新人教七年级数学上册线段的计算测试题

合集下载

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

部编数学七年级上册专题11线段的计算专题复习(课堂学案及配套作业)(解析版)含答案

部编数学七年级上册专题11线段的计算专题复习(课堂学案及配套作业)(解析版)含答案

专题11 线段的计算专题复习(解析版)第一部分教学案类型一单中点1.(2020秋•开福区校级月考)已知线段AB=13cm,C为线段AB上一点,BC=5cm,点D 为AC的中点.求DB的长度.思路引领:根据线段图,先求出AC的长,再求出DC的长,就可以求出DB的长.解:∵AB=13cm,BC=5cm,∴AC=AB﹣BC=8cm.∵D是AC中点.∴CD=12AC=4cm,∴DB=DC+CB=9cm.总结提升:本题主要考查线段的长度计算,分别考查了线段的做差、中点、求和等问题.属于简单题.主要锻炼学生书写解题过程,和逻辑推理能力.2.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,点E是DC的中点,则线段DE的长为 .思路引领:分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.解:∵AB=10cm,点D是线段AB的中点,∴DB=12AB=12×10=5(cm),①C在线段AB上,∵BC=2cm,∴DC=AB﹣BC=5﹣2=3(cm),∵点E是DC的中点,∴DE=12DC=12×3=32(cm),②C在线段AB延长线上,∵BC=2cm,∴DC=DB+BC=5+2=7(cm),∵点E是DC的中点,∴DE=12DC=12×7=72(cm),故答案为:32或72.总结提升:本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.3.(2019秋•潮阳区期末)如图,点C、D在线段AB上,D是线段AB的中点,AC=13 AD,CD=4,求线段AB的长.思路引领:根据AC=13AD,CD=4,求出CD与AD,再根据D是线段AB的中点,即可得出答案.解:∵AC=13AD,CD=4,∴CD=AD﹣AC=AD―13AD=23AD,∴AD=32CD=6,∵D是线段AB的中点,∴AB=2AD=12;总结提升:此题考查了两点间的距离公式,主要利用了线段中点的定义,比较简单,准确识图是解题的关键.类型二双中点4.(2019秋•秦淮区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=4,BC=6,则线段MN= ;(2)若AB=m,求线段MN的长度.思路引领:(1)由已知可求得CM,CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.解:(1)∵N是BC的中点,M是AC的中点,AC=4,BC=6,∴MC=2,CN=3,∴MN=MC+CN=2+3=5;(2)∵M是AC的中点,N是BC的中点,AB=m,∴NM=MC+CN=12AB=12m.故答案为:5.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.5.(2022春•垦利区期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.思路引领:(1)根据“点M是AC的中点”,先求出MC的长度,再利用BC=MB﹣MC,CN=12BC,MN=CM+CN即可求出线段BC,MN的长度.(2)先画图,再根据线段中点的定义得MC=12AC,NC=12BC,然后利用MN=MC﹣NC得到MN=12 acm.解:(1)∵M是AC的中点,∴MC=12AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=12BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图1(或图2):∵M是AC的中点,∴CM=12 AC,∵N是BC的中点,∴CN=12 BC,∴MN=CM﹣CN=12AC―12BC=12(AC﹣BC)=12acm.总结提升:本题主要考查了两点间的距离,线段的中点定义,线段的中点把线段分成两条相等的线段.6.(2019秋•长兴县期末)如图,已知点C 为线段AB 上一点,AC =15cm ,CB =35AC ,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.思路引领:根据线段的中点定义即可求解.解:∵AC =15cm ,CB =35AC ,∴BC =9,∴AB =AC +BC =24,∵点D ,E 分别为线段AC ,AB 的中点,∴AD =12AC =152AE =12AB =12∴DE =AE ﹣AD =92.答:线段AB 与DE 的长为24、92.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.7.已知A 、B 、C 三点在同一条直线上,AB =8,BC =4,M 、N 分别为AB 、BC 的中点,求线段MN 的长.思路引领:由题意将C 点位置分两种情况分别求解:①当C 点在AB 之间时,M 与C 点重合;②当C 在线段AB 延长线上时,MN =BM +BN .解:①当C 点在AB 之间时,由已知,M 与C 点重合,∵AB =8,BC =4,M 、N 分别为AB 、BC 的中点,∴MN =BN =2;②当C 在线段AB 延长线上时,MN =BM +BN =4+2=6;综上所述,MN 的长为2或6.总结提升:本题考查线段两点间距离;能够准确确定C 点的位置是解题的关键.类型三 方程思想8.(2019秋•克东县期末)如图,N 为线段AC 中点,点M 、点B 分别为线段AN 、NC 上的点,且满足AM :MB :BC =1:4:3.(1)若AN =6,求AM 的长.(2)若NB=2,求AC的长.思路引领:(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=1143×AC=1 8×12=32;(2)根据线段中点的定义得到AN=12AC,得到AB=14143AC=58AC,列方程即可得到结论.解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=1143×AC=18×12=32;(2)∵N为线段AC中点,∴AN=12 AC,∵AM:MB:BC=1:4:3,∴AB=14143AC=58AC,∴BN=AB﹣AN=58AC―12AC=18AC=2,∴AC=16.总结提升:本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.9.(2019秋•江夏区期末)如图,点B,D在线段AC上,BD=13AB,AB=34CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.思路引领:设BD=x,求出AB=3x,CD=4x,求出BE=12AB=1.5x,DF=2x,根据EF=20得出方程1.5x+2x﹣x=5,求出x即可.解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=12AB=1.5x,DF=2x,∵EF=20,∴1.5x+2x﹣x=20,解得:x=8,∴AE+EF+CF=1.5x+20+2x=12+20+16=48.总结提升:本题考查了求两点之间的距离,能根据题意得出方程是解此题的关键.10.(鄂城区期末)已知A,B,C,D四点在同一条直线上,点C是线段AB的中点,点D 在线段AB上.(1)若AB=6,BD=13BC,求线段CD的长度;(2)点E是线段AB上一点,且AE=2BE,当AD:BD=2:3时,线段CD与CE具有怎样的数量关系?请说明理由.思路引领:(1)根据线段中点的性质求出BC,根据题意计算即可;(2)设AD=2x,用x表示出AB,根据题意用x表示出CD、CE,得到CD与CE的数量关系.解:(1)如图1,∵点C是线段AB的中点,AB=6,∴BC=12AB=3,∵BD=1 3,∴BD=1,∴CD=BC﹣BD=2;(2)如图2,设AD=2x,则BD=3x,∴AB=AD+BD=5x,∵点C是线段AB的中点,∴AC=12AB=52x,∴CD=AC﹣AD=12 x,∵AE=2BE,∴AE=23AB=103x,CE=AE﹣AC=56 x,∴CD:CE=12x:56x=3:5.总结提升:本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.11.(2019秋•樊城区期末)如图,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC的长度.思路引领:根据AB=97,AD=40,可得BD=AB﹣AD=57,由DC:CE=1:2,CE:EB=3:5,可以设DC=x,可得CE=2x,EB=10x3,进而列出等式解得x的值,再求AC的长即可.解:因为AB=97,AD=40,所以BD=AB﹣AD=57因为DC:CE=1:2,CE:EB=3:5,所以设DC=x,则CE=2x,EB=10x 3,因为BD=DC+CE+EB所以x+2x+10x3=57解得x=9所以AC=AD+DC=40+9=49.答:AC的长度为49.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段之间的关系列出等式.类型四整体思想12.如图,点P在线段AB的延长线上,点C为线段AB的中点.试探究PA+PB与PC之间的数量关系,并说明理由.思路引领:设AC=BC=x,PB=y,求出PA+PB的长,然后与PC的长进行比较即可发现它们之间的数量关系.解:PA+PB与PC之间的数量关系为:PA+PB=2PC.设AC=BC=x,PB=y,由图中所给信息可得:则PC=x+y,PA=2x+y,所以PA+PB=2x+y+y=2(x+y),所以PA+PB=2PC.总结提升:本题考查线段的和差问题,关键是正确表示出线段的长.13.(2021秋•覃塘区期末)如图,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=12,则线段AB的长为 .思路引领:设EC=x,根据点E为线段AC的中点,得AC=2EC=2x,再根据点C,D 为线段AB的三等分点,得AB=3AC,结合ED=12,求出x,进而得出线段AB的长.解:设EC=x,∵点E为线段AC的中点,∴AC=2EC=2x,∵点C,D为线段AB的三等分点,∴AC=CD=BD=2x,∵ED=EC+CD,ED=12,∴x+2x=12,解得x=4,∴AB=3AC=24,故答案为:24.总结提升:本题主要考查了两点间的距离,掌握线段三等分点的定义,线段之间的数量转化是解题关键.14.如图,已知C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长.(2)若AB=a,CD=b,请用含,b的式子表示出MN的长.思路引领:(1)利用M,N分别是AC,BD的中点,可以得出MC=12AB,DN=12BD,再利用线段的和差关系表示即可求出答案;(2)和方法(1)一样,利用线段的和差关系表示出关系式即可.解:(1)∵M,N分别是AC,BD的中点,∴MC=12AB,DN=12BD,∴MN=MC+CD+DN=12AC+12BD+CD=12(AC+BD)+CD=12(AB―CD)+CD=12AB+12CD=12(AB+CD)=12(24+10)=17,故MN的长是17.答:MN的长是17.(2)由(1)可知,MN =12(AB +CD ),∵AB =a ,CD =b ,∴MN =12(a +b ),答:MN 的长是12(a +b ).总结提升:本题主要考查两点间的距离,熟练掌握中点的定义和线段的和差关系是解题的关键.类型五 分类讨论思想15.(聊城期末)已知A ,B ,C 三点在同一条直线上,若AB =60cm ,BC =40cm ,则AC 的长为 .思路引领:根据题意,分两种情况讨论:(1)C 在AB 内,则AC =AB ﹣BC ;(2)C 在AB 外,则AC =AB +BC .解:(1)C 在AB 内,则AC =AB ﹣BC =20cm ;(2)C 在AB 外,则AC =AB +BC =100cm .∴AC 的长为100cm 或20cm .总结提升:本题渗透了分类讨论的思想,体现了思维的严密性.灵活运用线段的和、差转化线段之间的数量关系.在今后解决类似的问题时,要防止漏解.16.( 永新县期末)已知线段AB =6,在直线AB 上取一点P ,恰好使AP =2PB ,点Q 为PB 的中点,求线段AQ 的长.思路引领:根据中点的定义可得PQ =QB ,根据AP =2PB ,求出PB =13AB ,然后求出PQ 的长度,即可求出AQ 的长度.解:如图1所示,∵AP =2PB ,AB =6,∴PB =13AB =13×6=2,AP =23AB =23×6=4;∵点Q 为PB 的中点,∴PQ =QB =12PB =12×2=1;∴AQ =AP +PQ =4+1=5.如图2所示,∵AP =2PB ,AB =6,∴AB =BP =6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.总结提升:本题考查了两点间的距离:两点的连线段的长叫两点间的距离,解题时注意分类思想的运用.17.如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.若AB=24,CD=10,求MN的长.思路引领:根据点M、N分别为AC、BD的中点,可求出MC+ND的值,进而求出MN 的值.解:∵点M、N分别为AC、BD的中点,∴MA=MC=12AC,NB=ND=12BD,∴MC+ND=12(AC+BD)=12(AB﹣CD)=12(24﹣10)=7(cm),∴MN=MC+ND+CD=7+10=17(cm),即MN的长为17cm.总结提升:本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.18.已知:线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长.思路引领:因为C、D的位置不确定,需要分四种情况讨论,分别画出图形,即可求出线段CD的长.解:分四种情况:①图1中,CD=CB+BD=(AB﹣AC)+BD=4+8=12;②图2中,CD=AB﹣AD﹣BC=AB﹣(AB﹣BD)﹣(AB﹣AC)=10﹣2﹣4=4;③图3中,CD=CA+AB+BD=24;④图4中,CD=CA+AD=CA+(AB﹣BD)=6+2=8.综上可得:线段CD的长为12或4或24或8.总结提升:本题考查了两点间的距离,解答本题的关键是分类讨论C、D的位置,容易漏解.类型六动点问题19.如图,数轴上A、B所对应的数分别为﹣5、10,O为原点,点C为数轴上一动点且对应的数为x.点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动(不改变方向).设运动时间为t秒.(1)若点P、Q相向而行且OP=OQ,求t的值.(2)若点P、Q在点C处相遇,求出C点对应的数x.(3)当PQ=5时,求t的值.(4)若点P、Q相向,同时一只宠物鼠每秒4个单位长度从B点出发,与点P相向而行,宠物鼠遇到P后立即返回,又遇到Q点后立即返回,又遇到P后立即返回…直到A、B 相遇为止,求宠物鼠整个过程中的行驶路程.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程﹣10=Q的路程﹣5,列出关于t的方程求解即可;(2)求出P点运动的路程,进一步求解即可;(3)根据PQ=5,分三种情况列出关于t的方程求解即可;(4)根据路程=速度×时间,列式计算即可求解.解:(1)依题意有(2+3)t=10﹣(﹣5),解得t=3;或3t﹣10=2t﹣5,解得t=5.答:t的值是3或5.(2)﹣5+3×2=﹣5+6=1,或10﹣[10﹣(﹣5)]÷(3﹣2)×3=10﹣15÷1×3=﹣35.故C点对应的数是1或﹣35.(3)依题意有①(2+3)t=10﹣(﹣5)﹣5,解得t=2;②(2+3)t=10﹣(﹣5)+5,解得t=4;答:t的值是2或4.(4)4×3=12个单位长度.答:宠物鼠整个过程中的行驶路程是12个单位长度.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.如图,数轴上A、B所对应的数分别为﹣5,10,O为原点,点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动,设运动时间为t 秒.(1)若点P、Q相向而行,且OP=OQ,求t的值;(2)若P、Q相向而行,且PQ=5,求t的值;(3)若P、Q同时向左运动,且PQ=5,求t的值.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程−10=Q的路程−5,列出关于t的方程求解即可;(2)由于运动的时间为t秒,根据P、Q相向而行,且PQ=5,列出方程求得t的值即可;(3)根据P、Q同时向左运动,且PQ=5,列出关于t的方程求解即可.解:(1)依题意有(2+3)t=10−(−5),解得t=3;或3t−10=2t−5,解得t=5.答:t的值是3或5.(2)依题意有|15﹣3t﹣2t|=5,即15﹣3t﹣2t=5或15﹣3t﹣2t=﹣5,解得t=2或4;(3)依题意有|3t﹣15﹣2t|=5,3t﹣15﹣2t=5或3t﹣15﹣2t=﹣5,解得t=20或10,答:t的值是20或10.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(2020秋•西湖区期末)如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=5OB.(1)求a,b的值.(2)若动点P,Q分别从A,B同时出发,向数轴正方向匀速运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=3.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M追上点Q后立即返回,以同样的速度向点P 运动,遇到点P后点M就停止运动.求点M停止时,点M在数轴上所对应的数.