考点31 直线与平面所成的角-2018版典型高考数学试题解读与变式(原卷版)

合集下载

考点29 直线、平面平行与垂直的判定与性质-2018版典型高考数学试题解读与变式(解析版)

考点29 直线、平面平行与垂直的判定与性质-2018版典型高考数学试题解读与变式(解析版)
【变式 3】【改编例题的条件和问法】【2017 届陕西省西安市西北工业大学附属中学第七次模拟考试】在下 列命题中,属于真命题的是( )
A. 直线 m, n 都平行于平面 ,则 m / /n B. 设 − l − 是直二面角,若直线 m ⊥ ,则 m / / C. 若直线 m, n 在平面 内的射影依次是一个点和一条直线,(且 m ⊥ n ),则 n 在 内或 n 与 平行 D. 设 m, n 是异面直线,若 m 与平面 平行,则 n 与 相交
CP / /PD DE / /BC
} CN / / NE
NP 平面ABC
NP / / 平面 ABC
所以,平面 MNP / / 平面 ABC MN / / 平面 ABC
【变式 2】【改编例题的问法,证明线线平行】【2017 届湖北省六校联合体高三 4 月联考】在四棱锥 P − ABCD
中,底面是边长为 2 的菱形, BAD = 600 , PB = PD = 3, PA = 11, AC BD = O .
考点 29:直线、平面平行与垂直的判定与性质
【考纲要求】 1.理解空间直线、平面位置关系的定义. 2.了解可以作为推理依据的公理和定理. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理. 5.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题. 6.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理. 7.能运用公理、定理和已获得的结论证明一些有关空间图形的位置关系的简单命题. 【命题规律】 直线与平面平行的判定以及平面与平面平行的判定是高考热点.预测 2018 年的高考以棱柱、棱锥为载体考查 空间中的平行关系. 线面垂直的判定、面面垂直的判定与性质是高考热点,备考时应掌握线面、面面垂直的判定与性质定理, 了解线线垂直、线面垂直、面面垂直的转化思想,逐步学会综合运用数学知识分析解决问题的能力. 【典型高考试题变式】 (一)空间点、直线、平面之间的位置关系 例 1.【2016 全国 2 卷(理)】α,β 是两个平面,m,n 是两条直线,有下列四个命题: ①如果 m⊥n,m⊥α,n∥β,那么 α⊥β. ②如果 m⊥α,n∥α,那么 m⊥n. ③如果 α∥β,m⊂α,那么 m∥β. ④如果 m∥n,α∥β,那么 m 与 α 所成的角和 n 与 β 所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④

2018版高考数学文人教大一轮复习讲义 教师版文档第九

2018版高考数学文人教大一轮复习讲义 教师版文档第九

1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × )(3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.(2016·天津模拟)过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 依题意得m -4-2-m =1,解得m =1.2.直线3x -y +a =0的倾斜角为( ) A .30° B .60° C .150° D .120° 答案 B解析 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.3.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.4.(教材改编)直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 答案 1或-2解析 令x =0,得直线l 在y 轴上的截距为2+a ; 令y =0,得直线l 在x 轴上的截距为1+2a,依题意2+a =1+2a,解得a =1或a =-2.5.过点A (2,-3)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 3x +2y =0或x -y -5=0解析 ①当直线过原点时,直线方程为y =-32x ,即3x +2y =0;②当直线不过原点时,设直线方程为x a -ya =1,即x -y =a ,将点A (2,-3)代入,得a =5,即直线方程为x -y -5=0.故所求直线的方程为3x +2y =0或x -y -5=0.题型一 直线的倾斜角与斜率例1 (1)(2016·北京东城区期末)已知直线l 的倾斜角为α,斜率为k ,那么“α>π3”是“k >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为__________________.答案 (1)B (2)(-∞,-3]∪[1,+∞) 解析 (1)当π2<α<π时,k <0;当k >3时,π3<α<π2.所以“α>π3”是“k >3”的必要不充分条件,故选B.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎡⎦⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图,直线P A 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).(2017·开封月考)若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值范围是________________. 答案 (π6,π2)解析 ∵直线l 恒过定点(0,-3). 作出两直线的图象,如图所示,从图中看出,直线l 的倾斜角的取值范围应为(π6,π2).题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2)且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5,即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为 y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2(k ≠-2,否则与已知直线平行),则B 点坐标为(k +7k +2,4k -2k +2).∴(k +7k +2-1)2+(4k -2k +2+1)2=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线方程为x =1或3x +4y +1=0. 题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +yb =1(a >0,b >0),把点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的最大值是________. 答案 2 5解析 因为m ∈R ,所以定点A (0,0),B (1,3), 又1×m +m ×(-1)=0,所以这两条直线垂直,则|P A |2+|PB |2=|AB |2=10,则|P A |+|PB |=|P A |2+|PB |2+2|P A |·|PB |≤2(|P A |2+|PB |2)=25, 当且仅当|P A |=|PB |时,等号成立.10.求与截距有关的直线方程典例 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求直线l 的方程; (2)若l 在两坐标轴上的截距互为相反数,求a . 错解展示现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0. (2)由a -2a +1=-(a -2)得a -2=0或a +1=-1,∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.直线x =π3的倾斜角等于( )A .0 B.π3 C.π2 D .π答案 C解析 由直线x =π3,知倾斜角为π2.2.(2016·威海模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的所求直线方程为x =2.3.(2016·济宁模拟)直线mx -y +2m +1=0经过一定点,则该定点的坐标是( ) A .(-2,1) B .(2,1) C .(1,-2) D .(1,2)答案 A解析 mx -y +2m +1=0,即m (x +2)-y +1=0.令⎩⎪⎨⎪⎧ x +2=0,-y +1=0,得⎩⎪⎨⎪⎧x =-2,y =1,故定点坐标为(-2,1).4.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4. ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ; 当l 的倾斜角大于90°时,k ≤k PM , 由已知得k ≥34或k ≤-4.5.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限, 所以直线存在斜率,将方程变形为y =-a b x -cb .易知-a b <0且-cb>0,故ab >0,bc <0.6.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.7.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是__________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0. ∴k ∈[-3,0)∪[33,1). 8.(2017·潍坊质检)直线l 过点(-2,2)且与x 轴,y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为____________________________. 答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过点(0,0)与(-2,2), 直线l 的斜率k =-1,直线l 的方程为y =-x , 即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +yb =1,由题意知⎩⎪⎨⎪⎧-2a +2b =1,|a |=|b |,解得⎩⎪⎨⎪⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.9.(2016·咸阳模拟)直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合题意. 当a ≠-1时,直线l 的斜率k =-a a +1,由题意知-a a +1>1或-aa +1<0,解得-1<a <-12或a <-1或a >0.综上知,a <-12或a >0.10.(2016·山师大附中模拟)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.答案 4解析 ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1).∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =(1m +1n )·(m +n )=2+n m +m n ≥4 (当且仅当m =n =12时取等号),∴1m +1n的最小值为4. 11.(2016·太原模拟)已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解 (1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).即x -(m +1)y +2m +3=0. (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞),∴α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α∈[π6,2π3].12.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. 解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图所示.由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP =2.由直线方程的点斜式, 得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.*13.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

新高考数学之立体几何综合讲义第3讲 空间中两直线所成的角(原卷版)

新高考数学之立体几何综合讲义第3讲 空间中两直线所成的角(原卷版)

平面 与平面 ADD1A1 的交线为直线 m ,则直线 l 与直线 m 所成角的大小为 ( )
A.
6
B.
4
C.
3
D.
2
4.已知正四面体 ABCD 中, E 是 AB 的中点,则异面直线 CE 与 BD 所成角的余弦值为 ( )
A. 3 6
B. 6 3
C. 2 2
D.0
5.如图,在直三棱柱 ABC A1B1C1 中, AB BC AA1 , ABC 90 ,点 E 、 F 分别是棱 AB 、 BB1 的中
直线 EF 和 AC1 所成角的余弦值是 ( )
A. 2 4
B. 2 3
C. 6 3
D. 6 6
8.在直三棱柱 ABC A1B1C1 中, AC AA1 2 , ACB 90 ,点 E , F 分别是棱 AB , BB1 的中点,当二
面角 C1 AA1 B 为 45 时,直线 EF 与 BC1 的夹角为 (
EF 与 BC 所成角的大小.
16.四面体 A BCD 的棱长均为 a , E 、 F 分别为棱 AD 、 BC 的中点,求异面直线 AF 与 CE 所成的角的
3
余弦值. 17.长方体 ABCD A1B1C1D1 中,已知 AB a , BC b , AA1 c ,且 a b ,求: (1)下列异面直线之间的距离: AB 与 CC1 ; AB 与 A1C1 ; AB 与 B1C . (2)异面直线 D1B 与 AC 所成角的余弦值. 18.如图所示,在三棱柱 ABC A1B1C1 中, AA1 底面 ABC , AB BC AA1 , ABC 90 ,点 E 、 F 分
)
A. 60
B. 45
C. 90

