4-1第四章 常微分方程
§4.1 微分方程的基本概念
dx Q( x, y) 则称其为一阶微分方程的典则形式.
也可写为: P x, ydx Q x, ydy,
称为微分方程的对称形式。
“对称”指方程关于变量 x 和 y 对称。
y y x或 x x y
dy dx
P Q
x, x,
y y
Q x, y 0
或
dx dy
Q P
x, x,
y y
P x, y 0.
一、可分离变量的微分方程
形如 g( y)dy f ( x)dx
的微分方程称为可分离变量的微分方程.
例如
dy dx
2x2
4
y5
4
y 5dy
2 x 2dx,
解法 设函数g y 和 f x 是连续的,
g( y)dy f ( x)dx
分离变量法
设函数G y和F x 依次为g y 和 f x 的原函数,
故 x C1 coskt C2 sinkt是原方程的解.
x A, dx 0,
t0
dt t0
C1 A, C2 0. 所求特解为 x Acoskt.
一阶微分方程
一阶微分方程的一般形式:
F x, y, y 0.
若方程可解出 y′, 即
y f x, y dy P( x, y)
y 2x2 y sin x y 2
y y x3 y 0,
线性微分方程
x( y)2 2 yy x 0;
y y x3 y2 0,
d 2
dt 2
3sin
0.
非线性微分方程
三、微分方程的解及积分曲线
微分方程的解: 代入微分方程能使方程成为恒等式的函数.
常微分课后答案第四章
第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
4-1微分方程的基本概念
.
解法:1)换元 令 u (
y x
, 则 y xu ,
对 x 求导 , 有 y u x u
(2)代入方程,得 u u x ( u )
(3)分离变量,按1解之。
返回
微积分
第四章
微分方程
例3、解方程:
( 1 ) x y y (ln y ln x ) ( 2 ) xy dy dx x
线性 : 指关于 y , y 是一次的 .
若 Q ( x ) 0 , 则称方程为齐次的 否则 , 称它为非齐次的 .
;
返回
微积分
解法: (1)常数变易法
第四章
微分方程
先解齐次方程: y P ( x ) y 0
dy y
P ( x ) dx
ln y
P ( x ) dx ln C P ( x ) dx
,则
1
dz dx
(1 n ) y dz
n
dy dx
dy dx
1 n dx
1 dz P ( x )z Q ( x )
(3)代入方程,得
1 n dx
(4)按2的情形解之。
返回
微积分
例4、解方程:
y y 2 x y.
第四章
微分方程
5、其它方程 指通过变换或换元可化为前面四种情形的方程。 例5、解方程:
例1、解方程:
( 1 ) y 2 xy
第四章
微分方程
xydx ( x 2 1 ) dy 0 (2) y(0) 1
注意:
( 1 )中 dy y ln y不加常数 , 且 2 xdx 积出后加 ln C ,
常微分方程学习指导
微 积 分 下 册第四章 常微分方程一、学习要求与内容提要(一)基本要求1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念.2.掌握可分离变量的微分方程和一阶线性微分方程的解法.3.会用微分方程解决一些简单的实际问题.重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
(二)内容提要10.⒈ 微分方程的基本概念微分方程的定义,微分方程的阶、解与通解,初始条件与特解。
10.2 一阶微分方程变量可分离的微分方程,齐次微分方程,一阶线性微分方程。
10.3高阶微分方程二阶线性微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程,几类特殊的高阶微分方程的降阶法。
二、主要解题方法1.一阶微分方程的解法例1 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解 这是可以分离变量的微分方程,将方程分离变量,有 x x y y y d 11d 12-=- 两边积分,得 =-⎰y y y d 12⎰-x x d 11求积分得 121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=- 1222e )1(1C x y -=-,222)1(e 11-±=-x y C记 0e 12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可 以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y 得 3=C ,所以特解为 22)1(31-=-x y .例2 求下列微分方程的通解:(1)x y y y +='; (2) x xy y x cos e 22=-'. (1)解一 原方程可化为1d d +=xy x yx y 令 x y u =,则 1d d +=+u u x u x u 即x x u u u d d 12-=+ 两边取积分 ⎰⎰-=+x x u u u d 1d )11(2 积分得 C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 y x C y e = (C 为任意常数)解二 原方程可化为 11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x 得其通解为 y C x =.设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C y y C =, 所以原方程的通解为 1ln C y y x =,即y xC y e = (C 为任意常数).