,即()f x 在区间(]3,2-上单调递减,函数取得最小值3(2)4f =-.故函数()f x 在区间[2019,2024]上的最小值为34-故选:A.【点睛】结论点睛:本题主要考查函数的性质及对称性与周期性的综合应用,函数周期性常用结论:(1)若()()f x a f x a +=-,则函数的T =2a ;(2)若()()f x a f x +=-,则函数的T =2a ;(3)若1()()f x a f x +=,则函数的T =2a ;(4)函数()f x 关于直线x a =与x b =对称,那么函数()f x 的T =2||b a -;(5)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,则函数()f x 的T =2||b a -;(6)若函数()f x 关于直线x a =对称,又关于点(),0b 对称,则函数()f x 的T =4||b a -8.已知()f x 是定义在R 上的奇函数,满足()()1f x f x =-+,当102x ≤≤时,()f x =论错误的是()A .方程()f x x a -+=0最多有四个解B .函数()f x 的值域为[,22-]C .函数()f x 的图象关于直线12x =对称D .f (2020)=0【解析】由()(1)f x f x =-+可得:(1)(2)f x f x +=-+,则()(2)f x f x =+,所以函数()f x 的周期为2,所以(2020)(0)0f f ==,D 正确,排除D ;再由()(1)f x f x =-+以及()()f x f x =--,所以()(1)f x f x -=+,则函数()f x 的对称轴为12x =,C 正确,排除C ;当012x 时,()[0f x =,2,又函数是奇函数,102x - 时,2()[2f x =-,0],即1122x - 时22()[]22f x ∈-,又因为函数()f x 的对称轴为12x =,所以1322x 时22()[]22f x ∈-,所以1322x - 时22()[]22f x ∈-又因为函数()f x 的周期为2,所以函数()f x 的值域为22[,22-,B 正确,排除B ;故选:A .9.已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2x f x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为()A .12B .1C D .2【解析】当)x ⎡∈⎣时,()(g x ∈,令2x =12x =±.∵()()2f x f x =+,∴()f x 的周期为2,所以()f x 在[-1,5]的图象所示:结合题意,当17422a =-+=,19422b =+=时,b a -取得最大值.最大值为1.故选:B.10.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【解析】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .11.已知()f x 、()g x 都是定义域为R 的连续函数.已知:()g x 满足:①当0x >时,()0g x '>恒成立;②R x ∀∈都有()()g x g x =-.()f x 满足:①R x ∀∈都有(1)(1)f x f x +=-;②当[1,1]x ∈-时,3()33f x x x =-.若关于x 的不等式223[()](3g f x g a a ≤-+对48[,33x ∈恒成立,则a 的取值范围是()A .RB .[1,)+∞C .[0,1]D .(,0][1,)-∞+∞ 【解析】因为R x ∀∈都有()()g x g x =-,所以()g x 是偶函数,又当0x >时,()0g x '>恒成立,所以()g x 在()0,+¥上单调递增,所以223[()]()3g f x g a a ≤-+等价于223|()|3f x a a ≤-+,只需2max 23|()|3f x a a ≤-+,48[,]33x ∈.因为R x ∀∈都有(1)(1)f x f x +=-,即()(2)f x f x =+,所以()f x 是周期函数,周期为2,当()1,3x ∈时,()21,1x -∈-,所以()()()3()23232f x f x x x =-=---,故48[,]33x ∈时,()()3()3232f x x x =---,求导得,()2()923f x x '=--,令()0f x '=,解得13482[,333x =-∈,238233x =+>,当43,233x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0f x '>,此时()f x 单调递增;当38233x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,所以48[,]33x ∈时,3max ()3232333222333f x f ⎛⎫⎛⎫⎛⎫==--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝---⎝⎭⎭233=,所以2232333a a ≤-+,又因为223123103234a a a ⎛⎫-+=-+-> ⎪⎝⎭,所以2223333a a a a -+=-+,则2232333a a ≤-+,解得1a ≥或0a ≤.所以实数a 的取值范围是(,0][1,)-∞⋃+∞.故选:D.二、多选题12.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则()A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【解析】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得,(4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD13.已知定义域为(0,)+∞的函数()f x 满足:对任何(0,)+∞,都有(3)3()f x f x =,且当(1,3]x ∈时,()3f x x =-,在下列结论中,正确命题的序号是________①对任何m ∈Z ,都有(3)0m f =;②函数()f x 的值域是[0,)+∞;③存在n ∈Z ,使得(31)17n f +=;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是“存在k ∈Z ,使得1(,)(3,3)k k a b +⊆”;【解析】对于①,对任何(0,)+∞,都有(3)3()f x f x =,当(1,3]x ∈时,()3f x x =-,所以()()()111333333(3)0m m m m f f f f ---=⋅==⋯==,①正确;对于②,取(m m 1x 3,3,(1,3]3m x +⎤∈∈⎦13,333333m m m m m x x x x f f f x +⎛⎫⎛⎫⎛⎫=-=⋅⋅⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭从而函数()f x 的值域为[0,+∞),②正确;对于③,(1,3]x ∈时,()3f x x =-,对任意(0,)x ∈+∞,恒有(3)3()f x f x =成立,n Z ∈,所以()11131313313217333n n n n n n n f f ⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦解得2n =,∴③正确;对于④,充分性:令133k k a b +≤<≤则1333k ka b ≤<≤所以()()3333k k k k ab f a f b f f ⎛⎫⎛⎫-=⋅-⋅ ⎪ ⎪⎝⎭⎝⎭333k k k a b f f ⎡⎤⎛⎫⎛⎫=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦33333k k k a b ⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦333k k k b a ⎛⎫=- ⎪⎝⎭b a =->必要性:令0a b <<,()()3333k k k k a b f a f b f f ⎛⎫⎛⎫-=⋅-⋅ ⎪ ⎪⎝⎭⎝⎭333k k k a b f f ⎡⎤⎛⎫⎛⎫=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由函数()f x 在区间(,)a b 上单调递减,所以033k k ab f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭即33k k ab f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又当(1,3]x ∈时,()3f x x =-,且()3f x x =-为减函数,所以存在k ∈Z ,使得1333k k a b <<<,则133k k a b +<<<,所以(,)a b ⊆1(3,3)k k +∴函数()f x 在区间(,)a b ⊆1(3,3)k k +上单调递减,④正确;综上所述,正确结论的序号是①②③④.故答案为①②③④.14.定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =,当(]1,2x ∈时,()2f x x =-,给出如下结论,其中所有正确结论的序号是:____.①对m Z ∀∈,有()20m f =;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使得()219n f +=;【解析】因为()()()11222220m m m f f f --==⋯==,所以①对;因为当(]1,2x ∈时,()[)20,1f x x =-∈,当1,12x ⎛⎤∈⎥⎝⎦时,()()11220,22f x x ⎡⎫=-∈⎪⎢⎣⎭,当111,22k k x -⎛⎤∈ ⎥⎝⎦时,()()11220,22k k k f x x ⎡⎫=-∈⎪⎢⎣⎭,当(12,2k k x -⎤∈⎦时,())1111220,22k k k f x x ---⎛⎫⎡=-∈ ⎪⎣⎝⎭,因此当k →+∞时,112,02k k -→+∞→,从而函数()f x 的值域为[)0,+∞;所以②对;因为349(2,2)∈,所以由上可得()112121 229,142n n k k f k --⎛⎫++=-=-≥ ⎪⎝⎭,即2210k n -=,111122521,26k n n k -----=∴==无解.所以③错;综上正确结论的序号是①②15.已知定义域为R 的函数()f x 既是奇函数,又是周期为3的周期函数,当3(0,2x ∈时,()sin f x x π=,则函数()f x 在区间[0,6]上的零点个数是__________.【解析】因为函数定义域为R ,周期为3,所以39(0)(()022f f f ===如图所示,画出函数的函数图像,由图像可知在[]0,6上的零点为390,1,,2,3,4,,5,622所以共有9个零点16.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为__________.【解析】试题分析:由于定义域为R 的奇函数()f x 满足()()13f x f x +=-,()()()()()()()()()4484f x f x f x f x f x f x f x f x f x ∴-=-+=-∴+=-∴+=-+=,,,,∴函数()f x 为周期函数,且周期为8,当(]0,2x ∈时,()24f x x =-+,函数()()y f x a a R =-∈在区间[]4,8-上的零点的个数,即为函数()y f x =与y a =的交点的个数,作出函数()[],4,8y f x x =∈-上的函数的图象,显然,当0a =时,交点最多,符合题意,此时,零点的和为()420246814-+-+++++=.17.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.【解析】已知定义在()(),00,-∞⋃+∞上的函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩若()()0f x f x +-=在定义域上有四个不同的解等价于21162a y x x =++关于原点对称的函数21162a y x x =-+-与函数f (x )=lnx -x (x >0)的图象有两个交点,联立可得211ln 062a x x x x -++=-有两个解,即2311ln 62a x x x x x =-++可设()2311ln 62g x x x x x x =-++,则()21ln 2232g x x x x '=-++,进而()120g x x x ''=+-≥且不恒为零,可得()g x '在()0,∞+单调递增.由()10g '=可得01x <<时,()0,()g x g x '<单调递减;1x >时,()0,()'>g x g x 单调递增,即()g x 在1x =处取得极小值且为13-作出()y g x =的图象,可得103-<<a 时,211ln 062a x x x x -++=-有两个解.故答案为:1,03⎛⎫- ⎪⎝⎭18.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2x f x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=;②函数()f x 在()1,2上递减,在()2,3上递增;③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________.