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。

浙江省高考数学试题解析

浙江省高考数学试题解析

2018浙江省高考数学试卷新教改一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,23.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.84.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.4分2018 浙江设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在0,1内增大时, A .Dξ减小B .Dξ增大C .Dξ先减小后增大D .Dξ先增大后减小8.4分2018 浙江已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点不含端点.设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= ,y= .12.6分2018 浙江若x,y 满足约束条件,则z=x+3y 的最小值是 ,最大值是 .13.6分2018 浙江在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=,b=2,A=60°,则sinB= ,c= . 14.4分2018 浙江二项式+8的展开式的常数项是 .15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是.若函数fx恰有2个零点,则λ的取值范围是.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.用数字作答17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.19.15分2018 浙江如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.Ⅰ证明:AB1⊥平面A1B1C1;Ⅱ求直线AC1与平面ABB1所成的角的正弦值.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}考点1F:补集及其运算.A是由所有属于集合U但不属于A的元素构成的集合.分析根据补集的定义直接求解:UA是由所有属于集合U但不属于A的元素构成的集合,由已解答解:根据补集的定义,U知,有且仅有2,4,5符合元素的条件.A={2,4,5}U故选:C.点评本题考查了补集的定义以及简单求解,属于简单题.2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,2考点KC:双曲线的性质.专题34 :方程思想;4O:定义法;5D :圆锥曲线的定义、性质与方程.分析根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.解答解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为±2,0故选:B.点评本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.8考点L:由三视图求面积、体积.专题35 :转化思想;5F :空间位置关系与距离.分析直接利用三视图的复原图求出几何体的体积.解答解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.点评本题考查的知识要点:三视图的应用.4.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点A5:复数的运算.专题5N :数系的扩充和复数.分析化简已知复数z,由共轭复数的定义可得.解答解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.点评本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.考点3A:函数的图象与图象的变换.专题35 :转化思想;51 :函数的性质及应用.分析直接利用函数的图象和性质求出结果.解答解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.点评本题考查的知识要点:函数的性质和赋值法的应用.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点29:充分条件、必要条件、充要条件.专题38 :对应思想;4O:定义法;5L :简易逻辑.分析根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.解答解:∵mα,nα,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.点评本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.4分2018 浙江设0<p<1,随机变量ξ的分布列是ξ012P则当p在0,1内增大时,A.Dξ减小B.Dξ增大C.Dξ先减小后增大D.Dξ先增大后减小考点CH:离散型随机变量的期望与方差.专题33 :函数思想;4O:定义法;5I :概率与统计.分析求出随机变量ξ的分布列与方差,再讨论Dξ的单调情况.解答解:设0<p<1,随机变量ξ的分布列是Eξ=0×+1×+2×=p+;方差是Dξ=×+×+×=﹣p2+p+=﹣+,∴p∈0,时,Dξ单调递增;p∈,1时,Dξ单调递减;∴Dξ先增大后减小.故选:D.点评本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.4分2018 浙江已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点不含端点.设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1考点MJ :二面角的平面角及求法;L3:棱锥的结构特征;LM :异面直线及其所成的角;MI :直线与平面所成的角.专题31 :数形结合;44 :数形结合法;5G :空间角.分析作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.解答解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心. 过E 作EF ∥BC,交CD 于F,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N, 连接SN,取CD 中点M,连接SM,OM,OE,则EN=OM, 则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO . 显然,θ1,θ2,θ3均为锐角. ∵tanθ1==,tanθ3=,SN ≥SO,∴θ1≥θ3, 又sinθ3=,sinθ2=,SE ≥SM,∴θ3≥θ2. 故选:D .点评本题考查了空间角的计算,三角函数的应用,属于中档题.9.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣考点9O :平面向量数量积的性质及其运算.专题11 :计算题;31 :数形结合;4R :转化法;5A :平面向量及应用. 分析把等式﹣4+3=0变形,可得得,即⊥,设,则的终点在以2,0为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O 的两条射线y=x >0上,画出图形,数形结合得答案. 解答解:由﹣4+3=0,得,∴⊥,如图,不妨设,则的终点在以2,0为圆心,以1为半径的圆周上, 又非零向量与的夹角为,则的终点在不含端点O 的两条射线y=x >0上.不妨以y=为例,则|﹣|的最小值是2,0到直线的距离减1.即.故选:A .点评本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4考点8I :数列与函数的综合;4H :对数的运算性质;87:等比数列的性质. 专题11 :计算题;32 :分类讨论;34 :方程思想;49 :综合法;51 :函数的性质及应用;54 :等差数列与等比数列.分析利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.解答解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=lna 1+a 2+a 3,不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,lna 1+a 2+a 3>0,等式不成立,所以q ≠﹣1; 当q <﹣1时,a 1+a 2+a 3+a 4<0,lna 1+a 2+a 3>0,a 1+a 2+a 3+a 4=lna 1+a 2+a 3不成立, 当q ∈﹣1,0时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,能够成立, 故选:B .点评本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= 8 ,y= 11 .考点53:函数的零点与方程根的关系.专题11 :计算题;33 :函数思想;49 :综合法;51 :函数的性质及应用.分析直接利用方程组以及z的值,求解即可.解答解:,当z=81时,化为:,解得 x=8,y=11.故答案为:8;11.点评本题考查方程组的解法,是基本知识的考查.12.6分2018 浙江若x,y满足约束条件,则z=x+3y的最小值是﹣2 ,最大值是8 .考点7C:简单线性规划.专题1 :常规题型;11 :计算题;35 :转化思想;49 :综合法;5T :不等式.分析作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.解答解:作出x,y满足约束条件表示的平面区域,如图:其中B4,﹣2,A2,2.设z=Fx,y=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.∴z=F4,﹣2=﹣2.最小值可得当l经过点A时,目标函数z达到最最大值:z=F2,2=8.最大值故答案为:﹣2;8.点评本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.6分2018 浙江在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= 3 .考点HP:正弦定理.专题11 :计算题;35 :转化思想;49 :综合法;58 :解三角形.分析由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.解答解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1舍,∴sinB=,c=3.故答案为:,3.点评本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.4分2018 浙江二项式+8的展开式的常数项是7 .考点DA:二项式定理.专题35 :转化思想;4O:定义法;5P :二项式定理.分析写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.解答解:由=.令=0,得r=2.∴二项式+8的展开式的常数项是.故答案为:7.点评本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是{x|1<x<4} .若函数fx恰有2个零点,则λ的取值范围是1,3 .考点57:函数与方程的综合运用;3E:函数单调性的性质与判断;5B:分段函数的应用.专题11 :计算题;31 :数形结合;34 :方程思想;49 :综合法;51 :函数的性质及应用.分析利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.解答解:当λ=2时函数fx=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式fx<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数fx恰有2个零点,函数fx=的草图如图:函数fx恰有2个零点,则λ∈1,3.故答案为:{x|1<x<4};1,3.点评本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260 个没有重复数字的四位数.用数字作答考点D8:排列、组合的实际应用.专题11 :计算题;35 :转化思想;49 :综合法;5O :排列组合.分析可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.解答解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.点评本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.考点K4:椭圆的性质.专题34 :方程思想;48 :分析法;5A :平面向量及应用;5D :圆锥曲线的定义、性质与方程.分析设Ax1,y1,Bx2,y2,运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣2,运用二次函数的最值求法,可得所求最大值和m的值.解答解:设Ax1,y1,Bx2,y2,由P0,1,=2,可得﹣x1=2x2,1﹣y1=2y2﹣1,即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x 22+4y22=4m,②①﹣②得y1﹣2y2y1+2y2=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+2,即有x22=m﹣2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.点评本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.考点GP:两角和与差的三角函数;G9:任意角的三角函数的定义.专题33 :函数思想;4R:转化法;56 :三角函数的求值.分析Ⅰ由已知条件即可求r,则sinα+π的值可得;Ⅱ由已知条件即可求sinα,cosα,cosα+β,再由cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα代值计算得答案.解答解:Ⅰ∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P﹣,﹣.∴x=﹣,y=,r=|OP|=,∴sinα+π=﹣sinα=;Ⅱ由x=﹣,y=,r=|OP|=1,得,,又由sinα+β=,得=,则cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=,或cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=.∴cosβ的值为或.点评本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.15分2018 浙江如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=l,AB=BC=B 1B=2. Ⅰ证明:AB 1⊥平面A 1B 1C 1;Ⅱ求直线AC 1与平面ABB 1所成的角的正弦值.考点MI :直线与平面所成的角;LW :直线与平面垂直.专题31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 分析I 利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1; II 以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.解答I 证明:∵A 1A ⊥平面ABC,B 1B ⊥平面ABC, ∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2, ∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.II 解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D, ∵AB=BC,∴OB ⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A0,﹣,0,B1,0,0,B 11,0,2,C 10,,1, ∴=1,,0,=0,0,2,=0,2,1,设平面ABB 1的法向量为=x,y,z,则,∴,令y=1可得=﹣,1,0,∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.点评本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.考点8M:等差数列与等比数列的综合.专题34 :方程思想;48 :分析法;54 :等差数列与等比数列.分析Ⅰ运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,运用数列的递推式可得cn=4n﹣1,再由数列的恒等式求得b n =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1,运用错位相减法,可得所求数列的通项公式.解答解:Ⅰ等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2舍去,则q的值为2;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得cn=2n2+n﹣2n﹣12﹣n﹣1=4n﹣1,上式对n=1也成立,则bn+1﹣bnan=4n﹣1,即有bn+1﹣bn=4n﹣1n﹣1,可得bn =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1=1+30+71+…+4n﹣5n﹣2,b=+3n+72+…+4n﹣5n﹣1,=+4+2+…+n﹣2﹣4n﹣5相减可得bnn﹣1=+4 ﹣4n﹣5n﹣1,化简可得b=15﹣4n+3nn﹣2.点评本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.考点KN:直线与抛物线的位置关系;KL:直线与椭圆的位置关系.专题34 :方程思想;48 :分析法;5D :圆锥曲线的定义、性质与方程.分析Ⅰ设Pm,n,A,y1,B,y2,运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;Ⅱ由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM||y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.解答解:Ⅰ证明:可设Pm,n,A,y1,B,y2,AB中点为M的坐标为,,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得2=4 ,2=4 ,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由Ⅰ可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM||y1﹣y2|=﹣m=4n2﹣16m+2n2﹣m=n2﹣4m,可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈6,,△PAB面积的取值范围为6,.点评本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.考点6E:利用导数研究函数的最值.专题14 :证明题;35 :转化思想;49 :综合法;53 :导数的综合应用.分析Ⅰ推导出x>0,f′x=﹣,由fx在x=x1,x2x1≠x2处导数相等,得到+=,由基本不等式得:=≥,从而x1x2>256,由题意得fx1+fx2==﹣lnx1x2,设gx=,则,利用导数性质能证明fx1+fx2>8﹣8ln2.Ⅱ令m=e﹣|a|+k,n=2+1,则fm﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x∈m,n,使fx0=kx+a,对于任意的a∈R及k∈0,+∞,直线y=kx+a与曲线y=fx有公共点,由fx=kx+a,得k=,设hx=,则h′x==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.解答证明:Ⅰ∵函数fx=﹣lnx,∴x >0,f′x=﹣,∵fx 在x=x 1,x 2x 1≠x 2处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得fx 1+fx 2==﹣lnx 1x 2,设gx=,则,∴列表讨论:x 0,16 16 16,+∞g′x ﹣ 0 + gx↓2﹣4ln2↑∴gx 在256,+∞上单调递增, ∴gx 1x 2>g256=8﹣8ln2, ∴fx 1+fx 2>8﹣8ln2. Ⅱ令m=e ﹣|a|+k ,n=2+1,则fm ﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, fn ﹣kn ﹣a <n﹣﹣k ≤n﹣k <0,∴存在x 0∈m,n,使fx 0=kx 0+a,∴对于任意的a ∈R 及k ∈0,+∞,直线y=kx+a 与曲线y=fx 有公共点, 由fx=kx+a,得k=,设hx=,则h′x==,其中gx=﹣lnx,由1知gx ≥g16,又a ≤3﹣4ln2,∴﹣gx ﹣1+a ≤﹣g16﹣1+a=﹣3+4ln2+a ≤0,∴h′x≤0,即函数hx在0,+∞上单调递减,∴方程fx﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.点评本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。

考点33 立体几何中的综合问题-2018版典型高考数学试题解读与变式(原卷版)

考点33 立体几何中的综合问题-2018版典型高考数学试题解读与变式(原卷版)

