嵌入式多线程实验报告
嵌入式实验报告总结
嵌入式实验报告总结嵌入式实验报告总结近年来,嵌入式系统在各个领域中得到了广泛的应用。
嵌入式系统是指将计算机系统嵌入到其他设备或系统中,以实现特定功能的一种计算机系统。
在本次嵌入式实验中,我深入学习了嵌入式系统的原理和应用,并通过实际操作,加深了对嵌入式系统的理解。
实验一:嵌入式系统的基本概念和发展历程在本实验中,我们首先了解了嵌入式系统的基本概念和发展历程。
嵌入式系统的特点是紧凑、高效、实时性强,并且适用于各种各样的应用场景。
通过学习嵌入式系统的发展历程,我们了解到嵌入式系统在不同领域的应用,如智能家居、医疗设备、汽车电子等。
这些应用领域的嵌入式系统都有着各自的特点和需求,因此在设计嵌入式系统时需要根据具体应用场景进行优化。
实验二:嵌入式系统的硬件平台与软件开发环境在本实验中,我们学习了嵌入式系统的硬件平台和软件开发环境。
硬件平台是嵌入式系统的基础,包括处理器、内存、外设等。
而软件开发环境则提供了开发嵌入式系统所需的工具和库函数。
我们通过实际操作,搭建了嵌入式系统的硬件平台,并使用软件开发环境进行程序的编写和调试。
通过这个实验,我深刻理解了硬件平台和软件开发环境对嵌入式系统的影响,以及它们之间的协同工作。
实验三:嵌入式系统的实时操作系统在本实验中,我们学习了嵌入式系统的实时操作系统。
实时操作系统是嵌入式系统中非常重要的一部分,它能够保证系统对外界事件的响应速度和可靠性。
我们通过实际操作,学习了实时任务的创建和调度,以及实时操作系统的中断处理机制。
实时操作系统的学习让我更加深入地了解了嵌入式系统的实时性要求和相关的调度算法。
实验四:嵌入式系统的通信与网络在本实验中,我们学习了嵌入式系统的通信与网络。
嵌入式系统通常需要与其他设备或系统进行通信,以实现数据的传输和共享。
我们学习了嵌入式系统的通信协议和网络协议,如UART、SPI、I2C、TCP/IP等。
通过实际操作,我掌握了这些通信和网络协议的使用方法,以及在嵌入式系统中如何进行数据的传输和处理。
多线程程序实验报告(3篇)
第1篇一、实验目的1. 理解多线程的概念和作用。
2. 掌握多线程的创建、同步和通信方法。
3. 熟悉Java中多线程的实现方式。
4. 提高程序设计能力和实际应用能力。
二、实验环境1. 操作系统:Windows 102. 开发工具:IntelliJ IDEA3. 编程语言:Java三、实验内容本次实验主要完成以下任务:1. 创建多线程程序,实现两个线程分别执行不同的任务。
2. 使用同步方法实现线程间的同步。
3. 使用线程通信机制实现线程间的协作。
四、实验步骤1. 创建两个线程类,分别为Thread1和Thread2。
```javapublic class Thread1 extends Thread {@Overridepublic void run() {// 执行Thread1的任务for (int i = 0; i < 10; i++) {System.out.println("Thread1: " + i);}}}public class Thread2 extends Thread {@Overridepublic void run() {// 执行Thread2的任务for (int i = 0; i < 10; i++) {System.out.println("Thread2: " + i);}}}```2. 创建一个主类,在主类中创建两个线程对象,并启动它们。
```javapublic class Main {public static void main(String[] args) {Thread thread1 = new Thread1();Thread thread2 = new Thread2();thread1.start();thread2.start();}```3. 使用同步方法实现线程间的同步。
```javapublic class SynchronizedThread extends Thread {private static int count = 0;@Overridepublic void run() {for (int i = 0; i < 10; i++) {synchronized (SynchronizedThread.class) {count++;System.out.println(Thread.currentThread().getName() + ": " + count);}}}}public class Main {public static void main(String[] args) {Thread thread1 = new SynchronizedThread();Thread thread2 = new SynchronizedThread();thread1.start();thread2.start();}```4. 使用线程通信机制实现线程间的协作。
嵌入式多线程 实习总结(有感想)
解压应用程序以及多线程应用程序设计实习过程首先完成上次实习没有完成的解压应用程序的部分。
设置好宿主机和目标机的IP地址后,运行FTP软件。
将压缩包从右侧的宿主机本地目录“拖到”左侧的目标机目录中。