【解析】由题意,函数()f x 对任意的x ∈R 恒有()()11f x f x =+-,可得()()2[(1)1][(1)1]f x f f x f x f x +=++=+-=,所以①正确;由[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭为单调递增函数,因为函数()f x 是定义在R 上的偶函数,可得[]1,0x ∈-时,函数()f x 为单调递减函数,又由函数的周期为2,可得函数()f x 在()1,2上递减,在()2,3上递增,所以②正确;由②可得,当2x =时,函数取得最小值,最小值为()()1202f f ==;当3x =时,函数取得最大值,最大值为()()311f f ==,根据函数的周期性,可得函数的最大值为1,最小值为12,所以③不正确;当()3,4x ∈时,则4(0,1)x -∈,可得()()1(4)3114(2)()()()22x x f x f x f x f x ----=-=-===,所以④正确.故答案为:①②④.19.已知数列{}n a 满足12a =-,且32n n S a n =+(其中n S 为数列{}n a 前n 项和),()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=,则2021()f a =___________.【解析】解:因为()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=所以()()()2f x f x f x -=+=-,()()()42f x f x f x +=-+=所以()f x 的最小正周期为4又因为数列{}n a 满足12a =-,且32n n S a n =+①;当2n ≥时,11312n n S a n --=+-②;①减②得133122n n n a a a -=-+,所以132n n a a -=-,()1311n n a a -=--所以{}1n a -以3-为首项,3为公比的等比数列,所以13n n a -=-,即13nn a =-所以2021202113a =-又()()2021202120211202020213414141C =-=++⋅-⋅- 所以20213被4除余3所以()()()()()202120212021()133111200f a f f f f f =-=--=---===故答案为:020.给出定义:若1122M x M -<≤+(其中M 为整数),则M 叫做离实数x 最近的整数,记作{}x M =.在此基础上给出下列关于函数(){}f x x x =-的四个结论:①函数() y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数() y f x =的图象关于直线()2kx k Z =∈对称;③函数() y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数;④函数() y f x =是偶函数;其中正确结论的是________.(把正确的序号填在横线上).【解析】因为{}x M =,函数(){}f x x x =-,所以()f x x M=-当0M =时,()11,22f x x x =-<≤,当1M =时,()111,1122f x x x =--<≤+,当2M =时,()112,2222f x x x =--<≤+,当3M =时,()113,3322f x x x =--<≤+,函数图象如图所示:由图象可知:①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦,故正确;②函数()y f x =的图象关于直线()2kx k Z =∈对称,故正确;③函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上不单调,故错误;④其函数关于y 轴对称,所以()y f x =是偶函数,故正确.故答案为:①②④1.设函数32()2f x x ex mx lnx =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是()A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,]+∞D .21(e e --,21]e e+2.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数,若函数()f x 至少存在一个零点,则实数a 的取值范围是()A .21(0,]e e-B .21(0,]e e +C .21[,)e e -+∞D .21(,]e e-∞+3.已知函数2()2lnxf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是()A .21(,e e -∞+B .21(,]e e -∞+C .21[,)e e -+∞D .21(,)e e-+∞4.若函数322()x ex mx lnxf x x-+-=至少存在一个零点,则m 的取值范围为()A .(-∞,21]e e+B .21[e e +,)+∞C .(-∞,1}e e+D .1[e e+,)+∞5.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是.1.设函数32()2f x x ex mx lnx =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是()A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,]+∞D .21(e e --,21]e e+【解析】解:32()2f x x ex mx lnx =-+- 的定义域为(0,)+∞,又()()f x g x x=,∴函数()g x 至少存在一个零点可化为函数32()2f x x ex mx lnx =-+-至少有一个零点;即方程3220x ex mx lnx -+-=有解,则32222x ex lnx lnxm x ex x x-++==-++,2211222()lnx lnxm x e x e x x --'=-++=--+;故当(0,)x e ∈时,0m '>,当(,)x e ∈+∞时,0m '<;则22lnxm x ex x=-++在(0,)e 上单调递增,在(,)e +∞上单调递减,故22112m e e e e e e-++=+ ;又 当0x +→时,22lnxm x ex x=-++→-∞,故21m e e+ ;故选:A .2.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数,若函数()f x 至少存在一个零点,则实数a 的取值范围是()A .21(0,]e e-B .21(0,]e e+C .21[,)e e-+∞D .21(,e e-∞+【解析】解:令2()20lnxf x x ex a x=--+=,则22(0)lnxa x ex x x =-++>,设2()2lnxh x x ex x=-++,令21()2h x x ex =-+,2()lnxh x x=,221()lnxh x x -∴'=,发现函数1()h x ,2()h x 在(0,)e 上都是单调递增,在[e ,)+∞上都是单调递减,∴函数2()2lnxh x x ex x=-++在(0,)e 上单调递增,在[e ,)+∞上单调递减,故当x e =时,得21()max h x e e=+,∴函数()f x 至少存在一个零点需满足()max a h x ,即21a e e+ .故选:D .3.已知函数2()2lnxf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是()A .21(,)e e-∞+B .21(,]e e-∞+C .21[,)e e-+∞D .21(,)e e-+∞【解析】解:令2()20lnx f x x ex a x =-+-=,即22lnxx ex ax=-+,令2(),()2lnx g x h x x ex a x ==-+,则函数()lnxg x x=与函数2()2h x x ex a =-+至少有一个交点,易知,函数2()2h x x ex a =-+表示开口向上,对称轴为x e =的二次函数,函数()g x 的导函数2211()x lnxlnx x g x x x ⨯--'==,令()0g x '>,解得0x e <<,令()0g x '<,解得x e >,∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,1()()max g x g e e==,作出函数()g x 与函数()h x 的草图如下,由图可知,要使函数()g x 与()h x 至少一个交点,只需()()min max h x g x ,即2212e e a e -+ ,解得21a e e+ .故选:B .4.若函数322()x ex mx lnxf x x-+-=至少存在一个零点,则m 的取值范围为()A .(-∞,21]e e+B .21[e e +,)+∞C .(-∞,1}e e+D .1[e e+,)+∞【解析】解: 函数()f x 至少存在一个零点,∴3220x ex mx lnx x -+-=有解,即22lnxm x ex x=-++有解,221()222()lnx lnx lne m x e x e x x ---'=-++=--+,∴当(0,)x e ∈时,0m '>,m 为关于x 的增函数;当(,)x e ∈+∞时,0m '<,m 为关于x 的减函数.因此,画出函数22lnxy x ex x=-++的图象如右图所示,则若函数()f x 至少存在一个零点,则m 小于函数22lnxy x ex x=-++的最大值即可,函数22lnx y x ex x =-++的最大值为21e e+即21m e e+ .故选:A .5.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是(-∞,21e e+.【解析】解:21()22lnxf x x e x-'=--,令()0f x '=得x e =,当0x e <<时,()0f x '<,当x e >时,()0f x '>,()f x ∴在(0,)e 上单调递减,在(,)e +∞上单调递增,∴当x e =时,()f x 起点最小值f (e )21e a e =--+,()f x 至少有1个零点,210e a e ∴--+ ,即21a e e + .故答案为:(-∞,21]e e+.。
(完整版)对称性和周期性性质总结
![(完整版)对称性和周期性性质总结](https://img.taocdn.com/s3/m/e1cb268e02020740bf1e9b7c.png)
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
(完整版)函数的对称性与周期性
![(完整版)函数的对称性与周期性](https://img.taocdn.com/s3/m/ff4455bc856a561252d36fbc.png)
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
2024年高考数学高频考点(新高考通用)函数的基本性质Ⅱ-奇偶性、周期性和对称性(解析版)
![2024年高考数学高频考点(新高考通用)函数的基本性质Ⅱ-奇偶性、周期性和对称性(解析版)](https://img.taocdn.com/s3/m/286f7d4058eef8c75fbfc77da26925c52cc59138.png)
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第08讲函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练)【A组在基础中考查功底】....【答案】A【分析】首先判断函数的奇偶性,再代入计算)π和2f π⎛⎫⎪⎝⎭的值即可得到正确答案【详解】因为()()2cos cos sin f x x x x x f x -=+=,且函数定义域为R ,关于原点对称,所以是偶函数,其图象关于y 轴对称,排除【分析】利用函数的奇偶性和对称性,得到函数的单调区间,利用单调性解函数不等式.【详解】因为()1f x -为偶函数,所以()1f x -的图像关于y 轴对称,则()f x 的图像关于直线=1x -对称.因为()f x 在[)1,-+∞上单调递增,所以()f x 在(],1-∞-上单调递减.因为()()127(5)xf f f -<-=,所以7125x -<-<,解得3x <.故选:A.11.(2023秋·吉林长春·高三长春市第二中学校考期末)设()y f x =是定义在R 上的奇函数,且()()2f x f x +=-,又当[]0,1x ∈时,()2f x x =,则()25.5f 的值为______.【答案】1【分析】由已知可得函数的周期为4,然后根据函数解析式结合周期性奇偶性可求得结果.【详解】因为()()2f x f x +=-,所以()()42f x f x +=-+,所以()()4f x f x +=,所以()y f x =的周期为4,因为()y f x =是定义在R 上的奇函数,当[]0,1x ∈时,()2f x x =,所以()()25.546 1.5f f =⨯+()1.5f =()0.52f =-+()0.5f =--()0.5f =20.51=⨯=,故答案为:112.(2023·全国·高三对口高考)已知函数()y f x =,x ∈R ,()y f x =是奇函数,且当0x ≥【B 组在综合中考查能力】A .()sin 2e e x xx xf x -=-C .()cos 2e ex xx xf x -=-的取值范围是(1)=12.(2023·河北·高三学业考试)已知二次函数()f x 满足()()12f x f x x +-=且()01f =.(1)求()f x 的解析式;(2)若方程()f x ax =,[]2,3x ∈时有唯一一个零点,且不是重根,求a 的取值范围;(3)当[]1,1x ∈-时,不等式()2f x x m >+恒成立,求实数m 的范围.【答案】(1)()21f x x x =-+【C 组在创新中考查思维】一、单选题1.(2023·辽宁·校联考二模)设函数()f x 在(),-∞+∞上满足()()22f x f x -=+,()()55f x f x -=+,且在闭区间[]0,5上只有()()130f f ==,则方程()0f x =在闭区间[]2020,2020-上的根的个数().A .1348B .1347C .1346D .13455.(2023·全国·模拟预测)已知函数()f x 及其导函数()f x '的定义域均为R ,且满足在。