考点33:立体几何中的综合问题【考纲要求】1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.2.了解向量方法在研究立体几何问题中的应用. 【命题规律】立体几何综合问题是高考的热点问题,选择、填空、解答题都有可能进行考查.预计2018年的高考对本知识的考查空间向量的应用,仍然是以简单几何体为载体.【典型高考试题变式】(一)构造函数在导数问题中的应用例1.【2015广东卷(理)】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.至多等于3 B.至多等于4 C.等于5 D.大于5【变式1】【改编例题条件】【2018届湖北省武汉市部分学校新高三起点调研】设点M 是棱长为2的正方体1111ABCD A B C D −的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )A. 255B. 22 C. 1 D. 63【变式2】【改编例题条件和问法】【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】如图,直三棱柱111ABC A B C −中,12AA =, 1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB上的一个动点.有下列判断: ① 直线AC 与直线1C E是异面直线;②1A E一定不垂直1AC ;③ 三棱锥1E AA O−的体积为定值; ④1AE EC +的最小值为22.其中正确的个数是A. 1B. 2C. 3D. 4 (二)立体几何中的体积问题例2.【2014江西卷(理)】如图,四棱锥ABCD P −中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC问AB 为何值时,四棱锥ABCD P −的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.【变式1】【改编例题的条件】【2018届湖北省部分重点中学高三上学期第一次联考】如图(1)所示,已知四边形SBCD 是由Rt SAB ∆和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点, 21AD DC ==, 2AB =.现将SAB ∆沿AB 进行翻折,使得二面角S AB C −−的大小为90°,得到图形如图(2)所示,连接SC ,点,E F 分别在线段,SB SC 上.(Ⅰ)证明: BD AF ⊥;(Ⅱ)若三棱锥B AEC −的体积为四棱锥S ABCD −体积的25,求点E 到平面ABCD 的距离.【变式2】【改编例题的条件,依据函数零点个数证明不等式】【2018届安徽省合肥市高三调研性检测】如图,多面体ABCDEF 中, //,AD BC AB AD ⊥, FA ⊥平面,//ABCD FA DE ,且222AB AD AF BC DE =====.(Ⅰ)M 为线段EF 中点,求证: //CM 平面ABF ; (Ⅱ)求多面体ABCDEF 的体积.【数学思想】 分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【处理立体几何问题注意点】用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 【典例试题演练】1.【2018届云南省昆明一中高三第二次月考】正三棱锥S ABC −中,若三条侧棱两两垂直,且3SA =,则正三棱锥S ABC −的高为( ) A.2 B. 2 C.3 D. 32.【2017年浙江省源清中学9月高三上学期第一次月考】如图,矩形ADFE ,矩形CDFG ,正方形ABCD 两两垂直,且2AB =,若线段DE 上存在点P 使得GP BP ⊥,则边CG 长度的最小值为( )A. 4B. 43C.D. 233.【2017届云南省师范大学附属中学高三高考适应性月考】在棱长为2的正方体1111ABCD A B C D −中任取一点M ,则满足90AMB ∠>︒的概率为( )A. 24πB. 12πC. 8πD. 6π4.【2017届湖南省长沙市雅礼中学高考模拟】如图,动点P 在正方体1111ABCD A B C D −的对角线1BD 上.过点P 作垂直于平面11BB D D的直线,与正方体表面相交于,M N .设,BP x MN y ==,则函数()y f x =的图象大致是( )A. B. C. D.5.【2017届浙江省杭州市高三4月教学质量检测】在等腰直角ABC ∆中, AB AC ⊥, 2BC =, M 为BC 中点, N 为AC 中点, D 为BC 边上一个动点, ABD ∆沿AD 翻折使BD DC ⊥,点A 在面BCD上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是( )A. 线段NO 为定长B. )1,2CO ⎡∈⎣C. 180AMO ADB ∠+∠>︒D. 点O 的轨迹是圆弧 6.【2017届河北省唐山市高三年级第二次模拟】正方体1111ABCD A B C D −棱长为6, O 点在棱BC 上,且2BO OC =,过O 点的直线l 与直线1AA ,11C D 分别交于M , N 两点,则MN =( )A. 313B. 95C. 14D. 217.【2018届河北省邢台市高三上学期第一次月考】在Rt ABC ∆中, AC BC ⊥, 3BC =, 5AB =,点D E 、分别在AC AB 、边上,且//DE BC ,沿着DE 将ADE ∆折起至'A DE ∆的位置,使得平面'A DE ∆⊥平面BCDE ,其中点'A 为点A 翻折后对应的点,则当四棱锥'A BCDE −的体积取得最大值时, AD 的长为__________.8.【2017届福建省泉州市高三3月质量检测】如图,一张4A 纸的长、宽分别为22,2a a . ,,,A B C D 分别是其四条边的中点.现将其沿图中虚线掀折起,使得1234,,,P P P P 四点重合为一点P ,从而得到一个多面体.关于该多面体的下列命题,正确的是__________.(写出所有正确命题的序号) ①该多面体是三棱锥; ②平面BAD ⊥平面BCD ; ③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为25a π9.【2017届辽宁省沈阳市东北育才学校高三第九次模拟】如图,在正方体1111ABCD A B C D −中,棱长为1 ,点P 为线段1A C上的动点(包含线段端点),则下列结论正确的______. ①当113AC A P =时, 1//D P 平面1BDC ;②当113AC A P =时,1AC ⊥平面1D AP;③1APD ∠的最大值为90;④1AP PD +的最小值为263.10.【2017届昭通市高三复习备考统一检测】在棱长为1的正方体1111ABCD A B C D −中, BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111A B C D 于点N ,则点N 到点A 的距离最小值是___________.11.【2017届江西师范大学附属中学高三3月月考】如右图所示,在棱长为2的正方体1111ABCD A B C D −中,E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.12.【2018届江西省临川第二中学高三上学期第四次月考】如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:平面;(2)若为的中点时,,求点到平面的距离.13.【2018届重庆市巴蜀中学高三9月高考适应月考】如图,梯形中,,矩形所在的平面与平面垂直,且.(Ⅰ)求证:平面平面;(Ⅱ)若为线段上一点,直线与平面所成的角为,求的最大值.。

2018届高考数学复习——立体几何:(二)空间直线、平面关系的判断与证明——3.线面夹角问题(试题版)

2018届高考数学复习——立体几何:(二)空间直线、平面关系的判断与证明——3.线面夹角问题(试题版)

【考点3:空间中直线、平面的夹角问题】题型1:异面直线的夹角 【典型例题】 [例1](1)在正方体ABCD -A ′B ′C ′D ′中直线BA ′与CC ′所成角大小为________.(2)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A.30° B.45° C.60° D.90° (3)(2012·四川)如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.答案 90° (4)(2015·济南一模)在正四棱锥V -ABCD 中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为________.[例2](1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45(2)(2014·课标Ⅱ)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 (3)(2014·大纲全国)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16 B.36 C.13 D.33 【变式训练】 1.(2016·江西南昌一模)已知在正方体ABCD -A 1B 1C 1D 1中(如图),l ⊂平面A 1B 1C 1D 1,且l 与B 1C 1不平行,则下列一定不可能的是( )A.l 与AD 平行B.l 与AB 异面C.l 与CD 所成角为30°D.l 与BD 垂直2.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与P A 所成角的余弦值为( )A.255B.55C.45D.353.(2015·浙江)如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.4.(2015·上海模拟)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.5.(2015·揭阳模拟)如图所示,在正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.题型2:直线与平面所成的角【典型例题】[例1](1)正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为 ( )A.23B.33C.23D.63(2)如图,四棱锥P-ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.①求证:平面AEC ⊥平面PDB ;②当PD =2AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.[例2]►(1)(2016·天津文)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC =EF =1,AE =6,DE =3,∠BAD =60°,G 为BC 的中点. (1)求证:FG ∥平面BED ;(2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.►(2)(2014·浙江六校联考)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M . (1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.►(3)[2014·浙江文] 如图,在四棱锥A - BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值. 【变式训练】 1.(2013·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 2.(2016·日照模拟)如图所示的三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,A B =CC 1=2.(1)求证C 1B ⊥平面ABC .(2)设E 是CC 1的中点,求AE 和平面ABC 1所成角的正弦值的大小.3.(2015·湖南)如图,直三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点. (1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F -AEC 的体积.4.(2015天津文)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E ,F 分别是BC ,A 1C 的中点. (I)求证:EF ∥A 1B 1BA ;(II)求证:平面AEA 1⊥平面BCB 1. (III)求直线A 1B 1 与平面BCB 1所成角的大小.5.[2017天津文]如图,在四棱锥P-ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =3,PD =2. (I)求异面直线AP 与BC 所成角的余弦值; (II)求证:PD ⊥平面PBC ;(II)求直线AB 与平面PBC 所成角的正弦值.题型:二面角【典型例题】[例1](1)(教材例题改编)在四棱锥P-ABCD中,底面ABCD 是正方形,PD⊥底面ABCD,PD=DC.则二面角C-PB-D的大小为________.[例2](2015·广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线P A与直线FG所成角的余弦值.【变式训练】1.已知二面角α-l-β的大小为30°,m、n为异面直线,m⊥平面α,n⊥平面β,则m、n所成的角为________.2.(2014·天津)如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=2,AD=2,P A=PD=5,E,F分别是棱AD,PC的中点.(1)证明:EF∥平面P AB.(2)若二面角P-AD-B为60°,①证明:平面PBC⊥平面ABCD;②求直线EF与平面PBC所成角的正弦值.。

2018高考数学真题 理科 8.5考点3 线面角、二面角的求法

2018高考数学真题 理科 8.5考点3 线面角、二面角的求法

第八章立体几何第五节直线、平面垂直的判定与性质考点3 线面角、二面角的求法(2018·北京卷(理))如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=√5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.【解析】(1)证明在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.又AB=BC,所以AC⊥BE,又BE,EF⊂平面BEF,BE∩EF=E,所以AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图,以E 为原点,EA 所在直线为x 轴,EB 所在直线为y 轴,EF 所在直线为z 轴,建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),E (0,0,0),F (0,0,2),G (0,2,1). 所以BC ⃗⃗⃗⃗⃗ =(-1,-2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0), 则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0,即{−x 0−2y 0=0,x 0−2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), 所以cos 〈n ,EB ⃗⃗⃗⃗⃗ 〉=n·EB ⃗⃗⃗⃗⃗|n ||EB⃗⃗⃗⃗⃗ |=-√2121. 由题意知二面角B -CD -C 1为钝角, 所以其余弦值为-√2121.(3)证明 由(2)知平面BCD 的法向量为n =(2,-1,-4), FG ⃗⃗⃗⃗⃗ =(0,2,-1).因为n ·FG ⃗⃗⃗⃗⃗ =2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交. 【答案】见解析(2018·浙江卷)已知四棱锥S -ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S -AB -C 的平面角为θ3,则( ) A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ1【解析】如图,不妨设底面正方形的边长为2,E 为AB 上靠近点A 的四等分点,E ′为AB 的中点,S 到底面的距离SO =1,以EE′,E′O为邻边作矩形OO′EE′,则∠SEO′=θ1,∠SEO=θ2,∠SE′O=θ3.由题意,得tan θ1=SO′EO′=√52,tan θ2=SOEO =√52=√5,tan θ3=1,此时tan θ2<tan θ3<tan θ1,可得θ2<θ3<θ1.当E在AB中点处时,θ2=θ3=θ1.故选D.【答案】D(2018·浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A =4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【解析】方法一(1)证明由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=2√2,所以A1B12+A B12=A A12,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1=√5.由AB=BC=2,∠ABC=120°,得AC=2√3.由CC1⊥AC,得AC1=√13,所以A B12+B1C12=A C12,故AB1⊥B1C1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√427,sin ∠C 1A 1B 1=√77, 所以C 1D =√3, 故sin ∠C 1AD =C 1D AC 1=√3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是√3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1). 因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3). 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{x +√3y =0,2z =0,可取n =(-√3,1,0).所以sin θ=|cos 〈AC 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉|=|AC1⃗⃗⃗⃗⃗⃗⃗⃗ ·n||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n|=√3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是√3913. 【答案】见解析(2018·天津卷(理))如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =AD ,CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】(1)证明 依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).依题意得DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n 0=(x 0,y 0,z 0)为平面CDE 的法向量,则{n 0·DC⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y 0=0,2x 0+2z 0=0.不妨令z 0=-1, 可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,−32,1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n 0=0. 又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC ⃗⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗⃗ =(0,-1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0.不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0.不妨令z =1,可得m =(0,2,1). 因此有cos 〈m ,n 〉=m·n |m ||n |=3√1010, 于是sin 〈m ,n 〉=√1010.所以二面角E -BC -F 的正弦值为√1010.(3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP ⃗⃗⃗⃗⃗ =(-1,-2,h ). DC⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量, 故|cos 〈BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 〉|=|BP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗ |=√ℎ2+5,由题意,可得√ℎ2+5=sin 60°=√32,解得h =√33(负值舍去).所以线段DP 的长为√33. 【答案】见解析(2018·全国卷Ⅲ(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ⃗⃗⃗⃗ 所在平面垂直,M 是CD ⃗⃗⃗⃗ 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.【解析】(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD , 故BC ⊥DM .因为M 为CD⃗⃗⃗⃗ 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz .当三棱锥M -ABC 体积最大时,M 为CD⃗⃗⃗⃗ 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0), 设n =(x ,y ,z )是平面MAB 的法向量,则 {n ·AM⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0,即{-2x +y +z =0,2y =0.可取n =(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos 〈n ,DA ⃗⃗⃗⃗⃗ 〉=n·DA ⃗⃗⃗⃗⃗⃗ |n ||DA ⃗⃗⃗⃗⃗⃗ |=√55, sin 〈n ,DA ⃗⃗⃗⃗⃗ 〉=2√55.所以平面MAB 与平面MCD 所成二面角的正弦值是2√55.【答案】见解析(2018·全国Ⅱ卷(理))如图,在三棱锥P-ABC中,AB=BC=2√2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.【解析】(1)证明因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2√3.如图,连接OB.AC,因为AB=BC=√22所以△ABC为等腰直角三角形,AC=2.所以OB⊥AC,OB=12由OP2+OB2=PB2知PO⊥OB.因为OP⊥OB,OP⊥AC,OB∩AC=O,OB,AC⊂平面ABC,所以PO⊥平面ABC.(2)由(1)知OP,OB,OC两两垂直,则以O为坐标原点,分别以OB,OC,OP所在直线为x轴,y 轴,z轴,建立空间直角坐标系Oxyz,如图所示.由已知得O(0,0,0),B(2,0,0),A (0,-2,0),C (0,2,0), P (0,0,2√3),AP ⃗⃗⃗⃗⃗ =(0,2,2√3).由(1)知平面P AC 的一个法向量为OB ⃗⃗⃗⃗⃗ =(2,0,0). 设M (a,2-a,0)(0≤a ≤2),则AM ⃗⃗⃗⃗⃗⃗ =(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP ⃗⃗⃗⃗⃗ ·n =0,AM ⃗⃗⃗⃗⃗⃗ ·n =0,得 {2y +2√3z =0,ax +(4−a )y =0,可取y =√3a ,得平面P AM 的一个法向量为n =(√3(a -4),√3a ,-a ),所以cos 〈OB⃗⃗⃗⃗⃗ ,n 〉=√3(a−4)2√3(a−4)2+3a 2+a 2.由已知可得|cos 〈OB ⃗⃗⃗⃗⃗ ,n 〉|=cos 30°=√32, 所以√3|2√3(a−4)2+3a 2+a2=√32, 解得a =-4(舍去)或a =43. 所以n =(−8√33,4√33,−43). 又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos 〈PC ⃗⃗⃗⃗⃗ ,n 〉=√34. 所以PC 与平面P AM 所成角的正弦值为√34. 【答案】见解析(2018·全国Ⅰ卷(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .3√34B .2√33 C .3√24D .√32【解析】如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×√22×√22sin 60°=3√34. 故选A . 【答案】A(2018·全国Ⅰ卷(理))如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)证明 由已知可得BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)如图,作PH ⊥EF ,垂足为H .由(1)知,平面PEF ⊥平面ABFD ,平面PEF ∩平面ABFD =EF ,PH ⊂平面PEF ,所以PH ⊥平面ABFD . 以H 为坐标原点,FB ⃗⃗⃗⃗⃗ ,HF ⃗⃗⃗⃗⃗ ,HP ⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立空间直角坐标系Hxyz . 由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE =√3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =√32,EH =32. 则H (0,0,0),P (0,0,√32),D (−1,−32,0), DP ⃗⃗⃗⃗⃗ =(1,32,√32),HP ⃗⃗⃗⃗⃗⃗ =(0,0,√32). 又HP ⃗⃗⃗⃗⃗⃗ 为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|HP·⃗⃗⃗⃗⃗⃗⃗ DP ⃗⃗⃗⃗⃗⃗ ||HP ⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=34√3=√34. 所以DP 与平面ABFD 所成角的正弦值为√34.【答案】见解析(2018·江苏卷)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.【解析】如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz .因为AB =AA 1=2,所以A (0,-1,0),B (√3,0,0),C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P (√32,−12,2),从而BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2), 故|cos 〈BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|BP ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5×2√2=3√1020. 因此,异面直线BP 与AC 1所成角的余弦值为3√1020. (2)因为Q 为BC 的中点,所以Q (√32,12,0), 因此AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设n =(x ,y ,z )为平面AQC 1的一个法向量,则{AQ ⃗⃗⃗⃗⃗ ·n =0,AC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√32x +32y =0,2y +2z =0. 不妨取n =(√3,-1,1).设直线CC 1与平面AQC 1所成的角为θ,则sin θ=|cos 〈CC 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ·n||CC 1⃗⃗⃗⃗⃗⃗⃗ ||n|=2×√5=√55. 所以直线CC 1与平面AQC 1所成角的正弦值为√55.【答案】见解析。