最后在超级终端上完成解压。
其次完成多线程的部分,运行虚拟机后,步骤如下:1、挂载NFS服务。
系统设置部分需要完成关闭防火墙,设置宿主机和目标机IP(需在一个网段内),配置NFS服务器。
之后:service nfs start。
启动。
挂载NFS时候出现了问题。
当设置宿主机IP为192.168.1.155之后,在虚拟机的LINUX终端里mount了192.168.1.155(也就是自己挂载自己),然后总感觉不对,鼓捣了半天,又在超级终端里ifconfig之后出现了三个IP地址,第一个是inet addr,第二个是broadcast,第三个是子网掩码,但是我当时没看懂第二个地址,于是又把宿主机的IP设置为了192.168.1.255。
老师一说才想起来计算机网络课上讲的,C类的网络地址,后8位若为全1,应该是广播地址才对。
反正这块乱了。
分析后,觉得主要原因还是因为对挂载的深层含义不懂,没明白其实是目标机想要宿主机里的东西,所以要从超级终端里挂载host下的目录。
最终完成挂载。
Mount –t nfs 192.168.0.2:/arm2410cl/ /mnt/nfs (老师说这里直接写/mnt不好,会覆盖掉mnt目录,如果以后要挂载其他的应用,就不好弄了。
)2、第一步成功后,在超级终端上cd arm2410cl/exp/basic/02_pthread。
成功进入,make语句后,用命令:./pthread成功运行。
3、在虚拟机的LINUX终端上,也进入了arm2410cl/exp/basic/01_hello,但是不能运行hello,用gcc hello.c –o hello之后,./hello就能运行了。
用这个方法,完成02_pthread,发现gcc提示几个相似错误,都跟main函数里的一个函数有关。
嵌入式报告实验报告
嵌入式报告实验报告1. 引言嵌入式系统作为一种特殊的计算机系统,应用广泛且日益重要。
嵌入式报告实验是对嵌入式系统进行实际操作和测试的过程,旨在验证嵌入式系统的功能和性能,以评估其是否满足设计要求。
本报告将详细介绍嵌入式报告实验的设计与实施,并对实验结果进行分析与总结。
2. 实验设计2.1 实验目的嵌入式报告实验的目的是通过设计和实施一系列测试来评估嵌入式系统的性能和功能。
具体目标包括但不限于:验证系统的实时性、稳定性和可靠性;测试系统的各种输入输出功能;评估系统对异常情况的处理能力。
2.2 实验环境实验使用的嵌入式系统硬件为XX处理器,集成了XX模块和XX接口。
软件方面,使用XX嵌入式操作系统和XX开发工具进行系统开发和测试。
2.3 实验步骤1) 配置硬件环境:将嵌入式系统与外部设备连接,确保硬件环境正常。
2) 编写测试程序:根据实验目标,编写相应的测试程序,包括输入输出测试、性能测试和异常情况测试等。
3) 软件调试:通过软件调试工具对测试程序进行调试,确保程序逻辑正确。
4) 硬件调试:通过硬件调试工具对嵌入式系统进行调试,确保硬件模块正常工作。
5) 实验运行:将测试程序下载到嵌入式系统中,运行测试程序并记录实验数据。
6) 数据分析与总结:对实验数据进行分析和总结,评估嵌入式系统的性能和功能是否满足设计要求。
3. 实验结果与分析3.1 输入输出测试通过设计一系列输入输出测试用例,测试嵌入式系统的输入输出功能。
测试包括但不限于:按键输入、传感器数据采集、外部设备通信等。
实验结果表明,嵌入式系统的输入输出功能正常,能够准确获取和处理各种输入信号,并成功输出相应的结果。
3.2 性能测试通过设计一系列性能测试用例,测试嵌入式系统的处理能力和实时性。
测试包括但不限于:任务切换速度、响应时间、系统负载等。
实验结果表明,嵌入式系统具有较高的处理能力和实时性,能够快速响应各种任务并保持系统的稳定性。
3.3 异常情况测试通过设计一系列异常情况测试用例,测试嵌入式系统对异常情况的处理能力。
嵌入式实训课实验报告
一、实验背景嵌入式系统在现代工业、消费电子、智能家居等领域扮演着越来越重要的角色。
为了让学生深入了解嵌入式系统的设计原理和开发过程,提高学生的实践能力和创新精神,我们开设了嵌入式实训课程。
本次实验报告将针对实训课程中的部分实验进行总结和分析。
二、实验目的1. 掌握嵌入式系统的基本原理和开发流程。
2. 熟悉嵌入式开发工具和环境。
3. 熟练使用C语言进行嵌入式编程。
4. 学会调试和优化嵌入式程序。
三、实验内容本次实训课程共安排了五个实验,以下是每个实验的具体内容和实验步骤:实验一:使用NeoPixel库控制RGB LED灯带1. 实验目的:学习使用NeoPixel库控制RGB LED灯带,实现循环显示不同颜色。
2. 实验步骤:(1)搭建实验平台,连接NeoPixel LED灯带。
(2)编写程序,初始化NeoPixel库,设置LED灯带模式。
(3)通过循环,控制LED灯带显示不同的颜色。
实验二:使用tm1637库控制数码管显示器1. 实验目的:学习使用tm1637库控制数码管显示器,显示数字、十六进制数、温度值以及字符串,并实现字符串滚动显示和倒计时功能。
2. 实验步骤:(1)搭建实验平台,连接tm1637数码管显示器。
(2)编写程序,初始化tm1637库,设置显示模式。
(3)编写函数,实现数字、十六进制数、温度值的显示。