专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版)
![专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版)](https://img.taocdn.com/s3/m/be6414d8bd64783e08122bb2.png)
专题四《函数》讲义5.7对称性与周期性知识梳理.对称性与周期性1.轴对称:①f(x)=f(-x),关于x=0对称②f(a+x)=f(a-x),关于x=a对称③f(a+x)=f(b-x),关于x=2b a 对称2.中心对称:①f(x)-f(-x)=0,关于(0,0)对称②f(a+x)-f(a-x)=0,关于(a,0)对称③f(a+x)-f(a-x)=2b,关于(a,b)对称3.周期性:①f(x)=f(x+T),最小正周期为T,有多个对称轴,有多个对称中心.②f(x+a)=f(x+b),T=lb-al③f(x+a)=-f(x+b),T=2lb-al④f(x+a)=±)(f1x,T=l2al题型一.轴对称1.已知函数f(x)=f(2﹣x),x∈R,当x∈[1,+∞)时,f(x)为增函数.设a=f(1),b =f(2),c=f(﹣1),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【解答】解:∵f(x)=f(2﹣x),∴函数的图象关于x=1对称,当x∈[1,+∞)时,f(x)为增函数,∴f(3)>f(2)>f(1),a=f(1),b=f(2),c=f(﹣1)=f(3),则a<b<c.故选:D.2.定义在R上的奇函数f(x)满足f(1+x)=f(1﹣x),且当x∈[0,1]时,f(x)=x(3﹣2x),则f(312)=()A.﹣1B.−12C.12D.1【解答】解:根据题意,函数f(x)满足f(1+x)=f(1﹣x),则有f(﹣x)=f(x+2),又由f(x)为奇函数,则f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(312)=f(−12+16)=f(−12)=﹣f(12)=﹣[12(3﹣2×12)]=﹣1;故选:A.3.已知定义域为R的函数f(x)在[1,+∞)单调递增,且f(x+1)为偶函数,若f(3)=1,则不等式f(2x+1)<1的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,1)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:根据题意,函数f(x+1)为偶函数,则函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,+∞)单调递增且f(3)=1,则f(2x+1)<1⇒f(2x+1)<f(3)⇒|2x|<2,解可得:﹣1<x<1,即不等式的解集为(﹣1,1);故选:A.题型二.中心对称1.已知函数f(2x+1)是奇函数.则函数y=f(2x)的图象成中心对称的点为()A.(1,0)B.(﹣1,0)C.(12,0)D.(−12,0)【解答】解:∵函数f(2x+1)是奇函数,∴f(﹣2x+1)=﹣f(2x+1)令t=1﹣2x,代入可得f(t)+f(2﹣t)=0,∴函数f(x)关于(1,0)对称,则函数y=f(2x)的图象成中心对称的点为(12,0).故选:C.2.已知函数f(x﹣1)(x∈R)是偶函数,且函数f(x)的图象关于点(1,0)成中心对称,当x∈[﹣1,1]时,f(x)=x﹣1,则f(2019)=()A.﹣2B.﹣1C.0D.2【解答】解:根据题意,函数f(x﹣1)(x∈R)是偶函数,则函数f(x)的对称轴为x=﹣1,则有f(x)=f(﹣2﹣x),又由函数f(x)的图象关于点(1,0)成中心对称,则f(x)=﹣f(2﹣x),则有f(﹣2﹣x)=﹣f(2﹣x),即f(x+4)=﹣f(x),变形可得f(x+8)=f(x),则函数是周期为8的周期函数,f(2019)=f(3+252×8)=f(3)=﹣f(﹣1)=﹣(﹣1﹣1)=2;故选:D.3.(2016·全国2)已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=r1与y =f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则J1 (x i+y i)=()A.0B.m C.2m D.4m【解答】解:函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),即为f(x)+f(﹣x)=2,可得f(x)关于点(0,1)对称,函数y=r1,即y=1+1的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,(x2,y2)为交点,即有(﹣x2,2﹣y2)也为交点,…则有J1 (x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)=12[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(x m+y m)+(﹣x m+2﹣y m)]=m.故选:B.题型三.周期性1.已知函数f(x)=l0.5(3−p,≤0−1oK4),>0,则f(2019)=()A.45B.23C.12D.13【解答】解:∵f(x)=l0.5(3−p,≤0−1oK4),>0,当x>0时,f(x+8)=f(x),则f(2019)=f(3)=−1o−1)=12.故选:C.2.(2017•山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)=6.【解答】解:由f(x+4)=f(x﹣2).则f(x+6)=f(x),∴f(x)为周期为6的周期函数,f(919)=f(153×6+1)=f(1),由f(x)是定义在R上的偶函数,则f(1)=f(﹣1),当x∈[﹣3,0]时,f(x)=6﹣x,f(﹣1)=6﹣(﹣1)=6,∴f(919)=6,故答案为:6.3.(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.题型四.对称性与周期性综合1.(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【解答】解:f(x)的定义域为(0,2),f(x)=ln[x(2﹣x)]=ln(﹣x2+2x),故f(x)在(0,1)上递增,在(1,2)上递减,A,B错.∵f(2﹣x)=ln(2﹣x)+lnx=f(x),∴y=f(x)的图象关于直线x=1对称,C正确,D错误.故选:C.2.(2019•涪城区校级模拟)设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=(12)x﹣1,则a=f(log32),b=f(﹣log,c =f(3)的大小关系是()A.a>b>c B.b>c>a C.b>a>c D.c>b>a【解答】解:∵y=f(x+1)是偶函数,∴f(﹣x+1)=f(x+1),即函数f(x)关于x=1对称.∵当x≥1时,f(x)=(12)x﹣1为减函数,∵f(log32)=f(2﹣log32)=f(log392),且−2=l32=log34,log34<log392<3,∴b>a>c,故选:C.3.(2018秋•余姚市校级月考)已知函数f(x)满足f(2﹣x)=f(x)(x∈R),且对任意x1,x2∈[1,+∞)(x1≠x2)的时,恒有o1)−o2)1−2<0成立,则当f(2a2+a+2)<f(2a2﹣2a+4)时,实数a的取值范围为()A.(23,+∞)B.(−∞,23)C.(23,1)D.(23,1)∪(1,+∞)【解答】解:根据题意,函数f(x)满足f(2﹣x)=f(x),则函数f(x)的图象关于直线x=1对称,又由对任意x1,x2∈[1,+∞)(x1≠x2)的时,恒有o1)−o2)1−2<0成立,则f(x)在[1,+∞)上为减函数,又由2a2+a+2=2(a+14)2+158>1,2a2﹣2a+4=2(a−12)2+72>1,若f(2a2+a+2)<f(2a2﹣2a+4),则有2a2+a+2>2a2﹣2a+4,解可得a>23,即a的取值范围为(23,+∞)故选:A.4.(2016•湖南校级模拟)已知函数y=f(x)的图象关于直线x=1对称,且在[1,+∞)上单调递减,f(0)=0,则f(x+1)>0的解集为()A.(1,+∞)B.(﹣1,1)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由f(x)的图象关于x=1对称,f(0)=0,可得f(2)=f(0)=0,当x+1≥1时,f(x+1)>0,即为f(x+1)>f(2),由f(x)在[1,+∞)上单调递减,可得:x+1<2,解得x<1,即有0≤x<1①当x+1<1即x<0时,f(x+1)>0,即为f(x+1)>f(0),由f(x)在(﹣∞,1)上单调递增,可得:x+1>0,解得x>﹣1,即有﹣1<x<0②由①②,可得解集为(﹣1,1).故选:B.5.(2019•新课标Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x)≥−89,则m的取值范围是()A.(﹣∞,94]B.(﹣∞,73]C.(﹣∞,52]D.(﹣∞,83]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[−14,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[−12,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)=−89解得x=73或x=83,若对任意x∈(﹣∞,m],都有f(x)≥−89,则m≤73.故选:B.6.(2009•山东)已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【解答】解:∵f(x)是奇函数,∴f(x﹣4)=﹣f(x)=f(﹣x),∴f(x)的图象关于直线x=﹣2对称,又f(x﹣4)=﹣f(x),∴f(x)=﹣f(x+4),∴f(x﹣4)=f(x+4),∴f(x)周期为8,作出f(x)的大致函数图象如图:由图象可知f(x)=m的4个根中,两个关于直线x=﹣6对称,两个关于直线x=2对称,∴x1+x2+x3+x4=﹣6×2+2×2=﹣8.故答案为:﹣8.课后作业.函数性质1.若函数f(x)=1+2r12+1+sin x在区间[﹣k,k](k>0)上的值域为[m,n],则m+n等于()A.0B.1C.2D.4【解答】解:f(x)=1+2r12+1+sin x=3−22+1+sin x,f(﹣x)=3−22−+1+sin(﹣x)=3−2⋅21+2−sin x∴f(x)+f(﹣x)=4,所以f(x)是以点(0,2)为对称中心,所以其最大值与最小值的和m+n=4.故选:D.2.设函数f(x)=x3−13,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3−13,则f(﹣x)=﹣x3+13=−f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=13在(0,+∞)为减函数,y2=−13在(0,+∞)为增函数,所以当x>0时,f(x)=x3−13单调递增,故选:A.3.已知f(x)是定义域为(﹣∞,+∞)的奇函数,f(x+1)是偶函数,且当x∈(0,1]时,f(x)=﹣x(x﹣2),则()A.f(x)是周期为2的函数B.f(2019)+f(2020)=﹣1C.f(x)的值域为[﹣1,1]D.y=f(x)在[0,2π]上有4个零点【解答】解:对于A,f(x)为R上的奇函数,f(x+1)为偶函数,所以f(x)图象关于x=1对称,f(2+x)=f(﹣x)=﹣f(x)即f(x+4)=﹣f(x+2)=f(x)则f(x)是周期为4的周期函数,A错误;对于B,f(x)定义域为R的奇函数,则f(0)=0,f(x)是周期为4的周期函数,则f(2020)=f(0)=0;当x∈(0,1]时,f(x)=﹣x(x﹣2),则f(1)=﹣1×(1﹣2)=1,则f(2019)=f(﹣1+2020)=f(﹣1)=﹣f(1)=﹣1,则f(2019)+f(2020)=﹣1,故B正确.对于C,当x∈(0,1]时,f(x)=﹣x(x﹣2),此时有0<f(x)≤1,又由f(x)为R上的奇函数,则x∈[﹣1,0)时,﹣1≤f(x)<0,f(0)=0,函数关于x=1对称,所以函数f(x)的值域[﹣1,1].故C正确.对于D,∵f(0)=0,且x∈(0,1]时,f(x)=﹣x(x﹣2),∴x∈[0,1],f(x)=﹣x (x﹣2),∴x∈[1,2],2﹣x∈[0,1],f(x)=f(2﹣x)=﹣x(x﹣2),∴x∈[0,2],f(x)=﹣x (x﹣2),∵f(x)是奇函数,∴x∈[﹣2,0],f(x)=x(x+2),∵f(x)的周期为4,∴x∈[2,4],f(x)=(x﹣2)(x﹣4),∴x∈[4,6],f(x)=﹣(x﹣4)(x﹣6),∴x∈[6,2π],f(x)=(x﹣6)(x﹣8),根据解析式,可得x∈[0,π]上有4个交点,故D正确.故选:BCD.4.设函数f(x)=lg(1+|2x|)−11+4,则使得f(3x﹣2)>f(x﹣4)成立的x的取值范围是()A.(13,1)B.(﹣1,32)C.(﹣∞,32)D.(﹣∞,﹣1)∪(32,+∞)【解答】解:f(x)=ln(1+|2x|)−11+4,定义域为R,∵f(﹣x)=f(x),∴函数f(x)为偶函数,当x>0时,f(x)=ln(1+2x)−11+4值函数单调递增,根据偶函数性质可知:得f(3x﹣2)>f(x﹣4)成立,∴|3x﹣2|>|x﹣4|,∴(3x﹣2)2>(x﹣4)2,解得:x>32或x<﹣1,故选:D.5.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),当x∈[0,1]时,f(x)=2x﹣1,则()高中数学一轮复习讲义A.o6)<o−7)<o112)B.o6)<o112)<o−7) C.o−7)<o112)<o6)D.o112)<o−7)<o6)【解答】解:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴函数f(x)是周期为4的周期函数,f(6)=f(2)=﹣f(0)=0,f(112)=f(32)=﹣f(−12)=f(12)=2−1,f(﹣7)=f(1)=1,∴o6)<o112)<o−7),故选:B.6.已知函数f(x)(x∈R)满足f(﹣x)=﹣f(x)=f(4﹣x),当x∈(0,2)时,f(x)=ln(x2﹣x+b).若函数f(x)在区间[﹣2,2]上有5个零点,则实数b的取值范围是14<≤1或=54.【解答】解:由题意知,f(x)是定义在R上的奇函数,所以f(0)=0,即0是函数f(x)的零点,因为f(x)是定义在R上且以4为周期的周期函数,所以f(﹣2)=f(2),且f(﹣2)=﹣f(2),则f(﹣2)=f(2)=0,即±2也是函数f(x)的零点,因为函数f(x)在区间[﹣2,2]上的零点个数为5,且当x∈(0,2)时,f(x)=ln(x2﹣x+b),所以当x∈(0,2)时,x2﹣x+b>0恒成立,且x2﹣x+b=1在(0,2)有一解,即△=1−4<0 (12)2−12+=1或△=1−4<0 02−0+−1≤0 22−2+−1>0,解得14<b≤1或b=54,故答案为:14<≤1或=54.。