(2)解一 原方程对应的齐次方程 02d d =-xy xy 分离变量得xy x y 2d d =, x x yy d 2d = 两边积分,得 x x y y ⎰⎰=d 2d ,2ln ln y x C =+)e ln(ln e ln ln 22x x C C y =+=,2e x C y =用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22='即 x x C cos )(='两边积分,得 C x x x x C +==⎰sin d cos )(故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y x x x x x =)d e cos e (e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数). 小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解. 因此求曲线)(x y y =的问题,转化为求解微分方程的定解问题 ⎪⎩⎪⎨⎧=-=-'=1111x y y x y ,的特解. 由公式 C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )(,得 )d e )1((ed 1d 1C x y x x x x +⎰-⎰=-⎰=ln x x Cx -+ 代入11==x y 得 1=C ,故所求曲线方程为 (1ln )y x x =-.三、学法建议1.本章重点为微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性 微分方程的常数变易法.2.本章中所讲的一些微分方程,它们的求解方法和步骤都已规范化,要掌握这些求解法,读者首先要善于正确地识别方程的类型,所以必须熟悉本课程中讲了哪些标准型,每种标准型有什么特征,以便“对号入座”,还应熟记每一标准型的解法,即“对症下药”.同时,建议读者再做足够的习题加以巩固.。
常微分方程 ppt课件
量,x是未知函数,是未知函数对t导数. 现
在,我们还不会求解方程(1.1),但是,如果
考虑k=0的情形,即自由落体运动,此时方程
(1.1)可化为
d2x dt 2
g
(1.2)
将上式对t积分两次得
x(mt)xk12xgt2mgc1t c2
(1.3) (1.1)
ppt课件
11
一般说来,微分方程就是联系自变量、 未知函数以及未知函数的某些导数之间的关 系式. 如果其中的未知函数只是一个自变量 的函数,则称为常微分方程;如果未知函数 是两个或两个以上自变量的函数,并且在方 程中出现偏导数,则称为偏微分方程. 本书 所介绍的都是常微分方程,有时就简称微分 方程或方程.
这样,从定义1.1可以直接验证:
F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)
或
M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
ppt课件
14
n 阶隐式方程的一般形式为
常微分方程
ppt课件
1
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、 物体和现象运动、演化和变化规律的最为基本的数 学理论和方法。物理、化学、生物、工程、航空航 天、医学、经济和金融领域中的许多原理和规律都 可以描述成适当的常微分方程,如牛顿运动定律、 万有引力定律、机械能守恒定律,能量守恒定律、 人口发展规律、生态种群竞争、疾病传染、遗
ppt课件
2
传基因变异、股票的涨伏趋势、利率的 浮动、市场均衡价格的变化等,对这些 规律的描述、认识和分析就归结为对相 应的常微分方程描述的数学模型的研究.
(整理)常微分方程解
第四章常微分方程数值解[课时安排] 6 学时[教学课型] 理论课[教学目的和要求]了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler )方法、改进的欧拉方法、龙贝-库塔( Runge-Kutta )方法、阿达姆斯( Adams )方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R -K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。
[教学重点与难点]重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。
难点: R—K 方法,预估-校正公式。
[教学内容与过程]4.1 引言本章讨论常微分方程初值问题(4.1.1)的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法 .通常我们假定(4.1.1) 中f(x,y)对 y 满足 Lipschitz 条件,即存在常数 L>0,使对,有(4.1.2) 则初值问题(4.1.1) 的解存在唯一 .假定 (4.1.1) 的精确解为,求它的数值解就是要在区间上的一组离散点上求的近似 . 通常取, h 称为步长,求(4.1.1) 的数值解是按节点的顺序逐步推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题 . 4.2 简单的单步法及基本概念4.2.1 Euler 法、后退 Euler 法与梯形法求初值问题(4.1.1) 的一种最简单方法是将节点的导数用差商代替,于是(4.1.1) 的方程可近似写成(4.2.1)从出发 ,由(4.2.1)求得 代入(4.2.1)右端,得到的近似(4.2.2)称为解初值问题的 Euler 法.Euler 法的几何意义如图 4-1 所示.