思路引领:(1)由AO=5OB可知,将12平均分成6份,AO占5份为10,OB占一份为2,由图可知,A在原点的左边,B在原点的右边,从而得出结论;(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP﹣OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.解:(1)∵AB=12,AO=5OB,∴AO=10,OB=2,∴A点所表示的数为﹣10,B点所表示的数为2,∴a=﹣10,b=2.故答案为:﹣10;2;(2)当0<t<5时,如图1,AP =2t ,OP =10﹣2t ,BQ =t ,OQ =2+t ,∵2OP ﹣OQ =3,∴2(10﹣2t )﹣(2+t )=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t ﹣10,OQ =2+t ,则2(2t ﹣10)﹣(2+t )=3,解得t =813,综上所述,当t 为3或813时,2OP ﹣OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t ―103)=2+t ,解得t =6,∴OP =2(t ﹣5)=2,此时OM =3(t ―103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8﹣3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.总结提升:本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.第二部分 配套作业一.填空题(共3小题)1.(2006•鄂州)已知AB=8cm,若点C在AB的延长线上,且B为AC的一个三等分点,则AC= cm.思路引领:已知AB的长度,根据B为AC的一个三等分点,因B点不确定,要分类讨论.解:本题要分两种情况讨论:①如果,BC占线段AC的三分之一,则AC等于12cm;②如果AB占线段AC的三分之一,AC等于24cm.∴AC=12或24cm.总结提升:要分类讨论,以确定AC的长度.2.(2022•天河区校级模拟)如图,点C是线段AB的中点,点D在CB上,BC=4cm,BD =1.5cm,则线段AD= cm.思路引领:首先根据线段中点定义求出AC、BC长.再根据线段和差关系求出AD的长.解:∵点C是线段AB的中点,∴AC=BC=4(cm),∵BD=1.5cm,∴CD=2.5(cm),∴AD=AC+CD=6.5(cm),故答案为:6.5.总结提升:本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.3.(2021秋•宣化区期末)已知点P是射线AB上一点,当PAPB=2或PAPB=12时,称点P是射线AB的强弱点,若AB=6,则PA= .思路引领:分三种情况讨论,分别画出符合题意的图形,结合P的位置得到PA与PB的具体的数量关系,结合AB=6,从而可得答案.解:①如图,AB=6,当PAPB =12时,∴PA=13AB=13×6=2;②如图,AB=6,当PAPB=2且P在线段AB上时,∴PA =23AB =23×6=4;③如图,AB =6,当PA PB=2且P 在线段AB 的延长线上时,∴PA =2AB =2×6=12;综上:PA =2或4或12.故答案为:2或4或12.总结提升:本题考查的是线段的和差倍分关系,有理数的乘法运算,分类思想的运用,掌握线段的和差倍分是解题的关键.二.解答题(共15小题)4.已知点A ,B ,C 是同一条直线上的任意三点,如果AC =7,BC =3,求线段AC 和BC 的中点间距离.思路引领:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离;②当B 在线段AC 上时,那么AB =AC ﹣CB ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离.解:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,而AC =7,BC =3,∴AB =AC +BC =10,∴线段AC 和BC 的中点之间的距离为12AC +12BC =12(AC +BC )=5;②当B 点在线段AC 上,此时AB =AC ﹣BC ,而AC =7,BC =3,∴AB =AC ﹣BC =4,∴线段AC 和BC 的中点之间的距离为12AC ―12BC =12(AC ﹣BC )=2.故答案为:5或2.总结提升:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.(2020秋•盱眙县期末)如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.思路引领:作出图形后首先求得AC的长,然后求其一半的长,最后求线段BP的长即可.分点C在AB上和点C在AB的延长线上两种情况讨论即可.解:当点C在AB上时,如图:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵P为线段AC的中点,∴PC=12AC=12×6=3(cm),∴BP=PC+BC=3+4=7(cm);当点C在AB的延长线上时,如图:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵P为线段AC的中点,∴PC=12AC=12×14=7(cm),∴BP=PC﹣BC=7﹣4=3(cm);∴BP的长为7cm或3cm总结提升:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.(2021秋•钦北区期末)如图,线段AB=8,点C是AB的中点,点D是BC的中点,E 是AD的中点.(1)求线段BD的长;(2)求线段EC的长.思路引领:(1)由点C是AB的中点可得AC=BC=4cm,由点D是BC的中点可得BD=CD=2即可;(2)由(1)可知AE、AD的长,再根据EC=AC﹣AE,即可得出线段EC的长.解:(1)∵点C是AB的中点,AB=8,∴12AB=AC=BC=4,又∵点D是BC的中点,∴12BC=BD=CD=2.(2)由(1)得AC=4,AD=AC+CD=6,∵E是AD的中点,∴12AD=AE=ED=3,∴EC=AC﹣AE=4﹣3=1.总结提升:本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.7.(2019秋•南关区校级期末)如图,延长线段AB至点D,使点B为线段AD的中点,点C在线段BD上,CD=2BC,若BC=3,求AD的长.思路引领:先由CD=2BC,BC=3,求得CD=6,进而得BD,再由点B为线段AD的中点,得AD.解:∵CD=2BC,BC=3,∴CD=6,∴BD=BC+CD=3+6=9,∵点B为线段AD的中点,∴AD=2BD=18.总结提升:本题主要考查了线段的和差计算,线段的中点定义,关键是弄清各线段之间的关系,正确运用线段和差和线段中点,进行解答.8.(2022秋•江都区月考)在直线m上取点A、B,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点,求线段MN的长.思路引领:根据题意,正确画出图形,此题要分情况讨论:(1)当点P在线段AB上;(2)当点P在线段BA的延长线上.解:(1)如图,当点P在线段AB上时,PB=AB﹣PA=8cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PM+PN=12AP+12BP=1+4=5(cm);(2)如图,当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PN﹣PM=12BP―12AP=6﹣1=5(cm).∴线段MN的长是5cm.总结提升:本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.要分情况进行讨论,以防遗漏.9.如图,点C是线段AB的中点,点D是线段AC上一点,CD=2AD.(1)若线段AB=12,求CD的长;(2)若E是线段BC上一点,CE:BE=1:5,且CD比CE的3倍长1,求BE的长.思路引领:(1)根据线段中点的定义可得AC=6,再根据已知可得CD=23AC=4,即可解答;(2)根据题意可设CE=x,则CD=3x+1,再根据已知可得BC=6x,AC=9x32,然后根据线段中点的定义列出关于x的方程,进行计算即可解答.解:(1)∵点C是线段AB的中点,AB=12,∴AC=12AB=6,∵CD=2AD,∴CD=23AC=4,∴CD的长为4;(2)如图:∵CD比CE的3倍长1,∴设CE=x,则CD=3x+1,∵CE:BE=1:5,∴BC=6CE=6x,∵CD=2AD,∴AC=32CD=9x32,∵点C是线段AB的中点,∴AC=BC,∴9x32=6x,∴x=1,∴BE=5CE=5,∴BE的长为5.总结提升:本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.10.(2022秋•高密市期中)如图所示,B,C两点把线段AD分成4:5:7的三部分,E是线段AD的中点,CD=14厘米.(1)求EC的长.(2)求AB:BE的值.思路引领:(1)由题意知,B,C两点把线段AD分成4:5:7三部分,则令AB,BC,CD分别为4x厘米,5x厘米,7x厘米.根据CD=14厘米,得出x=2.根据E是线段AD的中点,可得ED=12AD=16厘米,代入EC=ED﹣CD可求;(2)分别求出AB,BE的长后计算AB:BE的值.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米,∵CD=7x=14,∴x=2.(1)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=AB+BC+CD=8+10+14=32(厘米).∵E是线段AD的中点,∴ED=12AD=16厘米,∴EC=ED﹣CD=16﹣14=2(厘米);(2)∵BC=10厘米,EC=2厘米,∴BE=BC﹣EC=10﹣2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.总结提升:本题考查了两点的间的距离,通过设适当的参数,由CD=7x=14求出参数x =2后,再求出各线段的值,同时利用线段的中点把线段分成相等的两部分的性质.11.(2020秋•巴南区期末)已知点B、D在线段AC上,(1)如图1,若AC=20,AB=8,点D为线段AC的中点,求线段BD的长度;(2)如图2,若BD=13AB=14CD,AE=BE,EC=13,求线段AC的长度.思路引领:(1)由线段的中点,线段的和差求出线段DB的长度;(2)由线段的中点,线段的和差倍分求出AC的长度.解:(1)∵D为线段AC的中点∴DC=12AC=12×20=10,∵AB=8,∴BD=AD﹣AB=10﹣8=2;(2)设BD=x,∵BD=13AB=14CD,∴AB=3x,CD=4x,∴AC=3x+x+4x=8x,∵AE=BE,∴AE=12AB=1.5x,∴EC=8x﹣1.5x=13,解得x=2,∴AC=8x=16.总结提升:本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.12.(2022秋•南丹县期末)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.思路引领:(1)根据线段的和差,可得答案;(2)根据线段的和差,可得答案;(3)根据线段中点的定义和线段的和差即可得到结论.(1)设BC=xcm,则AC=3xcm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm;(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm;(3)∵M为AB的中点,∴AM=12AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.总结提升:本题考查了求两点之间的距离的应用,主要考查学生的计算能力.13.(2020秋•喀喇沁旗期末)先画图,再解答:(1)画线段AB,在线段AB的反向延长线上取一点C,使AB=12AC,再取AB得中点D;(注:非尺规作图)(2)在(1)中,若C、D两点间的距离为6cm,求线段AB的长.思路引领:(1)直接根据题意画出图形即可;(2)根据中点的定义和已知条件求出CD=5AD,再根据CD=6cm,得出AD的长,再根据AD=12AB,即可得出答案.解:(1)根据题意画图如下:(2)∵点D是AB的中点,∴AD=12 AB,∵AB=12 AC,∴CD=5AD,∵CD=6cm,∴AD=65 cm,∴AB=125cm.总结提升:此题考查了两点间的距离,根据题意正确画出图形是解题的关键,比较简单.14.(2021秋•江阴市校级月考)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC =6,BC =4,则求线段AB 和线段MN 的长度;(2)若AB =a ,则线段MN = 12a ;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出线段MN 的长度.思路引领:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度;(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB ;(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC +CN =5;(2)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC ,CN =12BC ,∴MN =MC +CN =12(AC +BC )=12AB =12a .故答案为:12a ;(3)当点C 在线段AB 内时,由(1)可知:MN =5,当点C 在线段AB 外时,此时点C 在点B 的右侧,∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC ﹣CN =1,综上所述,MN =5或1.总结提升:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.15.(2020秋•淮北月考)如图,已知B ,C 是线段AD 上的任意两点,M 是AB 的中点,N是CD 的中点.(1)若AB =4,BC =1,CD =6,求线段MN 的长度;(2)若AD=11,BC=1,求线段MN的长度;(3)请你说明:2MN=BC+AD.思路引领:(1)由已知可求得MB,CN的长,从而不难求得MN的长度;(2)由已知条件可知,MN=MB+CN+BC,AD=2(MB+CN)+BC,先求出MB+CN的值,则可求MN的长度;(3)由MN=MB+CN+BC,利用等式性质可得2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.解:(1)∵M是AB的中点,N是CD的中点,∴MN=MB+BC+CN=12AB+BC+12CD,∵AB=4,BC=1,CD=6,∴MN=12×4+1+12×6=6;(2)∵AD=AB+BC+CD=2(MB+CN)+BC,∵AD=11,BC=1,∴MB+CN=5,∴MN=MB+BC+CN=6;(3)∵MN=MB+BC+CN,∴2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.16.(2006秋•中山区期末)如图,线段AB=30cm,点O在AB线段上,M、N两点分别从A、O同时出发,以2cm/s,1cm/s的速度沿AB方向向右运动.(1)如图1,若点M、点N同时到达B点,求点O在线段AB上的位置.(2)如图2,在线段AB上是否存在点O,使M、N运动到任意时刻,(点M始终在线段AO上,点N始终在线段OB上),总有MO=2BN?若存在,求出点O在线段AB上的位置;若不存在,请说明理由.思路引领:(1)设AO的长度为xcm,则OB=(30﹣x)cm,根据时间相等建立方程求出其解即可;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由MO=2BN 建立方程求出其解即可.解:(1)设AO的长度为xcm,则OB=(30﹣x)cm,由图形,得30 2=30x1,解得:x=15,∴点O在AB的中点;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由题意,得y﹣2t=2(30﹣y﹣t),解得:y=20,∴AO=20cm时,MO=2BN.总结提升:本题考查了线段与行程问题的关系的运用,线段之间的数量关系的运用,一元一次方程的运用,解答时找到题意的等量关系是关键.17.(2016秋•和平区期末)已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为﹣2,4,且AC=13AB,则点C表示的数是 ﹣4或0 ;(2)若点A,B表示的数分别为m,n,且m<n.①点C在点A的右边,且AC=13AB,求点C表示的数(用含m,n的式子表示);②已知n﹣m=10,点P,Q分别是这条数轴上的两个动点,点P以每秒2个单位长度的速度从点A向左运动,同时点Q以每秒3个单位长度的速度从点B向左运动,当点Q追上点P后立即返回向点B运动,点P继续向左运动,当点Q到达点B时,点P,Q同时停止运动.在此运动过程中,点P的运动时间为多少秒时,BP=2BQ(P,Q两点的运动速度始终保持不变).思路引领:(1)由已知条件得到AB=6,设点C表示的数是x,列方程即可得到结论;(2)①设点C表示的数是x,根据题意列方程即可得到结论;②Ⅰ、当点Q没追上点P时,设点P的运动时间为t秒时,BP=2BQ,Ⅱ、设点P运动x秒时,点Q追上点P,列方程得到x=10,当点Q追上点P后,设点P再运动t秒时,BP=2BQ,根据题意列方程即可得到结论.解:(1)∵点A,B表示的数分别为﹣2,4,∴AB=6,设点C表示的数是x,∴AC=|﹣2﹣x|,∵AC=13 AB,∴|﹣2﹣x|=13×6,解得:x=﹣4或x=0,∴点C表示的数是﹣4或0;故答案为:﹣4或0;。

