语音信号处理实验讲义

合集下载

语音信号处理实验

语音信号处理实验

实验二 语音信号的时域分析一、 实验目的在理论学习的基础上,进一步理解和掌握语音信号短时能量、短时过零了分析的意义及基于matlab 的实现方法。

二、 实验原理语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。

在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。

10~30ms 相对平稳,分析帧长一般为20ms 。

语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。

几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。

语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。

定义短时平均能量[][]∑∑+-=∞-∞=-=-=nN n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。

过零就是信号通过零值。

对于连续语音信号,可以考察其时域波形通过时间轴的情况。

而对于离散时间信号,如果相邻的取样值改变符号则称为过零。

由此可以计算过零数,过零数就是样本改变符号的次数。

单位时间内的过零数称为平均过零数。

语音信号x (n )的短时平均过零数定义为()[]()[]()()[]()[]()n w n x n x m n w m x m x Z m n *--=---=∑∞-∞=1sgn sgn 1sgn sgn 式中,[]∙sgn 是符号函数,即()[]()()()()⎩⎨⎧<-≥=0101sgn n x n x n x短时平均过零数可应用于语音信号分析中。

发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。

而发清音时.多数能量出现在较高频率上。

既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。

语音信号处理实验讲义

语音信号处理实验讲义

语⾳信号处理实验讲义语⾳信号处理实验讲义编写⼈:蔡萍时间:2011-12实验⼀语⾳信号⽣成模型分析⼀、实验⽬的1、了解语⾳信号的⽣成机理,了解由声门产⽣的激励函数、由声道产⽣的调制函数和由嘴唇产⽣的辐射函数。

2、编程实现声门激励波函数波形及频谱,与理论值进⾏⽐较。

3、编程实现已知语⾳信号的语谱图,区分浊⾳信号和清⾳信号在语谱图上的差别。

⼆、实验原理语⾳⽣成系统包含三部分:由声门产⽣的激励函数()G z 、由声道产⽣的调制函数()V z 和由嘴唇产⽣的辐射函数()R z 。

语⾳⽣成系统的传递函数由这三个函数级联⽽成,即()()()()H z G z V z R z =1、激励模型发浊⾳时,由于声门不断开启和关闭,产⽣间隙的脉冲。

经仪器测试它类似于斜三⾓波的脉冲。

也就是说,这时的激励波是⼀个以基⾳周期为周期的斜三⾓脉冲串。

单个斜三⾓波的频谱表现出⼀个低通滤波器的特性。

可以把它表⽰成z 变换的全极点形式121()(1)cTG z ez --=-?这⾥c 是⼀个常数,T 是脉冲持续时间。

周期的三⾓波脉冲还得跟单位脉冲串的z 变换相乘:1121()()()1(1)v cT A U z E z G z z e z ---=?=--这就是整个激励模型,v A 是⼀个幅值因⼦。

2、声道模型当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。

反映在信号频谱图上,在谐振频率处其谱线包络产⽣峰值,把它称为共振峰。

⼀个⼆阶谐振器的传输函数可以写成12()1ii i i A V z B z C z--=-- 实践表明,⽤前3个共振峰代表⼀个元⾳⾜够了。

对于较复杂的辅⾳或⿐⾳共振峰要到5个以上。

多个()i V z 叠加可以得到声道的共振峰模型12111()()11Rrr MMir i N ki i i ik k b zA V z V zB zC z a z -=---======---∑∑∑∑3、辐射模型从声道模型输出的是速度波,⽽语⾳信号是声压波。

语音信号处理试验教程

语音信号处理试验教程

语音信号处理试验实验一:语音信号时域分析实验目的:(1)录制两段语音信号,内容是“语音信号处理”,分男女声。

(2)对语音信号进行采样,观察采样后语音信号的时域波形。

实验步骤:1、使用window自带录音工具录制声音片段使用windows自带录音机录制语音文件,进行数字信号的采集。

启动录音机。

录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。

将录制好文件保存,记录保存路径。

男生女生各录一段保存为test1.wav和test2.wav。

图1基于PC机语音信号采集过程。

2、读取语音信号在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。

通过使用wavread函数,理解采样、采样频率、采样位数等概念!Wavread函数调用格式:y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。

y=wavread(file,N),读取前N点的采样值放在向量y中。

y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。

3、编程获取语音信号的抽样频率和采样位数。

语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。

在M文件中分别输入以下程序,可以分两次输入便于观察。

[y1,fs1,nbits1]=wavread('test1.wav')[y2,fs2,nbits2]=wavread('test2.wav')结果如下图所示根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。