初值问题(4.1.1) 的解曲线 y=y(x)过点,从出发,以为斜率作一段直线,与直线 交点于,显然有 , 再从出发, 以为斜率作直线推进到上一点, 其余类推,这样得到解曲线的一条近似曲线,它就是折线.,一般写成再将Euler 法也可利用的 Taylor 展开式得到,由(4.2.3) 略去余项,以,就得到近似计算公式(4.2.2).另外,还可对(4.1.1) 的方程两端由到积分得(4.2.4)若右端积分用左矩形公式,用,,则得(4.2.2).如果在(4.2.4) 的积分中用右矩形公式,则得(4.2.5)称为后退(隐式)Euler 法.若在(4.2.4) 的积分中用梯形公式,则得(4.2.6)称为梯形方法 .上述三个公式(4.2.2), (4.2.5)及(4.2.6)都是由计算,这种只用前一步即可算 出的公式称为单步法,其中 (4.2.2)可由逐次求出的值,称为显式方法,而(4.2.5)及(4.2.6)右端含有当 f 对 y 非线性时它不能直接求出,此时应把它看作一个方程,求解 ,这类方法称为稳式方法 .此时可将(4.2.5)或(4.2.6)写成不动点形式的方程这里对式(4.2.5)有 无关,可构造迭代法(4.2.7)由于对 y 满足条件(4.1.2),故有当或,迭代法(4.2.4)收敛到 ,因此只要步长 h 足够小,就可保证迭代(4.2.4)收敛.对后退 Euler 法(4.2.5), 当 时迭代收敛,对梯形法 (4.2.6) ,当时迭代序列收敛 .例 4.1 用 Euler 法、隐式 Euler 法、梯形法解取 h=0.1, 计算到x=0.5,并与精确解比较.,对(4.2.6)则, g 与解 本题可直接用给出公式计算 . 由于,Euler 法的计算公式为.其余 n=1,2,3,4 的计算结果见表 4-1.对隐式 Euler 法,计算公式为解出当 n=0 时,4-1.表 4-1 例 4.1 的三种方法及精确解的计算结果对梯形法,计算公式为解得.其余 n=1,2,3,4 的计算结果见表n=0 时,当 n=0 时, .其余 n=1,2,3,4 的计算结果见表 4-1.本题的精确解为, 表 4-1 列出三种方法及精确解的计算结果 .4.2.2 单步法的局部截断误差解初值问题(4.1.1) 的单步法可表示为(4.2.8)其中与有关, 称为增量函数, 当含有时, 是隐式单步法, 如(4.2.5)及(4.2.6)均为隐式单步法,而当不含时,则为显式单步法,它表示为(4.2.9)如 Euler 法(4.2.2),出局部截断误差概念 .定义 2.1 设 y(x)是初值问题(4.1.1) 的精确解,记(4.2.10)称为显式单步法(4.2.9)在的局部截断误差 .之所以称为局部截断误差, 可理解为用公式(4.2.9)计算时, 前面各步都没有误差,,只考虑由计算到.为讨论方便,我们只对显式单步法 (4.2.9)给这一步的误差,此时由 (4.2.10)有即局部截断误差(4.2.10)实际上是将精确解代入(4.2.9)产生的公式误差,利用Taylor 展开式可得到.例如对 Euler 法(4.2.2)有, 故它表明 Euler 法(4.2.2) 的局部截断误差为 ,称为局部截断误差主项 .定义 2.2 设是初值问题(4.1.1) 的精确解,若显式单步法 (4.2.9) 的局部截断误差, 是展开式的最大整数,称 为单步法(4.2.9) 的阶, 含的项称为局部截断误差主项 .根据定义, Euler 法(4.2.2) 中的=1 故此方法为一阶方法 .对隐式单步法(4.2.8)也可类似求其局部截断误差和阶,如对后退 Euler 法(4.2.5)有 局部截断误差故此方法的局部截断误差主项为同样有,也是一阶方法 .对梯形法(4.2.6)它的局部误差主项为 ,方法是二阶的 .4.2.3 改进 Euler 法上述三种简单的单步法中,梯形法 (4.2.6)为二阶方法,且局部截断误差最小,但方法 是隐式的, 计算要用迭代法 .为避免迭代, 可先用Euler 法计算出的近似,将(4.2.6)改为称为改进 Euler 法,它实际上是显式方法 . 即(4.2.11)(4.2.12)右端已不含 .可以证明, =2,故方法仍为二阶的,与梯形法一样,但用(4.2.11)计算不用迭代.例 4.2 用改进 Euler 法求例 4.1 的初值问题并与 Euler 法和梯形法比较误差的大小 . 解 将改进 Euler 法用于例4.1 的计算公式.其余结果见表4-2.当 n=0 时,表 4-2 改进 Euler 法及三种方法的误差比较从表 4-2 中看到改进Euler 法的误差数量级与梯形法大致相同,而比 Euler 法小得多,它优于 Euler 法.讲解:求初值问题(4.1.1)的数值解就是在假定初值问题解存在唯一的前提下在给定区间上的一组离散点上求解析解的一组近似为此先要建立求数值解的计算公式,通常称为差分公式,简单的单步法就是由计算下一步,构造差分公式有三种方法,一是用均差(即差商)近似,二是用等价的积分方程(4.2.4)用数值积分方法,三是用函数的 Taylor 展开,其中 Taylor 展开最有普遍性,可以得到任何数值解的计算公式及其局部截断误差。
常微分方程(第四版)A2课件(蓝底)4-1b
x1(t) W (t) W[x1(t), x2 (t), , xk (t)] x1' (t)
x2 (t) x2' (t)
x1(k1) (t) x2(k1) (t)
8/24/2021
第四章
xk (t) xk' (t)
xk(k1) (t)
4
基本概念 线性相关
线性相关:对定义在区间a≤t≤b上的函数xi(t)(i=1,…,k),如存 在不全为零的常数ci(i=1,…,k),使得在整个区间a≤t≤b上恒成 立
c1x1(t) c2x2 (t) cnxn (t) 0 当且仅当所有ci=0(i=0,1,…,n)时才成立。
8/24/2021
第四章
5
基本概念 基本解组(基解组)
dn x dtn
a1 (t )
dn1 x d t n1
a1 (t )
dn x dtn
an1 (t )
dx dt
an
(t)x
0.
