工业废水零排放设备中盐硝分离工艺是什么

工业废水零排放设备中盐硝分离工艺是什么
工业废水零排放设备中盐硝分离工艺是什么

工业废水零排放设备中盐硝分离

工艺是什么

2019年9月20日

工业废水零排放设备中盐硝分离工艺是什么

随着我国工业废水回用和工业废水零排放设备技术的推广,盐化工,氯碱化工,煤化工,湿法冶炼,制药等行业经常遇到混合溶液或含氯化钠和硫酸钠的废水。如果废水进入蒸发结晶系统并产生混合盐,则会产生大量固体废物。分盐是减少混合盐产品的一种方法,如果混合溶液的组分在蒸发和结晶前可以分离,精制工业盐级的单组分盐产品可以用于工业生产,大大降低了固废物的处理成本。

针对含有氯化钠、硫酸钠组分的混合溶液分离,不同工况通常采取下列几种处理工艺:

1、通过直接蒸发结晶得氯化钠与硫酸钠的混盐。

2、冷冻脱硝得十水硫酸钠,含有大量氯化钠及少量硫酸钠的母液去电解生产烧碱,芒硝熔融后蒸发得到纯度较高的无水硫酸钠。

3、盐硝联产,高温蒸发得硫酸钠,母液低温蒸发得氯化钠,部分母液外排;或高温得到氯化钠,母液低温蒸发得到无水硫酸钠,部分母液外排;

或者高温蒸发得到无水硫酸钠,冷冻结晶析出芒硝与二水氯化钠的复盐,复盐熔融后返回原液池蒸发后重新得到无水硫酸钠,纯度较高的氯化钠母液蒸发得到氯化钠晶体,离心后的母液部分外排处理。

4、纳滤膜法,利用纳滤膜对硫酸根离子的高截留率,使得混合溶液经纳滤膜分离后得到高硫酸钠浓度的截留液和高氯化钠纯度的透过液,透过液进行后续的蒸发结晶得到氯化钠结晶盐,主要含有硫酸钠的截留液可以进行蒸发结晶回收硫酸钠,也可以回到前端的预处理,用于去除钙硬。

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术 随着中国水环保政策趋于严控,火力发电厂脱硫废水“零排放”理念不断升温。脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与成本。本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。 一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置(FGD)当中浆液循环系统的平衡度,避免离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。为保证脱硫系统的安全运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即“三联箱”技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。排入自然水系后还会影响环境,潜在环境风险高。随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家越来越严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。三、脱硫废水的产生及其水质特点脱硫废水主要来自石膏旋流器或废水旋流器的溢流,是维持脱硫装置浆液循环系统物质平衡,控制石灰石浆液中可溶部分(即Cl-)含量、保证石膏质量的必要工艺环节。废水中所含物质繁杂,大体分为氯化物、氟化物、亚硫酸盐、硫酸盐、硫化物、悬浮物以及重金属离子(如Hg2+,Pb2+、Cr2+等)、氨氮等。脱硫废水具有污染物成份复杂、波动范围大等特点。pH值较低,呈酸性,水中悬浮物含量高、盐含量高、存在重金属超标的可能,氯根含量很高,腐蚀性很强,是电厂中最难处置的废水。四、脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。(1.1)反渗透(RO)技术。在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。(1.2)电渗析技术。利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。(2.1)多效蒸发(MED)技术。将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。(2.2)机械蒸汽再压缩(MVR)技术。将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水

膜分离技术在废水处理中的应用

膜分离技术在废水处理中的应用 李珍11204112 摘要膜分离技术作为一种能耗低、设备简单、操作方便和分离性能好的分离技术在废水处理和中水回用方面有着广泛的应用前景。本文综述了膜分离技术在废水处理中的应用,着重介绍了超滤、纳滤、液膜等膜分离技术的特点及其在各种废水处理中的应用,并对膜技术应用前景做了总结与展望。 关键词膜分离废水处理超滤纳滤液膜 1.膜分离技术简介 1.1膜分离技术 膜分离技术是指在分子水平不同粒径分子的混合物在通过半透膜时, 实现 选择性分离的技术, 半透膜又称分离膜或滤膜, 膜壁充满小孔, 根据孔径大小可以分为: 微滤膜(MF ) 、超滤膜(U F) 、纳滤膜(NF) 、反渗透渗出膜(R 0 ) 等, 膜分离采用错流过滤方式。膜分离技术因为具有常温下操纵、无相态变化、无化学变化、选择性好、高效节能、在生产过程中不产生污染等特点, 广泛应用于发酵、生物制药、植物提取、化工、饮用水净化、除菌、废水处理等多个领域。分离膜因其独特的结构和机能, 在环境保护和水资源再生方面异军突起, 在环境工程, 特别是废水处理和中水回用方面有着广泛的应用前景。 1.2 膜分离技术原理 膜分离与传统过滤的不同在于, 膜可以在分子范围内进行分离, 是一种物理过程, 不需添助剂。膜分离技术可利用混合物物理性质的不同(质量、体积、几何形状等) 将其分离,也可利用混合物通过分离膜的速度不同将其分离。 2. 超滤膜分离技术在废水处理中的应用 2.1超滤膜简介 超滤是一种压力驱动的膜分离过程,是根据分子的大小和形态而分离的筛选机理进行分离的。自20世纪60年代以来,超滤很快从实验规模发展成为重要的工业单元操作技术,它广泛用于食品、医药、工业废水处理、高纯水制备及生物技术工业;在工业废水处理方面应用得最普遍的是电泳涂漆过程,城市污水处理及