4、语音信号的时域分析语音信号的时域分析就是分析和提取语音信号的时域参数。

进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。

语音信号 lab_intro--实验讲义及其程序

语音信号 lab_intro--实验讲义及其程序

编码调制(ADPCM)及自适应增量调制(ADM),子带编码(SBC),自适应变换编码(ATC)。
9. 语音编码-参数编码法
(理论教学:2 学时,自主学习:1 学时)
声码器的基本结构,相位声码器和通道声码器,同态声码器, 线性预测声码器,混合编码,各种语音编码
方法的比较,语音编码的性能指标和质量评价。
2、 胡航. 语音信号处理(修订版),哈尔滨工业大学出版社,2002 年. 3、 易克初,田 斌等. 语音信号处理,国防工业出版社,2000 年. 4、 赵 力. 语音信号处理,机械工业出版社,2003 年. 5、 吴家安等. 语音编码技术及应用,机械工业出版社,2006 年. 6、 韩继庆,张 磊,郑铁然. 语音信号处理,清华大学出版社,2004 年. 7、 D.G.Childers. Matlab 之语音处理与合成工具箱(影印版),清华大学出版社,2004 年. 8、 Thomas F. Quatieri 著,赵胜辉等译,《离散时间语音信号处理—原理与应用》,电子工业出版社,2004.
七、实践环节
实验学时数:17 实验学分:0.5 实验项目数:4 1、目的与基本要求 实验为研究型(设计型)实验,共安排 4 个,为了真正达到研究设计型实验的目的,采用开放实验的办法, 将自主学习和研究设计型实验结合起来,统一安排。 通过开放实验,目的使学生进一步理解数字语音信息处理的基本方法,提高学生自主分析、发现及解决问 题的能力,锻炼学生论文写作能力,为实际的应用打下扎实的基础。
为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大 纲,结合课程建设的需求,我们编写了本实验参考书。
本本参考书针对教学大纲规定的四个研究设计型实验,每个实验给出了参考程序,目的是起一个抛砖引玉 的作用,学生在学习过程中,可以针对某一个实验进行延伸的创新学习,比如说,语音端点的检测、语音共振 峰提取、基于 HMM 或 DTW 的有限词汇或大词汇的特定人、非特定人的语音识别、识别率的提高(如何提高 有噪环境下的识别率)、以及编码问题等,同时在学习中还可深入思考如何将有关的方法在嵌入式系统或 DSP 下的实现问题等。

《语音信号处理》讲稿第1章

《语音信号处理》讲稿第1章
别。
05 语音信号处理的挑战与展 望
语音信号处理的挑战
噪声干扰
语音信号在采集、传输和处理过程中容易受到各种噪声的干扰,如 环境噪声、设备噪声等,导致语音质量下降。
多变性
语音信号具有极大的多变性,不同人的发音、语速、语调等差异较 大,给语音信号处理带来很大的挑战。
实时性要求
许多语音信号处理应用需要实时处理,如语音识别、语音合成等,对 算法的复杂度和处理速度要求较高。
语音信号的基本特征
01 02
时域特征
语音信号在时域上表现为振幅随时间变化的波形。时域特征包括短时能 量、短时过零率、短时自相关函数等,用于描述语音信号的幅度、频率 和周期性等特性。
频域特征
语音信号在频域上表现为不同频率成分的分布。频域特征包括频谱、功 率谱、倒谱等,用于描述语音信号的频率结构、共振峰和声学特性等。
倒谱分析
对语音信号的频谱进行对数运算后, 再进行傅里叶反变换,得到倒谱系 数,用于语音合成、说话人识别等。
倒谱分析方法
线性预测倒谱系数(LPCC)
01
基于线性预测模型的倒谱系数,用于描述语音信号的声道特性。
梅尔频率倒谱系数(MFCC)
02
基于人耳听觉特性的倒谱系数,具有较好的抗噪性和鲁棒性,
广泛应用于语音识别、说话人识别等领域。
基音周期和基音频率
反映语音信号的周期性特征,是语音信号处理中 的重要参数。
语音信号的识别技术
模板匹配法
将待识别语音与预先存储的模板 进行比较,选取最相似的模板作
为识别结果。
随机模型法
利用统计模型来描述语音信号的 特征,通过模型参数的训练和识
别来实现语音信号的识别。
人工智能方法
包括神经网络、支持向量机、深 度学习等方法,通过训练和学习 来建立语音信号与语义之间的映 射关系,实现语音信号的智能识