2018届高考数学(理)热点题型:立体几何(含答案解析)

2018届高考数学(理)热点题型:立体几何(含答案解析)

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角E­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E­A1D­B1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

数学说题—2018年全国Ⅲ卷理科第19题

数学说题—2018年全国Ⅲ卷理科第19题

命题立意
说 题 流 程
试题分析
解题过程
规律总结
变式拓展 备考启示
命题立意
试题分析 第一问
( 1)证明平面AMD 平面BMC
几何法1:
线线垂直 线面垂直的判定定理
MD⊥面BMC
线面垂直
面面垂直的 判定定理 面面垂直
几何法2:面面垂直的定义(直二面角) 向量法:
面AMD⊥面BMC
将问题转化为两平面法向量垂直
解法3
将原几何体补成如图所示的直四棱柱 ABCD-ABCD,取AB中点N,连结AN, BN则面CDM 面ABN,于是两个平面 所成二面角将转化成面ABM与面ABN 所成二面角,取AB的中点P,连结MN, PN,MP,则MPN为所求二面角 的平面角,解Rt MNP, sinMPN 2 5 . 5
2 5 , 5
sin n, DA
学生易错点“函数名称” 平时应加强公式听写 注重公式的推导
2 5 . 5
所以面 MAB 与面 MCD 所成二面角的正弦值是
“无”棱二面角
几何法
寻找两平面的 交线
找到二面角的平面角
步骤:“作、指、证、求”
解法2
解题过程
几何法
作平行直线 找二面角的棱
当点M与圆心O的连线MO DC时三棱锥 的体积最大.过点M作EF DC ,由线面平行 的性质可得EF为二面角的棱, 找到AB的中点P,易证OM EF,PM EF, 则PMO为所求二面角的平面角, 在直角MOP中,MO=1,OP=2, MP= 5, sin PMO 2 5 . 5
当三棱锥 M−ABC 体积最大时,M 为 CD 的中点. 由题设得 D(0,0,0), A(2,0,0), B(2, 2,0), C(0, 2,0), M (0,1,1) ,