探析工业废水零排放

探析工业废水零排放 发表时间:2018-05-24T15:31:35.840Z 来源:《防护工程》2018年第2期作者:张玉斌 [导读] 国家要大力支持零排放项目的实施,要对更多工业企业项目做零排放的试验和实施标准,只有这样零排放才能在我国越来越多的企业实行。 知和环保科技有限公司河南省郑州市 450001 摘要:国家对工业废水排放的标准要求越来越高,不管是正在发展的中小型企业还是资金雄厚的国有大型企业对工业废水的处理水平要求更高。现在水处理行业的必然趋势是精细化的生产方式取代原有的粗放扩张的生产方式。全国产生了很多工业废水“零排放”技术,我国首例零排放项目是广东河源电厂的废水零排放工程,还有鹤煤热电厂废水零排放工程,三水恒益发电厂零排放项目等等,专家结合国外大量相关项目的实施进行调研,经过自己不断试验和努力终于建成国内几个电厂废水零排放工程项目,对我国环境保护起到了积极的作用。关键词:工业废水;零排放;要点分析 对工业废水污染问题进行防治,对提高社会综合发展效率具有重要意义。需要明确污染问题发生原因,有针对性的采取措施进行优化,完善管理制度,并明确经济责任单位,提高企业与民众废水管理意识,遏制随意排放废水情况的发生。从整体上来看,工业废水排放总量在逐渐减少,但是却依然存在比较严重的环境污染问题,还需要从技术角度出发,提高此方面重视,做好防治措施研究,争取从根本上改善废水污染问题。鉴于此,本文主要分析工业废水的污染现状及防治。 1 工业废水中的主要污染物及其危害 废水中污染物种类较多。根据废水对环境污染所造成危害的不同,大致可划分为固体污染物、需氧污染物、有机污染物、油类污染物、有毒污染物、生物污染物、酸碱污染物、营养性污染物、感官污染物和热污染等。固体污染物以悬浮物、胶状物和溶解固形物三种形态存在于水中。固体悬浮物的危害:当水被悬浮物污染,再大量排入自然界水体,将造成水体混浊,颜色改变。会自行沉降的悬浮物沉于水体底部,会危害水底栖生物的繁殖,影响渔业生产;沉积于灌溉的农田,会堵塞土壤空隙,不利于农作物生长;淤积严重,还会堵塞水道。废水中凡是能通过生物化学或化学作用而消耗水中溶解氧的物质,统称为需氧污染物。绝大多数需氧污染物都是有机物质,无机物仅有Fe、Fe2+、S2-、CN-等。因此,一般情况下,需氧污染物专指有机污染物。油类污染物主要是“石油类”和“动植物油类”有机化合物。废水中能对生物体引起毒性反应的化学物质都是有毒污染物。营养性污染物,废水中含氮、磷是植物和微生物的主要营养物质。如果这些营养性物质大量进入湖泊、江、海等水体,氮、磷浓度分别超过0.2mg/L和0.02mg/L时,就会引起水体富营养化,藻类和浮游生物迅速繁殖,水体溶解氧下降,导致鱼类和其他生物大量突然死亡。 2 废水的处理方法 2.1 化学处理法 化学处理法是向废水中投加某种化学物质,利用化学反应来分离、回收废水中的污染物质。通常情况下,化学处理法也有很多,例如中和、沉淀、氧化还原、催化氧化、光催化氧化、微电解、电解絮凝、焚烧等等。其中中和适用于酸性、碱性废水的处理。而化学沉淀法主要适用于废水中的重金属离子的去除。目前,化学处理法是处理废水较为有效的方法。这种方法可以将废水中的非金属污染物和重金属离子除去。 2.2 物理处理法 物理处理法是通过物理作用,以分离、回收废水中不溶解的悬浮状态污染物质。目前,我国化工企业常用的物理处理污水的方法有很多,例如格栅、筛滤、离心、澄清、过滤、隔油等等。其中格栅主要是用于去除会阻塞或者卡住泵、阀及其他机械设备的大颗粒物,而过滤法则是适用于混凝或生物处理后低浓度悬浮物处理的一种方式,多用于废水的深度处理,包括中水处理。 2.3 物理化学法 物理化学法是废水处理方法中的一种,是利用运用物理和化学的综合作用去除废水中的污染物质,使废水得到净化的方法。通常情况下,物理化学处理法也有很多,例如混凝、吸附、气浮、离子交换、膜分离、萃取、汽提、吹脱、蒸发、结晶、焚烧等等。其中气浮法适用于去除废水中密度小于1kg/L的悬浮物、油类和脂肪。而混凝法可用于废水的预处理、中间处理或最终处理,可去除废水中的胶体及悬浮物,适用于废水的破乳、除油和污泥浓缩。 3 废水零排放的关键技术 3.1 循环冷却水的极限浓缩倍率技术 循环冷却系统中浓缩排污水量一定要控制在80~90m3/h这样才能达到水量平衡的效果,根据浓缩排污水量可以推出浓缩倍率在10左右。要做高浓缩倍率的模拟试验,找到合理的药品、严控循环水的水质指标,减少结垢和腐蚀的产生。根据相关试验结果,合理挑选药剂、调节合理的循环水浊度下,当加药浓度到达某个值的时候,其循环冷却水系统的浓缩倍率(以氯离子或碱度计)控制在10.5以下,可以控制其结垢和腐蚀。河源电厂的环冷却水系统设计了旁流安装过滤装置;旁流过滤器的容量跟冷却塔补水的水质以及冷却塔周围的空气质量有关;旁流过滤器的反洗废水中含有很多悬浮物的污染物,盐含量跟循环水水质相当,然后到电厂工业废水的处理系统进行处理。在循环水系统中加入杀菌剂、缓蚀剂与阻垢剂,生产中时刻监测药品浓度和水质的指标,药品浓度要高于标准值,严格控制水质指标的范围。如果循环水的盐度、硬度、硅含量或者氯离子含量与标准值比较接近,可以将处理后的水输送到水池中重复使用,补充缺少的水量来保证循环系统没有结垢和腐蚀。 3.2 结晶盐和废水污泥的综合利用 经过处理后的结晶盐与废水污泥若不经过处理,遇水后仍能对环境造成严重的。为避免这个情况的发生,可以将结晶盐和废水污泥制成产品加以使用是最好的解决方案。经过试验,水泥、石灰等一些固化料和污泥按一定比例混合时制作成污泥,可以达到砖的行业标准;污泥砖经过浸水的试验没有金属析出,可以达到环保的要求。污泥盐分的含量较高,因此污泥砖只能在公园路面、围墙等建设使用,不能在房屋建筑中使用。结晶盐也可以提炼纯度高的产品,根据不同盐分的特点,增加结晶盐NaCl的含量比重,提取的结晶盐符合二级工业盐标准(GB/T5462-2003),可以在作印染等行业中使用。 3.3 对工业废水进行分类收集处理 分类收集处理工业废水即是指根据不同工业废水其不同水质特点对其进行分类收集,然后针对不同类别的工业废水分别采取有针对性