哈尔滨工程大学语音信号处理实验报告讲述

哈尔滨工程大学语音信号处理实验报告讲述

实验报告实验课程名称:语音信号处理实验姓名:班级: 20120811 学号:Array指导教师张磊实验教室 21B#293实验时间 2015年4月12日实验成绩实验一 语音信号的端点检测一、实验目的1、掌握短时能量的求解方法2、掌握短时平均过零率的求解方法3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。

二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。

对于信号)}({n x ,短时能量的定义如下:∑∑∞-∞=∞-∞=*=-=-=m m n n h n x m n h m xm n w m x E )()()()()]()([2222、短时平均过零率短时平均过零率是指每帧内信号通过零值的次数。

对于连续语音信号,可以考察其时域波形通过时间轴的情况。

对于离散信号,实质上就是信号采样点符号变化的次数。

过零率在一定程度上可以反映出频率的信息。

短时平均过零率的公式为:∑∑-+=∞-∞=--=---=1)]1(sgn[)](sgn[21 )()]1(sgn[)](sgn[21N n nm w w m n m x m x m n w m x m x Z其中,sgn[.]是符号函数,即⎩⎨⎧<-≥=0)(10)(1)](sgn[n x n x n x3、端点检测原理能够实现这些判决的依据在于,不同性质语音的各种短时参数具有不同的概率密度函数,以及相邻的若干帧语音应具有一致的语音特性,它们不会在S 、U 、V 之间随机地跳来跳去。

要正确判断每个输入语音的起点和终点,利用短时平均幅度参数E 和短时平均过零率Z 可以做到这一点。

首先,根据浊音情况下的短时能量参数的概率密度函数)|(V E P 确定一个阈值参数H E ,H E 值一般定的较高。

当一帧输入信号的短时平均幅度参数超过H E 时,就可以判定该帧语音信号不是无声,而有相当大的可能是浊音。

语音信号实验讲义

语音信号实验讲义

实验一 语音信号的采集实验目的1、掌握语音信号录音;WA V 和DAT 文件的转换;数据的剪切、复制;2、初步了解元音、浊辅音、清辅音的特性。

实验原理1、音素的种类一次发出的,具有一个响亮的中心,并被明显感觉到的语音片段叫音节。

一个音节可以由一个音素(Phoneme )或几个音素构成。

音素是语音发音的最小单位。

音素有元音(V owel )和辅音(Consonant )两种。

(1)元音是当声带振动发出的声音气流从喉腔、咽腔进入口腔从唇腔出去时,这些声腔完全开放,气流顺利通过。

(2)辅音是呼出的声流,由于通路的某一部分封闭起来或受到阻碍,气流被阻不能畅通,而克服发音器官的这种阻碍而产生的音素。

发辅音时声带振动的是浊音,声带不振动的是清音。

(3)半元音的声道基本畅通,但某处声道比较狭窄,引起轻微的摩擦声。

元音构成一个音节的主干,从长度还是从能量看,元音在音节中都占主要部分。

辅音则只出现在音节的前端或后端或前后两端,它们的时长和能量与元音相比都很小。

2、元音的共振峰(Formant)声道看成是一根具有非均匀截面的声管,在发音时起共鸣器的作用。

当元音激励进入声道时会引起共振特性,产生一组共振频率,称为共振峰频率(简称共振峰)。

共振峰参数包括共振峰频率的位置和频带宽度。

在实际应用中,只用前三个共振峰,分别为1F 、2F 、3F 。

3、发音器官产生元音的条件:①声道受到声带振动的激励引起共振;②在语音流的持续过程中,声道不发生极端的狭窄,并维持较稳定的形状; ③和鼻腔不发生耦合,声音只从口腔辐射出去。