2020年人教版七年级数学上册《线段的计算》同步测试(含答案)

2020年人教版七年级数学上册《线段的计算》同步测试(含答案)

人教版七年级数学上册《线段的计算》同步测试一、选择题1.下列各图分别是直线AB,线段MN,射线DC,其中所给的两条线有交点的是( )2.如图,AB=18,点M是AB的中点,点N将AB分成MN:NB=2:1,则AN的长度是___A.12B.14C.15D.163.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3B.2C.3或5D.2或64.如图,从A地到B地有①②③三条路可以走,每条路长分别为l、m、n,则()A.l>m>nB.l=m>nC.m<n=lD.l>n>m5.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法()A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )A.3B.4C.5D.67.下列生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有( )①用两颗钉子就可以把木条固定在墙上;②植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上;③从A到B架设电线,总是尽可能沿线段AB架设;④把弯曲的公路改直,就能缩短路程.A.①② B.①③ C.②④ D.③④8.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm或22cmD.4cm或44cm9.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.010.如图,B是线段AD的中点,C是BD上一点,则下列结论中错误的是( )A.BC=AB-CDB.BC=AD-CDC.BC=(AD+CD)D.BC=AC-BD11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是()A.8 B.9 C.8或9 D.无法确定12.如图,在数轴上有A、B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2 B.-1 C,0 D,2二、填空题13.如图,已知C点分线段AB为5:3,D点分线段AB为3:5,CD长为10cm,则AB的长为________cm.14.往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.15.已知线段AB=7 cm,在直线AB上画线段BC,使它等于2 cm,则线段AC=__________cm.16.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K 是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB= ,(用含x的代数式表示)=60..点是线段的中点.= ..17.如图,该图中不同的线段共有_______条.18.直线上的点有____个,射线上的点有____个,线段上的点有____个.三、解答题19.如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.20.往返于甲、乙两地的客车,中途停靠三个车站,每两站间的票价都不同).(1)有多少种不同的票价?(2)要准备多少种车票?21.如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.22.如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.23.如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.24.如图,AB=30cm,点P从点A出发,沿AB以3cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以5cm/s的速度匀速向终点A运动,设运动时间为t.(1)填空:PA= cm;BQ= cm(用含t的代数式表示);(2)当P、Q两点相遇时,求t的值;(3)直接写出P、Q两点相距6cm时,t的值为 .25.如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.26.如图,直线l上有A、B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)OA= cm,OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为ts.当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP-OQ=4;②当点P经过点O时,动点M从点0出发,以3c m/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?参考答案1.答案为:A.2.C3.D4.C5.答案为:A6.B7.D8.答案为:C;9.答案为:A.10.答案为:C.11.C12.B13.答案为:4014.答案为:15,30.15.答案为:5或9;16. 答案为:BD=4x;3x+4x+5x;x=5;CD=10;35;17. 答案为:10;18.答案为:无数,无数,无数.19.解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.20.解:(1)有4+3+2+1=10(种)不同的票价.(2)车票有10×2=20(种).21.解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.22.解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.23.解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm24.解:(1)3t;5t;(2)3t+5t=30,t=3.75;(3)相遇前相距6个单位:5t+3t+6=30,t=3;相遇后相距6个单位:5t-3t+6=30,t=4.5;25.解:26.。

人教版七年级数学上册 4.2《直线、射线、线段》 一课一练 (含答案)

人教版七年级数学上册   4.2《直线、射线、线段》  一课一练 (含答案)

4.2《直线、射线、线段》习题一、选择题1.下列说法中,正确的是( ) A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使BC=ABD .画直线AB=3cm2.下列说法正确的是( )A .经过三点中的每两个,共可以画三条直线B .射线AP 和射线PA 是同一条射线C .联结两点的线段,叫做这两点间的距离D .两条直线相交,只有一个交点 3.下列画图的画法语句正确的是( ) A .画直线5MN =厘米B .画射线4OA =厘米C .在射线OA 上截取2AB =厘米D .延长线段AB 到点C ,使BC AB = 4.根据下图,下列说法中不正确的是( )A .图①中直线l 经过点AB .图②中直线a ,b 相交于点AC .图③中点C 在线段AB 上D .图④中射线CD 与线段AB 有公共点5.A 、B 、C 是平面内任意三点、经过任意两点画直线,可以画出的直线有( ) A .1条B .3条C .1条或3条D .2条或3条6.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①把笔尖看成一个点,当这个点运动时便得到一条线; ②把弯曲的公路改直,就能缩短路程;③植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上. A .①B .②C .③D .②③8.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-ABD .AD=(CD+AB) 9.如图,点C 在线段AB 上,点E 是AC 中点,点D 是BC 中点.若ED =6,则线段AB 的长为( )A .6B .9C .12D .1810.已知线段 AB ,延长 AB 到 C ,使 BC =2AB ,又延长 BA 到 D ,使DA= AB ,那么( )A .DA =BCB .DC =AB C .BD=AB D .BD=BC 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A .40个B .45个C .50个D .55个12.数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A .17个或18个 B .17个或19个 C .18个或19个 D .18个或20个13.已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有()12121212124334A .1个B .2个C .3个D .4个14.如图,数轴上的点和点分别表示0和10,点是线段上一动点.点沿以每秒2个单位的速度往返运动1次,是线段的中点,设点运动时间为秒(不超过10秒).若点在运动过程中,当时,则运动时间的值为( )A .秒或秒B .秒或秒或或秒 C .3秒或7秒 D .3秒或或7秒或秒二、填空题15.如图所示,建筑工人砌墙时,经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理_____________.16.将线段移到线段,使端点与重合,线段与叠合,如果点落在的延长线上,那么______.(填“”、“”或“”).17.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =(AC +AF ),②BE =AF ,③BE =(AF ﹣CD ),④BC =(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).18.点分线段为两部分,点分线段为两部分,已知,则的长为_______. 三、解答题 19.作图题(1)已知如图,平面上四点A 、B 、C 、D , ①画直线AD ;②画射线BC ,与AD 相交于O ;O A P OA P O A O →→B OA P t t P 2PB =t 32723272132172132172AB CD A C AB CD B CD AB CD ><=121212121P AB 5:72P AB 5:111210cm PP =AB cm③连接AC、BD相交于点F .(2)如图,已知线段a,b,用尺规作一条线段,使它等于2a-b .(不要求写作法,保留作图痕迹)20.小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系.如图是他在探究时画出的5个图形.(1)根据图完成表格:之间的数量关系是;(3)计算:已知一个平面图形有24条线段,被分成9个区域,则这个平面图形的顶点有个.21.如图:(1)图中共有几条直线?请表示出来.(2)图中共有几条线段?写出以点B 为端点的所有线段.22.如图所示,A 、B 、C 三棵树在同一直线上,量得树A 与树B 的距离为4m ,树B 与树C 的距离为3m ,小亮正好在A 、C 两树的正中间O 处,请你计算一下小亮距离树B 多远?23.如图,点在线段上,点分别是的中点. (1)若,求线段MN 的长;(2)若为线段上任一点,满足,其它条件不变,你能求出的长度吗?请说明理由.(3)若在线段的延长线上,且满足分别为 AC 、BC 的中点,你能求出的长度吗?请画出图形,写出你的结论,并说明理由.24.如图所示,把一根细线绳对折成两条重合的线段,点在线段上,且.C AB ,M N AC BC 、9,6AC cm CB cm ==C AB AC CB acm +=MN C AB ,,AC BC bcm M N -=MN AB P AB :2:3AP BP=(l)若细线绳的长度是,求图中线段的长;(2)从点处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为,求原来细线绳的长.25.如图,点在线段上,是线段的中点.(1)在线段上,求作点,使. (要求:尺规作图,不写作法保留作图痕迹) (2)在(1)的条件下,, ①若,求的长;②若点在线段上,且,请你判断点是哪条线段的中点,并说明理由.26.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.100cm AP P 60cm C AB OBC CO E 2CE AC =12AB =2BO EO =AC D BO 2912OD AC =-E答案一、选择题1.C.2.D.3.D.4.C.5.C.6.A.7.C.8.D.9.C.10.D11.B 12.C13.C14.B二、填空题15.两点确定一条直线16.>.17.①③④18.96.三、解答题19.解:(1)①②③作图如图所示:(2)依据分析,作图,如图所示:则线段OC=2a-b,20.(1)观察图形可知:平面图形(1)中顶点数A为4平面图形(2)中区域数B为4平面图形(3)中线段数C为15故答案为4、4、15;(2)由题(1)得到的结果,观察表格数据可知:+-=平面图形(1)中顶点数、区域数、线段数满足:4361平面图形(2)中顶点数、区域数、线段数满足: 平面图形(3)中顶点数、区域数、线段数满足:猜想:一个平面图形中顶点数A ,区域数B ,线段数C 之间的数量关系为 故答案为:;(3)已知一个平面图形有24条线段,被分成9个区域, 即,代入中 解得:则这个平面图形的顶点有16个 故答案为16.21.解:(1)图中共有4条直线;直线AB 直线AC 直线AD 直线BF ; (2)图中共有13条线段;其中以点B 为端点的线段有BA 、线段BE 、线段BF 、线段BC 、线段BD . 22.AC =AB +BC =7.设A ,C 两点的中点为O ,即AO =AC =3.5,则OB =AB ﹣AO =4﹣3.5=0.5.答:小亮与树B 的距离为0.5m .23.解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=AC=4.5cm ,CN=BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm . (2)MN 的长度等于a , 根据图形和题意可得:MN=MC+CN=AC+BC=(AC+BC)=a ;(3)MN 的长度等于b , 5481+-=106151+-=1A B C +-=1A B C +-=24,9C B ==1A B C +-=16A =121212121212121212根据图形和题意可得: MN=MC-NC=AC-BC=(AC-BC)=b .24.解:(1)由题意得,所以图中线段的长为.(2)如图,当点A 为对折点时,最长的一段为PAP 段,,所以细线长为;如图,当点B 为对折点时,最长的一段为PBP 段,,所以细线长为,综合上述,原来细线绳的长为或. 25.(1)如图121212121100502AB cm =⨯=:2:3,AP BP AP BP AB =+=22023ABAP cm ∴=⨯=+AP 20cm 260,30AP cm AP cm ∴=∴=:2:3AP BP =303452BP cm ∴=⨯=304575AB AP BP cm ∴=+=+=2275150AB cm =⨯=260,30BP cm BP cm ∴=∴=:2:3AP BP =302203AP cm ∴=⨯=203050AB AP BP cm ∴=+=+=2250100AB cm =⨯=150cm 100cm(2)①∵是线段的中点 ∴∵, ∴ ∴ ∴ ∴ ∴ ②E 是线段CD 的中点,理由如下:∵ ∴ ∵ ∴ 即 ∵∴2()OD CE CE OE CE OE =-+=- ∴ 即∴E 是线段CD 的中点26.解:(1)设经过秒C 、D 相遇, 则有,, 解得:; 答:经过秒C 、D 相遇;O BC OB OC =2BO EO =2CE AC =22EO AC OE =+2EO AC =4OB OC AC ==912AB AC ==43AC=2912OD AC =-962OD AC =-12AB =9122OD AC AC OC =--4OD AC OC =-2CE AC =OD OE CE +=ED CE =x 23=14x x +14=5x 145(2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间, ∴,; ②当点E 运动到AB 上且在点O 右侧时,点E 运动时间, ∴,.1421319CD cm =-⨯-⨯=1424346CD cm =-⨯-⨯=18030 2.560t -==6 1.592.55m -==8 1.5192.55n +==36030 5.560t -==6 1.5155.511m +==8 1.5135.511n -==。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。

人教版七年级上册同步强化训练:线段长短的计算(含答案)

人教版七年级上册同步强化训练:线段长短的计算(含答案)