膜分离技术在处理废水中的应用

说明 本表需在指导教师和有关领导审查批准的情况下,要求学生认真填写。 说明课题的来源(自拟题目或指导教师承担的科研任务)、课题研究的目的和意义、课题在国内外研究现状和发展趋势。 若课题因故变动时,应向指导教师提出申请,提交题目变动论证报告。

用前景。 目前,膜的发展缓慢的原因有:膜产品的价格昂贵;膜污染较严重;膜分离性能低下。对于以上的三个问题可以更好的解决的话,膜分离技术发展会突飞猛进,跨越时代的进步,可以快速提高经济效益,对于水资源的利用率更高,会发挥更为重要的作用。 参考文献: [1]彭会清, 庞翠玲. 膜分离技术在处理酸性废液中的应用概述[J]. 金属矿山, 2006(9):14-17. [2]韩倩倩. 膜分离技术在水处理中的应用现状及展望综述[J]. 硅谷, 2009(9):117+133. [3]朱智清. 膜分离技术的发展及其工业应用[J]. 化工技术与开发, 2003, 32(1):19-21. [4]岳志新, 马东祝, 赵丽娜,等. 膜分离技术的应用及发展趋势[J]. 云南地理环境研究, 2006, 18(5):52-57. [5]张杰, 褚良银, 陈文梅. 膜分离技术在废水处理中的应用[J]. 过滤与分离, 2004, 14(3):8-11. [6]谷大建, 徐巍. 膜分离技术的应用及研究进展[J]. 中国药业, 2008, 17(6):58-59. [7]陈翠萍, 谌伟艳. 膜分离技术及其在废水处理中的应用[J]. 污染防治技術, 2007, 20(3):42-45. [8]吴绮桃. 膜分离技术及其在水处理中的应用[J]. 四川建材, 2008, 34(2):58-59. [9]郭洪勋. 膜分离技术的研究进展[J]. 科技创业家, 2012(8). [10]孙佳林, 何晓燕. 膜分离技术处理印染废水在我国的应用及发展趋势[J]. 化工管理, 2014(3):92-93. [11]段巧丽, 宁艳春. 现代膜分离技术的应用研究与进展[J]. 管理学家, 2011. [12]孙文毅, 张斌. 膜分离技术在水处理中的应用[J]. 北京电力高等专科学校学报:社会科 学版, 2010, 27. [13]陈业刚. 膜分离技术在水资源回用领域的应用研究[J]. 中美国际过滤与分离技术研讨 会, 2010. [14]李晓波, 王晓静. 膜分离技术及其在废水处理中的应用[J]. 河北工业科技, 2005, 22(4):207-211. [15]刘济阳, 夏明芳, 张林生,等. 膜分离技术处理电镀废水的研究及应用前景[J]. 污染防 治技术, 2009, 22(3):65-69.

工业废水零排放低温蒸发技术

工业废水零排放低温蒸发技术 工业废水野零排放冶对国家能源安全战略及可持续发展均有重要影响。有担当的企业均以其作为发展目标,但受管理、技术、资金水平限制,我国目前距真正实现野零排放冶还有不小差距,需进一步提升工业水处理管理品质,优化工业水水量平衡及分质回用,有效降低各环节水处理技术使用成本。 目前,作为野零排放冶工作中末端处理的蒸发结晶工艺,因其高成本一直制约着工业废水野零排放冶的发展。因此,较传统蒸发技术运行成本更低的低温蒸发,应用越来越广泛。低温蒸发是指运行温度低于70℃的蒸发工艺,但按照操作压力不同,分为低温减压蒸发和低温常压蒸发。 一、低温减压蒸发 通过借助真空设备降低系统压力,实现低温蒸发。常见工艺有低温多效蒸发渊LT-MED 冤和机械蒸汽再压缩渊MVR冤两种。 1.1 低温多效蒸发(LT-MED) 将一系列降膜蒸发于40℃至70℃的温差范围内串联起来,用一定量的蒸汽输入通过多次蒸发冷凝。其能源来自蒸汽,工艺成熟,效数与除盐效果正相关,与成本负相关。 1.2 机器蒸汽再压缩技术(MVR) 通过蒸汽压缩机做功重新利用自身产生的二次蒸汽能量,进行蒸发冷凝。其能源主要来自电力,设备可小型化,配套的公用工程及工程总投资较LT-MED少,运行平稳,自动化程度高,且可在40℃以下蒸发,尤其适合含热敏性物料的工业废水。 1.3 应用现状 LT-MED常用于海水淡化领域,运行成本90%以上来自于蒸汽热源。厂区中如有大量廉价余热,一般多用LT-MED。周姣研究了LT-MED应用于电厂脱硫废水处理及回用时,产盐品质难以达到工业盐品质要求,由于脱硫废水的水质,设备依然存在腐蚀结垢问题。唐刚等研究了LTMED应用于矿井高盐废水处理,发现多效竖管和多效水平管降膜蒸发系统耦合,可以降低总处理成本。于永辉对应用于稠油污水深度处理回用热采锅炉,进行了中试研究,发现将气浮-过滤和LT-MED组合,处理高含盐高硬度稠油污水并回用是可行的,吨成本8元。何海将LT-MED应用于高含硫气田废水处理,通过合理规划结合其它水处理工艺实现零排放 MVR由于可达到更低的运行温度,常用于成分复杂,含有挥发成分的高盐废水处理中。左名景等将MVR技术用于煤化工高盐废水零排放进行了中试研究,结果表明该方法可最大限度地回收了淡水,出水TDS达到81mg/L,可回用从而达到废水零排放。运行成本约为20元/吨。吴佩熹等对MVR联合臭氧催化氧化实现了精细化工污水零排放。 二、低温常压蒸发 2.1 气液交互技术(GaLiCos) GaLiCos是近年来应用的低温蒸发技术,是指在密闭容器内模拟自然气象中的水蒸发及降雨循环,用空调制冷系统制造冷空气,与加温液体进行能量交互,通过开孔弧度控制和特殊板面加工,实现多层微米级交互面,增大蒸发效率,其能源主要来自电力,可采用塑料材质,耐腐蚀。 2.2 应用现状 该工艺常见单效处理,目前已应用于染料、石油化工、精细化工、制药等多各领域。张传可等对单效低温蒸发处理稀酸废水进行了中试,所产浓缩稀酸回用于生产,冷凝出水TDS 小于200mg/L回用于循环水,实现废水零排放。WillemVriesendorp等介绍了低温常压蒸发技已应用于多领域工业废水处理中,大幅降低能耗,减少系统结垢。