4、发音器官产生辅音的条件产生元音的三个条件中,只要缺少其中之一,则该语音就是辅音。

辅音没有明确的共振峰结构。

5、基音频率浊音的声带振动基本频率又称基音频率,用0F 表示。

各个音节的元音段的0F 都是随时间变化的,0F 的变化产生了声调,0F 的变化轨迹称为声调轨迹。

6、汉语的声调汉语声调只有阴平、阳平、上声、去声以及“轻声”等五种声调。

《语音信号处理》讲稿第章(“语音”相关文档)共9张

《语音信号处理》讲稿第章(“语音”相关文档)共9张
1.语音过程生理学基础知识
讨论两方面问题:
(1)语音发送过程生理学基础知识
(2)语音接收过程生理学基础知识
2.语音学基础知识
学习语音学基础知识的重要性在于:语言的语音学 知识是计算机语音分析的基础,而语音分析又是计算机 语音合成和识别的基础。世界上各类语言中,有些语言 的文字表示与发音是不同的,因此,学习者必须掌握语 言的表音法。
学习语音学基础知识的重要性在于:语言的语音学知识是计算机语音分析的基础,而语音分析又是计算机语音合成和识别的基础。 (1)语音发送过程生理学基础知识 (1)汉语语音基本概念 (1)语音发送过程生理学基础知识 (3)词的非分段特点 (2)语音接收过程生理学基础知识 (3)词的非分段特点 (2)汉语语音三要素识
五方面内容: (1)词的分段特点
(2)词的语音特点 (3)词的非分段特点 (4)超语言学特点
(5)语言学的6个基本问题
3.汉语语音基础知识
讨论两方面问题: ①汉语语音三要素:声母、韵母和声调。
(2)语音接收过程生理学基础知识
(1)汉语语音基本概念 五方面内容:
(2)语音接收过程生理学基础知识
(2)汉语语音三要素 (1)汉语语音基本概念
(2)语音接收过程生理学基础知识 (2)词的语音特点 (1)词的分段特点 (1)汉语语音基本概念 (2)词的语音特点 ①汉语语音三要素:声母、韵母和声调。 (1)语音发送过程生理学基础知识 学习语音学基础知识的重要性在于:语言的语音学知识是计算机语音分析的基础,而语音分析又是计算机语音合成和识别的基础。 (1)语音发送过程生理学基础知识 学习语音学基础知识的重要性在于:语言的语音学知识是计算机语音分析的基础,而语音分析又是计算机语音合成和识别的基础。 (1)语音发送过程生理学基础知识 (1)词的分段特点 (2)词的语音特点 (2)语音接收过程生理学基础知识 (1)词的分段特点

语音信号处理实验指导书

语音信号处理实验指导书

语音信号处理实验指导书实验一:语音信号的采集与播放实验目的:了解语音信号的采集与播放过程,掌握采集设备的使用方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 将麦克风插入电脑的麦克风插孔。

2. 打开电脑的录音软件(如Windows自带的录音机)。

3. 在录音软件中选择麦克风作为录音设备。

4. 点击录音按钮开始录音,讲话或者唱歌几秒钟。

5. 点击住手按钮住手录音。

6. 播放刚刚录制的语音,检查录音效果。

7. 将扬声器或者耳机插入电脑的音频输出插孔。

8. 打开电脑的音频播放软件(如Windows自带的媒体播放器)。

9. 选择要播放的语音文件,点击播放按钮。

10. 检查语音播放效果。

实验二:语音信号的分帧与加窗实验目的:了解语音信号的分帧和加窗过程,掌握分帧和加窗算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。

2. 将录制的语音信号进行分帧处理。

选择合适的帧长和帧移参数。

3. 对每一帧的语音信号应用汉明窗。

4. 将处理后的语音帧进行播放,检查分帧和加窗效果。

实验三:语音信号的频谱分析实验目的:了解语音信号的频谱分析过程,掌握频谱分析算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。

2. 将录制的语音信号进行分帧处理。

选择合适的帧长和帧移参数。

3. 对每一帧的语音信号应用汉明窗。

4. 对每一帧的语音信号进行快速傅里叶变换(FFT)得到频谱。

5. 将频谱绘制成图象,观察频谱的特征。

6. 对频谱进行谱减法处理,去除噪声。

7. 将处理后的语音帧进行播放,检查频谱分析效果。

实验四:语音信号的降噪处理实验目的:了解语音信号的降噪处理过程,掌握降噪算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段带噪声的语音。