4.2线段长短的计算一.选择题1.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BC C.CD=AB﹣BD D.CD=AD﹣BC 2.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB 3.如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定4.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BDC.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm7.已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上8.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7B.3C.3或7D.以上都不对9.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 二.填空题10.如图,点C在线段AB上,E是AC中点,D是BC中点,若ED=6,则线段AB的长为.11.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.12.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.13.已知线段AB,延长AB至点C,使BC=AB,反向延长AB至点D,使AD=AB,若AB=12cm,则CD=cm.14.线段AB上有P、Q两点,AB=26,AP=14,PQ=11,那么BQ=.三.解答题15.如图,A、B、C三点在一条直线上,根据右边的图形填空:(1)AC=++;(2)AB=AC﹣;(3)DB+BC=﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.16.如图,点M为AB中点,BN=AN,MB=3cm,求AB和MN的长.17.如图,已知线段AB上有一点C,点D、点E分别为AC、AB的中点,如果AB=10,BC=3,求线段DE的长.18.如图已知点C为AB上一点,AC=18cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.20.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案一.选择题1.解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选:B.2.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.3.解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:A.4.解:A、AD﹣CD=AB+BC,正确,B、AC﹣BC=AD﹣BD,正确;C、AC﹣BC=AB,而AC+BD≠AB,故本选项错误;D、AD﹣AC=BD﹣BC,正确.故选:C.5.解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.故选:B.6.解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.7.解:如图:∵P A+PB=AB,∴点P在线段AB上.故选:B.8.解:当点C在线段AB上时:AC=5﹣2=3;当C在AB的延长线上时:AC=5+2=7.故选:C.9.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.二.填空题10.解:∵E是AC中点,D是BC中点,AC+BC=AB∴ED=AB∴AB=12.∴线段AB的长为12.11.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.12.解:∵点C为AB中点,∴BC=AC=5cm,∴CD=BC﹣BD=3cm.13.解:如图∵AB=12cm,∴BC=AB=8cm,AD=AB=3cm,∴CD=DA+AB+BC=3+12+8=23cm.14.解:本题有两种情形:(1)当点Q在线段AP上时,如图,BQ=BP+PQ=AB﹣AP+PQ=26﹣14+11=23;(2)当点Q在线段BP上时,如图,BQ=BP﹣PQ=AB﹣AP+PQ=26﹣14﹣11=1.故答案为:23或1.三.解答题15.解:(1)AC=AD+DB+BC;(2)AB=AC﹣BC;(3)DB+BC=AC﹣AD(4)∵D是AC的中点,AC=8,∴AD=DC=4,∵B是DC的中点,∴DB==2,∴AB=AD+DB,=4+2,=6(cm).∴线段AB的长为6cm.故答案为:AD,DB,BC;BC;AC.16.解:∵点M为AB中点,∴AB=2MB=6cm,∴AN+NB=6cm,∵BN=AN,∴2BN+NB=6cm∴NB=2cm∴MN=MB﹣NB=1cm.17.解:因为D是AC的中点,所以,因为点E是AB的中点,所以AE=AB,所以.因为AB=10,BC=3,所以AC=AB﹣BC=7.所以=.答:线段DE的长为.18.解:∵AC=18cm,CB=AC,∴BC=×18=12cm,则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=AC=9cm,AE=AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm.19.解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.20.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。

人教版数学七年级上册 第4章 4.2---4.3测试题含答案

人教版数学七年级上册 第4章 4.2---4.3测试题含答案

4.2直线、射线、线段一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2 B.3 C.4 D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6 B.7 C.8 D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB4.3 角学校:___________姓名:___________班级:___________分数:___________一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

七年级数学上册-线段和角精选练习题

七年级数学上册-线段和角精选练习题

七年级数学上册-线段和角精选练习题线段和角精选练习题一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AO B=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE()A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 6 个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135 度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC 可求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE ,∠AOC的余角是∠BOC ;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。

新人教七年级数学上册线段的计算测试题

新人教七年级数学上册线段的计算测试题

新人教七年级数学上册线段的计算测试题姓名:分数:一.选择题(共12小题,每题3分,共36分)1.(5分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离2.(5分)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5ﻩD.CN=23.(5分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BCﻩB.AC+BC=ABﻩC.AB=2ACﻩD.BC=AB4.(5分)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个ﻩB.2个ﻩC.3个ﻩD.4个5.(5分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于() A.11cmﻩB.5cmC.11cm或5cmD.8cm或11cm6.(5分)已知线段AB和点P,如果PA+PB=AB,那么( )A.点P为AB中点ﻩB.点P在线段AB上C.点P在线段AB外ﻩD.点P在线段AB的延长线上7.(5分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣bﻩC.a+bﻩD.a﹣b8.(5分)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5eB.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5eﻩD.10a+16b+18c+16d+10e9.(5分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC10.(5分)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cmﻩB.70cmC.75cm D.80cm11.(5分)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上ﻩB.线段AB的反向延长线上C.直线l上ﻩD.线段AB上12.(5分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为( )A.10cm B.16cmﻩC.20cmﻩD.3cm二.填空题(共8小题,每题3分,共24分)13.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.14.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.15.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有.(填序号)16.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.17.如图,图中有条直线,有条射线,有条线段.18.如图,A,B,C,D是一直线上的四点,则+=AD﹣AB,AB+CD= ﹣.19.已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于千米.20.如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 555072 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在楼.三.解答题(共7小题)21.(6分)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.22.(7分)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.23.(8分)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.24.(10分)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.(9分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.26.(9分)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.27.(12分)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.新人教七年级数学上册线段的计算测试题参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2016春•威海期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选B.【点评】本题主要考点有:线段的定义及性质,两点间的距离,直线的定义.根据各知识点的定义及性质进行判断.2.(5分)(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12ﻩB.BC=4C.AM=5ﻩD.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.(5分)(2015秋•高新区期末)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=ABﻩC.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.4.(5分)(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个 B.2个ﻩC.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.(5分)(2015秋•太康县期末)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于( )A.11cmﻩB.5cm C.11cm或5cm D.8cm或11cm【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.6.(5分)(2015秋•平武县期末)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点ﻩB.点P在线段AB上C.点P在线段AB外ﻩD.点P在线段AB的延长线上【分析】根据线段的和、差定义进行分析.【解答】解:如图:∵PA+PB=AB,∴点P在线段AB上.故选B.【点评】此题考查了线段的和的概念.7.(5分)(2015秋•嘉祥县期末)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)ﻩB.2a﹣b C.a+bﻩD.a﹣b【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.(5分)(2015•合肥校级自主招生)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5eﻩD.10a+16b+18c+16d+10e【分析】首先求出以A为端点线段的长度,类比依次求出B、C、D、E为端点的线段的长度,然后求出这些线段的长度总和.【解答】解:以A为端点线段有AB、AC、AD、AE、AF,这些线段长度之和为5a+4b+3c+2d+e,以B为端点线段有BC、BD、BE、BF,这些线段长度之和为4b+3c+2d+e,以C为端点线段有CD、CE、CF,这些线段长度之和为3c+2d+e,以D为端点线段有DE、DF,这些线段长度之和为2d+e,以E为端点线段有EF,线段的长度为e,故这些线段的长度之和为5a+8b+9c+8d+5e,故选A.【点评】本题主要考查比较线段的长短的知识点,解答本题的关键是求出A,B,C,D,E,F 为端点的所有线段的条数,本题不是很难.9.(5分)(2014秋•温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.【点评】考查了线段的延长线的概念,同时注意线段公理:两点之间,线段最短.10.(5分)(2014秋•林甸县期末)点M、N都在线段AB上,且M分AB为2:3两部分,N 分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cmﻩB.70cmﻩC.75cm D.80cm【分析】由题意可知,M分AB为2:3两部分,则AM为AB,N分AB为3:4两部分,则AN为AB,MN=2cm,故MN=AN﹣AM,从而求得AB的值.【解答】解:如图所示,假设AB=a,则AM=a,AN=a,∵MN=a﹣a=2,∴a=70.故选B.【点评】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.11.(5分)(2014秋•成县期末)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在( )A.线段AB的延长线上 B.线段AB的反向延长线上C.直线l上ﻩD.线段AB上【分析】分类讨论:当P点在线段AB的延长线上,则PA+PB=AB+2PB;当P点在线段A B的反向延长线上,则PA+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,然后比较线段的大小即可得到结论.【解答】解:当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.12.(5分)(2014秋•阜南县校级期末)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cmC.20cmD.3cm【分析】结合图形表示出PM与AB的关系为PM=AB﹣AB,再代入数据求解即可. 【解答】解:如图,∵M是AB的中点,∴AM=AB,∴PM=AM﹣AP=AB﹣AB=AB,∵PM=2cm,∴AB=10PM=20cm.故选C.【点评】作出图形,整理出AB与PM的关系是解本题的关键.二.填空题(共8小题)13.(2015秋•甘谷县期末)如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于11.【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【点评】本题考点:线段中点的性质,根据题干图形得出各线段之间的关系,然后结合已知条件即可求出AB的长度.14.(2015秋•邢台期末)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm .【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(2015秋•淮安期末)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.16.(2016春•通化校级月考)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.17.(2016•綦江区校级模拟)如图,图中有1 条直线,有9条射线,有12 条线段,以E 为顶点的角有4个.【分析】直线:过两点有且只有一条直线(两点确定一条直线),无端点.射线:直线上的一点,可向一方无限延伸,有一个端点.线段:直线的一部分,有限长,有2个端点再根据角的定义数出角的个数即可求解.【解答】解:如图,图中有直线AC,共1条直线,有A为端点的2条射线,B为端点的1条射线,C为端点的2条射线,E为端点的3条射线,F为端点的1条射线共2+1+2+3+1=9条射线,有线段AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,DF,EF,共12条线段,以E为顶点的角有∠AEB,∠AEF,∠BEC,∠CEF,共4个.故答案为:1,9,12,4.【点评】本题主要考查直线、线段、射线的知识点,还考查角的概念的知识点,不是很难,不过做题要仔细.18.(2016秋•高密市校级月考)如图,A,B,C,D是一直线上的四点,则BC+ CD=AD﹣AB,AB+CD= AD﹣BC .【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC,CD,AD,BC.【点评】题考查了两点间距离的计算,本题属基础题,熟练求线段长度是解题关键.19.(2016春•浦东新区期末)已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于5.9或1.1千米.【分析】根据线段的和差,可得答案.【解答】解:A在线段BC上,由线段和差,得AC=BC﹣AB=3.5﹣2.4=1.1km,A点线段BC的反向延长线上,由线段和差,得AC=AB+BC=2.4+3.4=5.9km,故答案为:5.9或1.1.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.20.(2013秋•惠山区校级月考)如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号A B C D E桶装水数量/桶38 5550 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在D 楼.【分析】根据图形近似设AB=a,BC=2a,CD=a,DE=2a,再根据各楼所需的数量和距离分别计算出当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=477a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=797a,于是可得判断桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.【解答】解:设AB=a,BC=2a,CD=a,DE=2a,当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=55a+50(a+2a)+72(a+2a+a)+85(a+2a+a+2a)=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=38a+50×2a+72(a+2a)+85(2a+a+2a)=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=38(a+2a)+55×2a+72×a+85(a+2a)=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=38(a+2a+a)+55×(a+2a)+50a+85×2a=537a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=55(2a+a+2a)+50(a+2a)+72×2a+38(a+2a+a+2a)=797a,所以桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.故答案为D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.三.解答题(共7小题)21.(2015秋•连州市期末)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.22.(2013秋•金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.23.(2016春•郴州期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为A C、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【分析】(1)根据M是AC的中点得MC=3cm,由MB=10cm可得BC=7cm,再根据N为BC 的中点可得CN的长,继而可得答案;(2)由M是AC中点,N是BC中点可得MC=AC、NC=BC,再根据MN=MC﹣NC即可得.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).【点评】本题主要考查两点间的距离,熟练掌握中点的性质是解题的关键.24.(2015秋•祁阳县期末)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.【分析】根据题目已知条件结合图形可知,要求DE的长可以用AC长减去AD长再减去EC长或者用DB长加上BE长.【解答】解:由于BE=AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD=DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.25.(2015秋•偃师市期末)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.【点评】利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.26.(2013秋•天柱县期末)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.【分析】根据题意,设三条线段的长分别为2k、3k、4k,再根据“M是AD的中点”得到MD等于4.5k,所以MC的长是0.5k,代入即可求出x的值,再求线段AD的长也就容易了.【解答】解:如图,根据题意,设AB、BC、CD的长分别为2k、3k、4k,∴AD=2k+3k+4k=9k,∵M是AD的中点,∴MD=AD=4.5k,∴MC=MD﹣CD=4.5k﹣4k=0.5k=2,解得k=4,∴AD=9k=9×4=36.【点评】本题主要考查根据设“k”法的思想,根据比例关系利用设“k”法是中学阶段重要的方法,需要熟练掌握.27.(2014秋•靖江市期末)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了. (3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP =60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.。

人教版七年级数学上册直线、射线、线段测试题

人教版七年级数学上册直线、射线、线段测试题

人教版7年级数学考试题测试题人教版初中数学第四章几何图形初步4. 2直线、射线、线段一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个2.已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm3.如图,C、D、E分别为线段AD,CE,DB的中点,那么图中与线段AC相等的线段有A.2条B.3条C.4条D.5条4.下列说法中错误的是A.A、B两点间的距离为5kmB.A、B两点间的距离是线段AB的长度C.A、B两点间的距离就是线段ABD.线段AB的中点M到A、B的距离相等5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条二、填空题:请将答案填在题中横线上.6.要在墙上钉一根木条,使它不能转动,则至少需要2个钉子,主要依据是__________.7.直线、射线、线段没有粗细之分.直线__________端点,向两边无限延伸;射线只有一个端点,向一边无限延伸;线段有两个端点,所以线段可以__________.8.如图.(1)AB=AC+__________=AD+__________=__________+CD+__________;(2)AC=__________–CD=AB–__________–__________;(3)AD+BC=AB+__________.(4)若AC=BD,则__________=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,图中有几条射线?其中可表示的是哪几条?10.已知A、M、N、B为一直线上顺次4个点,若AM∶MN=5∶2,NB–AM=12,AB=24,求BM的长.11.往返于A、B两地的客车,途中要停靠C、D两个车站,如图所示.(1)需要设定几种不同的票价?(2)需要准备多少种车票?附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。