函数的性质-单调性、奇偶性、周期性、对称性(解析版)
![函数的性质-单调性、奇偶性、周期性、对称性(解析版)](https://img.taocdn.com/s3/m/00291c0f4a73f242336c1eb91a37f111f1850d2a.png)
函数的性质-单调性、奇偶性、周期性、对称性目录一、常规题型方法1题型一函数的单调性1题型二函数的奇偶性4题型三单调性与奇偶性的综合应用10题型四函数的周期性13题型五函数的对称性18题型六周期性与对称性的综合应用22二、针对性巩固练习26练习一函数的单调性26练习二函数的奇偶性28练习三单调性与奇偶性的综合应用30练习四函数的周期性32练习五函数的对称性34练习六周期性与对称性的综合应用36常规题型方法题型一函数的单调性【典例分析】典例1-1.(2020·天津·高一期末)函数f (x )=log 13-x 2+6x -5 的单调递减区间是( )A.(-∞,3]B.[3,+∞)C.(1,3]D.[3,5)【答案】C 【分析】首先由函数解析式,求其定义域,根据复合函数的单调性,结合对数函数与二次函数的单调性,可得答案.【详解】由f x =log 13-x 2+6x -5 ,则-x 2+6x -5>0,x -5 x -1 <0,解得1<x <5,即函数f x 的定义域1,5 ,由题意,令g x =log 13x ,h x =-x 2+6x -5,则f x =g h x ,易知g x 在其定义域上单调递减,要求函数f x 的单调递减区间,需求在1,5 上二次函数h x 的递增区间,由h x =-x 2+6x -5=-x -3 2+4,则在1,5 上二次函数h x 的递增区间为1,3 ,故选:C .典例1-2.(2022·湖北武汉·高一期中)若二次函数f x =ax 2+a +6 x -5在区间-∞,1 为增函数,则a 的取值范围为( )A.-2,0B.-2,0C.-2,0D.-2,0【答案】A 【分析】根据条件确定二次函数的图象应开口向下,再利用端点值和对称轴比较大小.【详解】当a <0时,-a +62a≥1,解得:a ≥-2,所以-2≤a <0,当a >0时,不满足条件,综上可知:-2≤a <0故选:A典例1-3.(浙江省台州山海协作体2022-2023学年高一上学期期中联考数学试题)已知函数f x =x 2-2ax +52a ,x ≤1ax ,x >1 是定义在R 上的减函数,则实数a 的取值范围为( )A.1,2B.1,2C.1,+∞D.0,1【答案】A 【分析】根据二次函数和反比例函数的单调性,结合分割点处函数值之间的关系,列出不等式,求解即可.【详解】解:因为函数f x =x 2-2ax +52a ,x ≤1a x,x >1 是定义在R 上的减函数,所以a ≥1a >01-2a +52a ≥a解得1≤a ≤2,即a ∈1,2 .故选:A .【方法技巧总结】1.函数单调性的判断方法有:定义法、性质法、图像法、导数法。
高一函数的基本性质-奇偶性、周期性和对称性(解析版)
![高一函数的基本性质-奇偶性、周期性和对称性(解析版)](https://img.taocdn.com/s3/m/26a2cd7330126edb6f1aff00bed5b9f3f90f72ba.png)
函数的基本性质Ⅱ-奇偶性、周期性和对称性题型目录一览①函数的奇偶性②函数奇偶性的应用③函数的周期性④函数的对称性⑤函数性质的综合应用一、知识点梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)就叫做奇函数关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,-x也在定义域内(即定义域关于原点对称).2.函数的对称性(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.(2)若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.(3)若f(x)=f(2a-x),则函数f(x)关于x=a对称.(4)若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.3.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么称这个最小整数叫做f(x)的最小正周期.1【常用结论】1.奇偶性技巧(1)若奇函数y=f(x)在x=0处有意义,则有f(0)=0;(2)对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(3)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).注意:关于①式,可以写成函数f(x)=m+2ma x-1(x≠0)或函数f(x)=m-2ma x+1(m∈R).偶函数:①函数f(x)=±(a x+a-x).②函数f(x)=log a(a mx+1)-mx2.③函数f(|x|)类型的一切函数.2.周期性技巧3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).4.对称性技巧(1)若函数y=f(x)关于直线x=a对称,则f(a+x)=f(a-x).(2)若函数y=f(x)关于点(a,b)对称,则f(a+x)+f(a-x)=2b.(3)函数y=f(a+x)与y=f(a-x)关于y轴对称,函数y=f(a+x)与y=-f(a-x)关于原点对称.二、题型分类精讲真题刷刷刷一、单选题1(2021·全国·高考真题)下列函数中是增函数的为()A.f x =-xB.f x =23x C.f x =x2 D.f x =3x 【答案】D【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,f x =-x为R上的减函数,不合题意,舍.对于B,f x =23x为R上的减函数,不合题意,舍.对于C,f x =x2在-∞,0为减函数,不合题意,舍.对于D,f x =3x为R上的增函数,符合题意,故选:D.2(2021·全国·统考高考真题)设函数f(x)=1-x1+x,则下列函数中为奇函数的是()A.f x-1-1 B.f x-1+1 C.f x+1-1 D.f x+1+1【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得f(x)=1-x1+x=-1+21+x,对于A,f x-1-1=2x-2不是奇函数;对于B,f x-1+1=2x是奇函数;对于C,f x+1-1=2x+2-2,定义域不关于原点对称,不是奇函数;对于D,f x+1+1=2x+2,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.3(2021·全国·高考真题)设f x 是定义域为R的奇函数,且f1+x=f-x.若f-1 3=13,则f53=()A.-53B.-13C.13D.53【答案】C【分析】由题意利用函数的奇偶性和函数的递推关系即可求得f53的值.【详解】由题意可得:f53=f1+23=f-23=-f23 ,而f23=f1-13=f13 =-f-13=-13,故f53=13.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4(2021·浙江·统考高考真题)已知函数f(x)=x2+14,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y =f (x )g (x )D.y =g (x )f (x )【答案】D【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,y =f x +g x -14=x 2+sin x ,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,y =f x -g x -14=x 2-sin x ,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,y =f x g x =x 2+14sin x ,则y =2x sin x +x 2+14 cos x ,当x =π4时,y =π2×22+π216+14 ×22>0,与图象不符,排除C .故选:D .5(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是()A.y =-x 3+3xx 2+1 B.y =x 3-xx 2+1C.y =2x cos x x 2+1D.y =2sin x x 2+1【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设f x =x 3-x x 2+1,则f 1 =0,故排除B ;设h x =2x cos x x 2+1,当x ∈0,π2 时,0<cos x <1,所以h x =2x cos x x 2+1<2xx 2+1≤1,故排除C ;设g x =2sin x x 2+1,则g 3 =2sin310>0,故排除D .故选:A.6(2021·全国·统考高考真题)已知函数f x 的定义域为R,f x+2为偶函数,f2x+1为奇函数,则()A.f-12=0 B.f-1 =0 C.f2 =0 D.f4 =0【答案】B【分析】推导出函数f x 是以4为周期的周期函数,由已知条件得出f1 =0,结合已知条件可得出结论.【详解】因为函数f x+2为偶函数,则f2+x=f2-x,可得f x+3=f1-x,因为函数f2x+1为奇函数,则f1-2x=-f2x+1,所以,f1-x=-f x+1,所以,f x+3=-f x+1=f x-1,即f x =f x+4,故函数f x 是以4为周期的周期函数,因为函数F x =f2x+1为奇函数,则F0 =f1 =0,故f-1=-f1 =0,其它三个选项未知.故选:B.7(2022·全国·统考高考真题)已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则22k=1f(k)=()A.-3B.-2C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数f x 的一个周期为6,求出函数一个周期中的f1 , f2 ,⋯,f6 的值,即可解出.【详解】[方法一]:赋值加性质因为f x+y+f x-y=f x f y ,令x=1,y=0可得,2f1 =f1 f0 ,所以f0 =2,令x=0可得,f y +f-y=2f y ,即f y =f-y,所以函数f x 为偶函数,令y=1得,f x+1+f x-1=f x f1 =f x ,即有f x+2+f x =f x+1,从而可知f x+2=-f x-1,f x-1=-f x-4,故f x+2=f x-4,即f x =f x+6,所以函数f x 的一个周期为6.因为f2 =f1 -f0 =1-2=-1,f3 =f2 -f1 =-1 -1=-2,f4 =f-2=f2 =-1,f5 =f-1=f1 =1,f6 =f0 =2,所以一个周期内的f1 +f2 +⋯+f6 =0.由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.[方法二]:【最优解】构造特殊函数由f x+y+f x-y=f x f y ,联想到余弦函数和差化积公式cos x+y+cos x-y=2cos x cos y,可设f x =a cosωx,则由方法一中f0 =2,f1 =1知a=2,a cosω=1,解得cosω=12,取ω=π3,所以f x =2cos π3x,则f x+y+f x-y=2cosπ3x+π3y+2cosπ3x-π3y=4cosπ3x cosπ3y=f x f y ,所以f x =2cos π3x符合条件,因此f(x)的周期T=2ππ3=6,f0 =2,f1 =1,且f2 =-1,f3 =-2,f4 =-1,f5 =1,f6 =2,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8(2022·全国·统考高考真题)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =()A.