x=xi (t) (i 1, , n)
定理7(通解结构) 设x1(t),x2(t),…,xn(t)是齐次线性方程(2)
的一个基本解组。x(t)是方程(1)的某一解(特解)。 则非齐次线性方程(1)的通解可表为
x(t)=c1x1(t)+ c2x2(t)+…+ cnxn(t) +x(t) (14) 其中c1 ,c2 ,…,cn为任意常数。 反之,对方程(1)的所有解x(t),必存在常数c1 ,c2 ,…,cn
它满足初始条件x(t0) = x’(t0) = … = x(n-1)(t0)=0。 但x=0也是满足同样初始条件的方程的解,
由解的唯一性,得x(t)≡0 (a ≤ t ≤ b) ,
常微分方程教程丁同仁李承治第二版第四章 奇解
0 q3
2
3
y
2.用参数法求解下列微分方程:
y
y
y)
y
dq dy
3 2
x
ln x 2x
p
1)
0.
2xp
)]2
y
dy dx
2 cos y( sin y) 2q2
cos y sin y q2
cos2 q3
sin
cos2 q3
y
dq
( dy
y)
q tan
2
3
cos3 y sin y
y
x C
22t2 t 2t 1
C
dt
25
5
2
cos t,
2 cos[ 2 (x C)] 5
2t1
C
2
2
dv v
p
2 sin tdt
2 5 sin t
5
2t 1 22t2 t
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
第四章 微分方程
(可以证明,二阶常系数线性齐次微分方程的两个 特解 y1 , y2 ,只要他们不成比例,则 y C1 y1 C2 y2 为该方程的通解) 例7 求方程 y 6 y 9 y 0 的通解 解 特征方程 r 2 6r 9 0 r1 r2 3
3 x 则通解为 y (C1 C2 x)e
《高等数学》
微分方程
第四章 微分方程
内容导航
什么是微分方程 分离变量法
微分方程的应用(1)
二阶常系数线性微分方程 数学建模:微分方程应用(2)
4-1 什么是微分方程
引例1:曲线过点(1,2),且在该曲线上任意一点M (x , y) 处的切线的斜率为2x,求这曲线的方程? 解 设所求曲线y=f ( x ) ,根据导数的几何意义得 dy 2( x 1)
x 2
解 特征方程为
共轭虚根为
原方程的通解
y e (C1 cos
3 3 x C2 sin x) 2 2
(共轭虚根时,由欧拉公式有
e
r 1x
e
1 3 i x 2 2
e e
x 2
3 ix 2
e (cos
x 2
3 3 x sin x) 2 2
再根据该方程 C1 y1 C2 y2 y 的线性组合仍是解而 消去i )
4-4 二阶微分方程
于是二阶线性齐次微分方程的特解形式 :
特征方程 的两个根 r 2 pr q 0 微分方程
y py qy 0 的通解
(1)两个不相等实根r1,r2
y C1er1 x C2er2 x
(2)两个相等实根r1=r2=r (3)共轭虚根
r 12 i
第四章常微分方程参考答案(1)
爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
四阶常微分方程__概述说明以及解释
四阶常微分方程概述说明以及解释1. 引言1.1 概述在自然科学和工程技术领域中,常微分方程一直扮演着重要的角色。
而四阶常微分方程作为其中的一个特殊类型,在许多实际问题的建模与求解过程中也具有广泛应用。
本文旨在对四阶常微分方程进行概述、说明其定义与特点,并介绍其在重要的应用领域中所起到的作用。
1.2 文章结构为了全面理解和深入探究四阶常微分方程,本文将按照以下结构展开叙述:引言部分首先对文章的主要内容进行了简单概括,并提出了本文撰写的目的。
接下来,我们将在第二部分对四阶常微分方程进行概述,包括其定义、特点以及重要应用领域。
第三部分将详细介绍解析方法与技巧,包括分离变量法、特征方程法和傅里叶级数解法等,这些方法被广泛应用于求解四阶常微分方程。
然后,在第四部分我们将探讨数值解法与计算机模拟,主要包括欧拉方法及其改进算法、迭代法与龙格-库塔方法以及使用Matlab进行四阶常微分方程模拟研究的实际操作。
最后,在第五部分我们将总结所讨论的主要内容,并对四阶常微分方程研究的意义和前景展望进行探讨。
1.3 目的本文旨在全面介绍和说明四阶常微分方程的概念、性质及其解析方法与技巧。
通过详细讲解数值解法与计算机模拟,我们希望读者能够深入理解并灵活运用这些方法来求解实际问题中涉及到的四阶常微分方程。
最后,通过总结与展望,我们将以一个更广阔的视角来认识四阶常微分方程所具有的重要性和未来发展方向。
2. 四阶常微分方程概述:2.1 常微分方程简介常微分方程是数学中的一个重要分支,广泛应用于各个科学领域。
它描述了未知函数与其导数之间的关系,并通过求解方程得到函数的解析或数值解。
常微分方程可以根据阶数进行分类,其中四阶常微分方程是其中一类比较复杂的方程。