火力发电厂脱硫废水处理排放方式优化浅析

邹县发电厂脱硫废水处理排放方式优化浅析 (A Study on the Optimization of sulphuric acid wastewater disposal Ways) 王祖涛 Wang Zutao (华电国际邹县发电厂山东邹城 273522)(Huadian International Zouxian Power Plant ZouCheng in Shandong post code:273522) [摘要] 火力发电厂烟气湿法脱硫(石灰石-石膏法)过程产生的废水来源于吸收塔排放水。为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶部分即氯浓度超过规定值和保证石膏质量,必须从系统中排放一定量的废水,废水主要来自石膏脱水和清洗系统。[1]废水中含有的杂质主要包括悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属,其中很多是国家环保标准中要求严格控制的第一类污染物。因此,采取何种废水排放处理方式,才能确保处理后的产物达到排放标准,是火力发电厂脱硫部门必须解决的重要问题,从而避免周围环境免受污染,保护人民身体健康。 [关键词] 脱硫;废水;排放;系统;影响 [Abstract] The wastewater in the stack gas wet desulfurization (limestone---plaster)in fuel electric plant is from the discharge water in absorption tower. In order to maintain the balance of the circulatory system of the serum in desulfurization mechanism, and prohibit the soluble cases in the stack gas--- the chlorine (Cl) consistency overpasses the prescribed value, it is necessary to discharge some wastewater from the system which is from dehydration of plaster and cleaning system. The impurity of wastewater mainly includes suspended substance, supersaturated sulfite, sulfate and other heavy metal, most of which are the first-class waste controlled strictly in National environment protection. So, it is an important question for desulfurization in fuel electric plant to adopt which ways to solve the wastewater, in order to avoid polluting the surroundings and protect the health of the human being. [Key words] desulfurization ;wastewater;dicharge;system;effect 1 概述 华电国际邹县发电厂三期2×600MW、四期2×1000MW脱硫系统投产后共用一套废水处理系统,由于设计安装及设备质量问题,废水处理系统自运行以来缺陷不断,频繁发生脱泥效果差、废水旋流子损坏、废水处理后仍超标等问题。加之整套废水处理系统设备运转耗费过大,不符合电厂节能要求,同时在一定程度上影响了脱硫系统的整体性能。因此于2008年对脱硫废水排放方式进行优化,将脱硫废水直接排入二期灰浆池及三期灰浆池。旨在通过脱硫废水酸性溶液与灰浆碱性溶液的中和来达到降低废水污染物含量的目的,同时对灰浆管道进行酸洗,来降低灰浆管道的结垢堵塞程度,达到节能与环保的双赢。 2 脱硫废水处理的意义 华电国际邹县发电厂脱硫系统采用的石灰石—石膏法工艺是目前使用中最广泛的一种烟气脱硫法,它能高效脱除烟气中的硫。在脱硫过程中,脱硫FGD(Fuel Gas Desulfurization)装置也将产

废水零排放技术发展趋势几何

有数据显示,高盐废水产生量约占总废水量的5%,且每年仍以2%的速度增长,我国很多工业面临的问题。针对这一情况,有业内人士指出,综合利用成解决高盐废水处理瓶颈的重要路径。 随着环保政策不断趋严,水处理行业逐渐从"总量控 制"走向"质量控制"。 在这个过程中,高盐废水这一多个行业面临的共性 难题被提上日程中来。 高盐废水是其中一种比较常见的,它是指废水中含 有有机物且总溶解固体高于3.5%的废水。数据显 示,我国每年产生高盐废水超过3亿立方米,产生 量约占总废水量的5%,且每年仍以2%的速度增长。 来源广泛是高盐废水排放量大的主要原因之一。工 业规模的逐渐壮大,使工业污水处理的种类和排放 量迅速增加,石油化工、纺织印染、制药工程等领 域会排放高盐废水。除此之外,海水、生活污水和 地下水等也是高盐废水的几大来源。

这加大了污水处理的难度。目前我国研究和常用的高盐废水方法有蒸发法、电解法、膜分离法、焚烧法和生物法等,但面对水资源紧缺的现状,业内人士普遍认为,综合利用是解决高盐废水瓶颈的重要路径。 有专家表示,"从资源利用的角度来看,高盐废水处理要开发低成本工艺技术,实现高价元素回收、低价元素的转化的高值化利用,从而实现高盐废水的近零排放,实现资源利用与环境治理的双赢。" 资料显示,"废水零排放"是指工业废水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂。 但由于废水零排放项目投资和运行成本较高,导致只有少数企业引入了废水零排放相关技术,大多数企业还处于观望阶段。有先试先行的企业实践表明高含盐废水实现近零排放后,预计年节水量可达288万立方米。

电厂脱硫废水零排放系统(蒸发结晶工艺)..