语音信号处理实验指导

语音信号处理实验指导

语音信号处理实验讲义王艳芬李剑编中国矿业大学信电学院学生实验守则一、学生进入实验室必须遵守实验室的规章制度,遵守课堂纪律,保持实验室的安静和整洁,爱护实验室的一切设施。

二、实验课前要认真预习实验指导书,写出实验预习报告,并经教师批阅后方可进行实验。

三、实验课中要遵守操作规程,不要带电连接、更改或拆除线路。

线路接好后,经指导老师检查后,方可接通电源进行实验。

对于软件上机实验,不得随意删改计算机中原有的文件。

四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,凡因不预习或不按使用方法进行操作而造成仪器设备损坏者,除书面检查外,按学校规定进行赔偿。

五、实验中主意安全,遇到事故应立即关断电源并报告教师检查处理。

六、实验完毕后要做好整理工作,实验数据必须经指导教师签阅后,才能拆除线路,并将仪器、设备、凳子等按规定放好,经同意后方可离开实验室。

七、因故缺课的学生可向实验室申请一次补做机会。

无故缺课或无故迟到(15分钟以上)的不予补做,该次实验无成绩;累计三次者,该实验课以不及格论,并不得参加该门理论课程的考试。

八、实验室仪器设备不能擅自搬动调换,更不能擅自带出实验室。

信电学院专业实验中心二零一一年九月目录实验一语音信号得基音参数提取 (1)实验二语音信号的谱分析 (7)实验三基于DTW算法的孤立字识别 (11)《语音信号处理实验讲义》是为了配合“语音信号处理”课程教学而编写的,适用于信息工程、电子科学与技术等专业。

前修课程为“数字信号处理”。

该课程总学时数为40学时,其中实验学时为8学时。

实验内容及参考学时安排如下:实验一语音信号的基音参数提取(3个学时)实验二语音信号的谱分析(3个学时)实验三基于DTW算法的孤立字识别(2个学时)实验一 语音信号的基音参数提取一、实验目的1.了解基音的基本概念以及清音与浊音的区别。

2.掌握几种基本的基音提取方法,熟悉自相关法、倒谱法和简化逆滤波法进行基音提取的matlab 编程。

语音信号处理实验

语音信号处理实验
人发音时存在口唇的辐射效应,口唇的辐射模型相当于一阶高通滤波器,所 以在对实际信号进行分析处理时,常用“预加重技术”,目的提升信号的高频部 分,使信号的频谱更加平坦,方便信号的分析。
3 实验过程
1)读语音数 wavread 2)听语音 sound 3)写语音 wavwrite 4)对语音信号进行分帧处理 5)对语音信号进行预加重
分帧处理流程
1 读语音数据。 2 求语音长度。 3 确定帧长和帧移。 4 确定可以分多少帧 5 for 循环实现各帧信号的取出。先确定各帧信号的起点和终点坐标,然后利 用矩阵操作函数将各帧信号取出。
[x,fs,bits]=wavread(' c:\windows\media\dig.wav '); x=x(:,1); x=x'; len=length(x); N=256; M=128; Fn=fix((len-N)/M+1); y=[]; for i=1:Fn
实验一 语音信号的预处理
1 实验目的
通过 Matlab 编程掌握语音信号的预处理方法,包括对信号进行分帧、预加 重,加窗处理。
2 实验原理
由于语音信号从整体上来看是一个非平稳过程,但是在一个短的时间内,其 特性保持相对不变,所以语音信号具有短时平稳性,对语音信号的分析和处理必 须建立在“短时”的基础上,将信号分为一段一段来分析其特征参数。
down=1+(i-1)*M; up=down+N-1; temp=x(down:up); y=[y;temp]; end % K=100; M=[]; for i=1:Fn temp=sum(abs(y(i,:)),2)
1
M=[M,temp]; end plot(M)
%短时过零率 [x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav'); x=x(:,1); x=x'; len=length(x); N=256; M=128; Fn=fix((len-N)/M+1); y=[]; for i=1:Fn

语音信号实验讲义

语音信号实验讲义

语音信号MATLAB实验总体说明:程序的具体使用方法可察看help或程序本身的说明,希望同学们都能独立完成练习的内容;感觉有余力的同学可以将时域分析中的方法应用于we_be10k语音段,还可以用auread、wavread等命令读入语音段进行处理。