2.2 四阶常微分方程定义与特点四阶常微分方程是指含有四个未知函数导数的常微分方程,形式可以表示为:\[ F(x, y, y', y'', y''') = 0 \]其中\(y\) 是自变量\(x\) 的函数,\(y'\)、\(y''\) 和\(y'''\) 分别表示\(y\) 关于\(x\) 的一阶、二阶和三阶导数。
考研第四章 常微分方程
第四章常微分方程§4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。
2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。
4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。
5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。
6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。
不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。
二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()()C dy y N y N dx x M x M =+⎰⎰1221 ()()()0,012≠≠y N x M2.变量可分离方程的推广形式(1)齐次方程⎪⎭⎫ ⎝⎛=x y f dx dy 令u x y=, 则()u f dxdu x u dx dy =+=()c x c x dxu u f du +=+=-⎰⎰||ln(2)()()0,0≠≠++=b a c by ax f dxdy令u c by ax =++, 则()u bf a dxdu+=()c x dx u bf a du+==+⎰⎰(3)⎪⎪⎭⎫ ⎝⎛++++=222111c y b x a c y b x a f dx dy①当02211≠=∆b a b a 情形,先求出⎩⎨⎧=++=++00222111c y b x a c y b x a 的解()βα, 令α-=x u ,β-=y v则⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=u v b a u v b a f v b u a v b u a f du dv 22112211属于齐次方程情形 ②当02211==∆b a b a 情形,令λ==1212b b a a 则()⎪⎪⎭⎫ ⎝⎛++++=211111c y b x a c y b x a f dxdy λ令y b x a u 11+=, 则⎪⎪⎭⎫ ⎝⎛+++=+=211111c u c u f b a dx dyb a dx du λ 属于变量可分离方程情形。
常微分方程教程第四章奇解
常微分方程教程第四章奇解第四章的主题是奇解。
奇解是指常微分方程的特解,它们具有非常特殊的性质。
在这一章中,我们将讨论奇解的定义、性质和求解方法。
首先,我们来看奇解的定义。
对于一个常微分方程,如果一些函数既是它的解,又满足该方程的初值条件,那么这个解就是初值问题的特解。
如果一个特解在一些区间上唯一地存在,且不能由其他解表示,那么它就是奇解。
奇解是一种与常解不同的特殊解,它在数学研究和应用中具有重要的意义。
接下来,我们将讨论奇解的性质。
首先,奇解的存在性和唯一性是奇解研究的基本问题。
对于一些常微分方程,它们可能具有奇解,而对于其他方程,则可能不存在奇解。
为了证明奇解的存在性和唯一性,我们需要运用一些相关的定理和方法,如皮卡逐步逼近法和柯西定理等。
这些定理和方法提供了解决奇解问题的有力工具。
其次,奇解的求解方法也是本章的重点内容。
对于一些特定的常微分方程,我们可以采用一些特殊的技巧和方法来求解它们的奇解。
例如,对于线性常微分方程,我们可以利用常系数线性微分方程的特征根和特征向量来求解奇解。
而对于一些非线性常微分方程,我们可以运用变量分离、积分因子和分离变量等方法来求解奇解。
这些求解方法的研究可以帮助我们更好地理解奇解的性质和特点。
最后,我们将讨论奇解的应用。
奇解不仅仅在数学研究中具有重要意义,它们还广泛应用于物理、化学、生物学等领域。
例如,在物理学中,奇解可以描述一些具有特殊性质或特殊行为的物理系统。
在化学反应动力学中,奇解也被广泛应用于描述化学反应过程中的特殊现象。
奇解的应用研究有助于我们更好地理解和掌握自然界中的现象和规律。
综上所述,第四章主要讨论了奇解的定义、性质和求解方法。
奇解是常微分方程中的特殊解,具有非常特殊的性质。
我们可以通过研究奇解的存在性、唯一性和求解方法,来更好地理解和应用常微分方程。
奇解的研究不仅在数学领域有重要意义,而且在物理、化学、生物学等领域也有广泛的应用。
通过学习和掌握奇解的知识,我们可以拓宽自己的数学视野,提高问题解决能力,并在实际应用中发挥奇解的作用。
常微分方程
u
u
例3 R-L-C电路 电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后,电 路中电流强度I与时间t之间的关系.