-21B.-22C.-23D.-24【答案】D【分析】根据对称性和已知条件得到f(x)+f(x-2)=-2,从而得到f3 +f5 +⋯+f21=-10,f4 +f6 +⋯+f22=-10,然后根据条件得到f(2)的值,再由题意得到g3 =6从而得到f1 的值即可求解.【详解】因为y=g(x)的图像关于直线x=2对称,所以g2-x=g x+2,因为g(x)-f(x-4)=7,所以g(x+2)-f(x-2)=7,即g(x+2)=7+f(x-2),因为f(x)+g(2-x)=5,所以f(x)+g(x+2)=5,代入得f(x)+7+f(x-2)=5,即f(x)+f(x-2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.9(2021·全国·统考高考真题)设函数f x 的定义域为R ,f x +1 为奇函数,f x +2 为偶函数,当x ∈1,2 时,f (x )=ax 2+b .若f 0 +f 3 =6,则f 92=()A.-94B.-32C.74D.52【答案】D【分析】通过f x +1 是奇函数和f x +2 是偶函数条件,可以确定出函数解析式f x =-2x 2+2,进而利用定义或周期性结论,即可得到答案.【详解】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92=f 52+2 =f -52+2 =f -12 f -12=f -32+1 =-f 32+1 =-f 52-f 52=-f 12+2 =-f -12+2 =-f 32所以f 92=-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.二、多选题10(2022·全国·统考高考真题)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x,g (2+x )均为偶函数,则()A.f (0)=0B.g -12=0 C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x 为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x =f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x=g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R,所以g32=0,结合g(x)关于x=2对称,从而周期T=4×2-32=2,所以g-12=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知g(x)周期为2,关于x=2对称,故可设g x =cosπx,则f x =1πsinπx+c,显然A,D错误,选BC.故选:BC.[方法三]:因为f32-2x,g(2+x)均为偶函数,所以f32-2x=f32+2x即f32-x=f32+x,g(2+x)=g(2-x),所以f3-x=f x ,g(4-x)=g(x),则f(-1)=f(4),故C正确;函数f(x),g(x)的图象分别关于直线x=32,x=2对称,又g(x)=f (x),且函数f(x)可导,所以g32=0,g3-x=-g x ,所以g(4-x)=g(x)=-g3-x,所以g(x+2)=-g(x+1)=g x ,所以g-1 2=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题11(2021·全国·统考高考真题)写出一个同时具有下列性质①②③的函数f x :.①f x1x2=f x1f x2;②当x∈(0,+∞)时,f (x)>0;③f (x)是奇函数.【答案】f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)【分析】根据幂函数的性质可得所求的f x .【详解】取f x =x 4,则f x 1x 2 =x 1x 2 4=x 41x 42=f x 1 f x 2 ,满足①,f x =4x 3,x >0时有f x >0,满足②,f x =4x 3的定义域为R ,又f -x =-4x 3=-f x ,故f x 是奇函数,满足③.故答案为:f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)四、双空题12(2022·全国·统考高考真题)若f x =ln a +11-x+b 是奇函数,则a =,b =.【答案】-12;ln2.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若a =0,则f (x )的定义域为{x |x ≠1},不关于原点对称∴a ≠0若奇函数的f (x )=ln a +11-x +b 有意义,则x ≠1且a +11-x≠0∴x ≠1且x ≠1+1a,∵函数f (x )为奇函数,定义域关于原点对称,∴1+1a =-1,解得a =-12,由f (0)=0得,ln 12+b =0,∴b =ln2,故答案为:-12;ln2.[方法二]:函数的奇偶性求参f (x )=ln a +11-x +b =ln a -ax +11-x +b =lnax -a -11-x+b f (-x )=ln ax +a +11+x+b∵函数f (x )为奇函数∴f(x)+f(-x)=ln ax-a-11-x +lnax+a+11+x+2b=0∴lna2x2-(a+1)2x2-1+2b=0∴a21=(a+1)21⇒2a+1=0⇒a=-12-2b=ln14=-2ln2⇒b=ln2∴a=-12,b=ln2 [方法三]:因为函数f x =ln a+1 1-x+b为奇函数,所以其定义域关于原点对称.由a+11-x≠0可得,1-xa+1-ax≠0,所以x=a+1a=-1,解得:a=-12,即函数的定义域为-∞,-1∪-1,1∪1,+∞,再由f0 =0可得,b=ln2.即f x =ln-12+1 1-x+ln2=ln1+x1-x,在定义域内满足f-x =-f x ,符合题意.故答案为:-12;ln2.题型一:函数的奇偶性策略方法判断函数奇偶性的方法(1)定义法:(2)图象法:(3)性质法:在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.1判断下列函数的奇偶性:(1)f x =x4-2x2;(2)f x =x5-x;(3)f x =3x1-x2;(4)f x =x +x.【答案】(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数【分析】(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.【详解】(1)f x 的定义域为R,它关于原点对称.f-x=-x4-2-x2=x4-2x2=f x ,故f x 为偶函数.(2)f x 的定义域为R,它关于原点对称.f-x=-x5--x=-x5+x=-f x ,故f x 为奇函数.(3)f x 的定义域为-∞,-1∪-1,1∪1,+∞,它关于原点对称.f-x=-3x1--x2=-f x ,故f x 为奇函数.(4)f1 =1 +1=2,f-1=0,故f1 ≠f-1,f-1≠-f1 ,故f x 为非奇非偶函数.【题型训练】一、单选题1函数f x =2x-12x+1的奇偶性是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数,也是偶函数D.非奇非偶函数【答案】A【分析】由奇偶性定义直接判断即可.【详解】∵f x 的定义域为R,f-x=2-x-12-x+1=12x-112x+1=1-2x1+2x=-f x ,∴f x 是奇函数,不是偶函数.故选:A.2已知奇函数f x ,当x>0时,f x =x2+x,则当x<0时,f x =() A.-x2+x B.-x2-x C.x2+x D.x2-x 【答案】A【分析】由x<0得-x>0,代入得f-x,根据奇函数即可求解.【详解】当x<0,则-x>0,则f-x=(-x)2+-x=x2-x,又f x 为奇函数,所以当x<0时,f x =-f-x=-x2+x.故选:A.3若函数f x =log2-x,x<0g x ,x>0为奇函数,则f g2=()A.2B.1C.0D.-1【答案】C【分析】由f x 为奇函数求得g x ,即可由分段函数求值.【详解】函数f x =log2-x,x<0g x ,x>0为奇函数,设x>0,则-x<0,∴f x =g x =-f-x=-log2x,∴g2 =-1,f g2=f-1=0.故选:C.4函数f x =4cos x2x-2-x的部分图象大致为()A. B.C. D.【答案】C【分析】根据函数的奇偶性排除AB,再由特殊值排除D即可得解.【详解】因为f x =4cos x2x-2-x的定义域为{x|x≠0},关于原点对称,所以f(-x)=4cos(-x)2-x-2x=4cos x2-x-2x=-f(x),即函数为奇函数,排除AB,当x=2时,f(2)=4cos222-2-2<0,排除D.故选:C二、填空题5函数y=f x 为偶函数,当x>0时,f x =ln x+x-1,则x<0时,f x =.【答案】ln-x-x-1【分析】由偶函数的定义求解.【详解】x<0时,-x>0,f(x)是偶函数,∴f(x)=f(-x)=ln(-x)-x-1,故答案为:ln(-x)-x-1.6f x =x5+100x3+x+1,若f m=-2,则f-m=.【答案】4【分析】令f x =g(x)+1,可得g(x)为奇函数,再根据奇函数的性质求解.【详解】令f x =g x +1,g x =x5+100x3+x,x∈R,则g(-x)=-g(x),g(x)为奇函数,由f(m)=g(m)+1=-2,解得g(m)=-3,所以g(-m)=3.所以f-m=g(-m)+1=3+1=4.故答案为:4.7已知函数f x 是定义在R上的奇函数,当x>0时,f x =log2x,则f x ≥-2的解集是.【答案】-4,0∪14,+∞【分析】利用奇偶性求出函数f(x)的解析式f(x)=-log2-x,x<00,x=0log2x,x>0,分类讨论即可求解.【详解】当x<0时,-x>0,所以f(-x)=log2-x,因为函数f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-log2-x,所以当x<0时,f(x)=-log2-x,所以f (x )=-log 2-x ,x <00,x =0log 2x ,x >0,要解不等式f (x )≥-2,只需x >0log 2x ≥-2 或x <0-log 2-x ≥-2 或x =00≥-2,解得x ≥14或-4≤x <0或x =0,综上,不等式的解集为-4,0∪ 14,+∞.故答案为:-4,0∪ 14,+∞.三、解答题8已知函数f x -1 =lgx 2-x(1)求函数f x 解析式;(2)判断函数f x 的奇偶性并加以证明【答案】(1)f (x )=lgx +11-x(2)奇函数,证明见解析【分析】(1)利用换元法,令t =x -1,得f (t ),从而可得f (x );(2)先求函数定义域,利用奇偶性的定义进行证明.【详解】(1)令t =x -1,则x =t +1,则f (t )=lg t +12-t -1=lg t +11-t,所以f (x )=lg x +11-x.(2)奇函数;证明:定义域为-1,1 ,因为f (-x )=lg 1-x 1+x =-lg x +11-x=-f (x ),所以f (x )为奇函数.9已知函数f x =2x -22x +2.(1)求f -1 +f 3 的值;(2)令g x =f x +1 ,求证:g x 为奇函数;(3)若锐角α满足g 1-sin α +g cos α-1 >0,求α的取值范围.【答案】(1)0(2)证明见解析(3)0,π4【分析】(1)将x =-1和x =3分别代入解析式求解即可;(2)根据奇偶性的定义证明即可;(3)根据奇偶性将不等式化为g 1-sin α >g 1-cos α ,利用单调性定义可证得g x 为R 上的增函数,由此可得sin α<cos α,结合三角函数知识可求得结果.【详解】(1)∵f -1 =12-212+2=-35,f 3 =8-28+2=35,∴f -1 +f 3 =0.(2)g x =f x +1 =2x +1-22x +1+2=2x -12x +1,则g x 的定义域为R ;∵g -x =12x -112x+1=1-2x 1+2x=-g x ,∴g x 为奇函数.(3)由g 1-sin α +g cos α-1 >0得:g 1-sin α >-g cos α-1 =g 1-cos α ;g x =2x -12x +1=2x +1-22x +1=1-22x+1,设x 1<x 2,则g x 2 -g x 1 =1-22x 2+1-1+22x 1+1=22x 2-2x 12x 1+1 2x2+1>0,∴g x 为R 上的增函数,∴1-sin α>1-cos α,即sin α<cos α,又α∈0,π2,∴α∈0,π4 .题型二:函数奇偶性的应用策略方法已知函数奇偶性可以解决的三个问题1若函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-6x ,则f (-1)=()A.-7B.-5C.5D.7【答案】C【分析】求出x <0时的解析式后,代入x =-1可求出结果.【详解】因为f (x )为奇函数,且当x >0时,f (x )=x 2-6x ,所以当x <0时,f (x )=-f (-x )=--x 2-6-x =-x 2-6x ,所以f (-1)=-1+6=5.故选:C2若函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,则a 、b 的值是()A.a =0,b =0B.a 不能确定,b =0C.a =0,b 不能确定D.a =13,b =0【答案】D【分析】根据定义域关于原点对称,求得a =13,再根据f -x =f x ,求得b 的值,即可求解.