电厂脱硫废水零排放系统 技术介绍 北京首航艾启威节能技术股份有限公司 陈双塔

目录 1前言 (3) 2资源化零排放MED浓缩结晶系统来水水质情况简介 (4) 3零排放MED蒸发结晶系统排出固态物 (5) 4工艺技术 (6) 5关键设备 (6) 6核心技术 (8) 7与传统工艺投资及后期加药费用对比 (8) 8结语 (10) 9类似产品业绩表 (11) 10系统装配图 (14) 11类似产品合同及技术协议复印件 (14)

燃煤发电脱硫废水(蒸发结晶工艺)资源化零排放MED(MVR) 系统介绍 1前言 本期设备适用于脱硫废水“三箱式脱硫废水处理单元”系统处理后的废水的资源化零排放MED浓缩结晶系统。 表1 装置技术参数和经济性比较(20t/h为例) a.吨水运行成本=蒸汽50元/吨*汽耗+电费0.25元/度*电耗(未包括循环冷却水费用) b.由于零排放蒸发结晶系统运行时,无需加药软化,因此每吨废水可节省加药费用9-10 元/(吨废水)。

2资源化零排放MED浓缩结晶系统来水水质情况简介 项目三箱式脱硫废水处理单元”处理后废水水量约20吨/小时,处理后的脱硫废水除含钠离子(Na+)和氯根离子(Cl-)外,还含有大量的钙离子(Ca2+)、镁离子(Mg2+)、硫酸根离子(SO42-)和镁离子(Mg2+)。具体详见表1 表2 进资源化零排放MED浓缩结晶系统的水质表 资源化零排放MED浓缩结晶系统处理后水质情况 通过资源化零排放MED浓缩结晶系统处理后,MED出水经化学水处理系统简单处理后,完全可以满足锅炉正常补水的水质需求。出水水质情况见表2 表3 MED出水水质

火力发电厂烟气脱硫废水处理 闫凯

火力发电厂烟气脱硫废水处理闫凯 发表时间:2019-09-03T10:19:30.230Z 来源:《防护工程》2019年12期作者:闫凯 [导读] 通过对脱硫废水不同处理方案及运行管控的特点等方面,对烟气脱硫废水处理技术要点分析进行了探讨 天津渤化永利化工股份有限公司天津 300451 摘要:本文首先概述了火力发电厂烟气脱硫废水,根据水质特点开展处理工作,分析烟气脱硫废水处理过程,通过对脱硫废水不同处理方案及运行管控的特点等方面,对烟气脱硫废水处理技术要点分析进行了探讨 关键词:火力发电厂;烟气脱硫;废水处理 引言 在火力发电厂的烟气脱硫过程中会生成大量废水,这些废水中含有大量污染物,如镁离子与汞离子等重金属元素、氟化物、氯化钙、硫酸盐等,同时可能还含有一定氨氮。这些污染因子是由脱硫过程、煤燃烧过程、脱硝过程引起的,因为这些杂质的存在造成排水的质量降低。在对脱硫废水中污染物的产生过程进行研究,对其浓度进行分析,对废水水量及污染物总量进行管控,并在此基础上采取合理的措施处理废水。 1火力发电厂烟气脱硫废水相关概述 想要对火力发电厂进行烟气脱硫废水处理,应了解其水质,根据其水质特点对其进行有效分析,才能够使烟气脱硫废水得到有效处理。目前火力发电厂多采用石灰石-石膏脱硫工艺、氨法脱硝工艺,电除尘或布袋除尘工艺,并辅以湿式电除尘工艺进一步降低烟气颗粒物的排放。在锅炉燃烧、脱硝、脱硫、除尘工艺后,烟气达标排放。石灰石-石膏湿法脱硫工艺排水中,可含多种化合物,处置时需考虑多种工艺。烟气脱硫废水处理是对脱硫过程后排放污水进行处理,脱硫塔浆液因洗涤并与锅炉烟气发生化学反应,含有重金属化合物、脱硫副产品、脱硫剂,另可能含有因采用氨法脱硝的氨逃逸引起的氨氮污染物。火力发电厂烟气脱硫废水主要特点总结为以下三点:第一点,废水属于弱酸性,ph值通常为4-6,第二点,废水中能够含有多种杂质,且含量相对较高,悬浮物浓度高,以硫酸根、亚硫酸根化合物悬浮颗粒为主,其次为石灰石颗粒,第三点,废水中含有大量的阳离子,例如,钙离子,铁离子,铝离子,镁离子等重金属,第四点,废水中可因SCR脱硝工艺氨逃逸造成脱硫废水氨氮较高。污染物种类较多,而随环保要求不断提高,排水指标日益严格,脱硫废水处理起来也相对较为困难。 2根据脱硫废水特点开展处理工作 第一,在实际工作中,在火电厂建设时或在国家排放标准更新时,明确水质特点,充分考虑废水处理的污染物类别、指标、当量。在废水处理设施设计、建设时满足实际需求,专业化废水的相关处理系统投用后,使排水满足国家相关废水排放标准与要求。 第二、从运行角度,控制污染物的产生量,即从源头控制脱硫废水指标,努力降低废水产量及各污染物含量。火电厂各系统的运行、检修工作需按照相关规程、标准进行管控,使废水的产生量、各污染物的浓度不超过废水处理设施的实际能力,并尽可能降低,以进一步降低环保压力,且降低废水处理的成本。 3烟气脱硫废水处理 3.1常规处理方案 在火力发电的过程中,对烟气脱硫废水的处理需要在若干关键性步骤牢牢把关,大致上将工艺单元分为中和、沉降、絮凝、浓缩、澄清及污泥处理等工艺单元。在这些划分的工艺单元中,要求废料输送排放过程是连续、自动进行的,即运输通道通过重力引导废料自流或泵加压输送,并最终实现对烟气脱硫废水的处理。具体的工艺流程为:传统的脱硫废水经过中和箱、沉降箱、絮凝箱实现对废水中离子浓度、絮状物含量的控制,之后通过清水澄清,控制废水的pH值后排放废水。 脱硫废水处理后一般经过压滤等工艺产生泥饼,作为固体废弃物,根据规范进行合规处置。 3.2反渗透浓缩法。反渗透浓缩法是脱硫废水在处理中的常用方法,该种处理方法首先应对浓缩液中的过饱和离子进行去除,将其作为原水,随后将远水引入到反渗透系统。该种处理方法在实际应用中,具有较高的应用价值,使废水回收率得以提升,并能够对反渗透原理进行利用,节约成本。但该种方法存在一定缺陷,由于阻垢剂的使用导致过饱和离子去除较为困难,最终使处理效果并不理想。 3.3废水的蒸发结晶。该种处理方法主要是对计算机软件加以应用,通过预处理软件得以实现,将蒸汽引入至压缩系统中,对其进行浓缩蒸发,当压缩完成后,需要进行二次蒸发,最终形成结晶。完成结晶后对所产生的二次蒸气需要进行固液离心分离处理。该种处理工艺是一种环保工艺,通过对热效率加以利用,降低耗能,由于该种处理工艺温差变化较小,结垢、腐蚀现象不会发生,不会对设备的使用期限产生影响。蒸发结晶系统应用过程中会蒸发掉很多水分,但同时热效应的转换率会相应提高,由此能够降低能量的消耗,再结晶阶段再次蒸发可有效保证结晶的质量和纯度,使整个系统运用的安全性得以提升。另外,结晶系统能够完成氯化钠、硫酸钠等相关物质结晶,可以使生成的资源得以有效利用,并得到纯度较高的氯化钠,在经过有效处理后可作为工业原料使用,实现资源循环利用,符合我国可持续发展战略。 4烟气脱硫废水处理技术要点分析 4.1 脱硫废水悬浮物管控 脱硫废水因悬浮物含量较高,在系统中易发生沉淀、堵塞,首先应做好污水排放前的悬浮物浓度管控及污水处理系统接水后的沉淀防堵工作。在排向脱硫废水处理系统前,充分利用旋流器、真空皮带等系统,降低其硫酸钙、亚硫酸钙、碳酸钙含量,在脱硫工艺内应降低废水的悬浮物浓度。在脱硫废水处理系统应关注接水的调节池或集水池沉淀情况,部分脱硫废水输送管线设置有冲洗系统。 4.2管控废水产生量 脱硫系统会使用大量工艺水和冲洗水,应从工艺上降低一次水的使用量,进行必要的循环利用,努力降低实际废水产生量。在脱硫塔浆液高循环倍率控制的同时,应做好盐分的监控。总体来讲,脱硫废水的水量可以根据脱硫浆液中氯离子的质量浓度来确定。根据 DL/T5196—2016《火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程》,脱硫吸收塔浆池运行氯离子质量浓度按不超过20000mg/L设