注意:用view-desktoplayout-defaut恢复matlab的默认窗口,左上角为workspace和current directory;将所使用的工作空间程序和语音段拷入matlab的work文件夹后可在窗口中看到并可以使用,双击mat 文件可到如此工作空间,在命令窗输入命令执行即可!注意相关命令,可以发现其它有用命令。

abs、log、fft、conv、xcov、xcorr、plot、figure、sqrt、sign一、 matlab的一般使用见精通matlab6.5(文件夹中的pdf 文档,只需其中一、二章的内容,了解即可)二、 练习题目的:熟悉matlab的界面和一般操作,准确画出语音信号波形及其频谱,加窗和滤波的实现。

1、找到工作空间ex2M1.mat, speech1_10k这段语音取自一段准周期元音,持续时间是25ms,并且采样率为10000点/秒。

A、画出标号为speech1_10k的语音波形(可用plot),根据语音波形,估计准周期信号以秒为单位的周期,听一下感受一下25ms是多长(可用sound )。

B 、 使用1024点FFT,画出信号的傅里叶变换在区间[0, π]上的对数幅度曲线(可用fft )。

C 、 分别使用25ms 和10ms 的汉明窗进行加窗(可用hamming ),窗的位置都应该在信号中心,画出加窗后的对应幅度图。

实验一 显示语音信号的语谱图一、实验目的综合信号频谱分析和滤波器功能,对语音信号的频谱进行分析,并对信号含进行高通、低通滤波,实现信号特定处理功能。

加深信号处理理论在语音信号中的应用;理解语谱图与时频分辨率的关系。

语音信号处理基础实验

语音信号处理基础实验

语音信号处理基础实验(一)实验目的:掌握MATLAB采集语音信号、创建语音文件、读写等的原理及常用命令。

掌握语音信号线性叠加的方法,熟悉语音信号卷积原理,熟悉语音信号升采样/降采样方法。

实验原理:指导书摘选。

仪器与材料:微机,Matlab软件,U盘,记录用的笔和纸。

实验步骤:1打开MATLAB软件,File→New→script2读取录制好的语音文件,并使用plot函数显示出来。

要求:横轴和纵轴带有标注。

横轴的单位为秒(S), 纵轴显示归一化后的数值。

3读取一段语音并归一化。

然后生成一段随机信号(长度与语音信号相同),归一化后幅度乘以0.01。

最后线性叠加两端语音,用plot函数显示三种信号。

要求:横轴和纵轴带有标注。

横轴单位为秒(s),纵轴显示的为归一化后的数值。

4将读取的语音信号与随机信号进行卷积,并用plot函数显示该信号,并对比线性叠加信号的区别。

然后使用wavplay函数播放两种信号,并比较区别。

5改变读取的语音信号的采样频率,使用plot函数进行显示。

然后采用wavplay函数播放,比较采样频率对改变语音信号的影响。

注:实验报告字写小一点,手写程序在实验报告上,打印实验波形图粘贴在实验报告上,程序和波形图要一一对应。

实验程序:1.读取语音信号fs=1600;[x,fs]=audioread('C2_1_y.wav');sound(x,fs);N=length(x);time=(0:N-1)/fs;plot(time,x);axis([0 2 -1 1]);xlabel('time/s');ylabel('amplitude');结果:2.语音信号叠加clcclear all[x,fs]=audioread('C2_2_y.wav'); s=1:length(x);t=s/fs;xmax=max(abs(x));x=x/xmax;y=randn(size(x));ymax=max(abs(y));y=y/ymax;z=x+y;zmax=max(abs(z));z=z/zmax;figure(1)subplot(311)plot(t,x);xlabel('时间/s');ylabel('归一化幅值')title('(a)原始信号')subplot(312)plot(t,y);xlabel('时间/s');ylabel('归一化幅值')title('(b)随机序列')subplot(313)plot(t,z);xlabel('时间/s');ylabel('归一化幅值')title('(c)线性叠加')3.语音信号卷积clcclear all[x,fs]=audioread('C2_2_y.wav'); %读取s=1:length(x);t=s/fs;xmax=max(abs(x));x=x/xmax; %归一化y=randn(size(x)); %产生同x相同长度的随机序列ymax=max(abs(y));y=y/ymax; %随机序列归一化z=conv(x,y); %卷积计算zmax=max(abs(z));z=z/zmax;t2=(1:length(z))/fs;figure(1)subplot(311)plot(t,x);xlabel('时间/s');ylabel('归一化幅值');title('(a)原始信号');subplot(312)plot(t,y);xlabel('时间/s');ylabel('归一化幅值');title('(b)随机序列');subplot(313)plot(t2,z);xlabel('时间/s');ylabel('归一化幅值');title('(c)信号卷积');4.