人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)

人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)一.选择题.1. 如图,线段AB=9,C,D,E分别为线段AB(端点A,B除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是 ( )A.CD=3B.DE=2C.CE=5D.EB=52. 如图,在同一直线上顺次有三点A,B,C,点M是线段AC的中点,点N是线段BC 的中点,若想求出MN的长度,那么只需知道条件 ( )A.AM=5B.AB=12C.BC=4=23. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42°或98°D.82°4. 如图,点C在线段AB上,点D是AC的中点,如果CB=2CD, AB=20 cm,那么BC 的长为 ( )A.5 cmB.8 cmC.10 cmD.12 cm5. 如图,已知点M是直线AB上一点,∠AMC=52°48′, ∠BMD=72°19′,则∠CMD 等于( )A.49°07′B.54°53′C.55°53′D.53°7′6.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60 cm,若AP=2PB,则这条绳子的原长为 ( )3A.100 cmB.150 cmC.100 cm或150 cmD.120 cm或150 cm7. 已知一个角的补角比这个角的余角的3倍大20°,则这个角的度数是( )A.45°B.55°C.65°D.50°8.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,则∠DAB′的度数是( )A.40°B.60°C.75°D.80°二.填空题.9. 如图,A,B,C,D是直线上的顺次四点,M,N分别是AB,CD的中点,且MN=6cm,BC=4 cm,则AD= .10. 如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=1∠AOD,则∠BOC7的度数为_ __.11. 如图,线段AB=30,C是AB的中点,D是AB的延长线上的一点,且CB∶BD=3∶2,则CD的长为_______.12.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是 .13.若∠1+∠2=90°,∠3+∠2=90°,∠1=46°,则∠3=__ __°.14.一个锐角的补角等于这个锐角的余角的3倍,这个锐角是 .15. 如图:∠AOE=90°,OB,OD分别平分∠AOC,∠COE,则∠BOD=_ __,图中不大于90°的所有角的度数之和为__ __.16.一艘轮船行驶在B处,同时测得小岛A,C的方向分别为北偏西30°和西北方向,则∠ABC的度数是_________.三.解答题.17. 如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC的中点D.(2)在(1)的条件下,如果AB=4,求线段BD的长度.18. 计算:(1)48°39′+67°31′-21°17′.(2)23°53′×3-107°43′÷5.19. 如图,已知在同一平面内∠AOB=90°,∠AOC=α(α<90°),OD平分∠BOC,OE 平分∠AOC.(1)若α=60°即∠AOC=60°时,则∠BOC=______,∠DOE =______.(2)若α取任意值,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.20. 如图,C,D是线段AB上两点,已知AC∶CD∶DB=1∶2∶3,M,N分别为AC,DB的中点,且MN=12 cm,求线段AB,CD的长.21.如图,点A,O,B在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数.(2)写出图中所有互为余角的角.(3)写出图中所有互为补角的角.(4)∠AOD=51°17′,求它的余角和补角的度数.22.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+BC=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.23.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC∶∠MOC=2∶1,求∠AOC的度数.(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB的平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.。

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)一、选择题1. 已知线段AB的长度为5cm,线段BC的长度为9cm,求线段AC的长度是多少?A) 4cmB) 6cmC) 10cmD) 14cm答案: B) 6cm2. 已知线段DE的长度为7cm,线段EF的长度为3cm,求线段DF的长度是多少?A) 4cmB) 7cmC) 10cmD) 14cm答案: A) 4cm3. 正方形ABCD的一条边长为10cm,求它的对角线的长度是多少?A) 5cmB) 10cmC) 14cmD) 20cm答案: C) 14cm二、填空题1. 直线段AB的长度为15cm,点P在AB上,且AP与PB的比例为2:3,则AP的长度为__ cm。

答案: 6 cm2. 直线段CD的长度为12cm,点P在CD上,且CP与PD的比例为1:4,则PD的长度为__ cm。

答案: 9 cm三、解答题1. 三角形ABC中,线段AB的长度为8cm,线段AC的长度为10cm,求线段BC的长度。

答案: 使用勾股定理计算,BC = √(AB² + AC²) = √(8² + 10²) = √(64 + 100) = √(164) ≈ 12.81cm2. 线段EF的长度为15cm,点P在EF上,且PE与PF的比例为3:4,求PE和PF的长度。

答案: 根据比例关系,PE = (3/7) * EF = (3/7) * 15 = 6.43cm,PF = (4/7) * EF = (4/7) * 15 = 8.57cm以上为新人教版七年级数学上册专题训练中关于线段的计算的题目及答案。

希望能够帮助到你!。

专题08 线段的有关计算(解析版)-2020-2021学年七年级数学上册期末综合复习专题提优训练

专题08 线段的有关计算(解析版)-2020-2021学年七年级数学上册期末综合复习专题提优训练

2020-2021学年七年级数学上册期末综合复习专题提优训练(人教版)专题08 线段的有关计算【典型例题】1.(2019·武汉七一华源中学七年级月考)如图,已知线段AB ,点C 在线段AB 的延长线上,且52AC AB =,点D 在线段AB 的反向延长线上,且23AD BD =. (1)请画出图形,并求DABC的值; (2)若线段AB =2,点R 在直线AB 上,线段CR =4,请求出线段DR 的长.【答案】解:(1)如图,设3,BD m =23AD BD =, 2,AD m ∴=32,AB BD AD m m m ∴=-=-=52AC AB =, 5,2AC m ∴=53,22BC AC AB m m m ∴=-=-= 232422.32332AD m BC m ∴==÷=⨯=(2)如图,当R 在C 的左边时,由(1)得:AB =2 m24,AD m ∴==5=5,2AC m =4CR =,541AR AC CR ∴=-=-=, 415DR AR AD ∴=+=+=,当R 在C 的右边时,如图,45413.DR AD AC CR =++=++=综上:DR 的长为:5或13.【点睛】本题考查的是线段的和差,简单的作图,掌握线段的和差关系是解题的关键.【专题训练】一、选择题1.(2020·甘州中学七年级月考)点A,B,P在同一直线上,下列说法正确的是()A.若AB=2P A,则P是AB的中点B.若AB=PB,则P是AB的中点C.若AB=2PB,则P是AB的中点D.若AB=2P A=2PB,则P是AB的中点【答案】D2.(2020·重庆九十五中佳兆业中学七年级期中)已知线段AB=10,C是AB上一点,D、E分别是AC、BC的中点,则线段DE的长为()A.4B.5C.8D.6【答案】B3.(2020·辽宁)已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()A.3B.1.5C.1.2D.1【答案】B4.(2020·明光市明湖学校七年级期末)如图,长度为12的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为()A.2B.5C.6D.8【答案】D5.(2019·浙江七年级月考)如图,在线段AB上有C、D两点,CD长度为1,AB长为整数,则以A、B、C、D为端点的所有线段长度和不可能为()A.21B.22C.25D.31【答案】A6.(2019·武汉七一华源中学七年级月考)如图:点C是线段AB上的点,若AC=3cm,AB=15cm,点D为线段CB的中点,则线段CD的长为()A.3cm B.6cm C.9cm D.7.5cm【答案】B7.(2020·全国七年级课时练习)如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.1【答案】C二、填空题8.(2020·湖北七年级期中)在数轴上,点B表示-1,点C表示5,若点B为线段AC的中点,则点A表示的数是_____.【答案】-79.(2020·甘州中学七年级月考)线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是_____.【答案】810.(2019·陕西师范大学附属中学分校七年级月考)已知在一直线上顺次有A、B、C三个点,且线段AB=8cm,BC=6cm BC ,点M是线段AC的中点,则线段AM的长为___cm.6cm【答案】711.(2020·吉林农安县第三中学、农安三中七年级月考)如图,C是线段BD的中点,AD=3,AC=7,则线段AB的长等于________.【答案】1112.(2019·武汉七一华源中学七年级月考)已知线段AB的长度为12,点P为线段AB的四等分点,则线段AP的长为_______.【答案】3,6,913.(2020·辽宁)已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为_______.【答案】4或7或1014.(2018·浙江七年级月考)如图,将一根绳子对折以后用线段AB表示,点P是AB的四等分点,现从P处将绳子剪断,剪断后的各段绳子中的一段长为30cm,则这条绳子的原长为_____cm.【答案】40或80或120或240.三、解答题15.(2020·吉林农安县第三中学、农安三中七年级月考)如图,D是AB的中点,E是BC的中点,13cm6BE AC==,求DE的长.【答案】∵13cm6BE AC==∴AC=6BE=18cm ∵E是BC的中点∴BC =2BE =6cm∴AB =AC -BC =12cm又∵AB =2AD∴BD =6cm∴DE =DB +BE =6+3=9cm【点睛】本题考查了两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.16.(2020·辽宁)如图,已知点C ,D 在线段AB 上,且::2:5:3AC CD DB =,AC =4 cm ,若点M 是线段AD 的中点,求线段BM 的长.【答案】解:设2AC x =,5CD x =,3DB x =由题意:24=x , 解得2x=,224AC cm ∴=⨯=,5210CD cm =⨯=,326DB cm =⨯=, 41014AD AC CD cm ∴=+=+=.M 是线段AD 中点, 1114722DM AD cm ∴==⨯=. 6713BM BD DM cm ∴=+=+=.【点睛】本题考查线段的中点,线段的和差,掌握中点的性质和线段的和差关系为解题关键.17.(2019·西安交通大学附属中学雁塔校区七年级月考)如图,已知线段AB=20cm,C是线段AB延长线上一点,点D是BC 中点.当AC=6CD时,求AC的长.【答案】解:∵点D是BC的中点,∴BC=2CD,∵AC=6CD,∴AB=4CD,∵AB=20cm,∴CD=5cm,∴AC=30cm.【点睛】本题考查的是两点间的距离,熟知中点的定义是解答此题的关键.18.(2020·甘肃临泽二中七年级月考)如图所示,已知D是AB上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.【答案】解:∵M、N分别是AD、DB的中点,AB=16∴MD=12AD,DN=12BD,AD+BD=AB=16.∴MN=MD+DN=12(AD+BD)=8.【点睛】此题主要考查与线段中点有关的线段计算问题,解题的关键是学生的读图能力及建立线段之间的数量关系.19.(2020·甘州中学七年级月考)点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.【答案】解:当如图1所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB﹣12BC=12(AB﹣BC)=12AC=12,解得AC=24;当如图2所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB+12BC=12(AB+BC)=12AC=12,解得AC=24;当如图3所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12BC-12AB=12(BC-AB)=12AC=12,解得AC=24;综上所述:AC的长为24故AC 的长为24.【点睛】本题主要考查两点之间的距离,熟知各线段之间的和差倍数关系是解题的关键.20.(2019·浙江七年级月考)线段AB 和CD 在同一直线上,M ,N 分别是线段AB ,CD 的中点,已知AB =6 cm ,CD =8 cm .(1)当A ,C 两点重合时,如图1,求MN 的长;(2)当C 点在线段AB 上时,如图2,如果线段AB ,CD 的公共部分CB =2 cm ,求MN 的长;(3)在(2)的情况下,MN 与AB ,CD ,BC 有怎样的数量关系?(直接写出结果)【答案】解:(1)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4AN CN cm ==, 1MN AN AM cm ∴===;(2)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4DN cm =,线段AB ,CD 的公共部分2BC cm =,68212AD AB CD BC cm ∴=+-=+-=.故12345MN AD AM DN cm =--=--=;(3)M ,N 分别是线段AB ,CD 的中点,12AM AB ∴=,12DN CD =, AD AB CD BC ∴=+-,故11112222MN AD AM DN AB CD BC AM DN AB CD BC AB CD AB CD BC =--=+---=+---=+-. 【点睛】本题考查了线段中点的相关计算,利用线段中点的性质得出MC ,NC 的长是解题关键.。