历年高考数学真题精选29 直线与平面所成的角

历年高考数学真题精选29 直线与平面所成的角

历年高考数学真题精选(按考点分类) 专题29 直线与平面所成的角(学生版)一.解答题(共15小题)1.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.2.(2019•天津)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.3.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.4.(2018•天津)如图,在四面体ABCD中,ABC∆是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,2AB=,23AD=,90∠=︒.BAD(Ⅰ)求证:AD BC⊥;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.5.(2018•天津)如图,//=,//CD FGEG AD且EG ADAD BC⊥,//AD BC且2=,AD CD且2===.DA DC DG=,DG⊥平面ABCD,2CD FG(Ⅰ)若M为CF的中点,N为EG的中点,求证://MN平面CDE;(Ⅱ)求二面角E BC F--的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60︒,求线段DP的长.6.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.7.(2018•新课标Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.8.(2017•上海)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5. (1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.9.(2017•浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.10.(2017•天津)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,//AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.11.(2016•浙江)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.12.(2016•新课标Ⅲ)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.13.(2016•天津)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,//EF AB ,2AB =,3DE =,1BC EF ==,6AE =,60BAD ∠=︒,G 为BC 的中点.(1)求证://FG 平面BED ; (2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.14.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,17BB =E 和F 分别为BC 和1A C 的中点.(Ⅰ)求证://EF 平面11A B BA ; (Ⅱ)求证:平面1AEA ⊥平面1BCB ; (Ⅲ)求直线11A B 与平面1BCB 所成角的大小.15.(2015•新课标Ⅱ)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.历年高考数学真题精选(按考点分类) 专题29 直线与平面所成的角(教师版)一.解答题(共15小题)1.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.解:(1)依题意:1AA ⊥平面ABCD ,连接AC ,则1A C 与平面ABCD 所成夹角为1ACA ∠,15AA =Q ,22345AC =+=,∴△1ACA 为等腰三角形, 14ACA π∴∠=,∴直线1A C 和平面ABCD 的夹角为4π, (2)(空间向量),如图建立坐标系,则(0A ,0,0),(3C ,4,0),1(0A ,0,5),(3M ,0,2), ∴(3AC =u u u r ,4,0),1(3A C =u u u u r ,4,5)-,(0MC =u u u u r,4.2)-,设平面1A MC 的法向量(n x =r,y ,)z ,由3450420n AC x y z n MC y z ⎧=+-=⎪⎨=-=⎪⎩u u u r r g u u u u r r g ,可得(2n =r ,1,2), ∴点A 到平面1A MC 的距离222||10||3212AC n d n ===++u u u r rg r . 2.(2019•天津)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.证明:(Ⅰ)连结BD ,由题意得AC BD H =I ,BH DH =, 又由BG PG =,得//GH PD ,GH ⊂/Q 平面PAD ,PD ⊂平面PAD ,//GH ∴平面PAD .(Ⅱ)取棱PC 中点N ,连结DN , 依题意得DN PC ⊥,又Q 平面PAC ⊥平面PCD ,平面PAC ⋂平面PCD PC =, DN ∴⊥平面PAC ,又PA ⊂平面PAC ,DN PA ∴⊥, 又PA CD ⊥,CD DN D =I ,PA ∴⊥平面PCD .解:(Ⅲ)连结AN ,由(Ⅱ)中DN ⊥平面PAC , 知DAN ∠是直线AD 与平面PAC 所成角,PCD ∆Q 是等边三角形,2CD =,且N 为PC 中点, 3DN ∴=,又DN AN ⊥,在Rt AND ∆中,3sin DN DAN DA ∠==. ∴直线AD 与平面PAC 所成角的正弦值为3.3.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.方法一:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点, 1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC , 平面11A ACC ⋂平面ABC AC =, 1A E ∴⊥平面ABC ,1A E BC ∴⊥, 1//A F AB Q ,90ABC ∠=︒,1BC A F ∴⊥,BC ∴⊥平面1A EF ,EF BC ∴⊥.解:(Ⅱ)取BC 中点G ,连结EG 、GF ,则1EGFA 是平行四边形, 由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由(Ⅰ)得BC ⊥平面1EGFA , 则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连结1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角), 不妨设4AC =,则在Rt △1A EG 中,123A E =,3EG =, O Q 是1A G 的中点,故1152AG EO OG ===2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为35.方法二:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点, 1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC , 平面11A ACC ⋂平面ABC AC =, 1A E ∴⊥平面ABC ,如图,以E 为原点,在平面ABC 中,过E 作AC 的垂线为x 轴, EC ,1EA 所在直线分别为y ,z 轴,建立空间直角坐标系,设4AC =,则1(0A ,0,,B,1B,32F ,(0C ,2,0),32EF =u u u r,(BC =u u u r ,由0EF BC =u u u r u u u rg ,得EF BC ⊥.解:(Ⅱ)设直线EF 与平面1A BC 所成角为θ,由(Ⅰ)得(BC =u u u r ,1(0A C =u u u u r,2,-,设平面1A BC 的法向量(n x =r,y ,)z ,则100BC n y AC n y ⎧=+=⎪⎨==⎪⎩u u u r r g u u u u r rg ,取1x =,得n =r , ||4sin 5||||EF n EF n θ∴==u u u r rg u u u r r g , ∴直线EF 与平面1A BC35=.4.(2018•天津)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,23AD =,90BAD ∠=︒. (Ⅰ)求证:AD BC ⊥;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ⋂平面ABD AB =,AD AB ⊥, 得AD ⊥平面ABC ,故AD BC ⊥;(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND ,M Q 为棱AB 的中点,故//MN BC ,DMN ∴∠(或其补角)为异面直线BC 与MD 所成角,在Rt DAM ∆中,1AM =,故2213DM AD AM =+,AD ⊥Q 平面ABC ,故AD AC ⊥,在Rt DAN ∆中,1AN =,故2213DN AD AN =+在等腰三角形DMN 中,1MN =,可得1132cos MNDMN DM ∠==.∴异面直线BC 与MD 13(Ⅲ)解:连接CM ,ABC ∆Q 为等边三角形,M 为边AB 的中点,故CM AB ⊥,3CM =,又Q 平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,则CDM ∠为直线CD 与平面ABD 所成角. 在Rt CAD ∆中,224CD AC AD =+=, 在Rt CMD ∆中,3sin CM CDM CD ∠==. ∴直线CD 与平面ABD 所成角的正弦值为3.5.(2018•天津)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG 且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(Ⅰ)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ; (Ⅱ)求二面角E BC F --的正弦值;(Ⅲ)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.(Ⅰ)证明:依题意,以D 为坐标原点,分别以DA u u u r 、DC u u u r 、DG u u u r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.可得(0D ,0,0),(2A ,0,0),(1B ,2,0),(0C ,2,0), (2E ,0,2),(0F ,1,2),(0G ,0,2),(0M ,32,1),(1N ,0,2).设0(,,)n x y z =u u r为平面CDE 的法向量,则0020220n DC y n DE x z ⎧==⎪⎨=+=⎪⎩u u r u u u rg u u r u u u r g ,不妨令1z =-,可得0(1,0,1)n =-u u r ; 又3(1,,1)2MN =-u u u u r ,可得00MN n =u u u u r u u r g .又Q 直线MN ⊂/平面CDE , //MN ∴平面CDE ;(Ⅱ)解:依题意,可得(1,0,0)BC =-u u u r ,(1,2,2)BE =-u u u r ,(0,1,2)CF =-u u u r.设(,,)n x y z =r为平面BCE 的法向量,则0220n BC x n BE x y z ⎧=-=⎪⎨=-+=⎪⎩u u u r r g u u u r r g ,不妨令1z =,可得(0,1,1)n =r . 设(,,)m x y z =r为平面BCF 的法向量,则020m BC x m CF y z ⎧=-=⎪⎨=-+=⎪⎩u u u r r g u u u rr g,不妨令1z =,可得(0,2,1)m =r .因此有cos ,||||m n m n m n <>==r rg r r r r gsin ,m n <>=r r.∴二面角E BC F --; (Ⅲ)解:设线段DP 的长为h ,([0,2])h ∈,则点P 的坐标为(0,0,)h , 可得(1,2,)BP h =--u u u r ,而(0,2,0)DC =u u u r为平面ADGE 的一个法向量,故|||cos ,|||||BP CD BP DC BP DC <>==u u u r u u u ru u u r u u u r g u u u r u u u r gsin 60=︒=,解得[0h ,2]. ∴线段DP.6.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.()I 证明:1A A ⊥Q 平面ABC ,1B B ⊥平面ABC , 11//AA BB ∴,14AA =Q ,12BB =,2AB =,221111()()22A B AB AA BB ∴+-,又221122AB AB BB +2221111AA AB A B ∴=+, 111AB A B ∴⊥,同理可得:111AB B C ⊥, 又11111A B B C B =I , 1AB ∴⊥平面111A B C .()II 解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交11A C 于D , AB BC =Q ,OB OC ∴⊥,2AB BC ==Q ,120BAC ∠=︒,1OB ∴=,3OA OC ==,以O 为原点,以OB,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则(0A ,3-,0),(1B ,0,0),1(1B ,0,2),1(0C ,3,1), ∴(1AB =u u u r ,3,0),1(0BB =u u u r ,0,2),1(0AC =u u u u r,23,1),设平面1ABB 的法向量为(n x =r ,y ,)z ,则100n AB n BB ⎧=⎪⎨=⎪⎩u u u r r g u u u r r g ,∴3020x y z ⎧+=⎪⎨=⎪⎩,令1y =可得(3n =-r ,1,0), 1112339cos ,||||213n AC n AC n AC ∴<>===⨯u u u u r r u u u ur g r u u u u r r .设直线1AC 与平面1ABB 所成的角为θ,则139sin |cos ,|n AC θ=<>=u u u ur r .∴直线1AC 与平面1ABB 所成的角的正弦值为39.7.(2018•新课标Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明:由题意,点E 、F 分别是AD 、BC 的中点, 则12AE AD =,12BF BC =, 由于四边形ABCD 为正方形,所以EF BC ⊥. 由于PF BF ⊥,EF PF F =I ,则BF ⊥平面PEF . 又因为BF ⊂平面ABFD ,所以:平面PEF ⊥平面ABFD . (2)在平面PEF 中,过P 作PH EF ⊥于点H ,连接DH , 由于EF 为面ABCD 和面PEF 的交线,PH EF ⊥, 则PH ⊥面ABFD ,故PH DH ⊥.在三棱锥P DEF -中,可以利用等体积法求PH , 因为//DE BF 且PF BF ⊥, 所以PF DE ⊥, 又因为PDF CDF ∆≅∆, 所以90FPD FCD ∠=∠=︒, 所以PF PD ⊥,由于DE PD D =I ,则PF ⊥平面PDE , 故13F PDE PDE V PF S -∆=g ,因为//BF DA 且BF ⊥面PEF , 所以DA ⊥面PEF , 所以DE EP ⊥.设正方形边长为2a ,则2PD a =,DE a = 在PDE ∆中,3PE a , 所以23PDE S ∆,故33F PDE V a -=, 又因为2122DEF S a a a ∆==g ,所以233F PDE V PH a a -==, 所以在PHD ∆中,3sin PH PDH PD ∠==, 即PDH ∠为DP 与平面ABFD 所成角的正弦值为:3.8.(2017•上海)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5. (1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.解:(1)Q 直三棱柱111ABC A B C -的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.∴三棱柱111ABC A B C -的体积:1ABC V S AA ∆=⨯112AB AC AA =⨯⨯⨯ 1425202=⨯⨯⨯=. (2)连结AM ,Q 直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5,M 是BC 中点, 1AA ∴⊥底面ABC ,11164522AM BC ==+=, 1A MA ∴∠是直线1A M 与平面ABC 所成角,11tan 55AA A MA AM ∠===, ∴直线1A M 与平面ABC 所成角的大小为arctan 5.9.(2017•浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.证明:(Ⅰ)取AD 的中点F ,连结EF ,CF ,E Q 为PD 的中点,//EF PA ∴,在四边形ABCD 中,//BC AD ,22AD DC CB ==,F 为中点, //CF AB ∴,∴平面//EFC 平面ABP , EC ⊂Q 平面EFC , //EC ∴平面PAB .解:(Ⅱ)连结BF ,过F 作FM PB ⊥于M ,连结PF ,PA PD =Q ,PF AD ∴⊥,推导出四边形BCDF 为矩形,BF AD ∴⊥,AD ∴⊥平面PBF ,又//AD BC ,BC ∴⊥平面PBF ,BC PB ∴⊥,设1DC CB ==,由22PC AD DC CB ===,得2AD PC ==,22413PB PC BC ∴=-=-=,1BF PF ==,12MF ∴=, 又BC ⊥平面PBF ,BC MF ∴⊥,MF ∴⊥平面PBC ,即点F 到平面PBC 的距离为12, 12MF =Q ,D 到平面PBC 的距离应该和MF 平行且相等,为12, E 为PD 中点,E 到平面PBC 的垂足也为垂足所在线段的中点,即中位线, E ∴到平面PBC 的距离为14, 在,2,1,2PCD PC CD PD ∆===中, 由余弦定理得2CE =,设直线CE 与平面PBC 所成角为θ,则124sin CE θ==.10.(2017•天津)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,//AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【解答】解:(Ⅰ)如图,由已知//AD BC , 故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD PD ⊥.在Rt PDA ∆中,由已知,得225AP AD PD += 故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC 5. 证明:(Ⅱ)因为AD ⊥平面PDC ,直线PD ⊂平面PDC , 所以AD PD ⊥.又因为//BC AD ,所以PD BC ⊥, 又PD PB ⊥,所以PD ⊥平面PBC .解:(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角. 由于//AD BC ,//DF AB ,故1BF AD ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC DC ⊥, 在Rt DPF ∆中,可得5sin PD DFP DF ∠==. 所以,直线AB 与平面PBC 5.11.(2016•浙江)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD ,BE ,CF 相交于一点K ,如图所示:Q 平面BCFE ⊥平面ABC ,且AC BC ⊥;AC ∴⊥平面BCK ,BF ⊂平面BCK ; BF AC ∴⊥;又//EF BC ,1BE EF FC ===,2BC =; BCK ∴∆为等边三角形,且F 为CK 的中点; BF CK ∴⊥,且AC CK C =I ;BF ∴⊥平面ACFD ;(Ⅱ)BF ⊥Q 平面ACFD ;BDF ∴∠是直线BD 和平面ACFD 所成的角; F Q 为CK 中点,且//DF AC ; DF ∴为ACK ∆的中位线,且3AC =;∴32DF =; 又3BF =∴在Rt BFD ∆中,92134BD =+=,3212cos 21DF BDF BD ∠===; 即直线BD 和平面ACFD 所成角的余弦值为2112.(2016•新课标Ⅲ)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【解答】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG , N Q 为PC 的中点, //NG BC ∴,且12NG BC =, 又223AM AD ==,4BC =,且//AD BC , //AM BC ∴,且12AM BC =, 则//NG AM ,且NG AM =,∴四边形AMNG 为平行四边形,则//NM AG ,AG ⊂Q 平面PAB ,NM ⊂/平面PAB ,//MN ∴平面PAB ;法二、在PAC ∆中,过N 作NE AC ⊥,垂足为E ,连接ME ,在ABC ∆中,由已知3AB AC ==,4BC =,得2224332cos 2433ACB +-∠==⨯⨯,//AD BC Q , 2cos 3EAM ∴∠=,则sin EAM ∠=,在EAM ∆中, 223AM AD ==Q ,1322AE AC ==,由余弦定理得:32EM ==, 2233()()4122cos 339222AEM +-∴∠==⨯⨯,而在ABC ∆中,2223341cos 2339BAC +-∠==⨯⨯,cos cos AEM BAC ∴∠=∠,即AEM BAC ∠=∠, //AB EM ∴,则//EM 平面PAB .由PA ⊥底面ABCD ,得PA AC ⊥,又NE AC ⊥, //NE PA ∴,则//NE 平面PAB . NE EM E =Q I ,∴平面//NEM 平面PAB ,则//MN 平面PAB ;(2)解:在AMC ∆中,由2AM =,3AC =,2cos 3MAC ∠=,得22222cos 9423253CM AC AM AC AM MAC =+-∠=+-⨯⨯⨯=g g . 222AM MC AC ∴+=,则AM MC ⊥,PA ⊥Q 底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ⋂平面PAD AD =,CM ∴⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连接NF ,则ANF ∠为直线AN 与平面PMN 所成角.在Rt PAC ∆中,由N 是PC的中点,得1522AN PC ==,在Rt PAM ∆中,由PA AM PM AF =g g ,得224245542PA AM AF PM ⨯===+g ,45855sin 5252AF ANF AN ∴∠===.∴直线AN 与平面PMN 所成角的正弦值为8525.13.(2016•天津)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,//EF AB ,2AB =,3DE =,1BC EF ==,6AE =,60BAD ∠=︒,G 为BC 的中点.(1)求证://FG 平面BED ; (2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.【解答】证明:(1)BD 的中点为O ,连接OE ,OG ,在BCD ∆中, G Q 是BC 的中点,//OG DC ∴,且112OG DC ==, 又//EF AB Q ,//AB DC , //EF OG ∴,且EF OG =,即四边形OGEF 是平行四边形,//FG OE ∴,FG ⊂/Q 平面BED ,OE ⊂平面BED ,//FG ∴平面BED ;(2)证明:在ABD ∆中,1AD =,2AB =,60BAD ∠=︒,由余弦定理可得BD =90ADB ∠=︒, 即BD AD ⊥,又Q 平面AED ⊥平面ABCD ,BD ⊂平面ABCD ,平面AED ⋂平面ABCD AD =, BD ∴⊥平面AED , BD ⊂Q 平面BED ,∴平面BED ⊥平面AED .(Ⅲ)//EF AB Q ,∴直线EF 与平面BED 所成的角即为直线AB 与平面BED 所形成的角,过点A 作AH DE ⊥于点H ,连接BH , 又平面BED ⋂平面AED ED =, 由(2)知AH ⊥平面BED ,∴直线AB 与平面BED 所成的角为ABH ∠,在ADE ∆,1AD =,3DE =,AE =,由余弦定理得2cos 3ADE ∠=,sin ADE ∴∠=,AH AD ∴=,在Rt AHB ∆中,sin AH ABH AB ∠==,∴直线EF 与平面BED14.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,127BB =,点E 和F 分别为BC 和1A C 的中点.(Ⅰ)求证://EF 平面11A B BA ; (Ⅱ)求证:平面1AEA ⊥平面1BCB ; (Ⅲ)求直线11A B 与平面1BCB 所成角的大小.【解答】(Ⅰ)证明:连接1A B ,在△1A BC 中,E Q 和F 分别是BC 和1A C 的中点,1//EF A B ∴,又1A B ⊂Q 平面11A B BA ,EF ⊂/平面11A B BA , //EF ∴平面11A B BA ;(Ⅱ)证明:AB AC =Q ,E 为BC 中点,AE BC ∴⊥, 1AA ⊥Q 平面ABC ,11//BB AA ,1BB ∴⊥平面ABC ,1BB AE ∴⊥,又1BC BB B =Q I ,AE ∴⊥平面1BCB ,又AE ⊂Q 平面1AEA ,∴平面1AEA ⊥平面1BCB ;(Ⅲ)取1BB 中点M 和1B C 中点N ,连接1A M ,1A N ,NE , N Q 和E 分别为1B C 和BC 的中点,NE ∴平行且等于112B B ,NE ∴平行且等于1A A ,∴四边形1A AEN 是平行四边形, 1A N ∴平行且等于AE ,又AE ⊥Q 平面1BCB ,1A N ∴⊥平面1BCB , 11A B N ∴∠即为直线11A B 与平面1BCB 所成角,在ABC ∆中,可得2AE =,12A N AE ∴==, 1//BM AA Q ,1BM AA =,1//A M AB ∴且1A M AB =,又由1AB BB ⊥,11A M BB ∴⊥,在RT △11A MB 中,2211114A B B M A M =+=, 在RT △11A NB 中,111111sin 2A N AB N A B ∠==, 1130A B N ∴∠=︒,即直线11A B 与平面1BCB 所成角的大小为30︒15.(2015•新课标Ⅱ)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH 如图: (2)作EM AB ⊥,垂足为M ,则: 10EH EF BC ===,18EM AA ==;∴226MHEH EM =-=,10AH ∴=;以边DA ,DC ,1DD 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: (10A ,0,0),(10H ,10,0),(10E ,4,8),(0F ,4,8); ∴(10,0,0),(0,6,8)EF EH =-=-u u u r u u u r;设(,,)n x y z =r为平面EFGH 的法向量,则: 100680n EF x n EH y z ⎧=-=⎪⎨=-=⎪⎩u u u r r g u u u rr g ,取3z =,则(0,4,3)n =r ; 若设直线AF 和平面EFGH 所成的角为θ,则:45sin |cos ,|1805AF n θ=<>==u u u r r g ; ∴直线AF 与平面α所成角的正弦值为45.。