(4)编写函数,实现字符串滚动显示和倒计时功能。
实验三:使用ds18x20库和onewire库读取DS18B20温度传感器的数据1. 实验目的:学习使用ds18x20库和onewire库读取DS18B20温度传感器的数据,并输出温度值。
2. 实验步骤:(1)搭建实验平台,连接DS18B20温度传感器。
(2)编写程序,初始化ds18x20库和onewire库。
(3)编写函数,读取温度传感器的数据,并输出温度值。
实验四:使用ESP32开发板连接手机热点,并实现LED1作为连接指示灯1. 实验目的:学习使用ESP32开发板连接手机热点,并通过LED1指示灯显示连接状态。
嵌入式实验报告总结
嵌入式实验报告总结本次嵌入式实验主要涉及到嵌入式系统的设计与开发,通过对实验过程的总结和分析,可以得出以下结论和认识。
在实验过程中,我们深入了解了嵌入式系统的基本原理和设计方法。
嵌入式系统是一种针对特定应用领域设计的计算机系统,具有体积小、功耗低、功能强大等特点。
在实验中,我们通过学习相关理论知识,了解了嵌入式系统的硬件结构和软件开发流程,并且亲自动手进行了系统设计和开发,加深了对嵌入式系统的理解和掌握。
实验中我们学习了嵌入式系统的硬件设计。
嵌入式系统的硬件设计是整个系统的基础,包括选择合适的处理器、外设接口设计、电源电路设计等。
在实验中,我们根据实际需求选择了合适的处理器和外设,进行了相关接口的设计和连接,确保硬件系统的稳定性和可靠性。
然后,实验中我们进行了嵌入式系统的软件开发。
嵌入式系统的软件开发是整个系统的核心,需要编写各种驱动程序和应用程序,实现系统的各种功能。
在实验中,我们学习了嵌入式系统的软件开发工具和方法,使用C语言编写了驱动程序和应用程序,并进行了调试和测试,确保软件系统的正确性和稳定性。
实验中我们还学习了嵌入式系统的调试和测试方法。
嵌入式系统的调试和测试是确保系统正常运行的重要环节,需要使用专业的工具和方法进行。
在实验中,我们学习了嵌入式系统的调试和测试工具,通过对系统的性能和功能进行评估,发现并解决了一些潜在的问题,确保系统的稳定性和可靠性。
通过本次实验,我们对嵌入式系统的设计与开发有了更深入的了解和认识。
嵌入式系统作为一种特殊的计算机系统,具有广泛的应用前景和市场需求。
通过学习和实践,我们不仅提高了自己的技术水平,也为将来的工作和研究打下了坚实的基础。
希望今后能够继续深入学习和研究嵌入式系统,为推动科技进步和社会发展做出更大的贡献。
本次嵌入式实验通过对硬件设计、软件开发、调试测试等方面的学习和实践,使我们对嵌入式系统的设计与开发有了更深入的了解和认识。
通过实验的过程,我们不仅提高了自己的技术水平,也增强了对嵌入式系统的兴趣和热情。
北京科技大学嵌入式系统实验6---嵌入式Linux 多线程编程实验
北京科技大学实验报告学院:自动化学院专业:班级:姓名:学号:实验日期:2018年5月7日实验名称:实验六嵌入式Linux多线程编程实验实验目的:1.掌握线程的运行机制、创建方法及特点。
2.掌握线程退出、线程等待、线程清除等函数的使用方法。
3.学会线程的数据处理方法。
实验仪器:linux操作系统64位实验内容与步骤:编写程序,完成如下五个功能,要求写出编程思路、实验步骤,显示程序运行结果,并进行必要的分析。
1)有一个int型全局变量g_Flag初始值为0;2)在主线程中起动线程1,打印“this is thread1”,并将g_Flag设置为1;3)在主线程中启动线程2,打印“this is thread2”,并将g_Flag设置为2;4)线程1需要在线程2退出后才能退出;5)主线程在检测到g_Flag从1变为2,或者从2变为1的时候退出。
实验数据:编程思路:本实验我是主要是用到进程与线程相关的概念,有关线程操作的函数,线程之间的互斥以及线程之间的同步这些内容,在编写程序代码时,首先定义一个int型全局标志g_Flag,设置其初始值大小为0,初始化进程锁pthread_mutex_t mutex,然后初始化条件变量pthread_cond_t cond,声明两个线程函数,分别为thread1和thread2,定义两个线程id分别为tid1和tid2,创建线程,如果线程创建成功的话就返回0,否则的话就返回一个正数,如果rc2不等于0的话,说明创建错误,在线程1程序入口,启动进程thread1,输出enter thread,执行进程1打印出this is thread1,g_Flag的值也同时输出,输出结果为1,得到当前线程id,接下来如启动进程互斥锁,如果g_Flag的值为2则说明线程thread2已经执行了,这时候进程2打印出this is thread2,g_Flag的值为2,首先退出进程2,然后再退出进程1,通过调用pthread_exit()函数实现进程的退出,当g_Flag的值发生变化,当其从1变为2或者从2变为1时,主线程能够检测到g_Flag发生的变化,调用pthread_exit()函数退出主线程。
嵌入式实验设计实训报告
一、实验背景随着信息技术的飞速发展,嵌入式系统在各个领域得到了广泛的应用。
为了让学生更好地掌握嵌入式系统设计的相关知识,提高学生的动手能力和实际操作能力,我们开展了嵌入式实验设计实训。
本次实训以ARM处理器为平台,通过实际操作,让学生了解嵌入式系统的基本原理和设计方法。