膜分离技术处理工业废水的应用

膜分离技术处理工业废水的应用现状及发展趋势 摘要:本文阐述了膜分离技术基本原理及其特点、分离膜需要具备的条件,介绍了膜分离技术在工业废水处理中的应用情况,提出了膜分离技术发展趋势。 关键词:膜分离技术;废水处理;发展趋势 膜分离技术是在20世纪初出现、20世纪60年代迅速崛起的一门分离新技术,膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、吸附、萃取、深冷分离等)相比较,过程不发生相变,可以在常温下操作,具有能耗低、效率高、工艺简单等特点,受到世界各技术先进国家的高度重视,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大,广泛应用于工业废水等处理过程,给人类带来了巨大的环境效应。膜分离技术应用到工业废水的处理中,不仅使渗透液达到排放标准或循环生产,而且能回收有价资源。 1. 膜分离技术的基本原理和特点 1.1 膜技术在水处理中应用的基本原理是:利用水溶液(原水)中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水)进行分离,获得纯净的水,从而达到提高水质的目的。总的说来,分离膜之所以能使混在一起的物质分开,不外乎两种手段。 1.1.1 根据混合物物理性质的不同——主要是质量、体积大小和几何形态差异,用过筛的办法将其分离。微滤膜分离过程就是根据这一原理将水溶液中孔径大于50 nm的固体杂质去掉的。 1.1.2 根据混合物的不同化学性质。物质通过分离膜的速度取决于以下两个步骤的速度,首先是从膜表面接触的混合物中进入膜内的速度(称溶解速度),其次是进入膜内后从膜的表面扩散到膜的另一表面的速度。二者之和为总速度。总速度愈大,透过膜所需的时间愈短;总速度愈小,透过时间愈久。 1.2 膜分离技术的特点 膜分离技术是以高分子分离膜为代表的一种新型流体分离单元操作技术。在膜分离出现前,已有很多分离技术在生产中得到广泛应用。例如:蒸馏、吸附、吸收、苹取、深冷分离等。与这些传统的分离技术相比,膜分离具有以下特点: (1) 膜分离通常是一个高效的分离过程。例如:在按物质颗粒大小分离的领域,以重力为基础的分离技术最小极限是微米,而膜分离却可以做到将相对分子质量为几千甚至几百的物质进行分离(相应的颗粒大小为纳米)。 (2) 膜分离过程的能耗(功耗)通常比较低。大多数膜分离过程都不发生“相”