立体几何典型例题精选(含答案)

立体几何典型例题精选(含答案)

FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1­OB1­D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE……………14分变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,222AE AF EF AE AE EF ⎛⎫+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z =,则3,(0,3)y =-∴=-n . 136(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).…………7分 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,419||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.变式4:(2014全国卷)19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 ­ AB ­ C 的平面角.…………10分由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分 故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3,MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600,利用体积相等得:A MBC M ABC V V d --=⇒=5分 (2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF ⊥EC 于F ,连AF ,则AF ⊥EC ,∠AFB 就是二面角A -EC -B 的平面角,设为θ. ……7分因为∠BCE =120°,所以∠BCF =60°.sin 603BF BC =⋅=9分tan 2ABBFθ==,sin θ=…………11分所以,所求二面角的正弦值是5. …………12分 解法二:取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图. OB =OM ,则各点坐标分别为O (0,0,0),C (1,0,0),M (0,0,B (0,,0),A (0,,3),(1)设(,,)n xy z =是平面MBC 的法向量,则BC=(1,3,0),BM =,由n BC⊥得0x +=;由n BM ⊥得0+=;取(3,1,1),(0,0,n BA =-=,则距离2155BA n d n⋅==…………5分 (2)(CM =-,(1,CA =-.设平面ACM 的法向量为1(,,)n x yz =,由11n CM n CA⎧⊥⎪⎨⊥⎪⎩得0x x ⎧-+=⎪⎨-+=⎪⎩.解得x =,y z =,取1(3,1,1)n =.又平面BCD 的法向量为(0,0,1)n =,则1111cos ,5nn n n n n⋅<>==⋅ 设所求二面角为θ,则sin θ==.…………12分BA变式5:解析:由于BCMK 是梯形,则MK 与CB 相交于E .A 、E 确定的直线为m ,过C 作CF ⊥m 于F ,连结MF ,因为MC ⊥平面ABCD ,CF ⊥m ,故MF ⊥m .∠MFC 是二面角M -m -C 的平面角.设正方体棱长为a ,则34CM a =,14BK a =.在△ECM 中,由BK ∥CM 可得12EB a =,CF =,故tan 4MFC ∠=.因此所求角的余弦值为cos 21MFC ∠=. 变式6:解析:∵平面ABCD ∥平面1111A B C D ,∴平面1AB C 与平面1111A B C D 的交线m 为过点1B 且平行于AC 的直线.直线m 就是二平面1AB C 与1111A B C D 所成二面角的棱.又平面1AB C 与平面1AA ⊥平面1111A B C D ,过1A 作AH ⊥m 于H ,连结AH .则1AHA ∠为二面角1A m A --的平面角.可求得1tan AHA ∠=.高考试题精选1.(2014 四川卷)解:(1)如图所示,取BD 的中点O ,连接AO ,CO .由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP .又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.…………5分 (2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.…………13分故二面角A - NP - M 的余弦值是105. …………14分 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.…………6分如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32.…………7分 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). …………9分 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0,即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). …………11分 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.…13分故二面角A -NP -M 的余弦值是105.…………14分2.(2014 湖南卷)解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . …………4分 (2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1.进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1­OB 1­D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1­OB 1­D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O ­xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0) ,B 1(3,0,2),C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1­OB 1­D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1­OB 1­D 的余弦值为25719.3.(2014 江西卷)19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为 O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.。

2018年全国各省市高考数学真题及解析(高清精美版)

2018年全国各省市高考数学真题及解析(高清精美版)
卷天津卷北京卷以及上海卷浙江卷江苏卷总计在内的13份真题及超详细解析
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!