语音信号采样频率变换clcclear all[x,fs1]=audioread('C2_2_y.wav'); s1=1:length(x);t1=s1/fs1;xmax=max(abs(x));x=x/xmax;figure(1)subplot(311)plot(t1,x);xlabel('时间/s');ylabel('归一化幅值');title('(a)原始信号');p=2;q=1;x1=resample(x,p,q);x1max=max(abs(x1));x1=x1/x1max;fa=fs1*p/q;ta=(1:length(x1))/fa;subplot(312)plot(ta,x1);xlabel('时间/s'); ylabel('归一化幅值'); title('(b)2倍采样率'); p=1;q=2;x2=resample(x,p,q);x2max=max(abs(x2)); x2=x2/x2max;fb=fs1*p/q;tb=(1:length(x2))/fb; subplot(313)plot(tb,x2);xlabel('时间/s'); ylabel('归一化幅值'); title('(c)1/2倍采样率');运行结果:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sum=0;
for m=1:N
sum=sum+b1(m)*b1(m+k-1);
end
A(k)=sum;
end
for k=1:320
A1(k)=A(k)/A(1);
end
%画图
figure(1)
subplot(3,1,1)
plot(A1);
xlabel('延时k')
ylabel('R(k)')
legend('N=320')
e=fra(256,128,x);
ee=e(20,:);
subplot(2,2,1)
ee1=ee/max(ee);
plot(ee1)
xlabel('样点数')
ylabel('幅度')
title('原始语音')
axis([0,256,-1.5,1.5])
%矩形窗傅立叶变换
r=fft(ee,1024);
axis([0,320,-0.5,1])
图2-2 修正的自相关函数(参加自相关运算的点数N取不同值)
四、思考题
1、自相关函数的作用是什么?互相关函数的作用是什么?
2、浊音信号分别加矩形窗和汉明窗时自相关函数有什么不同?
3、清音信号的自相关函数和浊音信号的有什么区别?
实验三语音信号频域特征分析
一、实验目的
plot(s2)
title('一帧语音信号');
xlabel('样点数');
ylabel('幅度');
axis([0,320,-1,1]);
subplot(3,1,2)
plot(A1)
title('加矩形窗的自相关函数')
xlabel('延时k')
ylabel('自相关函数R(k)')
axis([0,320,-1,1]);
sum=0;
for m=1:N-k+1
sum=sum+s1(m)*s1(m+k-1);
end
A(k)=sum
end
for k=1:320
A1(k)=A(k)/A(1);
end
f=zeros(1,320);
n=1,j=1;
while j<=320
f(1,j)=x(n)*[0.54-0.46*cos(2*pi*n/319)];
j=j+1;
n=n+1;
end
B=[];
for k=1:320
sum=0;
for m=1:N-k+1
sum=sum+s1(m)*s1(m+k-1);
end
B(k)=sum
end
for k=1:320
B1(k)=B(k)/B(1);
end
%画图
s2=s1/max(s1);
figure(1)
subplot(3,1,1)
axis([0,320,-0.5,1])
%窗长320,自相关运算取160个点。
b2=b(1:320);
N=160;
A=[];
for k=1:160
sum=0;
for m=1:N
sum=sum+b2(m)*b2(m+k-1);
end
B(k)=sum;
end
for k=1:160
B1(k)=B(k)/B(1);
title('加矩形窗时语音谱')
axis([0,4000,-80,15])
三、实验内容
1、根据给出的浊音语音,画出它分别加矩形窗和汉明窗的时域波形和短时频谱。
%函数文件fra.m,对语音信号进行帧长为frame,重叠为shift的分帧
function output=fra(frame,shift,x)
len=length(x);
frame_num=floor((len-frame)/shift)+1;