【详解】因为函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,可得a -1+2a =0,解得a =13,即f x =13x 2+bx +1+b ,又由f -x =13x 2-bx +1+b ,因为函数f x 为偶函数,则f -x =f x ,即13x 2+bx +1+b =13x 2-bx +1+b ,解得b =0.故选:D .3偶函数f x x ∈R 满足:f -4 =f 1 =0,且在区间0,3 与3,+∞ 上分别递减和递增,使f x <0的取值范围是()A.-∞,-4 ∪4,+∞B.-4,-1 ∪1,4C.-∞,-4 ∪-1,0D.-∞,-4 ∪-1,0 ∪1,4【答案】B【分析】根据题中所给条件,可画出符合全部条件的函数图象辅助做题.【详解】根据题目条件,想象函数图象如下:因为f-4=f1 =0,f x 为偶函数,所以f4 =f-1=0,所以当-4<x<-1和1<x<4时,f x <0,故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)若函数f x =2x+a2x-a为奇函数,则实数a的值为()A.1B.2C.-1D.±1【答案】D【分析】根据题意可得f-x+f(x)=0,计算可得a=±1,经检验均符合题意,即可得解.【详解】由f(x)为奇函数,所以f-x+f(x)=2-x+a2-x-a+2x+a2x-a=1+a⋅2x1-a⋅2x+2x+a2x-a=0,所以2⋅2x-2a2⋅2x=0,可得a2=1,解得a=±1,当a=-1时,f(x)的定义域为R,符合题意,当a=1时,f(x)的定义域为-∞,0∪0,+∞符合题意,故选:D2(2023·全国·高三专题练习)已知函数f x =x3+1,x>0ax3+b,x<0为偶函数,则2a+b=()A.3B.32C.-12D.-32【答案】B【分析】利用偶函数的性质直接求解即可.【详解】由已知得,当x>0时,则-x<0,即f x =x3+1,f-x=-ax3+b,∵f x 为偶函数,∴f-x=f x ,即x3+1=-ax3+b,∴a=-1,b=1,∴2a+b=2-1+1=32,故选:B.3(2023·安徽·校联考模拟预测)已知函数f(x)为R上的奇函数,当x≥0时,f(x)=e x+x+m,则f(-1)=()A.eB.-eC.e+1D.-e-1【答案】B【分析】由定义在R上的奇函数有f0 =0,求出m的值,再由f(-1)=-f(1)可得出答案.【详解】函数f(x)为R上的奇函数,则f0 =e0+0+m=0,解得m=-1f(-1)=-f(1)=-e+1-1=-e故选:B4(2023·全国·高三专题练习)定义在R上的偶函数f x 在区间0,+∞上单调递增,若f1 < f ln x,则x的取值范围是()A.e,+∞B.1,+∞C.-∞,-e∪e,+∞D.0,1 e∪e,+∞【答案】D【分析】根据偶函数及单调性解不等式即可.【详解】由题意,ln x>1,则x>e或x∈0,1 e.故选:D.5(2023春·贵州黔东南·高三校考阶段练习)已知偶函数f x 在-∞,0上单调递增,则f3-2x>f1 的解集是()A.-1,1B.1,+∞C.-∞,2D.1,2【答案】D【分析】利用偶函数的对称性可得|3-2x|<1,即可求解集.【详解】由偶函数的对称性知:f x 在-∞,0上递增,则在(0,+∞)上递减,所以|3-2x|<1,故-1<3-2x<1,可得1<x<2,所以不等式解集为1,2.故选:D6(2023·湖南长沙·湖南师大附中校考模拟预测)已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x-5)f(x-1)<0的解集为()A.(-∞,-2)∪52,4B.(4,+∞)C.-2,52∪(4,+∞) D.(-∞,-2)【答案】C【分析】依题意作函数图像,根据单调性和奇偶性求解.【详解】依题意,函数的大致图像如下图:因为f (x )是定义在R 上的偶函数,在[0,+∞)上单调递减,且f (3)=0,所以f (x )在(-∞,0]上单调递增,且f (-3)=0,则当x >3或x <-3时,f (x )<0;当-3<x <3时,f (x )>0,不等式(2x -5)f (x -1)<0化为2x -5>0f (x -1)<0 或2x -5<0f (x -1)>0 ,所以2x -5>0x -1>3或2x -5>0x -1<-3 或2x -5<0-3<x -1<3 ,解得x >4或x ∈∅或-2<x <52,即-2<x <52或x >4,即原不等式的解集为-2,52∪(4,+∞);故选:C .二、多选题7(2023·全国·高三专题练习)已知函数f x 在区间-5,5 上是偶函数,在区间0,5 上是单调函数,且f 3 <f 1 ,则()A.f (-1)<f (-3)B.f 0 >f (-1)C.f (-1)<f 1D.f (-3)>f 5【答案】BD【分析】根据函数的单调性和奇偶性直接求解.【详解】函数f x 在区间0,5 上是单调函数,又3>1,且f 3 <f 1 ,故此函数在区间0,5 上是减函数.由已知条件及偶函数性质,知函数f x 在区间-5,0 上是增函数.对于A ,-3<-1,故f (-3)<f (-1),故A 错误;对于B ,0>-1,故f 0 >f -1 ,故B 正确;对于C ,f -1 =f 1 ,故C 错误;对于D ,f -3 =f 3 >f 5 ,故D 正确.故选:BD .8(2023·山东菏泽·山东省东明县第一中学校联考模拟预测)已知函数f x 的定义域为R ,f x +1 为奇函数,且对∀x ∈R ,f x +4 =f -x 恒成立,则()A.f x 为奇函数B.f 3 =0C.f 12=-f 52D.f 2023 =0【答案】BCD【分析】根据函数定义换算可得f x 为偶函数,根据偶函数和奇函数性质可知f x 为周期函数,再根据函数周期性和函数特殊值即可得出选项.【详解】因为f x +1 为奇函数,所以f 1-x =-f 1+x ,故f x +2 =-f -x ,f 2-x =-f x ,又f x +4 =f -x ,所以f 2+x =f 2-x ,故f x +2 =-f -x =-f x ,所以f -x =f x ,f x 为偶函数,A 错误;f x +1 为奇函数,所以f 1 =0,f 2+x =f 2-x ,所以f 3 =f 1 =0,B 正确;f 52=f 32 ,又f x 的图象关于点1,0 对称,所以f 32 =-f 12 ,所以f 12=-f 52 ,C 正确;又f x +4 =f -x =f x ,所以f x 是以4为周期的函数,f (2023)=f (505×4+3)=f (3)=0,D 正确.故选:BCD .三、填空题9(2023·广东潮州·统考二模)已知函数f x =lnx +1x -1+m +1(其中e 是自然对数的底数,e ≈2.718⋯)是奇函数,则实数m 的值为.【答案】-1【分析】利用奇函数的性质可得出f -x +f x =0,结合对数运算可得出实数m 的值.【详解】对于函数f x =lnx +1x -1+m +1,x +1x -1>0,解得x <-1或x >1,所以,函数f x 的定义域为-∞,-1 ∪1,+∞ ,因为函数f x 为奇函数,则f -x =-f x ,即f -x +f x =0,即ln -x+1-x-1+ln x+1x-1+2m+2=ln x-1x+1+ln x+1x-1+2m+2=2m+2=0,解得m=-1.故答案为:-1.10(2023·河南周口·统考模拟预测)已知函数f x 是定义在R上的偶函数,f x 在0,+∞上单调递减,且f3 =0,则不等式f x-2x<0的解集为.【答案】-1,0∪5,+∞【分析】由题意和偶函数的性质可知函数f(x)在[0,+∞)上为减函数,在(-∞,0]上为增函数,结合f(3)=f(-3)=0,分类讨论当x<0、x>0时,利用函数的单调性解不等式即可.【详解】因为函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减所以f(x)在(-∞,0]上为增函数,由f(3)=0,得f(-3)=0,f(x-2)x<0,当x<0时,f(x-2)>0=f(-3),有x-2<0x-2>-3,解得-1<x<0;当x>0时,f(x-2)<0=f(3),有x-2>0x-2>3,解得x>5,综上,不等式f(x-2)x<0的解集为(-1,0)∪(5,+∞).故答案为:(-1,0)∪(5,+∞).11(2023春·江苏南通·高三海安高级中学校考阶段练习)定义在R上的函数f x ,g x ,满足f2x+3为偶函数,g x+5-1为奇函数,若f1 +g1 =3,则f5 -g9 =.【答案】1【分析】根据f2x+3为偶函数、g x+5-1为奇函数的性质,利用赋值法可得答案.【详解】若f2x+3为偶函数,g x+5-1为奇函数,则f-2x+3=f2x+3,g-x+5-1=-g x+5+1,令x=1,则f-2×1+3=f2×1+3,即f1 =f5 ,令x=4,则g-4+5-1=-g4+5+1,即g1 -1=-g9 +1,又因为f1 +g1 =3,所以f5 -g9 =f1 +g1 -2=1.故答案为:1.12(2023春·福建厦门·高三厦门一中校考期中)已知函数f x 的定义域为R ,若f x +1 -2为奇函数,且f 1-x =f 3+x ,则f 2023 =.【答案】2【分析】推导出函数f x 为周期函数,确定该函数的周期,计算出f 1 的值,结合f 1 +f 3 =4以及周期性可求得f 2023 的值.【详解】因为f x +1 -2为奇函数,则f -x +1 -2=-f x +1 -2 ,所以,f 1+x +f 1-x =4,在等式f 1+x +f 1-x =4中,令x =0,可得2f 1 =4,解得f 1 =2,又因为f 1-x =f 3+x ,则f 1+x +f 3+x =4,①所以,f x +3 +f x +5 =4,②由①②可得f x +5 =f x +1 ,即f x +4 =f x ,所以,函数f x 为周期函数,且该函数的周期为4,所以,f 2023 =f 4×505+3 =f 3 =4-f 1 =2.故答案为:2.题型三:函数的周期性策略方法函数周期性的判断与应用1若函数f (x )满足f (x +2)=f (x ),则f (x )可以是()A.f (x )=(x -1)2B.f (x )=|x -2|C.f (x )=sin π2xD.f (x )=tan π2x【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可.【详解】因为f (x +2)=f (x ),所以函数的周期为2.A :因为f (1)=0,f (3)=4,所以f (1)≠f (3),因此函数的周期不可能2,本选项不符合题意;B :因为f (2)=0,f (4)=2,所以f (2)≠f (4),因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:2ππ2=4,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:ππ2=2,因此本选项符合题意,故选:D2若定义域为R 的奇函数f (x )满足f (2-x )=f (x ),且f (3)=2,则f (4)+f (1)=()A.2B.1C.0D.-2【答案】D【分析】根据函数f x 为R 的奇函数和f x 满足f (2-x )=f (x ),得到函数T =4,再结合f 3 =2求解.【详解】因为函数f x 为R 的奇函数,所以f -x =-f x ,又f x 满足f (2-x )=f (x ),所以f 2-x =-f -x ,即f 2+x =-f x ,所以f 4+x =f x ,即T =4,因为f (3)=2,f (0)=0,所以f (4)=0,f 3 =-f 1 =2,所以f (4)+f (1)=-2故选:D3已知定义在R 上的奇函数,f x 满足f (x +2)=-f (x ),当0≤x ≤1时,f x =x 2,则f 2023 =()A.2019B.1C.0D.-1【答案】D【分析】根已知条件求出f x 的周期,根据周期性以及奇函数,结合已知条件即可求解.【详解】因为f x 满足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以f x 是周期为4的函数,当0≤x≤1时,f x =x2,所以f1 =1,又因为f x 是奇函数,f2023=-f1 =-1,=f3 =f-1=f4×505+3故选:D.【题型训练】一、单选题1(2023·内蒙古赤峰·统考模拟预测)函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),f( -3)=-1,则f(15)=()A.0B.-1C.2D.1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则f15=f7 ,根据已知得出f(7) =f(-3)=-1,即可得出答案.【详解】∵函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),∴f4+x=-f x ,=f-x∴f4+4+x=f x ,=f8+x=-f4+x则函数y=f(x)是周期为8的周期函数,则f15=f7 ,=f15-8令x=-3,则f(4+3)=f(-3)=-1,∴f(15)=-1,故选:B.2(2023·江西南昌·校联考模拟预测)已知定义在R上的函数f x 满足f x+3=-f x ,g x =f x -2为奇函数,则f198=()A.0B.1C.2D.3【答案】C【分析】由题意推出函数f x 的周期以及满足等式f x +f-x=4,赋值求得f0 =2,利用函数的周期性即可求得答案.【详解】因为f x+3=-f x ,所以f x+6=-f x+3=f x ,所以f x 的周期为6,又g x =f x -2为奇函数,所以f x -2+f-x-2=0,所以f x +f-x=4,令x=0,得2f0 =4,所以f0 =2,所以f198=f0+6×33=f0 =2,故选:C.3(2023·全国·高三专题练习)已知定义在R上的函数f(x)的图像关于y轴对称,且周期为3,又f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+⋯+f(2023)的值是()A.2023B.2022C.