电路的 第二定律: 第二定律 解: 电路的Kirchhoff第二定律 在闭合回路中,所有支路上的电压的代数和为零 在闭合回路中 所有支路上的电压的代数和为零. 所有支路上的电压的代数和为零
三 线性和非线性
dy d y 1.如果方程 F(x, y, , L , n ) = 0 dx dx n dy d y 的左端为y及 , L , n 的一次有理式, dx dx 则称其为n 则称其为n阶线性方程.
如 (1) dy = 2 x
n
dx
(2) xdy − ydx = 0
是线性微分方程.
d 4x d 2x ( 4) + 5 2 + 3 x = sin t 4 dt dt
例1 镭的衰变规律:
设镭的衰变规律与该时刻现有的量成正比, 且已知t = 0时, 镭元素的量为R0克, 试确定在 任意t时该时镭元素的量.
注:镭的变化率与镭的量成正比。
解: 设t时刻时镭元素的量为R(t ),
dR(t ) 由于镭元素的衰变律就是R(t )对时间的变化律 , dt 依题目中给出镭元素的衰变律可得 :
dR = −kR, dt R(0) = R0
这里k > 0, 是由于R(t )随时间的增加而减少.
解之得 : R(t ) = R0 e − kt
即镭元素的存量是指数规律衰减的.
例2 物理冷却过程的数学模型
将某物体放置于空气中, 在时刻 t = 0 时, 测得它的温度为
常微分方程-总复习
dy a1 x b1 y c1 dx a2 x b2 y c2
dx
x
2.3 恰当方程和积分因子 2.3.1 恰当方程 定义、判别方法、求解方法 2.3.2 积分因子 定义、特殊类型方程的积分因子的求法 2.4 一阶隐方程和参数表示
第三章 一阶微分方程解的存在定理
解的存在唯一性定理的内容及证明过程。
近似计算和误差估计;
解对初值的可微性
第四章 高阶微分方程
4.1 线性微分方程的一般理论 4.1.1 齐线性方程解的性质与结构 定理2-定理6 4.1.2 非齐线性方程与常数变易法 定理7 常数变易法 4.2 常系数线性方程的解法 4.2.2 复值函数与复值解 复值函数的运算性质、定理8、定理9
4.2.2 常系数齐线性方程和欧拉方程 欧拉待定指数函数法、根据特征根的性质确定 方程的基本解组、欧拉方程的求解 4.2.3 非齐线性方程-比较系数法
第五章 线性微分方程组
5.1 解的存在唯一性定理 5.1.1 记号和定义 将n阶线性微分方程的初值问题化为等价的微分 方程组的初值问题 5.1.2 存在唯一性定理 5.2 线性微分方程组的一般理论 5.2.1 齐线性微分方程组
定理2-定理6 定理1*定理2* 5.2.2 非齐线性微分方程组 定理7 定理8 常数变易公式
常微分方程
总复习
第一章 绪论
基本概念 常微分方程、偏微分方程、微分方程的阶 线性和非线性微分方程 解:隐式解、通解、特解 积分曲线
第二章 一阶微分方程
2.1 变量分离方程和变量变换 2.1.1 变量分离方程 2.1.2 可化为变量分离方程的类型 y 1) dy g
2) 2.2 线性方程与常数变易法 一阶齐线性微分方程、一阶非齐线性微分方程、 伯努利方程
4-1第四章 常微分方程ppt课件
第一节 常微分方程
一、引例 [曲线方程]
一平面曲线上任一点的切线斜率等于该点横坐标的二倍,试 建立该曲线满足的方程式.
解 设所求曲线为yfx由导数的几何意义知,曲线上任一点 px,y处的切线斜率为 y 根据题意有 y2x即
dy 2x dx
w精w选w.2c0e2c1.e版du课.c件n
4
第一节 常微分方程
二、概念和公式的引出
凡含有未知函数导数(或微分)的方程,称为微分方程.微分方程 有时也简称为方程. 未知函数为一元函数的微分方程称为常微分方程. 微分方程中未知函数的导数的最高阶数称为微分方程的阶. 任何满足微分方程的函数都称作微分方程的解. 如果微分方程中含有任意常数,且独立变化的任意常数的个数与 微分方程的阶数相同,这样的解称作微分方程的通解.不含任意 常数的解称作微分方程的特解.
dPtkPt k0常数
dt
等式右端的负号是由于 Pt随时间 t 的增加而减少.