【真题】2018年浙江省高考数学试题含答案解析

【真题】2018年浙江省高考数学试题含答案解析

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

高中数学直线与平面所成的角精选题

高中数学直线与平面所成的角精选题

直线与平面所成的角精选题29道一.选择题(共11小题)1.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.82.如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]3.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.4.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.5.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A.B.C.D.6.正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,则PB与平面PEF所成角的正弦值为()A.B.C.D.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°8.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.19.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.10.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0B.C.D.11.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}二.填空题(共16小题)12.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.13.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为.14.如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.15.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF ==a,G是EF的中点,则GB与平面AGC所成角的正弦值为.16.如图,已知正三棱柱ABC﹣A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为.17.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为.18.如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为.19.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BDD1B1所成角的正弦值为.20.已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,,平面ABCD⊥平面P AD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.21.正方体ABCD﹣A1B1C1D1中,则C1A与平面ABCD所成角的正弦值为.22.如图:二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成角为45°,则AB与平面β所成角的正弦值是.23.如图,正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,则AC1与面ABB1A1所成的角为.24.如图,在棱长为2的正方体中ABCD﹣A1B1C1D1,点M是AD的中点,动点P在底面ABCD内(包括边界),若B1P∥平面A1BM,则C1P与底面ABCD所成角的正切值的取值范围是.25.已知正六棱锥底面边长为a,体积为a3,则侧棱与底面所成的角为.26.已知A∈α,p∉α,=(﹣,,),平面α的一个法向量=(0,﹣,﹣),则直线P A与平面α所成的角为.27.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是.三.解答题(共2小题)28.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.29.如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.直线与平面所成的角精选题29道参考答案与试题解析一.选择题(共11小题)1.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.8【分析】画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.【点评】本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.2.如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.3.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.4.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>==.∴BC1与平面BB1D1D所成角的正弦值为故选:D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.5.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A.B.C.D.【分析】根据题意得ED∥BF,进而得到直线DE与平面BB1C1C所成的角等于直线BF 与平面BB1C1C所成的角.利用几何体的结构特征得到∠FBG=.即可得到答案.【解答】解:取AC的中点为F,连接BF、DF.因为在直三棱柱ABC﹣A1B1C1中,CC1∥BB1,又因为DF是三角形ACC1的中位线,故DF=CC1=BB1=BE,故四边形BEDF是平行四边形,所以ED∥BF.过点F作FG垂直于BC交BC与点G,由题意得∠FBG即为所求的角.因为AB=1,AC=2,BC=,所以∠ABC=,∠BCA=,直角三角形斜边中线BF是斜边AC的一半,故BF=AC=CF,所以∠FBG=∠BCA=.故选:A.【点评】解决此类问题的关键是熟悉线面角的作法,即由线上的一点作平面的垂线再连接斜足与垂足则得到线面角.6.正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,则PB与平面PEF所成角的正弦值为()A.B.C.D.【分析】以P为原点,P A为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【解答】解:∵正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,P A为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设P A=PB=PC=2,则A(2,0,0),B(0,2,0),C(0,0,2),E(1,1,0),F(0,1,1),=(0,2,0),=(1,1,0),=(0,1,1),设平面PEF的法向量=(x,y,z),则,取x=1,得=(1,﹣1,1),设PB与平面PEF所成角为θ,则sinθ===.∴PB与平面PEF所成角的正弦值为.故选:C.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【分析】由纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角.【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,另解:画出截面图,如下图所示,其中CD是赤道所在平面的截线.l是点A处的水平面的截线,由题意可得OA⊥l,AB是晷针所在直线.m是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得m∥CD,根据线面垂直的定义可得AB⊥m,由于∠AOC=40°,m∥CD,所以∠OAG=∠AOC=40°,由于∠OAG+∠GAE=∠BAE+∠GAE=90°,所以∠BAE=∠OAG=40°,也即晷针与A处的水平面所成角为∠BAE=40°,故选:B.【点评】本题是立体几何在生活中的运用,考查空间线面角的定义和求法,属于基础题.8.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,在三棱锥E﹣ABD中,V E﹣ABD=S△ABD×EC=××2×2×=在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD=×2×=2∴V A﹣BDE=×S△EBD×h=×2×h=∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题9.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.【分析】以B为坐标原点,建立空间直角坐标系,利用与平面AB1C1所的一个法向量的夹角,求出则BB1与平面AB1C1所成的角.【解答】解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,则A(,1,0),B1(0,0,3),C1(0,2,3),=(﹣,﹣1,3),=(0,2,0),=(0,0,3).设平面AB1C1所的一个法向量为=(x,y,z)则即,取z=1,则得=(,0,1),∵cos<,>===,∴BB1与平面AB1C1所成的角的正弦值为,∴BB1与平面AB1C1所成的角为故选:A.【点评】本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.10.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0B.C.D.【分析】由正四面体ABCD,可得所有棱长都相等.①点E是线段AC的中点,BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.利用反证法可以证明.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.设直线BE与平面ACD所成的角为θ,可得cosθ=.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.【解答】解:由正四面体ABCD,可得所有棱长都相等.①∵点E是线段AC的中点,∴BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.反证法:若直线BE与平面α所成角是,则BE⊥平面α.则在某一过程必有BE⊥CD.事实上,在该四面体绕CD旋转的过程中,BE与CD是不可能垂直的,因此假设错位,于是直线BE与平面α所成角不可能是90°.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.则E,O,D三点在同一条直线上.设直线BE与平面ACD所成的角为θ,可得cosθ=.∴θ>.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.综上可得:直线BE与平面α所成角不可能是.故选:D.【点评】本题考查了正四面体的性质、线面垂直性质定理、正三角形的性质、线面角,考查了数形结合方法、推理能力与计算能力,属于难题.11.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}【分析】设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F 与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.【解答】解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN ∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上上的动点.设直线A1F与平面BCC1B1所成角为θ运动点F并加以观察,可得当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ==2;当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ==2∴A1F与平面BCC1B1所成角的正切取值范围为[2,2]故选:D.【点评】本题给出正方体中侧面BCC1B1内动点F满足A1F∥平面D1AE,求A1F与平面BCC1B1所成角的正切取值范围,着重考查了正方体的性质、直线与平面所成角、空间面面平行与线面平行的位置关系判定等知识,属于中档题.二.填空题(共16小题)12.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为40π.【分析】利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB==.△SAB的面积为5,可得sin∠ASB=5,即×=5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:=40π.故答案为:40π.【点评】本题考查圆锥的结构特征,母线与底面所成角,圆锥的截面面积的求法,考查空间想象能力以及计算能力.13.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为8π.【分析】利用已知条件求出母线长度,然后求解底面半径,以及圆锥的高.然后求解体积即可.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.【点评】本题考查圆锥的体积的求法,母线以及底面所成角的应用,考查转化思想以及计算能力.14.如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.【分析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连接AD,从而∠ADC为二面角α﹣l﹣β的平面角,连接CB,则∠ABC为AB与平面β所成的角,在直角三角形ABC中求出此角即可.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D连接AD,有三垂线定理可知AD⊥l,故∠ADC为二面角α﹣l﹣β的平面角,为60°又由已知,∠ABD=30°连接CB,则∠ABC为AB与平面β所成的角设AD=2,则AC=,CD=1AB==4∴sin∠ABC=;故答案为.【点评】本题主要考查了平面与平面之间的位置关系,以及直线与平面所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.15.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF==a,G是EF的中点,则GB与平面AGC所成角的正弦值为.【分析】由面面垂直的性质证明CB⊥AG,用勾股定理证明AG⊥BG,得到AG⊥平面CBG,从而面AGC⊥面BGC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,故∠BGH是GB与平面AGC所成的角,解Rt△CBG,可得GB与平面AGC所成角的正弦值.【解答】解:∵ABCD是正方形,∴CB⊥AB,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF.∵AG,GB⊂面ABEF,∴CB⊥AG,CB⊥BG,又AD=2a,AF=a,ABEF是矩形,G是EF的中点,∴AG=BG=a,AB=2a,∴AB2=AG2+BG2,∴AG⊥BG,∵BG∩BC=B,∴AG⊥平面CBG,而AG⊂面AGC,故平面AGC⊥平面BGC.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,∴∠BGH是GB与平面AGC 所成的角.在Rt△CBG中,BH==,BG=a,∴sin∠BGH==.故答案为:.【点评】本题考查面面垂直的判定方法,以及求线面成的角的求法,考查学生的计算能力,属于中档题.16.如图,已知正三棱柱ABC﹣A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成角的正弦值为.【分析】如图,先证出B1D⊥平面AC1,过A点作AG⊥CD,证AG⊥平面B1DC,可知∠ADG即为直线AD与平面B1DC所成角,求其正弦即可.【解答】解:如图,连接B1D易证B1D⊥平面AC1,过A点作AG⊥CD,则由B1D⊥平面AC1,得AG⊥B1D由线面垂直的判定定理得AG⊥平面B1DC,于是∠ADG即为直线AD与平面B1DC所成角,由已知,不妨令棱长为2,则可得AD==CD,由等面积法算得AG==所以直线AD与面DCB1的正弦值为;故答案为.【点评】考查正棱柱的性质以及线面角的求法.考查空间想象能力以及点线面的位置关系17.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为.【分析】由题意连接A1C1,则∠AC1A1为所求的角,在△AC1A1计算出此角的正弦值即可.【解答】解:连接A1C1,在长方体ABCD﹣A1B1C1D1中,∴A1A⊥平面A1B1C1D1,则∠AC1A1为AC1与平面A1B1C1D1所成角.在△AC1A1中,sin∠AC1A1===.故答案为:.【点评】本题主要考查了求线面角的过程:作、证、求,用一个线面垂直关系,属于中档题.18.如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【分析】建立空间直角坐标系,设棱柱的高为a,求出平面ACD1的一个法向量,令,求出a的值即可.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.【点评】本题考查了空间向量在立体几何中的运用,考查计算能力,属于基础题.19.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BDD1B1所成角的正弦值为.【分析】连接A1C1交B1D1于O,连接BO,则可得∠C1BO为BC1与平面BBD1B1所成角,利用正弦函数,即可求得结论.【解答】解:连接A1C1交B1D1于O,连接BO,则∵长方体ABCD﹣A1B1C1D1中,AB=BC=2∴C1O⊥平面BDD1B1∴∠C1BO为BC1与平面BDD1B1所成角∵C1O=A1C1=,BC1=∴sin∠C1BO===故答案为:【点评】本题考查线面角,解题的关键是正确作出线面角,属于中档题.20.已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,,平面ABCD⊥平面P AD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.【分析】以O为原点,OA为x轴,过O作AB平行线为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出直线BM与平面PCO所成角的正弦值.【解答】解:以O为原点,OA为x轴,过O作AB平行线为y轴,OP为z轴,建立空间直角坐标系,B(1,2,0),P(0,0,2),C(﹣1,2,0),M(﹣,1,1),O(0,0,0),,,设平面PCO的法向量=(x,y,z),,可得=(2,1,0),设直线BM与平面PCO所成角为θ,则sinθ=|os|=||=故答案为:【点评】本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.正方体ABCD﹣A1B1C1D1中,则C1A与平面ABCD所成角的正弦值为.【分析】设正方体ABCD﹣A1B1C1D1的棱长为1,以D为原点,建立空间直角坐标系,利用向量法能求出C1A与平面ABCD所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1的棱长为1,以D为原点,建立空间直角坐标系,A(1,0,0),C1(0,1,1),=(﹣1,1,1),平面ABCD的法向量=(0,0,1),设C1A与平面ABCD所成角为θ,则sinθ=|cos<>|==.∴C1A与平面ABCD所成角的正弦值为.故答案为:.【点评】本题考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.22.如图:二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成角为45°,则AB与平面β所成角的正弦值是.【分析】根据二面角和直线和平面所成角的定义,先作出对应的平面角,结合三角形的边角关系进行求解即可.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=,Rt△ABD中,AB=,∴Rt△ABC中,sin∠ABC==,故答案为:.【点评】本题主要考查线面垂直的定义与性质、二面角的平面角的定义和直线与平面所成角的定义及求法等知识.23.如图,正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,则AC1与面ABB1A1所成的角为.【分析】取A1B1中点D,连结C1D,AD,推导出C1D⊥A1B1,C1D⊥AA1,从而AC1与面ABB1A1所成的角为∠DAC1,由此能求出AC1与面ABB1A1所成的角.【解答】解:取A1B1中点D,连结C1D,AD,∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,∴C1D⊥A1B1,C1D⊥AA1,∵A1B1∩AA1=A1,∴C1D⊥平面ABB1A1,∴AC1与面ABB1A1所成的角为∠DAC1,∵C1D==,AD==3,∴tan∠DAC1==,∴∠DAC1=.∴AC1与面ABB1A1所成的角为.故答案为:.【点评】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.24.如图,在棱长为2的正方体中ABCD﹣A1B1C1D1,点M是AD的中点,动点P在底面ABCD内(包括边界),若B1P∥平面A1BM,则C1P与底面ABCD所成角的正切值的取值范围是.【分析】取BC的中点N,连接DN、B1N、B1D,利用面面平行的判定定理可证得面B1DN ∥面A1BM,从而确定点P在线段DN上运动;连接CP、C1P,则∠C1PC为直线C1P与面ABCD所成的角,而tan∠C1PC==,于是求出线段CP的取值范围即可得解.【解答】解:如图所示,取BC的中点N,连接DN、B1N、B1D,则B1N∥A1M,DN∥BM,∵B1N∩DN=N,B1N、DN⊂面B1DN,A1M∩BM=M,A1M、BM⊂面A1BM,∴面B1DN∥面A1BM,∵B1P∥平面A1BM,且点P在底面ABCD上,∴点P在线段DN上运动.连接CP、C1P,则∠C1PC为直线C1P与面ABCD所成的角,∴tan∠C1PC==.在Rt△CDN中,当点P与点D重合时,CP最长为2;当CP⊥DN时,CP最短为,即CP∈[,2],∴tan∠C1PC∈[1,].故答案为:[1,].【点评】本题考查空间中直线与平面的夹角问题、线面平行关系,熟练运用面面平行的判定定理与性质定理是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.25.已知正六棱锥底面边长为a,体积为a3,则侧棱与底面所成的角为45°.【分析】由已知条件推导出棱锥的高h=a,侧棱长为a,由此能求出侧棱与底面所成的角的大小.【解答】解:∵正六棱锥的底面边长为a,∴S底面积=6×=a2,∵体积为a 3,∴棱锥的高h=a,∴侧棱长为a∴侧棱与底面所成的角为45°,故答案为:45°.【点评】本题考查侧棱与底面所成的角的大小的求法,是中档题,解题时要注意正六棱锥的结构特征的合理运用.26.已知A∈α,p∉α,=(﹣,,),平面α的一个法向量=(0,﹣,﹣),则直线P A与平面α所成的角为60°.【分析】设直线P A与平面α所成的角为θ.利用sinθ=|cos<,>|,即可得出.【解答】解:设直线P A与平面α所成的角为θ.则sinθ=|cos<,>|==.∵θ∈[0°,90°].∴θ=60°.故答案为:60°.【点评】本题考查了利用向量的夹角公式求线面角、数量积运算及其模的计算公式,考查了推理能力与计算能力,属于中档题.27.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是8.【分析】设直角三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,根据直角三棱锥的性质可知,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由V C﹣C′PQ=V C′﹣CPQ,能求出△PQC'的面积的最小值.【解答】解:设直角三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,根据直角三棱锥的性质可知:,∵直线CC’与平面C’PQ成的角为30°,∴h=2=,∴=,,∴xy≥8,再由体积可知:V C﹣C′PQ=V C′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8.故答案为:8.【点评】本题考查三角形面积的最小值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.三.解答题(共2小题)28.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC 折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【分析】(1)利用正方形的性质可得BF垂直于面PEF,然后利用平面与平面垂直的判断定理证明即可.(2)利用等体积法可求出点P到面ABCD的距离,进而求出线面角.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.【点评】本题主要考查点、直线、平面的位置关系.直线与平面所成角的求法.几何法的应用,考查转化思想以及计算能力.29.如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面P AB;法二、证明MN∥平面P AB,转化为证明平面NEM∥平面P AB,在△P AC中,过N作NE ⊥AC,垂足为E,连接ME,由已知P A⊥底面ABCD,可得P A∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面P AB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面P AD,在平面P AD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面P AB,NM⊄平面P AB,∴MN∥平面P AB;法二、。