蒸发器在工业废水零排放上的应用

蒸发器在工业废水零排放上的应用 王莉莉,田旭峰,赵利鑫 (合众高科(北京)环保技术股份有限公司) 摘要:我国水资源污染和短缺问题日益凸显,而工业用水在整个水资源消耗中所占比例重大。工业废水零排放是实现水资源循环利用和保障我们经济社会可持续发展的重要举措,因而对工业废水零排放技术进行研究和发展具有重要意义,本文对蒸发器在工业废水零排放上的应用进行论述,介绍了蒸发器的种类和工作原理,着重对工业废水零排放上应用最为广泛的械蒸汽压缩再循环降膜蒸发器(MVR)和低温多效蒸发器(MED)进行了阐述和对比,最后对工业废水零排放的蒸发器发展现状和趋势进行了展望。 关键词:蒸发器;工业废水;零排放;械蒸汽压缩再循环降膜蒸发器(MVR);低温多效蒸发器(MED) 一、概述 近年来,我们水资源短缺和环境污染问题日益严重。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全[1]。工业废水排放的危害,一是重金属等难以降解的有毒有害物质随着污水进入土壤不断富集,造成农田的重金属超标(据罗锡文院士称:我国已有3亿亩耕地受到重金属污染),将会危及我们的食品安全;二是污水处理厂的污泥受工业污水影响有害物质超标,不能被用作肥料回归土地,影响氮、磷等物质的循环;三是大量工业用水造成了水资源的消耗和浪费[2]。如何将工业废水达标或减少排放,并尽最大可能地实现水资源循环利用,成为困扰着工业企业一大难题。因此,在我国大力提倡水资源节约利用和环境保护的大环境下,工业废水零排放应运而生。 工业废水零排放是指工业水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂,水中的盐类和污染物经过浓缩结晶以固体形式排出厂送垃圾处理厂填埋或将其回收作为有用的化工原料[3]。也就是说,从废水中完全回收水资源,变液态废弃物为固态资源再利用,实现对水等不可再生资源的可持续利用。工业废水零排放是保护地球环

火力发电厂烟气脱硫废水处理分析

火力发电厂烟气脱硫废水处理分析 发表时间:2018-09-18T16:35:32.413Z 来源:《基层建设》2018年第24期作者:郑秋红李正青 [导读] 摘要:随着经济和电力行业的快速发展,火力发电厂的污染问题逐渐显露出来,受到社会各界关注。 浙江菲达脱硫工程有限公司浙江杭州 310053 摘要:随着经济和电力行业的快速发展,火力发电厂的污染问题逐渐显露出来,受到社会各界关注。通过对当前火力发电厂在烟气脱硫废水处理上的诸多现状展开调查,我们发现烟气脱硫废水处理技术尚未得到广泛的应用,在实际的运用上存在较大的阻碍。而另一方面,有效的处理烟气脱硫废水不仅会给火力发电厂自身的发展和经济效益带来正收益,对生态环境也起到保护的作用。本文就烟气脱硫废水处理系统设计过程中的考虑因素展开分析,并对烟气脱硫废水处理工艺的控制要点进行简要的分析。 关键词:火力发电厂;烟气脱硫废水;处理技术;应用 引言 在火力发电厂烟气脱硫生产工艺产生的废水中不仅含有大量不可溶的物质,如氯化钙、氟化物等悬浮物,此外还有种类繁多的金属元素,如汞离子、镁离子等重金属元素,这些物质和元素导致废水水质降低。针对脱硫废水的特点,人们需掌握废水中各种主要物质的浓度特点,了解水体环境的自净与降解特点,明确生物链的情况,并采取合理的措施对废水进行处理。 1火力发电厂烟气脱硫废水相关概述 火力发电厂在进行烟气脱硫废水处理的过程中,要想真正实现对废水的处理,首先需要对其水质进行考虑,然后才能按照其水质特点进行适当的分析,进而有效的实现烟气脱硫废水处理这一目的。在火力发电厂中,脱硫废水中主要的杂质为烟气在脱硫过程中所产生的锅炉烟气和脱硫剂,在工艺过程中,煤中重金属一旦燃烧,就会有很多的化合物出现,这些化合物随烟气一起被吸收到塔里,与吸收剂石灰石反应后排出废水。总的来说,火力发电厂脱硫废水主要的特点有三点,其一,废水属于弱酸性,pH一般情况下在4-6,;其二,废水中杂质较多,含量也十分高,通常情况下,大多是氢氧化物悬浮的颗粒,或者是石膏颗粒;其三;废水中含量较高的阳离子为钙、镁、铁、铝等重金属,而这些重金属对于环境会造成较为严重的污染,再加上pH值较低,在处理过程中也十分困难。通过这些特点我们知道,在对其进行处理的过程中,很难将脱硫废水中的重金属去除掉,因此,在对其进行处理的过程中,首先可以通过一些措施将废水中的重金属含量进行适当的减少或者是降低。 2烟气脱硫废水处理工艺的控制要点 通过前面对烟气脱硫废水中的杂质成分分析,从大类上将烟气脱硫废水处理工艺分为物理方法和化学处理方法,两者相辅相成,一方面通过化学处理方法将烟气脱硫废水中含有的重金属通过物化法沉淀出来;另一方面物理处理方法可以将前面添加化学药剂处理后的沉淀分离出来,通过过滤、沉降、澄清等方式,让处理之后的水质达到标准,顺利向自然界排放。而在这一连串的过程中,需要分别从物理处理方法和化学处理方法两方面加以分析。 2.1化学处理方法的控制要点 对烟气脱硫废水的化学处理过程,简而言之就是将其中存在的对自然界有毒的重金属离子、微量元素等通过化学药剂的投入,将其置换出来,在此过程中,控制要点自然在于对化学药剂的把握上。就目前的研究来看,氢氧化物能在其中充当重要的化学药剂投入使用,这是由于对重金属离子而言,碱性试剂能够将其中的金属离子通过化学反应形成相应的沉淀物,如氢氧化镁。当废料中的重金属离子以沉淀的形式置换掉,就能通过澄清器对沉淀物进行分离,如此一来,废水对环境的污染性将大为降低。常见用来中和的药剂包括石灰石、碳酸钙、苛性钠等,尤其是石灰石和石灰在自然界取材方便、价格低廉、同时在中和处理过程中效果较为显著,在火力发电厂得以广泛应用。其中需要注意一点是为使脱硫废水处理后的pH值适中,且大部分金属离子都以氢氧化物的形式沉淀出来,通常石灰或者石灰石配成的浆液浓度在20%为宜。如果因为浆液浓度较高给计量泵带来堵塞的话,还可相应的降低石灰浆液的浓度,以达到较好的中和效果。 2.2COD(化学需氧量)处理 在烟气脱硫废水处理的过程中,人们可以使用曝气处理COD。主要原因是废水中的化学需氧量因素并不包含有机物成分,其属于具备还原状态的无机离子,主要成分为二硫酸盐。其间,可以将氧化剂设置为空气,在废水箱处理期间,可以开展系统曝气处理,时间控制在7h左右,且气与水的比例控制在2:1.2左右。对于曝气装置而言,通常可以使用母管支管的方式,经过相关实践研究可以得知,在曝气处理废水之后,需保证COD的去除率达到9%。同时,在废水COD处理工作中,还可以添加无机酸物质,在酸性环境下加入废水,促进COD 的分解。 2.3物理处理方法的控制要点 脱硫废水经过中和箱、沉降箱、絮凝箱实现对废水中离子浓度、絮状物含量的控制,也就是中和过程结束后,需要采用物理处理的方式对已经从废料中沉淀出的沉淀物从废料中分离出去,从而降低烟气脱硫废水中重金属离子浓度、絮状物含量,保证废水经处理后能够满足排放到自然界的标准。需要注意的是,在对烟气脱硫废水的处理过程中,由于组分复杂且离子未能完全沉淀,如果单纯的过滤掉已经沉淀下来的成分,显然对烟气脱硫废水的处理尚未到位。事实上,在烟气脱硫废水的处理体系中,两种处理手段是相互渗透的,而不是靠一种就能实现的。因此,在上述的流程图中,我们发现经石灰浆液中和的烟气脱硫废水随后进入沉降箱实现对沉淀的过滤,这一环节中,可以通过添加适量的有机硫和聚铁,让那些残留的重金属离子与之反应,以此来进一步控制分离的效果;在对生成的絮凝体处理过程中,需要适量的混凝剂、助凝剂让他们由微细的絮凝体凝聚成较大的颗粒,常用的如硫酸铝、硫酸亚铁、三氯化铁等等。另外,搅拌器装置是这些环节中不可或缺的装置,以此保证废水治理能够起到应有的效果。 2.4针对废水的停留时间进行严格管理 在废水处理工作中,需明确中和箱体、沉降与凝絮箱体中废水的停留时间,全面提升沉淀与凝絮等工序环节的处理效果。对于反应池而言,需将箱体溶剂固定在合理范围,并根据流量情况与废水的停留时间进行严格分析,合理开展调适实验等工作。通常情况下,需将废水的停留时间控制在60min左右,促进重金属元素的良好处理,达到预期的工作目的。 结语 经济的快速发展给火力发电厂带来严峻的考验,在追求发电效率的同时,随之产生的烟气脱硫废水也不容忽视,未经处理的废水直接投放对人类、自然界而言是巨大灾难。本文围绕着火力发电厂关于烟气脱硫废水的处理技术的研究现状,给出了相应的处理体系,并对这