研究
w精w选w.2c0e2c1.e版du课.c件n
6
第一节 常微分方程
案例2 [自由落体运动] 一质量为m的质点,在重力作用下自由下落, 求其运动方程. 解 建立坐标系如图,坐标原点取在水平地面, y轴铅直向上,设在时刻
约翰.伯努利(Johann Bernoulli 1667-1748), 雅可布的弟弟,原来也错选了职业,他起先学医,并在 1694年获得巴塞尔大学博士学位,论文是关于肌肉收缩问 题的。但他也爱上了微积分,很快就掌握了它,并用它来解决几何学、 微分方程和力学上的许多问题。1695年他任荷兰戈罗宁根大学数学物 理教授,而在他的哥哥雅可布死后继任巴塞尔大学教授。1696年约翰 向全欧洲数学家挑战,提出一个很艰难的问题:“设在垂直平面内有 任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不 计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题。它的难处在于和普通的极大极 小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条 件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔、伯努利兄弟、 莱布尼茨和牛顿都得到了解答。
常微分方程第四章课后答案
常微分方程第四章课后答案大家好,我是你们的语文老师小七。
在高中阶段很多学生对于课本上的知识点都有一些基础认识,但是有些同学在理解了这个知识点之后就不知道该如何去理解了,所以今天我就来给大家讲解一下常微分方程第四章课后习题练习。
这一章节主要讲两个内容:①什么是常微分方程;②常微分方程解法。
第一个内容是常微分方程解法的定义,这是在课本中找不到的知识。
这一部分主要要学习基本的表达式以及一些解析式。
第二个内容是常微分方程中积分法,对于初学者来说这一部分更是需要好好学习了。
下面我们就来了解一下这些知识点吧。
首先要明确一下这章节讲的内容不能单独做练习题,而是需要把每一道例题都做完才行。
这节课除了常规的知识会做一些相关例题之外,还会讲解下几道解析式以及常见的几种情况了。
1.线性表达式的两个性质线性表达式中含有一个值为 y,由定义可知 x的值为 y=0,这种情况下表达式的两个性质分别为①线性表达式有无限长时,函数的阶数不变;②线性表达式随解变小而逐渐递减;③线性表达式对任意一阶值的变换都可以得到对应形式,比如用n× n来表示(如矩阵)。
这两个性质可以通过具体例子来说明这一点。
在函数 x>0时,由于有无穷多个解,每个解都有相应的矩阵,并且在这个矩阵中存在相同的化简问题。
那么解方程中所含有的多变量就是这两个性质。
其中 x 和 y分别表示对一个函数 x和 y取对应微分时变量之间的关系。
另外还有一种情况会用到近似解来证明:即满足 k、 z、?三大条件中有任意一种条件时,可以得到一个近似求解的常微分方程:所以两个函数均满足 k、 z、?三大条件中任意一项就可以得到这类线性表达式下面这个解法:若 y为二元函数,则 y=2 x+1 y^2 x+1 y^2 x^2 x=+1x?1=+1x-2-0 (如矩阵)。
2.等比数列在常微分方程解法方面,我们的解法就是将该解法和实际中计算的解做一个等值处理。
我们通常将等值数列分为等比数列(m= m)和等比数列(m=1)。
常微分方程第四章知识总结
常微分方程第四章知识总结常微分方程是微分方程的一种,它研究的是未知函数的导数和初值之间的关系。
常微分方程在物理学、工程学、生物学、经济学等领域都有广泛的应用。
第四章是常微分方程的一个重要章节,主要介绍了高阶常微分方程、常系数线性微分方程以及常微分方程的解法等内容。
高阶常微分方程是指未知函数的导数的阶数大于一的微分方程。
高阶常微分方程的一般形式为:$$y^{(n)} = f(x,y,y',\ldots,y^{(n-1)})$$其中$y$是未知函数,$y', y'', \ldots, y^{(n)}$分别表示$y$的一阶、二阶、$\ldots$、$n$阶导数,$f$是已知函数。
高阶常微分方程的解法包括常系数线性微分方程的特解与常数法、待定系数法、矩阵法等几种。
首先是常系数线性微分方程的特解与常数法。
对于形如$y^{(n)} +a_1y^{(n-1)}+ \cdots + a_ny = f(x)$的常系数线性微分方程,可以设其特解为$y^* = C_1e^{r_1x} + C_2e^{r_2x} + \cdots$,其中$r_i$为特征方程$ r^n + a_1r^{n-1}+ \cdots + a_n = 0$的根。
将特解代入原方程,得到特解的解析形式。
然后与齐次方程求得的通解相加,即可得到原方程的通解。
常数法适用于右端为多项式的情况。
其次是常系数线性微分方程的待定系数法。
对于形如$y^{(n)} +a_1y^{(n-1)}+ \cdots + a_ny = f(x)$的常系数线性微分方程,当右端函数为指数函数、三角函数、幂函数、多项式函数和指数型函数等形式时,可以假设其特解为一些已知函数形式的线性组合,然后求解待定系数,得到特解的解析形式。
其次是常系数线性微分方程的矩阵法。
对于形如$\mathbf{y}' =A\mathbf{y}$的常系数线性微分方程组,可以使用特征方程的根以及线性代数的相关技巧,构造齐次方程的基本解组,然后通过矩阵的指数函数的性质得到原方程的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、案例
案例1 [死亡年代的测定] 遗体死亡之后,体内碳14的含量就不断
减少,已知碳 14 的衰变速度与当时体内碳 14的含量成正比,试建立 任意时刻遗体内碳 14含量应满足的方程.