2018版高考数学考点32二面角试题解读与变式

2018版高考数学考点32二面角试题解读与变式

考点32:二面角【考纲要求】1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.2.了解向量方法在研究立体几何问题中的应用. 【命题规律】二面角的知识是高考的热点问题,选择、填空、解答题都有可能进行考查.预计2018年的高考对本知识的考查空间向量的应用,仍然是以简单几何体为载体解决线线问题.【典型高考试题变式】(一)常规法求二面角的平面角例1.【2014安徽卷(理)】如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q .(1)证明:Q 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.【解析】试题分析:(1)利用面面平行来证明线线平行QC ∥1A D ,则出现相似三角形,于是根据三角形相似即可得出1112BQ BQ BC BB AA AD ===,即Q 为1BB 的中点.(2)连接,QA QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,=BC a ,则2AD a =.先表示出17=+12Q A AD Q ABCD V V V ahd --=下和11113=2A B C D ABCD V ahd -,就可求出11113711==21212A B C D ABCD V V V ahd ahd ahd ---=下上,从而11=7V V 上下.(3)常规法,作出二面角.在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E .又1DE AA ⊥且1AA AE A =,所以DE ⊥平面1AEA ,于是1DE A E ⊥.所以1AEA ∠为平面α与底面ABCD 所成二面角的平面角.(1)证:因为BQ ∥1AA ,BC ∥AD ,1,BCBQ B ADAA A ==,所以平面QBC ∥平面1A AD .从而平面1ACD 与这两个平面的交线相互平行,即QC ∥1A D . 故QBC ∆与1A AD ∆的对应边相互平行,于是1QBC A AD ∆∆.所以1112BQ BQ BC BB AA AD ===,即Q 为1BB 的中点. (2)解:如图,连接,QA QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,=BC a ,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1213224Q ABCD a a h V d ahd -+⎛⎫=⋅⋅⋅= ⎪⎝⎭,所以17=+12Q A AD Q ABCD V V V ahd --=下, 又11113=2A B C D ABCD V ahd - 所以11113711==21212A B C D ABCD V V V ahd ahd ahd ---=下上,故11=7V V 上下.【方法技巧归纳】证明线面平行有两种思路:第一寻求线线平行,利用线面平行的判定定理.第二寻求面面平行,本题借助平行四边形和三角形中位线定理可以得到线线平行,进而证明线面平行;求二面角一是传统方法,“一作,二证,三求”,如本题的解析,二是建立空间直角坐标系,借助空间向量,求法向量,利用公式求角.求二面角的常见方法有:1、利用定义找到二面角的平面角,根据平面几何知识求解;2、利用公式'cos S Sθ= ,求出二面角的余弦,从而求得二面角的大小;3、利用空间相夹角余弦公式.【变式1】【改编例题中条件】【2017届安徽省马鞍山市中加学校三模】如图,三棱柱111ABC A B C -中,四边形11AA BB 是菱形, 113BB A π∠=, 1111C B AA BB ⊥面,二面角11C A B B --为6π, 1CB =. (Ⅰ)求证:平面1ACB ⊥平面1CBA ; (Ⅱ)求二面角1A AC B --的余弦值.【解析】试题分析:(1)由菱形可得11AB A B ⊥,由棱柱和1111C B AA BB ⊥面,可得1CB AB ⊥,由直线与平面垂直判定定理,可得11AB A BC ⊥面,可证。

最新届高考数学立体几何(理科)专题01-线面角

最新届高考数学立体几何(理科)专题01-线面角

2018届高考数学立体几何(理科)专题01-线面角------------------------------------------作者xxxx2018届高考数学立体几何(理科)专题01 线面角1.如图,等腰梯形ABCD 中, //AB CD , DE AB ⊥于E , CF AB ⊥于F ,且2AE BF EF ===, 2DE CF ==,将AED 和BFC 分别沿DE CF 、折起,使A B 、两点重合,记为点M ,得到一个四棱锥M CDEF -,点,,G N H 分别是,,MC MD EF 的中点。

(Ⅰ)求证: //GH 平面DEM ;(Ⅱ)求证: EM CN ⊥;(Ⅲ)求直线GH 与平面NFC 所成的角的大小。

2.如图,在直角梯形ABCP 中, 1,,22CP AB CP CB AB BC CP ⊥===, D 是CP 的中点,将PAD 沿AD 折起,使得PD CD ⊥。

(Ⅰ)若E 是PC 的中点,求证: AP 平面BDE ;(Ⅱ)求证:平面PCD ⊥平面ABCD ;(Ⅲ)求二面角A PB C --的大小。

3.如图,在矩形ABCD中,4∆向上AD=, E是CD的中点,以AE为折痕将DAEAB=, 2折起, D变为'D,且平面'D AE⊥平面ABCE.(Ⅰ)求证:'⊥;AD EB(Ⅱ)求二面角'--的大小.A BD E4.如图,在四棱锥P。

ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2。

(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M­AC.D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.5.如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.(Ⅰ)求证:;(Ⅱ)求直线和平面所成角的正弦值;(Ⅲ)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.6.已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
14 .【 2018 届 湖 北 省 荆 州 中 学 高 三 上 学 期 第 一 次 双 周 考 】 如 图 , 三 棱 柱 ABC-A1B1C1 中 , CA = CB,AB = AA1,BAA1 = 60 . (Ⅰ)证明: AB ⊥ A1C ; (Ⅱ)平面 ABC ⊥ 平面 AA1B1B , AB = CB ,求直线 A1C 与平面 BB1C1C 所成角的正弦值.
3
(4) 数学各分支之间的转化; (5) 相等与不相等之间的转化; (6) 实际问题与数学模型的转化. 5.常见的转化方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通 过一般化的途径 进行转化; (9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的; (10)补集法:(正难则反)若过正面 问题难以解决,可将问题的结果看作集合 A,而把包含该问题的整体 问题的结果类比为全集 U,通过解决全集 U 及补集获得原问题的解决. 立体几何中的转化与化归,主要利用 直接转化法或坐标法,将空间问题转化成平面问题、将几何问题转化 成代数问题加以解决. 【空间角的范围处理错误注意点】 解决此类问题,要注意各种空间角的给定范围,容易在范 围上出现问题. 【典例试题演练】
P
E
A
D
B
C
ቤተ መጻሕፍቲ ባይዱ
【变式 1】【改编例题的问法,求解线面角的其他形式】【2014 四川卷(理)】如图在正方体 ABCD − A1B1C1D1
中,点 O 为线段 BD 的中点. 设点 P 在线段 CC1 上,直线 OP 与平面 A1BD 所成的角为 ,则 sin 的取值
范围是( )
A.
3 3
,1
B.
6 3
PA = 3 PB = 3 3
角形, D 是线段 AB 的中点, DE PB = E ,且 DE ⊥ AB ,
2,
2 ,则 PA 与平面 CDE
所成角的正切值为( )
3 A. 3
2 B. 2
C. 2
D. 3
4.【2017 届四川省大教育联盟高中毕业班第三次诊断】将正方形 ABCD 沿对角线 BD 折成直二面角后的图
,1
C.
6 3
,
2
2 3
D.
2
3
2
,1
1
【变式 2】【改变例题的条件和方法,利用等体积法求解线面角的问题】【2018 届湖南师范大学附属中学高
三上学期月考】如图,圆锥的高 PD = 2 ,底面⊙ O 的直径 AB = 2 , C 是圆上一点,且 CAB = 30 , D 为 AC 的中点,则直线 OC 和平面 PAC 所成角的余弦值为__________.
点.现在沿
及 把这个正方形折成一个空间图形,使
误的是__________(将符合题意的选项序号填到横线上).
三点重合,重合后的点记为 .下列说法错

所在平面;②
所在平面;③
所在平面;④
所在平面.
11.【2018 届湖南师大附中高三上学期月考试卷(三)】如图,在几何体中,四边形 ABCD 为菱形,对角线
【变式 1】【改变例题的条件,求解 线面角的正弦值】【2018 届河南省中原名校高三第三次质量考评试卷】
在三棱柱 ABC − A1B1C1 中,侧面 ABB1A1 为矩形, AB = 2 , AA1 = 2 2 , D 是 AA1 的中点, BD 与 AB1 交于点 O ,且 CO ⊥ 平面 ABB1A1 .
形如图所示,若 E 为线段 BC 的 中点,则直线 AE 与 平面 ABD 所成角的余弦为( )
1 A. 4
6 B. 6
30 C. 6
15 D. 4
5.【2017 届四川省广元市三诊】对于四面体
,有以下命题:①若
,则 , , 与
底面所成的角相等;②若
,
,则点 在底面
内的射影是
的内心;③四面体
的四个面中最多有四个直角三角形;④若四面体
所需要的结果,非等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问
题的突破口,非等价变形要对所得结论进行必要的修改. 非等价转化(强化转化和弱化转化)在思维上带有跳跃性,是难点,在压轴题的解答中常常用到,一定要
特别重视!
3.转化与化归的原则 (1)熟悉化原则:将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题; (2)直观化原则:将抽象的问题转化为具体的直观的问题; (3)简单化原则:将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问 题转化为数学问题,使问题便与解决. (4)正难则反原则:若过正面问题难以解决,可考虑问题的反面,从问题的反面寻求突破的途径; (5)低维度原则:将高维度问题转化成低维度问题. 4.转化与化归的基本类型 (1) 正与反、一般与特殊的转化; (2) 常量与变量的转化; (3) 数与形的转化;
化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各
种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想
方法的灵魂. 2. 转化包括等价转化和非等价转化,非等价转化又分为强化转化和弱化转化 等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题
例 1.【2017 全国 2 卷(理)】如图所示,已知四棱锥 P − ABCD ,△PAD 是以 AD 为斜边的等腰直角三角 形, BC//AD , CD ⊥ AD , PC = AD = 2DC = 2CB , E 为 PD 的中点. (1)证明: CE// 平面 PAB ; (2)求直线 CE 与平面 PBC 所成角的正弦值.
的 6 条棱长都为 1,则它的内切球的表
面积为 .其中正确的命题是( ) A . ①③ B. ③④ C. ①②③
D. ①③④
6.【2017 届浙江温州中学高三 11 月模拟考】如图四边形 ABCD , AB = BD = DA = 2 , BC = CD = 2 . [ , 5 ]
现将 ABD 沿 BD 折起,当二面角 A− BD −C 处于 6 6 过程中,直线 AB 与 CD 所成角的余弦值取值
6
AC 与 BD 的交点为 O ,四边形 DCEF 为梯形, EF / / DC, FD = FB .
(Ⅰ)若 DC = 2EF ,求证: OE / / 平面 ADF ; (Ⅱ)求证:平面 AFC ⊥ 平面 ABCD ; (Ⅲ)若 AB = FB = 2 , AF = 3 , BCD = 60 ,求 AF 与平面 ABCD 所成角. 12.【2018 届云南省昆明市高新技术开发区高考适应性月考】如图所示,四棱锥 P − ABCD 中, PA ⊥ 平 面 ABCD , AD / /BC , AB = AD = AC = 3, PA = BC = 4 , M 为线段 AD 上一点, MD = 2AM , N 为线段 PC 上一点, NC = 3PN .
(二)利用空间向量法求解线面角
例 2【. 2017 北京卷(理)】如图,在四棱锥 P − ABCD 中,底面 ABCD 为正方形,平面 PAD ⊥ 平面 ABCD , 点 M 在线段 PB 上, PD// 平面 MAC , PA = PD = 6 , AB = 4 . (1)求证: M 为 PB 的中点; (2)求二面角 B − PD − A 的大小; (3)求直线 MC 与平面 BDP 所成角的正弦值.
中,
,现将 沿矩形的对角线
①存在某个位置,使得直线 与直线 垂直;
②存在某个位置,使得直线 与直线 垂直;
③存在某个位置,使得直线 与直线 垂直. 其中正确结论的序号是__________.(写出所有正确结论的序号)
10.【2018 届南宁市高三毕业班摸底联考】如图,在正方形 中, 分别是
的中点, 是 的中
2. 【2017 届福建省莆田第一中学高三考前模拟】正方体 ABCD-A1B1C1D1 的棱长为 6,点 O 在 BC 上,且 BO=OC, 过点 O 的直线 l 与直线 AA1,C 1D1 分别交于 M,N 两点,则 MN 与面 ADD1A1 所成角的正弦值为( )
A.
B.
C.
D.
4
3.【2017 届河南省豫北重点中学高三 4 月联考】如图,三棱锥 P − ABC 中, ABC 为边长为 3 的等边三
ABCD 所成角的正切值为__________.
8.【2017 届河北省石家庄市高三第二次质量检测】设二面角
的大小为 , 点在平面 内, 点在
上,且
,则 与平面 所成的角的大小为__________.
9.【2017 届湖北省武汉市武昌区高三 1 月调研考试】在矩形 所在的直线进行翻折,在翻折的过程中,给出下列结论:
范围是( )
5
[− 5 2 , 2 ]
[ 2,5 2]
A. 8 8 B. 8 8
[0, 2 ]
[0, 5 2 ]
C. 8 D. 8
7.【2017 届湖南省邵阳市高三下学期第二次联考】在长方体 ABCD − A1B1C1D1 中,底面 ABCD 是边长为 2
的正方形, AA1 = 3 , E 是 AA1 的中点,过 C1 作 C1F ⊥ 平面 BDE 与平面 ABB1A1 交于点 F ,则 CF 与平面
相关文档
最新文档