二、实验目的1. 熟悉ARM处理器的基本架构和编程环境。
2. 掌握嵌入式系统设计的基本流程和方法。
3. 培养学生的动手能力和实际操作能力。
4. 提高学生对嵌入式系统的认知和应用能力。
三、实验内容1. 实验环境(1)硬件平台:ARM处理器开发板(2)软件平台:Keil uVision5、GNU ARM Embedded Toolchain2. 实验步骤(1)搭建实验环境首先,将开发板连接到计算机,并安装Keil uVision5和GNU ARM Embedded Toolchain软件。
接着,配置开发板,使其能够正常运行。
(2)编写程序根据实验要求,编写嵌入式系统程序。
程序主要包括以下几个方面:1)初始化:设置时钟、GPIO、中断等。
2)主循环:实现程序的主要功能。
3)中断处理:处理外部中断。
4)延时函数:实现延时功能。
(3)编译程序将编写好的程序编译成可执行文件。
(4)下载程序将编译好的程序下载到开发板上。
(5)调试程序在开发板上运行程序,通过串口调试软件观察程序运行情况,并对程序进行调试。
(6)实验报告根据实验内容,撰写实验报告。
3. 实验项目(1)点亮LED灯通过控制GPIO端口,实现LED灯的点亮和熄灭。
(2)按键控制LED灯通过检测按键状态,控制LED灯的点亮和熄灭。
(3)定时器实现定时功能使用定时器实现定时功能,例如定时关闭LED灯。
(4)串口通信实现串口通信,发送和接收数据。
四、实验结果与分析1. 点亮LED灯实验成功实现了通过控制GPIO端口点亮LED灯的功能。
2. 按键控制LED灯实验成功实现了通过检测按键状态控制LED灯的功能。
嵌入式Linux多线程编程实验
实验二、嵌入式Linux多线程编程实验一、实验目的1. 熟悉线程的定义、创建及应用方法,掌握编译源代码时引入线程库的方法。
2. 掌握如何利用信号量完成线程间的同步与互斥。
3. 熟悉Makefile工作原理,掌握编写Makefile的编写方法。
二、实验基本要求1. 掌握熟悉线程的定义及操作方法。
2. 利用信号量的PV操作完成完成以下单个生产者和单个消费者模型的代码。
3. 编写在Ubuntu中编译执行的makefile文件,然后在Ubuntu中执行。
4. 编写在实验箱中编译执行的makefile文件,然后在实验箱中执行。
注意Makefile编写规范缩进应使用制表键即Tab键。
三、实验原理1.Linux线程的定义线程(thread)是在共享内存空间中并发的多道执行路径,它们共享一个进程的资源,如文件描述和信号处理。
在两个普通进程(非线程)间进行切换时,内核准备从一个进程的上下文切换到另一个进程的上下文要花费很大的开销。
这里上下文切换的主要任务是保存老进程CPU状态并加载新进程的保存状态,用新进程的内存映像替换进程的内存映像。
线程允许你的进程在几个正在运行的任务之间进行切换,而不必执行前面提到的完整的上下文。
另外本文介绍的线程是针对POSIX线程,也就是pthread。
也因为Linux对它的支持最好。
相对进程而言,线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。
在串行程序基础上引入线程和进程是为了提高程序的并发度,从而提高程序运行效率和响应时间。
也可以将线程和轻量级进程(LWP)视为等同的,但其实在不同的系统/实现中有不同的解释,LWP更恰当的解释为一个虚拟CPU或内核的线程。
它可以帮助用户态线程实现一些特殊的功能。
Pthread是一种标准化模型,它用来把一个程序分成一组能够同时执行的任务。
2. 什么场合会使用Pthread即线程(1) 在返回前阻塞的I/O任务能够使用一个线程处理I/O,同时继续执行其他处理任务。
北邮嵌入式系统设计实验-实验报告
北邮嵌入式系统设计实验-实验报告嵌入式试验报告学院:xxx班级:xxx学号:xxx姓名:xxx成员:xxx一、基础学问部分1.多线程试验本章主要讲解线程的概念和线程间的同步方式。
试验一主要介绍线程的概念和线程的创建,试验二、试验三、试验四分离介绍了信号量、互斥锁、条件变量的作用和使用。
1.1 线程的介绍线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。
线程是程序中一个单一的挨次控制流程。
进程内一个相对自立的、可调度的执行单元,是系统自立调度和分派CPU 的基本单位指运行中的程序的调度单位。
在单个程序中同时运行多个线程完成不同的工作,称为多线程。
线程是允许应用程序并发执行多个任务的一种机制,是程序运行后的任务处理单元,也是SylixOS操作系统任务调度的最小单元。
在多核CPU中,同时可以有多个线程在执行,实现真正意义上的并行处理。
线程入口函数是一个能够完成特定任务的函数,因此线程入口函数的编写上与一般函数没有太多区分。
线程的创建函数如下:●创建线程失败,函数返回非0的错误代码,胜利返回0;●*thread pthread_t类型的缓冲区,保存一个线程的线程ID;●*attr 设置线程属性,设置为NULL标识创建的新线程使用默认属性;●*(*start_routine) 线程入口函数函数名●*arg 向所创建线程传入的参数1.2 信号量的概念信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。