-1D.1【答案】D【分析】利用f x 的周期,根据函数的奇偶性和已知函数值,结合题意,求解即可.【详解】因为f x 的周期为3;又f-1=1,则f2 =f-1+3=f-1=1;f0 =-2,则f3 =f0+3=f0 =-2;因为函数f(x)在R上的图像关于y轴对称所以f x 为偶函数,故f1 =f-1=1,则f1 +f2 +f3 =0;故f(1)+f(2)+f(3)+⋯+f(2023)=674×0+f1 =1.故选:D.4(2023春·贵州·高三校联考期中)已知函数f x 满足f1-x=f5+x,且f x+1是偶函数,当1≤x≤3时,f x =2x+34,则f log236=()A.32B.3 C.398D.394【答案】B【分析】由函数的奇偶性和对称性,得到函数的周期,利用周期和指数式的运算规则求函数值.【详解】由f x+1是偶函数,得f x+1=f-x+1,令x+1=-t,则f-t=f t+2.由f1-x=f5+x,令1-x=-t,则f-t=f t+6,则有f t+2=f t+6,即f x =f x+4,所以函数f x 周期为4.因为5=log232<log236<log264=6,则有1<log236-4<2,所以f log236=f log236-4=f log29 4=2log294+34=94+34=3.故选:B二、多选题5(2023·全国·高三专题练习)已知函数f x 的定义域为R,∀x1,x2∈R,x2-x1=2,都有f x1+f x2=0,且f1 =1,则下列结论正确的是()A.f23=1=1 B.f-23C.f1 +f2 +f3 +f4 +f5 =1D.f x +f x+1+f x+3=0+f x+2【答案】BCD【分析】由∀x1,x2∈R,x2-x1=2,都有f x1=0,得出函数f x 是周期为4的周期函+f x2数,再利用周期性逐一选项分析即可.【详解】由x2-x1=2得x2=x1+2,则f x1=0,+f x1+2故f x1+2+f x1+4=0,所以f x1+4,=f x1所以函数f x 是周期为4的周期函数.对于A,f23=f3 =-f1 =-1,A错误;=f5×4+3对于B,f-23=f1 =1,B正确;=f-6×4+1对于C,f1 +f3 =0,f2 +f4 =0,f5 =f1 =1,所以f1 +f2 +f3 +f4 +f5 =1,C正确;对于D,f x +f x+2+f x+3=0,=0,f x+1所以f x +f x+1=0,D正确.+f x+2+f x+3故选:BCD.6(2023·全国·高三专题练习)已知偶函数f x 满足f x +f2-x=0,下列说法正确的是()A.函数f x 是以2为周期的周期函数B.函数f x 是以4为周期的周期函数C.函数f x+2为偶函数为偶函数 D.函数f x-3【答案】BC【分析】根据函数的奇偶性和周期性确定正确选项.【详解】依题意f x 是偶函数,且f x +f2-x=0,f x =-f2-x,所以A错误.=-f x-2f x =-f x-2=--f x-2-2,所以B正确.=f x-4f x+2,所以函数f x+2为偶函=f-x+2=f-x-2=f x-2+4=f x-2若f x-3是偶函数,则f x-3=f-x-3=f x+3,则函数f x 是周期为6的周期函数,这与上述分析矛盾,所以f x-3不是偶函数.D错误.故选:BC三、填空题7(2023·江西南昌·统考二模)f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,则f(3)=.【答案】2【分析】直接根据函数的周期性求解即可.【详解】因为f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,所以f3 =f1 =2.故答案为:2.8(2023·安徽合肥·二模)若定义域为R的奇函数f(x)满足f(x)=f(x+1)+f(x-1),且f(1)= 2,则f(2024)=.【答案】2【分析】利用赋值法及奇函数的定义,结合函数的周期性即可求解.【详解】由f(x)=f(x+1)+f(x-1),得f(x+1)=f(x+2)+f(x),所以f(x)-f(x-1)=f(x+2)+f(x),即-f(x-1)=f(x+2),于是有-f(x)=f(x+3),所以-f(x+3)=f(x+6),即f x =f(x+6).所以函数f(x)的周期为6.因为f(x)是定义域为R的奇函数,所以f(-0)=-f(0),即f(0)=0.令x=1,则f(1)=f(2)+f(0),解得f(2)=f(1)-f(0)=2,所以f(2024)=f(337×6+2)=f(2)=2.故答案为:2.9(2023秋·江西南昌·高三校联考阶段练习)已知定义在实数集R上的函数f x 满足f6-x=f-x,且当0<x<3时,f x =2a x+b(a>0,b>0),若f2023=3,则1a+2b的最小值为.【答案】8 3【分析】根据题意求出函数f(x)的周期为6,再利用周期得到2a+b=3,最后利用基本不等【详解】因为函数f x 满足f 6-x =f -x ,所以函数f (x )的周期为6,又因为f 2023 =3,所以f (6×337+1)=f (1)=3,因为当0<x <3时,f x =2a x +b (a >0,b >0),则有2a +b =3,所以1a +2b =131a +2b (2a +b )=134+b a +4a b≥134+2b a ⋅4a b =83当且仅当b a =4a b,即a =34,b =32时,取等号.故答案为:83.四、解答题10(2023·全国·高三专题练习)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)⋅f (x 2),且f (1)=a >0.(1)求f 12,f 14;(2)证明f (x )是周期函数;(3)记a n =f 2n +12n,求a n .【答案】(1)f 12 =a 12,f 14=a14(2)证明见解析(3)a n =a12n【分析】(1)根据题意可得f (1)=f 122、f 12 =f 14 2,结合f (1)=a >0即可求解;(2)根据抽象函数的对称性和奇偶性可得f (x )=f (x +2),x ∈R ,即可得出结果;(3)由(1)可得f 12 =f n ⋅12n =f 12n f 12n ⋅⋯⋅f 12n =f 12n n ,结合f 12=a 12和周期为2,即可求解.【详解】(1)因为对任意的x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)f (x 2),所以f (x )=f x 2+x 2 =f x 2 f x2≥0,x ∈[0,1],又f (1)=f 12+12=f 12 f 12=f 12 2,f 12 =f 14+14 =f 14 f 14=f 14 2,f (1)=a >0,∴f 12 =a 12,f 14=a 14.(2)设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R ,又f (x )是偶函数,所以f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R ,将上式中-x 以x 代换,得f (x )=f (x +2),x ∈R ,则f (x )是R 上的周期函数,且2是它的一个周期.(3)由(1)知f (x )≥0,x ∈[0,1],∵f 12=f n ⋅12n =f 12n +(n -1)⋅12n =f 12n f (n -1)⋅12n=⋯=f 12n f 12n ⋅⋯⋅f 12n =f 12nn ,又f 12 =a 12,∴f 12n=a 12n.∵f (x )的一个周期是2,∴f 2n +12n =f 12n,因此a n =a 12n.题型四:函数的对称性策略方法函数图象的对称性的判断与应用1已知二次函数f x 满足f x +2 =f 2-x ,且f a <f 0 <f 1 ,则实数a 的取值范围是()A.0,2B.-∞,0C.-∞,0 ∪4,+∞D.2,+∞【答案】C【分析】由题意可知,f x 对称轴为x =2,又f x 为二次函数以及已知条件可得f x 的单调性,根据单调性即可求得实数a 的取值范围.【详解】由已知,二次函数f x 对称轴为x=2,所以有f0 =f4 .又f0 <f1 ,所以f x 在-∞,2上单调递增,在2,+∞上单调递减.当a<2时,由f a <f0 ,以及f x 在-∞,2上单调递增,可得a<0;当a≥2时,由f a <f0 =f4 ,可得f a <f4 ,又f x 在2,+∞上单调递减,所以a>4.所以,实数a的取值范围是-∞,0∪4,+∞.故选:C.2函数y=f x 在0,2上是增函数,函数y=f x+2是偶函数,则下列结论正确的是()A.f1 <f52<f72 B.f72 <f1 <f52C.f1 <f72<f52 D.f52 <f1 <f72【答案】B【分析】分析可知函数f x 的图象关于直线x=2对称,可得出f52=f32 ,f72 =f12,利用函数f x 在0,2 上的单调性可得出f12 、f1 、f32 的大小关系,即可得出结果.【详解】因为函数y=f x+2是偶函数,则f2-x=f2+x,所以,函数f x 的图象关于直线x=2对称,因为f52=f32 ,f72 =f12 ,且0<12<1<32<2,因为函数f x 在0,2上为增函数,所以,f12<f1 <f32 ,即f72 <f1 <f52 .故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)下列函数的图象中,既是轴对称图形又是中心对称的是()A.y=1xB.y=lg xC.y=tan xD.y=x3【答案】A【分析】根据反比例函数、对数函数、正切函数和幂函数图象可得结论.【详解】对于A ,y =1x图象关于y =x 、坐标原点0,0 分别成轴对称和中心对称,A 正确;对于B ,y =lg x 为偶函数,其图象关于y 轴对称,但无对称中心,B 错误;对于C ,y =tan x 关于点k π2,0k ∈Z 成中心对称,但无对称轴,C 错误;对于D ,y =x 3为奇函数,其图象关于坐标原点0,0 成中心对称,但无对称轴,D 错误.故选:A .2(2023·全国·高三专题练习)若f x 的偶函数,其定义域为-∞,+∞ ,且在0,+∞ 上是减函数,则f -2 与f 3 得大小关系是A.f -2 >f 3B.f -2 <f 3C.f -2 =f 3D.不能确定【答案】A【分析】由题意可得f -2 =f 2 ,且f 2 >f 3 ,即可得到所求大小关系.【详解】f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f -2 =f 2 ,且f 2 >f 3 ,则f -2 >f 3 ,故选A .【点睛】本题考查函数的奇偶性和单调性的运用:比较大小,考查运算能力,属于基础题.3(2023·四川南充·四川省南部中学校考模拟预测)定义在R 上的函数f x 满足f 2-x =f x ,且f x +2 -1为奇函数,则∑2023k =1f k =()A.-2023 B.-2022C.2022D.2023【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数f x 的对称轴和中心对称点及周期,利用相关性质得出具体函数值,即可得出结果.【详解】∵f 2-x =f x ,∴f x 关于x =1对称,∵f x +2 -1为奇函数,∴由平移可得f x 关于2,1 对称,且f 2 =1,∴f (x +2)-1=-f (-x +2)+1,即f (x +2)+f (2-x )=2∵f 2-x =f x ∴f (x +2)+f (x )=2 ∴f (x +4)+f (x +2)=2 上两式比较可得f (x )=f (x +4)。
函数的周期性与对称性-高一数学上学期(人教A版2019必修第一册)(解析版)
![函数的周期性与对称性-高一数学上学期(人教A版2019必修第一册)(解析版)](https://img.taocdn.com/s3/m/89d698cf85254b35eefdc8d376eeaeaad1f316a6.png)
函数专题:函数的周期性与对称性一、周期函数的定义1、周期函数:对于函数()=y f x ,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()+=f x T f x ,那么就称函数()f x 为周期函数,称T 为这个函数的周期.2、最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.3、函数的周期性的常用结论(a 是不为0的常数) (1)若()()+=f x a f x ,则=T a ; (2)若()()+=-f x a f x a ,则2=T a ; (3)若()()+=-f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=-f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=-T a b (≠a b ); 二、函数的对称性 1、函数对称性的常用结论(1)若()()+=-f a x f a x ,则函数图象关于=x a 对称; (2)若()()2=-f x f a x ,则函数图象关于=x a 对称; (3)若()()+=-f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22-=-f a x b f x ,则函数图象关于(),a b 对称; 2、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=-f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=-f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22-=-f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()-=-f x f x ,函数为奇函数,即奇函数为特殊的点对称函数;三、函数对称性与周期性的关系1、若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2-b a ;2、若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2-b a ;3、若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4-b a . 四、函数的奇偶性、周期性、对称性的关系1、①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a .2、①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a .3、①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a .4、①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a . 其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)