(1)N=320,M=640;
(2)N=160,M=320;
(3)N=70,M=140;
[x,fs,nbits]=wavread('speech_dsp.wav');
s1=x(2500:3140);
b=s1;
%窗长640,自相关运算取320个点。
b1=b(1:640);
N=320;
A=[];
for k=1:320
axis([0,25,-0.4,1.2])
r=fft(g,1024);
r1=abs(r);
ห้องสมุดไป่ตู้yuanlai=20*log10(r1);
signal(1:64)=yuanlai(1:64);
pinlv=(0:1:63)*8000/512;
subplot(1,2,2)
plot(pinlv,signal);
w=round(44*sr/1000);
n=w;
shift=w/2;
h=w-shift;
%win=hanning(n)';
win=hamming(n)';
c=1;
ncols=1+fix((s-n)/h);
d=zeros((1+n/2),ncols);
for b=0:h:(s-n)
u=win'.*x((b+1):(b+n));
t=fft(u);
d(:,c)=t(1:(1+n/2));
c=c+1;
end
tt=[0:h:(s-n)]/sr;
ff=[0:(n-2)]*sr/n;
imagesc(tt/1000,ff/1000,20*log10(abs(d)));
colormap(gray);
axis xy
xlabel('时间/s')
ylabel('频率/kHz')
图1-2 语谱图
四、思考题
1、声门激励脉冲信号是高频衰减的还是高频增强的?
2、画语谱图时为什么要给语音信号加汉明窗?若加矩形窗会有什么区别?
3、在语谱图上观察,浊音信号的和清音信号的频谱有什么区别?
实验二语音信号时域特征分析
一、实验目的
1、了解自相关函数及自相关函数在语音信号处理中的应用。
r1=abs(r);
r1=r1/max(r1);
yuanlai=20*log10(r1);
signal(1:512)=yuanlai(1:512);
pinlv=(0:1:511)*8000/1024;
subplot(2,2,2)
plot(pinlv,signal);
xlabel('频率/Hz')
ylabel('对数幅度/dB')
这里c是一个常数,T是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z变换相乘:
这就是整个激励模型, 是一个幅值因子。
2、声道模型
当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。
一个二阶谐振器的传输函数可以写成
实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个 叠加可以得到声道的共振峰模型
subplot(3,1,3)
plot(B1)
title('加汉明窗的自相关函数')
xlabel('延时k')
ylabel('自相关函数R(k)')
axis([0,320,-1,1]);
图2-1浊音信号加不同窗时的自相关函数
2、仍选取上题中的语音信号,改变窗长和截取语音段的长度,计算修正的短时自相关函数。取值分别为:
xlabel('频率/Hz')
ylabel('幅度/dB')
axis([0,620,0,30])
图1-1 三角波及其频谱
2、给出语音段“数字信号处理”(speech.wav),画出它的语谱图。
clear all;
[x,sr]=wavread('speech_dsp.wav');
s=length(x);
时域离散确定信号的自相关函数定义为:
对于语音信号来说,采用短时分析方法,可以定义短时自相关函数为
因为 ,所以
定义 ,则上式可以写成
如果长基音周期用窄的窗,将得不到预期的基音周期;但是如果短的基音周期用长的窗,自相关函数将对多个基因周期做平均计算,从而模糊语音的短时特性,这是不希望的。为了解决这个问题,可以采用修正的短时自相关函数,选择的窗长不一定要等于自相关函数的最大自变量取值。这种方法可以采用较窄的窗,同时避免了短时自相关函数随k增加而衰减的不足。
2、编写程序分析语音信号的短时自相关特征,计算语音信号的基音周期。
3、编写修正短时自相关函数的程序,并与未修正的函数进行比较。
二、实验原理
自相关函数用于衡量信号自身时间波形的相似性。由前面的讨论可知,清音和浊音的发声机理不同,因而在波形上也存在着较大的差异。浊音的时间波形呈现出一定的周期性,波形之间相似性较好;清音的时间波形呈现出随机噪声的特性,杂乱无章,样点间的相似性较差,这样,可以用短时自相关函数来测定语音的相似特性。
语音信号处理实验讲义
编写人:蔡萍
时间:2011-12
实验一 语音信号生成模型分析
一、实验目的
1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。
相关文档
最新文档