在进入一个关键代码段之前,线程必需猎取一个信号量;一旦该关键代码段完成了,那么该线程必需释放信号量。
其它想进入该关键代码段的线程必需等待直到第一个线程释放信号量。
信号量是一个在进程和线程中都可以使用的同步机制。
信号量类似于一个通知,某个线程发出一个通知,等待此通知的线程收到通知后,会执行预先设置的工作。
嵌入式综合实训实验报告
一、实验背景与目的随着信息技术的飞速发展,嵌入式系统在各个领域的应用越来越广泛。
为了提升学生对嵌入式系统的理解和应用能力,本实验课程旨在通过综合实训,让学生全面掌握嵌入式系统的开发流程,包括硬件选型、软件开发、系统调试以及项目实施等环节。
通过本实验,学生能够熟悉嵌入式系统的基本原理,提高实际操作能力,为今后从事嵌入式系统相关工作打下坚实基础。
二、实验环境与工具1. 硬件平台:选用某型号嵌入式开发板作为实验平台,具备丰富的外设接口,如GPIO、UART、SPI、I2C等。
2. 软件平台:采用某主流嵌入式Linux操作系统,支持交叉编译工具链,方便软件开发和调试。
3. 开发工具:集成开发环境(IDE),如Eclipse、Keil等,提供代码编辑、编译、调试等功能。
4. 其他工具:示波器、逻辑分析仪、电源适配器等。
三、实验内容与步骤1. 硬件平台搭建(1)根据实验要求,连接嵌入式开发板与计算机,确保硬件连接正确无误。
(2)配置开发板电源,检查开发板各个外设是否正常工作。
2. 软件环境搭建(1)在计算机上安装嵌入式Linux操作系统,并配置交叉编译工具链。
(2)安装集成开发环境(IDE),如Eclipse或Keil,并进行相关配置。
3. 嵌入式系统开发(1)根据实验要求,设计嵌入式系统功能模块,编写相关代码。
(2)利用IDE进行代码编辑、编译、调试,确保程序正常运行。
4. 系统调试与优化(1)使用示波器、逻辑分析仪等工具,对系统进行调试,检查各个模块是否正常工作。
(2)根据调试结果,对系统进行优化,提高系统性能和稳定性。
5. 项目实施(1)根据实验要求,设计并实现一个嵌入式系统项目,如智能家居控制系统、工业自动化控制系统等。
(2)编写项目报告,总结项目实施过程和心得体会。
四、实验结果与分析通过本次嵌入式综合实训,我们完成了以下实验内容:1. 熟悉嵌入式开发平台的基本硬件和软件环境。
2. 掌握嵌入式系统开发流程,包括硬件选型、软件开发、系统调试等环节。
嵌入式实验报告一
嵌入式实验报告一实验时间2013/6/9 报告人一、实验目的:1.嵌入式仿真开发环境的建立;2.通过上机实验,使学生验证、巩固和充实所学理论知识,加深对相关内容的理解,了解嵌入式操作系统的指令和目录结构。
二、实验要求:1.安装Cygwin;2.学习常见的Linux命令。
(1)文件操作命令主要包括查看文件命令(ls)、显示文件内容命令(cat)、文件复制命令(cp)、文件改名命令(mv)、删除文件命令(rm)。
(2)目录操作命令目录操作命令主要包括改变当前目录命令(cd)、显示当前目录命令(pwd)、建立子目录(mkdir)和删除子目录(rmdir)。
(3)其他操作命令其他操作命令主要包括链接命令(ln),清屏命令(clear),显示日期、时间和月历命令,修改权限的命令chmod等。
三、问题:1.文件操作指令的功能。
(1)熟悉Linux命令的功能。
(2)建立将左图所示的目录结构变为右图所示的目录结构。
请用最少的命令完成操作,并写出所使用的命令(图中方框表示目录,圆圈表示文件)。
(1)建左图目录结构(2)改左图目录为右图目录cd cdmkdir a1 b1 c1 mv /a1/d /c1cd a1 mv /a1/e /c1touch d e mv /b1/f /a1cd mv /c1/c2/i /a1cd b1 mv /c1/c2/j /b1touch f mv /c1/d2/k /b1cd cd c1cd c1 rmdir c2 d2mkdir c2 d2cd c2touch i jcd d2touch k2.简述Linux目录结构,说明各个目录的作用且使用时有哪些注意事项。
1. / :Linux文件系统的入口,也是处于最高一级的目录。
2. /bin:基础系统所需要的那些命令位于此目录,也是最小系统所需要的命令;比如ls、cp、mkdir等命令;功能和/usr/bin类似,这个目录中的文件都是可执行的,普通用户都可以使用的命令。
嵌入式操作系统—多线程-实验报告(11-多线程编程)
程序实验二:11-多线程编程实验专业班级实验日期姓名学号实验一(p284:11-thread.c)1、软件功能描述创建3个线程,为了更好的描述线程之间的并行执行,让3个线程重用同一个执行函数。
每个线程都有5次循环,每次循环之间会随机等待1-10s的时间。
2、程序流程设计3.部分程序代码注释(关键函数或代码)res = pthread_create(&thread[no], NULL, thrd_func, (void*)no);创建线程res = pthread_join(thread[no], &thrd_ret);等待线程结束4.编译、运行方法及结果(抓屏)5.结果分析每个线程的运行和结束在宏观上是独立与并行的。