![高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)](https://img.taocdn.com/s3/m/f557eda06429647d27284b73f242336c1eb930d7.png)
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。
在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。
因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。
【方法点评】一、函数的周期性求法 使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .51- 【答案】D考点:函数的周期性.(2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 【答案】A试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此()()()()20164416412f f f =-=-=--=-,故选A .考点:1、函数的奇偶性;2、函数的解析式及单调性.【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B【变式演练2】定义在R 上的函数()f x 满足()()[)20,0,2f x f x x ++=∈时,()31xf x =-,则()2015f 的值为( )A.-2B.0C.2D.8 【答案】A试题分析: 由已知可得⇒=+-=+)()2()4(x f x f x f ()f x 的周期⇒=4T ()2015f ==)3(f2)1(-=-f ,故选A.考点:函数的周期性.【变式演练3】定义在R 上的偶函数()y f x =满足(2)()f x f x +=-,且在[2,0]x ∈-上为增函数,3()2a f =,7()2b f =,12(log 8)c f =,则下列不等式成立的是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >> 【答案】B试题分析:因为定义在R 上的偶函数()y f x =在[2,0]x ∈-上为增函数,所以在[0,2]x ∈上单调递减,又(4)()f x f x +=,所以()()1271(),(log 8)3122b f f c f f f ⎛⎫====-= ⎪⎝⎭,又13122<<,所以b c a >>.考点:1.偶函数的性质;2.函数的周期性. 二、函数的对称性问题 使用情景:几类特殊函数类型 解题模板:记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称;第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称.例2 .(从对称性思考)已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B【易错点晴】函数()f x 满足),(-)-(x f x f =则函数关于),(00中心对称,(3)()f x f x -=,则函数关于32=x 轴对称,常用结论:若在R 上的函数()f x 满足)()(),()(x b f x b f x a f x a f +-=+-=+,则函数)(x f 以||4b a -为周期.本题中,利用此结论可得周期为632-04=⨯,进而(2019)(3)f f =,)3(f 需要回到本题利用题干条件赋值即可. 例3 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D试题分析:由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()()123...2008669(123)(1)(1)(1)1f f f f f f f f f f ++++=⨯+++==-=,故选D.考点:函数的周期性;函数的对称性. 例4 已知函数21()(,g x a xx e e e=-≤≤为自然对数的底数)与()2ln h x x =的图像上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .21[1,2]e + B .2[1,2]e - C .221[2,2]e e +-D .2[2,)e -+∞ 【答案】B考点:利用导数研究函数的极值;方程的有解问题.【变式演练4】定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,m f 3)2(-=,则实数m 的取值范围是 .试题分析:由33()()44f x f x +=-,因此函数()f x 图象关于直线34x =对称,又()f x 是奇函数,因此它也是周期函数,且3434T =⨯=,∵(4)2f >-,∴(4)(4)2f f -=-<,∴(2)(232)(4)f f f =-⨯=-,即32m m-<,解得103x x <-<<或.考点:函数的奇偶性、周期性.【高考再现】1. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C.考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.2. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5()(1)2f f -+= .【答案】-2考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.5. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 .【答案】25-【解析】51911123()()()()22222255f f f f a a -=-==⇒-+=-⇒=,因此32(5)(3)(1)(1)155f a f f f ===-=-+=-考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值. 【反馈练习】1. 【2016届云南昆明一中高三仿真模拟七数学,理4】设函数()y f x =定义在实数集R 上,则函数()y f a x =-与()y f x a =-的图象( )A .关于直线0y =对称B .关于直线0x =对称C .关于直线y a =对称D .关于直线x a =对称 【答案】D满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()2015f =( )A .-2B .2C .-98D .98 【答案】A试题分析:由()()4f x f x +=得()f x 的周期⇒=4T ()2015(3)(1)(1)2f f f f ==-=-=-,故选A. 考点:1、函数的奇偶性;2、函数的周期性.3. 【2017届河南新乡一中高三9月月考数学,文8】定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C .(64)(49)(81)f f f <<D .(64)(81)(49)f f f << 【答案】A 【解析】试题分析:因为(3)()f x f x -=-,所以()(6)(3)f x f x f x -=--=,及()f x 是周期为6的函数,结合()f x 是偶函数可得,()()()()()(49)1,(64)22,(81)33f f f f f f f f ==-==-=,再由12,[0,3]x x ∀∈且12x x ≠,1212()()0f x f x x x ->-得()f x 在[0,3]上递增,因此(1)(2)(3)f f f <<,即(49)(64)(81)f f f <<,故选A .考点:1、函数的周期性;2、奇偶性与单调性的综合.4. 【2017届安徽合肥一中高三上学期月考一数学试卷,文12】已知定义在R 上的函数()f x 满足:(1)y f x =-的图象关于(1,0)点对称,且当0x ≥时恒有31()()22f x f x -=+,当[0,2)x ∈时,()1xf x e =-,则(2016)(2015)f f +-=( )A .1e -B .1e -C .1e --D .1e + 【答案】A试题分析:(1)y f x =-的图象关于(1,0)点对称,则()f x 关于原点对称. 当0x ≥时恒有31()()22f x f x -=+即函数()f x 的周期为2.所以()()(2016)(2015)011f f f f e +-=-=-. 考点:函数的单调性、周期性与奇偶性,分段函数.5. 【2016-2017学年贵州遵义四中高一上月考一数学试卷,理11】已知函数2()(12)f x a x x =-≤≤与()2g x x =+的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .9[,)4-+∞ B .9[,0]4- C .[2,0]- D .[2,4]【解析】考点:构造函数法求方程的解及参数范围.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】若对正常数m 和任意实数x ,等式1()()1()f x f x m f x ++=-成立,则下列说法正确的是( )A .函数()f x 是周期函数,最小正周期为2mB .函数()f x 是奇函数,但不是周期函数C .函数()f x 是周期函数,最小正周期为4mD .函数()f x 是偶函数,但不是周期函数 【答案】C考点:函数的周期性.7. 【2017届四川成都七中高三10月段测数学试卷,文10】 函数()f x 的定义域为R ,以下命题正确的是( ) ①同一坐标系中,函数(1)y f x =-与函数(1)y f x =-的图象关于直线1x =对称;②函数()f x 的图象既关于点3(,0)4-成中心对称,对于任意x ,又有3()()2f x f x +=-,则()f x 的图象关于直线32x =对称; ③函数()f x 对于任意x ,满足关系式(2)(4)f x f x +=--+,则函数(3)y f x =+是奇函数. A .①② B .①③ C .②③ D .①②③ 【答案】D 【解析】①正确,因为函数()x f y =与()x f y -=关于y 轴对称,而()1-=x f y 和()x f y -=1都是()x f y =与()x f y -=向右平移1个单位得到的,所以关于直线1=x 对称; ②正确,因为函数关于点⎪⎭⎫ ⎝⎛043-,成中心对称,所以()x f x f -=⎪⎭⎫⎝⎛--23,而3()()2f x f x +=-,所以⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛--x f x f 2323,即()()x f x f =-,又根据3()()2f x f x +=-,可得函数的周期3=T ,又有()()x f x f =-,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+232323x f x f x f ,所以函数关于直线23-=x 对称;③正确,因为()()3242=+-++x x ,所以函数()x f 关于点()0,3对称,而函数()3+=x f y 是函数()x f y =向左平移3个单位得到,所以函数()3+=x f y 是奇函数.故3个命题都正确,故选D. 考点:抽象函数的性质8. 【2015-2016学年东北育才学校高二下段考二试数学,文12】函数⎪⎩⎪⎨⎧≥<++=)0(e 2)0(142)(x2x x x x x f 的图像上关于原点对称的点有( )对A. 0B. 2C. 3D. 无数个 【答案】B试题分析:作出函数⎪⎩⎪⎨⎧≥<++=)0(e2)0(142)(x 2x x x x x f 的图象如图所示,再作出2241y x x =++关于原点对称的图象,记为曲线C .容易发现与曲线C 有且只有两个不同的交点,所以满足条件的对称点有两对,即图中的,A B 就是符合题意考点:函数的图象与性质及应用.9. 【2015-2016学年东北育才学校高二下段考二试数学,文7】定义在实数集R 上的函数()f x 满足()()20f x f x ++=,(4)()f x f x -=.现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.其中正确的是( )A .②③ B. ①② C .①③ D. ①②③ 【答案】D考点:函数周期性、对称性和奇偶性.。