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

专题28 和线段有关的计算1.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若11AB cm =,当点C 、D 运动了1s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =.(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求23MN AB的值.【解答】解:(1)当点C 、D 运动了1s 时,1CM cm =,3BD cm=11AB cm =Q ,1CM cm =,3BD cm=11137AC MD AB CM BD cm \+=--=--=;(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,13AM BM \=,故答案为:13;(3)当点N 在线段AB 上时,如图14BN AM AB \==,12MN AB \=,即2133MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,AN BN AB-=MN AB \=,\1MN AB=,即2233MN AB =.综上所述2133MN AB =或23.2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若18AB =,8DE =,线段DE 在线段AB 上移动,①如图1,当E 为BC 中点时,求AD 的长;②当点C 是线段DE 的三等分点时,求AD 的长;(2)若2AB DE =,线段DE 在直线上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =Q ,18AB =,6BC \=,12AC =,①E Q 为BC 中点,3CE \=,8DE =Q ,5CD \=,1257AD AC CD \=-=-=;②Q 点C 是线段DE 的三等分点,8DE =,18163CD \=,16201233AD AC CD \=-=-=;当点C 靠近点D 时,1833DC DE ==,8281233AD AC CD \=-=-=;(2)当点E 在线段BC 之间时,如图,设BC x =,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,\171714342x CD AB x ==;当点E 在点A 的左侧,如图,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,6.50.5 6.540.53AB BD AD x y x x x x x \=-=-+=-+=,\ 5.51136CD x AB x ==,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.另一解法:可设6AB =,则4AC =,2CB =,3DE =,以A 为原点,以AB 的方向为正方向建立数轴,则A 表示0,C 表示4,B 表示6,如图,设D 表示的数为x ,则E 表示3x +,可得||AD x =,|34||1|EC x x =+-=-,|36||3|BE x x =+-=-,|4|CD x =-,|||1|3|3|2AD EC x x BE x ++-==-,①当0x <或3x …时,上式可化为:1332x x x +-=-,解得7x =-,则|74|1166CD AB --==;②13x <…时,上式化为:1332x x x +-=-,解得:117x =,则11|4|177642CD AB -==;③01x <…时,上式化为:1332x x x +-=-,解得:73x =(舍去).综上所述CD AB 的值为1742或116.故答案为:1742或116.3.已知点C 在线段AB 上,2AC BC =,点D ,E 在直线AB 上,点D 在点E 的左侧.(1)若15AB =,6DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CF =,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,求CD BD的值.【解答】解:(1)2AC BC =Q ,15AB =,5BC \=,10AC =,①E Q 为BC 中点,2.5CE \=,6DE =Q ,3.5CD \=,10 3.5 6.5AD AC CD \=-=-=;②如图1,当点F 在点C 的右侧时,3CF =Q ,5BC =,13AF AC CF \=+=,11333AD AF \==;当点F 在点C 的左侧时,10AC =Q ,3CF =,7AF AC CF \=-=,37AF AD \==,73AD \=;综上所述,AD 的长为133或73;(2)当点E 在线段BC 之间时,如图3,设BC x =,则22AC BC x ==,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,313(0.5)14BD x x y x =-+=,\171714313114x CD BD x ==;当点E 在点A 的左侧,如图4,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,\ 5.5116.513CD x BD x ==,点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当是D 在A 右侧,E 在C 左侧时,如图5,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,12AD x y \=-,Q 32AD EC BE +=,\1322x y y x y -+=+,33x x y \=+(不合题意),当点E 在线段AC 上及点E 在点B 右侧时,无解,当D 在B 的右侧,其他情况不存在,舍去.综上所述CD BD 的值为1731或1113.4.已知:如图1,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 同时出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若4AM cm =,当点C 、D 运动了2s ,此时AC = 2cm ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC MD +的值;(3)若点C 、D 运动时,总有2MD AC =,则AM = (填空);(4)在(3)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【解答】解:(1)根据题意知,2CM cm =,4BD cm =,12AB cm =Q ,4AM cm =,8BM cm \=,2AC AM CM cm \=-=,4DM BM BD cm =-=,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2s 时,2CM cm =,4BD cm =,12246()AC MD AM CM BM BD AB CM BD cm \+=-+-=--=--=;(3)根据C 、D 的运动速度知:2BD MC =,2MD AC =Q ,2()BD MD MC AC \+=+,即2MB AM =,AM BM AB +=Q ,2AM AM AB \+=,143AM AB cm \==,故答案为:4cm ;(4)①当点N 在线段AB 上时,如图1,AN BN MN -=Q ,又AN AM MN -=Q ,4BN AM \==,12444MN AB AM BN \=--=--=,\41123MN AB ==;②当点N 在线段AB 的延长线上时,如图2,AN BN MN -=Q ,又AN BN AB -=Q ,12MN AB \==,\12112MN AB ==;综上所述13MN AB =或1.5.如图,已知P 是线段AB 上一点,23AP AB =,C ,D 两点从A ,P 同时出发,分别以每秒2厘米,每秒1厘米的速度沿AB 方向运动,当点D 到达终点B 时,点C 也停止运动,设AB a =(厘(1)用含a 和t 的代数式表示线段CP 的长度;(2)当5t =时,12CD AB =,求线段AB 的长;(3)当CB AC PC -=时,求PD AB 的值.【解答】解:(1)AB a =Q ,23AP AB =,23AP a \=,2AC t =Q ,223CP AP AC a t \=-=-;(2)12CD AB =Q ,1()2PC PD AP PB \+=+,223AP PC AB \==,\222(2)33a a t =-,当5t =时,解得30a =,30AB cm \=;(3)CB AC PC -=Q ,AC PB \=,23AP AB =Q ,13PB AB \=,2AC PC PB t \===,6AB t \=,PD t =Q ,\16PD AB =.6.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s(1)若10AB cm =,当点C 、D 运动了2s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB 的值.【解答】解:(1)当点C 、D 运动了2s 时,2CM cm =,6BD cm =10AB cm =Q ,2CM cm =,6BD cm=10262AC MD AB CM BD cm \+=--=--=.(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,故答案为:14.(3)当点N 在线段AB 上时,如图AN BN MN -=Q ,又AN AM MN -=Q 14BN AM AB \==,12MN AB \=,即12MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,又AN BN AB -=QMN AB \=,即1MN AB =.综上所述112MN AB =或7.如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点D 是折线A C B --的“折中点”,请解答以下问题:(1)已知AC m =,BC n =.当m n >时,点D 在线段 AC 上;当m n =时,点D 与 重合;当m n <时,点D 在线段 上;(2)若E 为线段AC 中点,4EC =,3CD =,求CB 的长度.【解答】解:(1)已知AC m =,BC n =.当m n >时,点D 在线段AC 上;当m n =时,点D 与C 重合;当m n <时,点D 在线段BC 上.故答案为:AC ,C ,BC ;(2)点D 在线段AC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,5AD AC CD \=-=,5BD AD ==Q ,532BC \=-=;点D 在线段BC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,11AD AC CD \=+=,11BD AD ==Q ,11314BC \=+=.8.如图,B 是线段AD 上一动点,沿A D A ®®以2/cm s 的速度往返运动1次,C 是线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010)t …….(1)当2t =时,①AB = 4 cm .②求线段CD 的长度.(2)①点B 沿点A D ®运动时,AB = cm ;②点B 沿点D A ®运动时,AB = cm .(用含t 的代数式表示AB 的长)(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化,若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)当2t =时,①224AB cm =´=;②1046BD AD AB cm =-=-=,由C 是线段BD 的中点,得116322CD BD cm ==´=;(2))①点B 沿点A D ®运动时,2AB tcm =;②点B 沿点D A ®运动时,202AB tcm =-;(3)在运动过程中,若AB 中点为E ,则EC 的长不变,由AB 中点为E ,C 是线段BD 的中点,得12BE AB =,12BC BD =.11()10522EC BE BC AB BD cm =+=+=´=.9.如图,点B 、C 在线段AD 上,23CD AB =+.(1)若点C 是线段AD 的中点,求BC AB -的值;(2)若14BC AD =,求BC AB -的值;(3)若线段AC 上有一点P (不与点B 重合),AP AC DP +=,求BP 的长.【解答】解:设AB x =,BC y =,则23CD x =+.(1)C Q 是AD 中点,AC CD \=,23x y x \+=+3y x \-=,即3BC AB -=.(2)14BC AD =Q ,即3AB CD BC +=,233x x y \++=,1y x \-=,即1BC AB -=.(3)设AP m =,AP AC DP +=Q ,23m x y x x y m \++=+++-,32m x \-=,即32BP m x =-=.10.如图,点B 、C 是线段AD 上的两点,点M 和点N 分别在线段AB 和线段CD 上.(1)当8AD =,6MN =,AM BM =,CN DN =时,BC = 4 ;(2)若AD a =,MN b=①当2AM BM =,2DN CN =时,求BC 的长度(用含a 和b 的代数式表示)②当AM nBM =,(DN nCN n =是正整数)时,直接写出BC = .(用含a 、b 、n 的代数式表示)【解答】解:(1)8AD =Q ,6MN =,862AM DN AD MN \+=-=-=,AM BM =Q ,CN DN =,224AB CD AM DN \+=+=,()844BC AD AB CD \=-+=-=,故答案为4.(2)①AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,2AM BM =Q ,2DN CN =,33()()22AB CD AM DN a b \+=+=-,331()()222BC AD AB CD a a b b a \=-+=--=-.②AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,AM nBM =Q ,DN nCN =,11()()n n AB CD AM DN a b n n++\+=+=-,111()()n n BC AD AB CD a a b b a n n n ++\=-+=--=-.故答案为11n b a n n+-.11.如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,2CD BD =,E 为线段AC 上一点,2CE AE=(1)若18AB =,21BC =,求DE 的长;(2)若AB a =,求DE 的长;(用含a 的代数式表示)(3)若图中所有线段的长度之和是线段AD 长度的7倍,则AD AC 【解答】解:(1)2CD BD =Q ,21BC =,173BD BC \==,2CE AE =Q ,18AB =,111()(1821)13333AE AC AB BC \==+=´+=,18135BE AB AE \=-=-=,5712DE BE BD \=+=+=;(2)2CD BD =Q ,13BD BC \=,2CE AE =Q ,AB a =,13AE AC \=,13BE AB AE AB AC \=-=-,11112()33333DE BE BD AB AC BC AB AC BC AB AB AB \=+=-+=--=-=,AB a =Q ,23DE a \=;(3)设22CD BD x ==,22CE AE y ==,则BD x =,AE y =,所有线段和43(23)223(23)222227(23)AE AB AD AC EB ED EC BD BC DC y y x x x y x x x x x x y y x x +++++++++=+-+++-+++++=+-+,2y x =,则23324AD y y x x y x x =+-+=-=,36AC y x ==,\23AD AC =,故答案为:23.12.如图,C 是线段AB 上一点,16AB cm =,6BC cm =.(1)AC = 10 cm ;(2)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 以1/cm s 的速度沿BA 向左运动,终点为A .当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C 、P 、Q 三点,有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)16610AC AB BC cm =-=-=,故答案为:10;(2)①当05t <…时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <…时,P 为线段CQ 的中点,210163t t -=-,解得265t =;③当1663t <…时,Q 为线段PC 的中点,6316t t -=-,解得112t =;④当68t <…时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.13.如图1,点A ,B 都在线段EF 上(点A 在点E 和点B 之间),点M ,N 分别是线段EA ,BF 的中点.(1)若::1:2:3EA AB BF =,且12EF cm =,求线段MN 的长;(2)若MN a =,AB b =,求线段EF 的长(用含a ,b 的代数式表示);(3)如图2,延长线段EF 至点1A ,使1FA EA =,请探究线段1BA 与EM NF +应满足的数量关系(直接写出结论)【解答】解:(1)设EA xcm =,则2AB xcm =,3BF cm =,6EF xcm =.Q 点M ,N 分别是线段EA ,BF 的中点,12EM MA xcm \==,32BN NF xcm ==.2AB xcm =Q ,4MN MA AB BN xcm \=++=.12EF cm =Q ,612x \=,解得:2x =,48MN x cm \==.(2)Q 点M ,N 分别是线段EA ,BF 的中点,EM MA \=,BN NF =.MN a =Q ,AB b =,MA BN MN AB a b \+=-=-,EM NF a b \+=-,2EF EM MN NF a b a a b \=++=-+=-.(3)Q 点M ,N 分别是线段EA ,BF 的中点,2EA EM \=,2BF NF =.1FA EA =Q ,112()BA BF FA BF EA EM NF \=+=+=+.14.在射线OM 上有三点A ,B ,C ,满足15OA cm =,30AB cm =,10BC cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动;点Q 从点C 出发,沿线段CO 匀速向点O 运动(点Q 运动到点O 时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P 和点Q 重合时23PA AB =,求OP 的长度;(2)在(1)题的条件下,求点Q 的运动速度.【解答】解:(1)23PA AB =Q ,30AB cm =,230203PA cm \=´=,15OA cm =Q ,35OP OA AP cm \=+=,(2)OC OA AB BC =++Q ,15OA cm =,30AB cm =,10BC cm =,15301055OC cm \=++=,553520CP OC OP cm =-=-=Q ,P Q 以1/cm s 的速度匀速运动,\点P 运动的时间为35s ,点Q 运动的时间为35s ,\点Q 的速度204/357cm s ==.15.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.16.(1)如图,点C 在线段AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点.求线段DE 的长;(2)若线段AB acm =,其他条件不变,则线段DE (直接写出答案).(3)对于(1),如果叙述为:“点C 在直线AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点,求线段DE 的长?”结果会有变化吗?如果有,直接写出结果.【解答】解:(1)6AC cm =Q ,10BC cm =,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,8DE DC EC cm \=+=;(2)Q 点D 、E 分别是AC 和BC 的中点,12DC AC \=,12CE CB =,11()22DE DC EC AC CB acm \=+=+=;故答案为:12acm ;(3)结果会有变化,如图,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,2DE EC CD cm \=-=,\线段DE 的长为8cm 或2cm .17.(1)如图,点C 在线段AB 上,线段6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?(2)根据(1)的计算过程和结果,设AC BC a +=,其他条件不变,你能猜出MN 的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段6AC cm =,4BC cm =,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?”结果会有变化吗?如果有,求出结果.【解答】解:(1)点M 、N 分别是AC 、BC 的中点,6AC cm =,4BC cm =,2623MC AC cm =¸=¸=,2422NC CB cm =¸=¸=,由线段的和差,得325()MN MC NC cm =+=+=.答:线段MN 的长是5cm .(2)12MN a =,MN 的长度等于1()2AC BC +;(3)会有变化.当C 点在线段AB 上时,5MN cm =;当C 点在线段AB 的延长线上时,1MN cm =.18.如图,点B 在线段AC 上,点M 、N 分别是AC 、BC 的中点.(1)若线段15AC =,25BC AC =,则线段MN (2)若B 为线段AC 上任一点,满足AC BC m -=,其它条件不变,求MN 的长;(3)若原题中改为点B 在直线AC 上,满足AC a =,BC b =,()a b ¹,其它条件不变,求MN 的长.【解答】解:(1)15AC =Q ,25BC AC =,6BC \=,又Q 点M 、N 分别是AC 、BC 的中点,11522CM AC \==,132CN BC ==,159322MN CM CN \=-=-=;故答案为:92;(2)Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()2222MN CM CN AC BC AC BC m \=-=-=-=;(3)当点B 在线段AC 上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=-=-=-=-;当点B 在AC 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=+=+=+=+;当点B 在CA 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CN CM BC AC BC AC b a \=-=-=-=-.19.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,8DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =,18AB =,8DE =,6BC \=,12AC =,①如图,E Q 为BC 中点,3CE \=,5CD \=,18117AD AB DB \=-=-=;②如图,Ⅰ、当点E 在点F 的左侧,3CE EF +=Q ,6BC =,\点F 是BC 的中点,3CF BF \==,18315AF AB BF \=-=-=,153AD AF \==;Ⅱ、当点E 在点F 的右侧,12AC =Q ,3CE EF CF +==,9AF AC CF \=-=,39AF AD \==,3AD \=.其他情况不存在,舍去.综上所述:AD 的长为3或5;(2)2AC BC =Q ,2AB DE =,满足关系式32AD EC BE +=,Ⅰ、当点E 在点C 右侧时,如图,设CE x =,DC y =,则DE x y =+,2()AB x y \=+24()33AC AB x y ==+4133AD AC DC x y \=-=+12()33BC AB x y ==+2133BE BC CE y x \=-=-7133AD EC x y \+=+2()3AD EC BE+=Q 71212()3()3333x y y x \+=-解得,174x y =,\1742()422()17CD y y AB x y y y ===++.Ⅱ、当点E 在点A 左侧时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-24()33AC AB y x ==-4133AD DC AC x y \=-=-12()33BC AB y x ==-2133BE BC CE y x \=+=+7133AD EC x y \+=-2()3AD EC BE+=Q 71212()3()3333x y y x \-=+解得,118x y =,\112()6CD y AB y x ==-.点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当DE 在线段AC 内部时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-,24()33AC AB y x ==-,1433AD AC DC y x \=-=-,12()33BC AB y x ==-,2133BE BC CE y x \=+=+,1133AD EC x y \+=-+,2()3AD EC BE+=Q 11212()3()3333x y y x \-+=+,解得,54x y -=(不符合题意,舍去),\512()182CD y AB y x ==<-,不符合题意,舍去.其他情况不存在,舍去.故答案为1742或116.20.如图,C 是线段AB 上一点,20AB cm =,8BC cm =,点P 从A 出发,以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1/cm s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运动.设点P 运动时间为xs .(1)AC= 12 cm;(2)当x= s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.【解答】解:(1)20812()AC AB BC cm=-=-=.故答案为:12;(2)2020(21)()3s¸+=.故当203x s=时,P、Q重合.故答案为:203;(3)存在,①C是线段PQ的中点,得220212x x+-=´,解得4x=;②P为线段CQ的中点,得122022x x+-=´,解得325x=;③Q为线段PC的中点,得2122(20)x x+=´-,解得7x=;综上所述:4x=或325x=或7x=.。