实验二(p287: 11-thread_mutex.c)1、软件功能描述增加线程互斥锁功能,实现原本独立与无序的多个线程能够按序执行。
2、程序流程设计3.部分程序代码注释(关键函数或代码)res = pthread_mutex_lock(&mutex);互斥锁上锁pthread_create(&thread[no], NULL, thrd_func, (void*)no);创建线程pthread_mutex_unlock(&mutex);互斥锁解锁4.编译、运行方法及结果(抓屏)5.结果分析通过增加互斥锁之后,在同一时刻只能有一个线程能够对共享资源进行操作。
其他线程想要上锁已经被上锁的互斥锁,则线程就会被挂起。
因此线程将按照创建的顺序执行。
实验三(P291:11-thread_sem.c)1、软件功能描述利用信号量同步机制实现3个线程之间的有序执行,只是执行顺序跟创建线程相反。
2、程序流程设计3.部分程序代码注释(关键函数或代码)sem_wait(&sem[thrd_num]);进行P操作res = pthread_create(&thread[no], NULL, thrd_func, (void*)no);创建新线程sem_post(&sem[THREAD_NUMBER - 1]);对最后创建的线程信号量进行V操作sem_destroy(&sem[no]);4.编译、运行方法及结果(抓屏)5.结果分析代码有问题,运行之后首先执行的是Thread 2然后就死锁了,我觉得线程解锁应该放在线程执行代码里面。
嵌入式实验报告二
嵌入式实验报告二在当今科技飞速发展的时代,嵌入式系统已经成为了众多领域中不可或缺的一部分。
从智能家居到工业自动化,从医疗设备到汽车电子,嵌入式系统的应用无处不在。
本次嵌入式实验,让我对嵌入式系统有了更深入的理解和认识。
本次实验的目的是通过实际操作,进一步掌握嵌入式系统的开发流程和相关技术。
实验所使用的硬件平台是_____开发板,其搭载了_____处理器,具有丰富的接口和资源。
软件方面,我们使用了_____集成开发环境(IDE)进行程序的编写、编译和调试。
实验的第一个任务是实现一个简单的 LED 闪烁程序。
通过配置开发板的引脚,控制连接在引脚上的 LED 灯按照一定的频率闪烁。
这个看似简单的任务,却让我对嵌入式系统的底层硬件操作有了初步的了解。
在编写代码的过程中,需要熟悉开发板的引脚定义、时钟配置以及中断处理等知识。
经过多次调试和修改,终于成功地让 LED 灯闪烁起来,那一刻的成就感难以言表。
接下来的实验是实现一个温度传感器的数据采集和显示。
我们使用了_____型号的温度传感器,通过 SPI 接口与开发板进行通信。
在这个过程中,不仅要掌握传感器的通信协议,还要学会如何处理采集到的数据,并将其在数码管或者液晶显示屏上进行显示。
在遇到数据读取不稳定、显示错误等问题时,通过仔细检查代码和硬件连接,最终解决了问题。
在实验过程中,也遇到了不少的困难和挑战。
例如,在配置开发板的时钟时,由于对时钟源和分频系数的理解不够深入,导致系统运行不稳定。
还有在编写中断服务程序时,出现了中断响应不及时的情况,经过查阅资料和反复测试,发现是中断优先级设置不正确。
这些问题的解决,让我深刻体会到了嵌入式系统开发的复杂性和严谨性。
通过这次实验,我不仅掌握了嵌入式系统开发的基本技能,还培养了自己解决问题的能力和团队协作精神。
在实验中,与小组成员共同探讨问题、分享经验,使得实验进展更加顺利。
同时,也让我认识到了自己在知识储备和实践能力方面的不足之处,为今后的学习和研究指明了方向。
嵌入式系统技术实验报告
南京理工大学嵌入式系统技术实验报告作者: 学号:学院(系):班级:指导老师:孙瑜实验日期: 2014年11月实验一:熟悉Linux 开发环境一、实验目的熟悉Linux开发环境,学会基于S3C2410的Linux开发环境的配置和使用。
使用Linux的armv4l-unknown-linux-gcc编译,使用基于NFS方式的下载调试,了解嵌入式开发的基本过程。
二、实验仪器硬件:UP-NETARM2410-S嵌入式实验平台、PC机。
软件:PC机操作系统REDHAT LINUX 9.0+MINICOM+ARM-LINUX开发环境三、实验内容本次实验使用Redhat Linux 9.0操作系统环境,安装ARM-Linux的开发库及编译器。
创建一个新目录,并在其中编写hello文件。
学习在Linux下的编程和编译过程,以及ARM开发板的使用和开发环境的设置。
下载已经编译好的文件到目标开发板上运行。
四、实验步骤1、建立工作目录[root@zxt smile]# mkdir hello[root@zxt smile]# cd hello2、编写程序源代码实际的hello.c源代码较简单,如下:#include <stdio.h>void main(void){printf(“hello world \n”);}用下面的命令来编写“hello.c”的源代码,进入hello目录使用vi命令来编辑代码:[root@zxt hello]# vi hello.c按“i”或者“a”进入编辑模式,录入上面的代码,完成后按Esc键进入命令状态,再用命令“:wq ”,保存并退出。
这样在当前目录下建立了一个名为“hello.c”的文件。