污水膜分离法工程技术规范(征求意见稿)

污水膜分离法工程技术规范(征求意见稿) 编制说明

目 次 1 规范编制的来源及意义 (1) 1.1任务来源 (1) 1.2标准编制的意义 (1) 2 制定本标准的原则、方法及技术依据 (1) 2.1编制原则 (2) 2.2制定标准的工作方法与技术依据 (3) 3 主要工作过程 (3) 4 膜技术概况及工程实例、经济分析 (4) 4.1国内外膜法技术现状及发展趋势 (4) 4.2相关标准、技术政策、指南制订情况 (6) 4.3工程案例 (7) 5 标准的主要内容说明 (19) 5.1污水来源及水质特点 (19) 5.2进水指标控制 (19) 5.3预处理 (20) 5.4污水膜分离系统设计 (25) 5.5运行管理与维护 (30) 6 与执行现行法律、法规、规章、政策的关系及实施建议 (34)

1 标准编制的来源及意义 1.1任务来源 根据国家环境保护总局于2007 年下达的《国家环境保护标准计划任务书》中,编制《污水油水分离工程技术规范》(项目统一编号:1400)的任务,江西金达莱环保研发中心有限公司作为主编单位承担了该规范的研究及编制工作,参编单位有华中科技大学和北京市环境保护科学研究院。 1.2 标准编制的意义 环境保护标准化是我国环境保护一项重要发展战略,建立与国际接轨的环境保护工程技术规范,是当前加强环境保护标准化步伐的一项重要任务,是国家环境管理的重要手段,在贯彻法律法规、落实环保规划目标、促进技术进步、优化产业结构、规范管理和执法行为等方面发挥着重要和不可替代的作用。 从1973 年我国发布第一个国家环境保护标准《工业“三废”排放标准》起截至2005年底,经过三十多年的发展,我国环境保护标准体系已初具规模。各类现行有效的环境保护标准共计841 项,包括环境质量标准、污染物排放标准、环境基础标准、监测分析方法标准和环境标准样品标准五类,以及国家标准、行业标准和地方标准三级。各省、市、自治区人民政府根据当地环境质量状况和环境管理需要,制订和发布了一系列地方环境标准。构成了以国家环境标准为主体,地方环境标准为补充的我国环境标准体系,这些环境标准为防治环境污染起到了重要的基础性作用。 环境工程技术标准属于国家环境保护行业标准。国家环保总局已组织制定了环境工程技术规范体系,编制了“十一五”环境工程技术规范编制计划;组织制定发布了十余项环境工程技术规范,以及涉及污染治理产品、环境监测仪器、环保药剂、材料等方面的100余项行业标准或技术要求。并指出“十一五”期间实现新型工业化,要重点解决国家重大工业布局规划以及相应的环境保护技术规范问题。受各种因素的制约和影响,我国部分现行国家环境标准(特别是环境保护行业标准、污染防治技术政策)还不够完善,已不适应当前形势,对行业技术进步的促进作用不足,和国际水准尚有较大差距。 污水膜分离处理,国外已有成熟的技术;而在国内,膜法水处理技术的主要应用领域是纯水制备及海水淡化,随着污水排放标准越来越严格以及污水资源化的要求,近年来才开始广泛地推广、应用膜分离法污水处理技术。目前,我国有针对海水利用领域的膜分离法技术标准,尚无系统的污水膜分离法行业标准;在环境保护行业标准中,仅有反渗透、超滤、电渗析装置的环境保护产品技术要求,针对性不强,不能对行业技术起到很好的指导作用。

相关文档
最新文档