易错15 线段的有关计算(解析版)-七年级数学上册期末突破易错挑战满分(人教版)

易错15 线段的有关计算(解析版)-七年级数学上册期末突破易错挑战满分(人教版)

【突破易错·冲刺满分】2021-2022学年七年级数学上册期末突破易错挑战满分(人教版)易错15 线段的有关计算【易错1例题】线段的有关计算1.(2021·河北滦州·七年级期中)如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =cm ,2BC =cm .(1)图中共有______条线段?(2)求AC 的长;(3)若点E 在直线AD 上,且3EA =cm ,求BE 的长.【答案】(1)6;(2)5cm ;(3)4cm 或10cm .【分析】(1)固定A 为端点,数线段,依次类推,最后求和即可;(2)根据AC =AD -CD =AC -2BC ,计算即可;(3)分点E 在点A 左边和右边两种情形求解.【详解】(1)以A 为端点的线段为:AC ,AB ,AD ;以C 为端点的线段为:CB ,CD ;以B 为端点的线段为:BD ;共有3+2+1=6(条);故答案为:6.(2)解:∵B 为CD 中点,2BC =cm∵24CD BC ==cm∵9AD =cm∵945AC AD CD =-=-=cm(3)7AB AC BC =+=cm ,3AE =cm第一种情况:点E 在线段AD 上(点E 在点A 右侧).734BE AB AE =-=-=cm第二种情况:点E 在线段DA 延长线上(点E 在点A 左侧).7310BE AB AE =+=+=cm .【点睛】本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.【专题训练】一、选择题1.(2021·全国·七年级课时练习)下列说法正确的是( )A .若AC BC =,则点C 为线段AB 中点B .用两个钉子把木条固定在墙上,数学原理是“两点之间,线段最短”C .已知A ,B ,C 三点在一条直线上,若5AB =,3BC =,则8AC =D .已知C ,D 为线段AB 上两点,若AC BD =,则AD BC =【答案】D【分析】根据线段中点的定义,两点确定一条直线,线段之间的数量关系求解即可.【详解】解:A 、当点A ,B ,C 不在一条直线上时,点C 不是线段AB 中点,∵选项错误,不符合题意;B 、用两个钉子把木条固定在墙上,数学原理是“两点确定一条直线”,∵选项错误,不符合题意;C 、当点C 在AB 之间时,AC =AB -BC =5-3=2,∵选项错误,不符合题意;D 、已知C ,D 为线段AB 上两点,若AC BD =,则AD BC =,∵选项正确,符合题意.故选:D .【点睛】此题考查了线段中点的概念,两点确定一条直线,线段之间的数量关系等知识,解题的关键是熟练掌握线段中点的概念,两点确定一条直线,线段之间的数量关系.2.(2021·全国·七年级课时练习)如图,点C 是线段AB 的中点,CD =13AC ,若AD =1cm ,则AB =( )A .3cmB .2.5cmC .4cmD .6cm 【答案】A【分析】根据线段中点的性质及线段间的比例关系,可得AC 的长,从而得到AB 的长.【详解】解:∵点C 是线段AB 的中点, ∵12AC BC AB ==, ∵13CD AC =,1AD =cm , ∵2213AD AC CD ===cm , ∵12CD =cm , ∵32AC =cm , ∵23AB AC ==(cm ),故选:A .【点睛】题目主要考查线段中点的性质及通过线段的比例求线段长度,找准线段间的关系是解题关键.3.(2021·安徽·合肥38中七年级月考)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2021厘米的线段AB ,则线段AB 盖住的整点的个数是( )A .2021B .2022C .2021或2022D .2020或2019【答案】C【分析】分线段AB 的端点与整点重合和线段AB 的端点与整点不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:依题意得:①当线段AB起点在整点时,则1厘米长的线段盖住2个整点,2021厘米长的线段盖住2022个整点,②当线段AB起点不在整点时,则1厘米长的线段盖住1个整点,2021厘米长的线段盖住2021个整点.故选C.【点睛】本题考查了数轴,分类讨论和数形结合的思想方法,注意分类讨论不要遗漏是关键.4.(2021·山东·青岛市崂山区第三中学七年级开学考试)已知线段AB=5cm,BC=3cm,且A,B,C在同一直线上,则AC的长为()A.2cm B.8cm C.2cm或8cm D.以上答案都不对【答案】C【分析】分C在B的左侧和右侧进行求解即可得到答案.【详解】解:如图:当C在B的左侧时:∵AB=5cm,BC=3cm,∵AC=AB-BC=2cm,如图:当C在B的右侧时:∵AB=5cm,BC=3cm,∵AC=AB+BC=8cm,∵AC=2cm或8cm,故选C.【点睛】本题主要考查了线段的和差,解题的关键在于能够弄清C点的位置.二、填空题5.(2021·全国·七年级专题练习)如图,线段AB=6,AC=2BC,则BC=__.【答案】2【分析】根据线段的性质计算,即可得到答案.【详解】∵AB=6,AC=2BC∵BC=AB-AC=AB-2BC∵BC=13AB=13×6=2故答案为:2.【点睛】本题考查了线段的性质;解题的关键是熟练掌握线段和与差、代数式的性质,从而完成求解.6.(2021·福建省福州延安中学七年级期末)线段AB=3,延长AB到C,使BC=AB,再延长BA到D,使AD=2AB,则线段CD的长等于____【答案】12【分析】根据已知作图、分别得出BC,AD的长,即可得出线段CD的长.【详解】解:∵线段AB=3,延长AB到C,使BC=AB,再延长BA至D,使AD=2AB,如图:∵BC=3,AD=6,∵CD=6+3+3=12.故答案为:12.【点睛】此题主要考查了两点之间距离的求法,根据已知得出BC与AD的长是解题关键.7.(2021·重庆实验外国语学校七年级月考)如图,已知点C为AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点;则DE的长为_____cm.【答案】4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE −AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC , ∵CB =12×23=8(cm ), ∵AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∵AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∵DE =AE −AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.8.(2021·黑龙江·哈尔滨市第四十九中学校期中)如图,线段AB 和线段CD 的公共部分是线段BD ,且1134BD AB CD ==,点E 、F 分别是AB 、CD 的中点,若20EF =,则BD 的长为______【答案】8【分析】设BD x =,由线段中点的性质得到131,2222AE EB AB x DF FC CD x ======,再根据线段的和差得到AC AB CD BD =+-=AE EF FC ++,转化为解一元一次方程即可.【详解】解:设BD x =,3,4AB x CD x ∴==点E 、F 分别是AB 、CD 的中点,131,2222AE EB AB x DF FC CD x ∴====== 346AC AB CD BD x x x x =+-=+-=6AE EF FC AC x ∴++==320262x x x ∴++= 解得5202x = 8x ∴=8BD ∴=,故答案为:8.【点睛】本题考查线段的和差,涉及线段的中点、一元一次方程的解法等知识,是重要考点,掌握相关知识是解题关键.三、解答题9.(2020·福建·三明市第三中学七年级月考)已知:线段AB =20cm ,点C 为线段AB 上一点,BC =4cm ,点D 、点E 分别为AC 和AB 的中点,求线段DE 的长.【答案】2cm【分析】先根据线段的和差,可得AC 的长,再根据线段中点的性质,可得AD 、AE 的长,最后根据线段的和差,可得DE 的长.【详解】解:由线段的和差,得AC =AB ﹣BC =20﹣4=16cm ,由点D 是AC 的中点, 所以1116822AD AC ==⨯=cm ; 由点E 是AB 的中点,得11201022AE AB ==⨯=cm ,由线段的和差,得DE=AE﹣AD=10﹣8=2cm.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.10.(2021·浙江衢州·七年级期末)如图,已知线段AB.(1)利用刻度尺画图:延长线段AB至C,使BC=12AB,取线段AC的中点D.(2)若CD=6,求线段BD的长.【答案】(1)见解析;(2)2【分析】(1)根据要求作出图形即可.(2)利用线段的中点的定义求出AC,再求出BC,可得结论.【详解】解:(1)如图,线段BC,中点D即为所求作.(2)∵D是AC的中点,∵AD=CD=6,∵AC=12,∵BC=12AB,∵BC=13AC=4,∵BD=CD-CB=6-4=2.【点睛】本题考查了线段的和差定义和线段的中点等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(2021·广东海珠·七年级期末)如图,已知线段AB,点C在AB的延长线上,AC=53BC,D在AB的反向延长线上,BD=35 DC.(1)设线段AB长为x,用含x的代数式表示BC和AD的长度.(2)若AB=12cm,求线段CD的长.【答案】(1)35,24BC x AD x ==;(2)45CD =cm . 【分析】(1)由已知条件可知线段之间的关系,用x 表示即可;(2)根据CD AD AB BC =++,求得CD 与AB 即x 的关系式,将AB 的值代入即可求得.【详解】(1)如图,设线段AB 长为x ,53AC AB BC BC =+=, 23AB BC ∴=, 即3322BC AB x ==. BD DA AB =+,BD =35DC , 3()5DA AB DA AB BC ∴+=++, 5()3()AD AB AD AB BC ∴+=++,232AD BC AB ∴=-,33352224AD BC AB x x x ∴=-=⨯-=, 35,24BC x AD x ∴== (2)5315424CD AD AB BC x x x x =++=++=, 当AB =12cm 时,1512454CD =⨯=cm . 【点睛】 本题考查了线段的和差,两点之间的距离,列代数式,正确的作出图形是解题的关键.12.(2021·湖南·明德华兴中学七年级期末)如图,点A 、B 、C 、D 在同一条直线上,且AB :BC :CD =2:3:5,线段BC =6.(1)求线段AB 、CD 的长;(2)若在直线上存在一点M 使得AM =2,求线段DM 的长.【答案】(1)AB =4, CD =10;(2)若点M 在点A 左侧,则DM =22;若点M 在点A 右,则DM =18 .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)分两种情况:若点M 在点A 左侧,若点M 在点A 左侧,根据线段的和差即可得到结论.【详解】解:(1)∵AB :BC :CD =2:3:5,且BC =6;∵AB =4,CD =10(2)AD =AB +BC +CD =20若点M 在点A 左侧,则DM =AM +AD =22;若点M 在点A 右侧,则DM =AD -AM =18 ;综上所述,线段DM 的长为22或18.【点睛】本题考查了两点间的距离,利用了线段的和差倍分,正确的理解题意是解题的关键.13.(2021·全国·七年级课时练习)(1)如图,已知点C 在线段AB 上,且10AB =cm ,4BC =cm ,点M 、N 分别是AB 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AB a ,BC b =,点M ,N 分别是AB ,BC 的中点,则MN =________;(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,(2)中的结论是否仍然成立?若不成立,直接写出MN 的长度的表达式.【答案】(1)3cm ;(2)2a b -;(3)不成立,MN 的长度为2a b -或2a b +或2b a - 【分析】(1)根据点M 、N 分别是AB 、BC 的中点分别求出BM 和BN 的长度,最后用BM 减去BN 即可求出MN 的长度;(2)根据点M ,N 分别是AB ,BC 的中点,分别表示出BM 和BN 的长度,最后BM -BN 即可表示出MN 的长度;(3)根据题意分3种情况讨论,即当点C 在线段AB 上时,当点C 在AB 的延长线上时和当点C 在BA 的延长线上时,分别求出BM 和BN 的长度,然后根据BM ,BN 和MN 之间的关系即可表示出MN 的长度.【详解】解:(1)因为点M 是AB 的中点,点N 是BC 的中点, 所以1110522BM AB ==⨯=(cm ),114222BN BC ==⨯=(cm ),523MN BM BN =-=-=(cm ), ∵线段MN 的长度为3cm ;(2)2a b - 解析:因为点M 是AB 的中点,点N 是BC 的中点, 所以122BM AB a ==,1122BN BC b ==, 2a b MN BM BN -=-=; (3)不成立,MN 的长度为2a b -或2a b +或2b a -. 理由:当点C 在线段AB 上时,同(2)可得2a b MN -=; 当点C 在AB 的延长线上时,如图1所示,因为点M 是AB 的中点,点N 是BC 的中点,所以1122BM AB a ==,1122BN BC b ==,MN BM BN =+2a b +=, 即线段MN 的长度为2a b +; 当点C 在BA 的延长线上时,如图2所示,因为点M 是AB 的中点,点N 是BC 的中点,所以1122BM AB a ==,1122BN BC b ==,2b a MN BN BM -=-=,即线段MN 的长度为2b a -. 综上所述,MN 的长度为2a b -或2a b +或2b a -. 【点睛】 此题考查了线段的中点和线段长度的表示方法,解题的关键是熟练掌握线段的中点的概念和线段长度的表示方法.14.(2021·河北滦南·七年级期中)如图,已知B 、C 在线段AD 上.(1)图中共有________条线段;(2)若AB CD =.①比较线段的大小:AC ________BD (填:“>”、“=”或“<”);②若20AD =,12BC =,M 是AB 的中点, N 是CD 的中点,求MN 的长度.【答案】(1)6;(2)①=;②16【分析】(1)分别以A 、B 、C 为线段的端点,数出线段的条数即可;(2)①根据AC =AB +BC 及BD =BC +CD ,即可得AC 与BD 的大小关系;②由题意可求得AB +CD 的长,由中点的含义及MN BM CN BC =++即可求得MN 的长度.【详解】(1)以A 为端点的线段有AB 、AC 、AD 共3条;以B 为端点的线段有BC 、BD 共2条;以C 为端点的线段为CD ,有1条,故共有线段的条数为:3+2+1=6故答案为:6.(2)①∵AC =AB +BC ,BD =BC +CD ,且AB =CD∵AC =BD故答案为:=.②∵20AD =,12BC =∵8AB CD AD BC +=-=.∵M 是AB 的中点,N 是CD 的中点 ∵12BM AB =, 12CN CD = ∵11()8422BM CN AB CD +=+=⨯=. ∵41216MN BM CN BC =++=+=.【点睛】本题考查了线段的数量,线段的和差运算,线段的中点含义,线段大小的比较等知识,把线段表示成和差的形式是解决本题的关键.15.(2021·云南盘龙·七年级期末)如图,点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点.(1)若CN =15AB =2cm ,求线段MN 的长度; (2)若AC +BC =acm ,其他条件不变,请猜想线段MN 的长度,并说明理由;(3)若点C在线段AB的延长线上,AC=p,BC=q,其它条件不变,则线段MN的长度会有变化吗?若有变化,请直接写出结果,不说明理由.【答案】(1)MN=5cm;(2)MN=12acm,见解析;(3)有变化,MN=12(p﹣q)【分析】(1)由中点的性质得MC=12AC、CN=12BC,根据MN=MC+CN=12AC+12BC=12(AC+BC)可得答案;(2)由中点性质得MC=12AC、CN=12BC,根据MN=MC+CN=12(AC+CB)可得答案;(3)根据中点的性质得MC=12AC、CN=12BC,结合图形依据MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)可得答案.【详解】解:(1)∵CN=15AB=2cm,∵AB=10(cm),∵点M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵MN=MC+CN=12AC+12BC=12(AC+BC)=12AB=5(cm);(2)∵M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵AC+CB=acm,∵MN=MC+CN=12(AC+CB)=12a(cm);(3)有变化,如图,∵M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵AC=p,BC=q,∵MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)=12(p﹣q).【点睛】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.16.(2020·福建·南安市南光中学七年级月考)如图,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试说明无论AC取何值(不超过12cm),DE的长不变.