3、编译链接要使上面的“hello.c”程序能够运行,将其经过编译和连接,生成可执行文件。
输入 gcc hello.c -o hello 进行编译,再输入 ./hello 运行程序,观察结果1。
嵌入式实验四实验报告_实验报告_
嵌入式实验四实验报告3.4基于UART的加法器的实现一、实验目的学习lm3s9b92的串口通信学习应用超级终端调试串口学会应用UART有关的库函数二、实验设备计算机、LM3S9B92开发板、USB A型公口转 Mini B型 5Pin 数据线1 条三、实验原理Stellaris系列ARM的UART具有完全可编程、16C550型串行接口的特性。
Stellaris系列ARM含有2至3个UART模块。
该指导书在第一部分的1.2节中说明,该开发板使用了FT2232芯片实现usb到串口的转换。
并设置在芯片的B通道上使用虚拟COM 接口(VCP)。
虚拟串行端口(VCP)与LM3s9b92上的UART0模块连接。
在安装FTDI驱动程序后,windows会分配一个串行通信端到VCP通道,并允许windows应用程序(如超级终端)通过USB与LM3s9b92上的UART0进行通信。
利用Windows超级终端调试UART的方法对于该开发板,使用的是USB虚拟的COM端口,无须使用DB9连接器。
因此下面讲解一下如何利用Windows附带的超级终端来调试UART接口。
Windows附件里的“超级终端”是个非常实用的应用程序,可以用来调试电脑的COM串行口,也能很好地支持通过USB虚拟的COM 口。
以下是超级终端配置COM端口的过程:四、实验要求采用超级终端作为外部输入与输出的接口,实现多位数的相加。
即通过UART串口分别输入需要相加的多位数A与B,最后把A和B 两个多位数相加的过程和结果,回显给用户。
具体实现方法:既可以采用轮询的方式也可以应用中断。
五、实验步骤1、连接实验设备:使用USB mini B线缆的mini端与开发板ICDI 口相连,另一端接到PC机的USB插口上。
2、根据实验要求编写、调试、运行程序。
并要求在代码上附上相关的注释。
#include#include "inc/hw_ints.h"#include "inc/hw_memmap.h"#include "inc/hw_types.h"#include "driverlib/debug.h"#include "driverlib/gpio.h"#include "driverlib/interrupt.h"#include "driverlib/sysctl.h"#include "driverlib/uart.h"#include "grlib/grlib.h"#include "drivers/kitronix320x240x16_ssd2119_8bit.h"#include "drivers/set_pinout.h"#include "systemInit.h"void uartInit(void){SysCtlPeriEnable(SYSCTL_PERIPH_UART0); // 使能UART模块SysCtlPeriEnable(SYSCTL_PERIPH_GPIOA); // 使能RX/TX所在的GPIO端口GPIOPinTypeUART(GPIO_PORTA_BASE, // 配置RX/TX所在管脚为GPIO_PIN_0 | GPIO_PIN_1); // UART收发功能UARTConfigSet(UART0_BASE, // 配置UART端口9600, // 波特率:9600UART_CONFIG_WLEN_8| // 数据位:8UART_CONFIG_STOP_ONE | // 停止位:1UART_CONFIG_PAR_NONE); // 校验位:无UARTEnable(UART0_BASE); // 使能UART端口}void uartPuts(const char *s){while (*s != ''){UARTCharPut(UART0_BASE, *(s++));}}main(void){char c,a[12];int sum=0,num=0,i;// jtagWait( ); // 防止 JTAG 失效,重要!clockInit( ); // 时钟初始化:晶振, 6MHzuartInit( ); // UART 初始化uartPuts("输入格式 m+n= ");for (;;){c = UARTCharGet(UART0_BASE); // 等待接收字符if(c>='0'&&c<='9')//判断收到的是否为字符{num=num*10+c-'0'; //将收到的字符转换为整形储存 } else if(c=='+'){ //接收第二个数 sum=sum+num; num=0;}else if(c=='=') //输出{sum=sum+num;num=0;for(i=0;sum!=0;i++){a[i]=sum%10;sum=(sum-a[i])/10;}for(i--;i>=0;i--){UARTCharPut(UART0_BASE, a[i]+'0'); } UARTCharPut(UART0_BASE, ' '); }if (c == ' ') // 如果遇到回车{UARTCharPut(UART0_BASE, ' '); // 多回显一个换行} }}3、书写实验报告,要求附上程序流程图。