研究
解 设 t时刻遗体内碳14 的含量为 pt,根据题意有
dPtkPt k 0常数
dt
等式右端的负号是由于 Pt随时间 t 的增加而减少.
一、引例 [曲线方程]
一平面曲线上任一点的切线斜率等于该点横坐标的二倍,试 建立该曲线满足的方程式.
解 设所求曲线为yfx由导数的几何意义知,曲线上任一点 px,y处的切线斜率为 y 根据题意有 y2x即
dy 2x dx
二、概念和公式的引出
凡含有未知函数导数(或微分)的方程,称为微分方程.微分方程 有时也简称为方程. 未知函数为一元函数的微分方程称为常微分方程. 微分方程中未知函数的导数的最高阶数称为微分方程的阶. 任何满足微分方程的函数都称作微分方程的解. 如果微分方程中含有任意常数,且独立变化的任意常数的个数与 微分方程的阶数相同,这样的解称作微分方程的通解.不含任意 常数的解称作微分方程的特解.
d2 y dt2 g
y12g2tC1tC2
其中C1, C2是两个独立变化的任意常数.
贝努利(Jacob Bernoulli 1654-1705),著名数学家。 他自学了牛顿和莱布尼茨的微积分,并从1687年开始 到他去世为止任瑞士巴塞尔大学数学教授。他发表了 无穷级数的论文、研究过许多种特殊曲线、发明了极坐标、引入了在 tan(x)函数的幂级数展开式中伯努利数。 雅可布在《学艺》上发表了一系列重要的论文,微分方程中的“ 伯努利方程”就是雅可布提出的。1694年他首先给出直角坐标和极坐 标的曲率半径公式。这也是系统地使用极坐标的开始。1690年他提出 悬链线问题,后来雅可布又改变了问题的条件,解决复杂的悬链问题 ,1694年的论文讨论了双纽线的性质。“伯努利双纽线”由此得名。 雅可布对于对数螺线有很深入的研究,他发现经过各种变换之后,结 果还是对数螺线。
案例2 [自由落体运动] 一质量为m的质点,在重力作用下自由下落, 求其运动方程. 解 建立坐标系如图,坐标原点取在水平地面, y轴铅直向上,设在时刻
t质点的位置是yt,由于质点只受重力mg作用,且力的方向与 y轴正向相反,
故由牛顿第二定律得质点满足的方程为
m
d2 y dt2
mg
或
通过积分容易得出
4-1第四章 常微分方程
第一节Байду номын сангаас常微分方程
O、背景 一、引例 二、概念和公式导出 三、案例
背景
函数是反映客观世界运动过程中量与量之间的一种关系,寻求函数 关系在实践中具有重要意义。许多实际问题,往往不能直接找出需要的 函数关系,却比较容易列出表示未知函数及其导数(或微分)与自变量之 间关系的等式.这样的等式就是微分方程.1676年詹姆士.贝努利致牛 顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一 门独立的学科.微分方程建立后,立即成为研究、了解和知晓现实世界 的重要工具.1846年,数学家与天文学家合作,通过求解微分方程,发 现了一颗有名的新星——海王星.1991年,科学家在阿尔卑斯山发现一 个肌肉丰满的冰人,据躯体所含碳原子消失的程度,通过求解微分方程 ,推断这个冰人大约遇难于5000年以前,类似的实例还有很多.在微分 方程的发展史中,数学家牛顿、莱布尼兹、贝努利家族、拉格朗日、欧 拉、拉普拉斯等等都做出了卓越的贡献.
约翰.伯努利(Johann Bernoulli 1667-1748), 雅可布的弟弟,原来也错选了职业,他起先学医,并在 1694年获得巴塞尔大学博士学位,论文是关于肌肉收缩问 题的。但他也爱上了微积分,很快就掌握了它,并用它来解决几何学 、微分方程和力学上的许多问题。1695年他任荷兰戈罗宁根大学数学 物理教授,而在他的哥哥雅可布死后继任巴塞尔大学教授。1696年约 翰向全欧洲数学家挑战,提出一个很艰难的问题:“设在垂直平面内 有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点, 不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题。它的难处在于和普通的极大极 小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条 件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔、伯努利兄弟 、莱布尼茨和牛顿都得到了解答。