【答案】(1)6;(2)6cm;(3)见解析.【分析】(1)由AB=12cm,点D,E分别是AC和BC的中点,得出DE=DC+CE=12(AC+CB),即可求解;(2)由AC=4cm,推出CD=2cm,根据AB=12cm,AC=4cm,得出BC=8cm,由DE=DC+CE即可求DE的长;(3)根据点D,E分别是AC和BC的中点,得出DC=12AC,CE=12CB,由DC+CE=12(AC+CB),即可得证.【详解】解:(1)∵点D,E分别是AC和BC的中点,∵DC=12AC,CE=12CB,∵DE=DC+CE=12(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∵CD=2cm,∵AB=12cm,AC=4cm,∵BC=8cm,∵CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∵DC=12AC,CE=12CB,∵DC+CE=12(AC+CB),即DE=12AB=6cm,故无论AC取何值(不超过12cm),DE的长不变.【点睛】本题考查了线段的和差倍分,解题的关键是正确的识别图形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教七年级数学上册线段的计算测试题姓名:分数:一.选择题(共12小题,每题3分,共36分)1.(5分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离2.(5分)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=23.(5分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB4.(5分)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个5.(5分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm6.(5分)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点 B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7.(5分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b8.(5分)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e9.(5分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC10.(5分)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm11.(5分)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上 B.线段AB的反向延长线上C.直线l上D.线段AB上12.(5分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm二.填空题(共8小题,每题3分,共24分)13.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.14.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.15.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有.(填序号)16.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.17.如图,图中有条直线,有条射线,有条线段.18.如图,A,B,C,D是一直线上的四点,则+ =AD﹣AB,AB+CD= ﹣.19.已知A、B、C三点在同一直线上,其中点A与点B的距离等于千米,点B与点C的距离等于千米,那么点A与点C的距离等于千米.20.如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在楼.三.解答题(共7小题)21.(6分)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.22.(7分)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B 两村的距离和最小,试在L上标注出点P的位置,并说明理由.23.(8分)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.24.(10分)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.(9分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.26.(9分)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.27.(12分)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.新人教七年级数学上册线段的计算测试题参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2016春?威海期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选B.【点评】本题主要考点有:线段的定义及性质,两点间的距离,直线的定义.根据各知识点的定义及性质进行判断.2.(5分)(2015?黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.(5分)(2015秋?高新区期末)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB 中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.4.(5分)(2015秋?太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.(5分)(2015秋?太康县期末)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC 等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.6.(5分)(2015秋?平武县期末)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点 B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【分析】根据线段的和、差定义进行分析.【解答】解:如图:∵PA+PB=AB,∴点P在线段AB上.故选B.【点评】此题考查了线段的和的概念.7.(5分)(2015秋?嘉祥县期末)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.(5分)(2015?合肥校级自主招生)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e【分析】首先求出以A为端点线段的长度,类比依次求出B、C、D、E为端点的线段的长度,然后求出这些线段的长度总和.【解答】解:以A为端点线段有AB、AC、AD、AE、AF,这些线段长度之和为5a+4b+3c+2d+e,以B为端点线段有BC、BD、BE、BF,这些线段长度之和为4b+3c+2d+e,以C为端点线段有CD、CE、CF,这些线段长度之和为3c+2d+e,以D为端点线段有DE、DF,这些线段长度之和为2d+e,以E为端点线段有EF,线段的长度为e,故这些线段的长度之和为5a+8b+9c+8d+5e,故选A.【点评】本题主要考查比较线段的长短的知识点,解答本题的关键是求出A,B,C,D,E,F为端点的所有线段的条数,本题不是很难.9.(5分)(2014秋?温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.【点评】考查了线段的延长线的概念,同时注意线段公理:两点之间,线段最短.10.(5分)(2014秋?林甸县期末)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm【分析】由题意可知,M分AB为2:3两部分,则AM为AB,N分AB为3:4两部分,则AN为AB,MN=2cm,故MN=AN﹣AM,从而求得AB的值.【解答】解:如图所示,假设AB=a,则AM=a,AN=a,∵MN=a﹣a=2,∴a=70.故选B.【点评】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.11.(5分)(2014秋?成县期末)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上 B.线段AB的反向延长线上C.直线l上D.线段AB上【分析】分类讨论:当P点在线段AB的延长线上,则PA+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,然后比较线段的大小即可得到结论.【解答】解:当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.12.(5分)(2014秋?阜南县校级期末)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm【分析】结合图形表示出PM与AB的关系为PM=AB﹣AB,再代入数据求解即可.【解答】解:如图,∵M是AB的中点,∴AM=AB,∴PM=AM﹣AP=AB﹣AB=AB,∵PM=2cm,∴AB=10PM=20cm.故选C.【点评】作出图形,整理出AB与PM的关系是解本题的关键.二.填空题(共8小题)13.(2015秋?甘谷县期末)如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于11 .【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【点评】本题考点:线段中点的性质,根据题干图形得出各线段之间的关系,然后结合已知条件即可求出AB的长度.14.(2015秋?邢台期末)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm .【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC 得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(2015秋?淮安期末)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.16.(2016春?通化校级月考)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.17.(2016?綦江区校级模拟)如图,图中有 1 条直线,有9 条射线,有12 条线段,以E为顶点的角有 4 个.【分析】直线:过两点有且只有一条直线(两点确定一条直线),无端点.射线:直线上的一点,可向一方无限延伸,有一个端点.线段:直线的一部分,有限长,有2个端点再根据角的定义数出角的个数即可求解.【解答】解:如图,图中有直线AC,共1条直线,有A为端点的2条射线,B为端点的1条射线,C为端点的2条射线,E为端点的3条射线,F为端点的1条射线共2+1+2+3+1=9条射线,有线段AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,DF,EF,共12条线段,以E为顶点的角有∠AEB,∠AEF,∠BEC,∠CEF,共4个.故答案为:1,9,12,4.【点评】本题主要考查直线、线段、射线的知识点,还考查角的概念的知识点,不是很难,不过做题要仔细.18.(2016秋?高密市校级月考)如图,A,B,C,D是一直线上的四点,则BC + CD =AD﹣AB,AB+CD= AD ﹣BC .【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC,CD,AD,BC.【点评】题考查了两点间距离的计算,本题属基础题,熟练求线段长度是解题关键.19.(2016春?浦东新区期末)已知A、B、C三点在同一直线上,其中点A与点B的距离等于千米,点B与点C的距离等于千米,那么点A与点C的距离等于或千米.【分析】根据线段的和差,可得答案.【解答】解:A在线段BC上,由线段和差,得AC=BC﹣AB=﹣=,A点线段BC的反向延长线上,由线段和差,得AC=AB+BC=+=,故答案为:或.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.20.(2013秋?惠山区校级月考)如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在 D 楼.【分析】根据图形近似设AB=a,BC=2a,CD=a,DE=2a,再根据各楼所需的数量和距离分别计算出当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=477a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=797a,于是可得判断桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.【解答】解:设AB=a,BC=2a,CD=a,DE=2a,当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=55a+50(a+2a)+72(a+2a+a)+85(a+2a+a+2a)=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=38a+50×2a+72(a+2a)+85(2a+a+2a)=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=38(a+2a)+55×2a+72×a+85(a+2a)=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=38(a+2a+a)+55×(a+2a)+50a+85×2a=537a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=55(2a+a+2a)+50(a+2a)+72×2a+38(a+2a+a+2a)=797a,所以桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.故答案为D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.三.解答题(共7小题)21.(2015秋?连州市期末)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.22.(2013秋?金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.23.(2016春?郴州期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【分析】(1)根据M是AC的中点得MC=3cm,由MB=10cm可得BC=7cm,再根据N为BC的中点可得CN 的长,继而可得答案;(2)由M是AC中点,N是BC中点可得MC=AC、NC=BC,再根据MN=MC﹣NC即可得.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=,∴MN=MC+CN=;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).【点评】本题主要考查两点间的距离,熟练掌握中点的性质是解题的关键.24.(2015秋?祁阳县期末)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.【分析】根据题目已知条件结合图形可知,要求DE的长可以用AC长减去AD长再减去EC长或者用DB 长加上BE长.【解答】解:由于BE=AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD=DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.25.(2015秋?偃师市期末)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.【点评】利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.26.(2013秋?天柱县期末)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.【分析】根据题意,设三条线段的长分别为2k、3k、4k,再根据“M是AD的中点”得到MD等于,所以MC的长是,代入即可求出x的值,再求线段AD的长也就容易了.【解答】解:如图,根据题意,设AB、BC、CD的长分别为2k、3k、4k,∴AD=2k+3k+4k=9k,∵M是AD的中点,∴MD=AD=,∴MC=MD﹣CD=﹣4k==2,解得k=4,∴AD=9k=9×4=36.【点评】本题主要考查根据设“k”法的思想,根据比例关系利用设“k”法是中学阶段重要的方法,需要熟练掌握.27.(2014秋?靖江市期末)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了.(3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.。

相关文档
最新文档