实验六 嵌入式Linux多线程编程
实验六嵌入式Linux多线程编程【实验目的】了解 Linux下多线程程序设计的基本原理学习 pthread 库函数的使用学习多线程间通讯的方法【实验学时】建议2学时【实验内容】♦读懂 pthread.c 的源代码,熟悉几个重要的 PTHREAD 库函数的使用,掌握互斥锁和条件变量在多线程间通讯的使用方法♦进入 5-6-thread 目录,运行 make 产生 pthread 程序,在ARM 设备端使用♦ NFS 方式连接宿主机端试验目录,运行实验测试。
【实验原理】见教材第五章【实验要求】调试验证程序,并提交实验报告。
【实验步骤】1、验证书中例子程序将目录5-1-thread、5-2-thread-sem、5-3-thread-mutex、5-4-thread-attr、5-5-thread中的程序编译并运行,观察运行结果2、编写pthread程序♦实验目录:5-6-thread♦编译源程序1)进入实验目录:[root@PCForARM 5-6-thread]# lsMakefile pthread pthread.c pthread.o2)清除中间代码,重新编译[root@PCForARM 5-6-thread]# make cleanrm -f ../bin/pthread ./pthread *.elf *.gdb *.o[root@PCForARM 5-6-thread]# makearm-linux-gcc -c -o pthread.o pthread.carm-linux-gcc -static -o ../bin/pthread pthread.o -lpthreadarm-linux-gcc -static -o pthread pthread.o -lpthread[root@PCForARM 5-6-thread]# lsMakefile pthread pthread.c pthread.o[root@PCForARM 5-6-thread]#当前目录下生成可执行程序 pthread。
嵌入式实验报告1
学生实验报告实验课程名称:嵌入式实验实验项目名称:多线程应用程序设计实验时间:2016 年12 月05 日班级:1404座号:姓名:电子信息工程学院编制2016年12月一、实验目的:¾ 了解多线程程序设计的基本原理。
¾ 学习pthread 库函数的使用。
二、所用实验仪器设备、耗材及数量硬件:UP-TECH S2410/P270 DVP 嵌入式实验平台,PC 机Pentium 500 以上, 硬盘40G 以上,内存大于128M。
软件:PC 机操作系统REDHAT LINUX 9.0 +MINICOM +ARM-LINUX 发环境。
三、实验原理(实验电路图及原理说明)1.多线程程序的优缺点多线程程序作为一种多任务、并发的工作方式,有以下的优点:1) 提高应用程序响应。
这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。
2) 使多CPU 系统更加有效。
操作系统会保证当线程数不大于CPU 数目时,不同的线程运行于不同的CPU 上。
3) 改善程序结构。
一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。
LIBC 中的pthread 库提供了大量的API 函数,为用户编写应用程序提供支持。
2.实验源代码与结构流程图本实验为著名的生产者-消费者问题模型的实现,主程序中分别启动生产者线程和消费者线程。
生产者线程不断顺序地将0 到1000 的数字写入共享的循环缓冲区,同时消费者线程不断地从共享的循环缓冲区读取数据。
四、实验步骤(详细说明实验的操作过程及注意事项)21、阅读源代及编译应用程序进入exp/basic/02_pthread目录,使用vi 编辑器或其他编辑器阅读理解源代码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多线程实验日志
实验题目:多线程
实验目的:
⏹了解多线程程序设计的基本原理。
⏹学习pthread库函数的使用。
实验步骤及结果:
1、阅读源代及编译应用程序
进入/root/share/exp/basic/02_pthread目录,使用vi编辑器或其他编辑器阅读理解源代码。
运行make产生pthread可执行文件。
2、下载和调试
切换到minicom终端窗口,先像实验一一样,把串口、网线、电源线接好,配置好实验箱的IP地址,然后使用NFS mount宿主机(虚拟linux)的/root/share 到目标板(实验箱)/host 目录。
具体命令见图片中的命令,注意IP地址根据自己的情况进行相应的修改:
图2.4配置实验箱IP地址并mount 宿主机linux的/root/share到目标板(实验箱)/host目录
⏹进入/host/exp/basic/pthread目录,运行pthread,观察运行结果的正确性。
运行
程序最后一部分结果如下:
⏹
图2.5进入/host/exp/basic/pthread目录运行pthread
⏹
图2.6运行结果画面。