塔设备的机械设计
第八章 塔设备的机械设计(化工技术)
塔壁间的密封
碳钢制塔板与 塔盘圈厚度,一 般3-4mm,用不锈 钢时取2-3mm
2
分块式塔盘第八章图\分块塔板一.rm 第八 章图\分块塔板二.rm
塔身为焊制的整体圆筒,塔盘分成数块, 由人孔送入塔内,安装到塔盘固定件上。
塔径在800~900mm以上时建议采用
特点:
1)结构简单,装拆方便 2)制造方便,模具简单
二 裙座设计 结构: 1)座体 2)基础环 3)螺栓座 4)管孔
1
座体设计
初选座体有效厚度δes,然后验算危险
截面应力。
1)
基底为危险截面时,应满足
操作时,
0 0 M max m0 g Fv0 0 t min KB; K S Z sb Asb
水压试验时,
0.3 M
水压试验时,
0.3 M M e m g min 0.9 K s ; KB Z sm Asm
1 1 w 1 1 max
2
基础环设计
基础环尺寸的确定
1)
Dob Dis 160 ~ 400 mm Dib Dis 160 ~ 400 mm
7)稳定条件
ii max
cr
4
塔体拉应力校核
1)假设有效厚度δei
2)计算最大组合轴向拉应力
内压,正常操作时 外压,非操作时
max 1
i i 2
ii 3
max
ii 3
ii 2
• 3)强度校核条件
ii max
K
5)最大组合轴向压应力
外压,正常操作时 max 1
QTZ400塔式起重机臂架设计
QTZ400塔式起重机臂架设计摘要:本次毕业设计题目是QTZ400塔式起重机臂架设计。
本次设计中主要进行了塔机总体选型,整体稳定性计算,其包括(平衡重计算、风载荷计算以及抗倾覆稳定性计算),臂架结构设计及强度校核,臂架焊接工艺及工装夹具设计。
其焊接工艺应尽可能的减小焊接变形和应力集中,胎具的设计应可靠地保证臂架上的各项技术要求。
最后,联系实际,设计出合理的胎具并确定其结构尺寸。
关键词:QTZ400塔式起重机;总体选型;稳定性计算;强度校核;焊接工艺;胎具序言塔式起重机简称塔机,也称塔吊,源于西欧。
具有工作效率高、使用范围广、回转半径大、起升高度高、操作方便以及安装与拆卸比较简便等特点,因而在建筑安装工程中得到了广泛的使用,并成为一种重要的施工机械。
为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点:(1)起升高度和工作幅度较大,起重力矩大;(2)工作速度高,具有安装微动性能及良好的调速性能;(3)要求装拆、运输方便迅速,以适应频繁转移工地之需要。
塔式起重机可以将其分解为金属结构、工作机构和驱动控制系统三个部分。
金属结构是塔式起重机的骨架,它承受着起重机自重以及作业时的各种外载荷,是塔式起重机的主要组成部分,由塔身、塔头或塔帽、起重臂架、平衡臂架、回装支撑架、底架、台车架等主要部件组成。
QTZ400塔式起重机的工作机构有起升机构、变幅机构、回转机构和顶升机构等。
其各机构功能:起升机构主要实现物品的上升与下降;变幅机构改变吊钩的幅度位置;回转机构使起重臂架作3600的回转,改变吊钩在工作平面内的位置;顶升机构使塔机的回转部分升降,从而改变塔式起重机的工作高度。
驱动控制系统是塔式起重机又一个重要的组成部分。
驱动装置用来给各种机构提供动力,最常用的是YZR与YZ系列交流电动机。
控制系统对工作机构的驱动装置和制动装置实行控制完成机构的起动、制动、换向、调速以及对机构工作的安全性实行监控,并及时地将工作情况用各种参量:电流值、电压值、速度、幅度、起重量、起重力矩、工作位置与风速等数值显示出来以使司机在操作时心中有数。
塔设备的机械设计课程设计
塔设备的机械设计课程设计一、课程目标知识目标:1. 让学生掌握塔设备的基本结构及其在化工生产中的应用,理解塔设备的设计原理和关键参数;2. 使学生了解塔设备机械设计的相关标准、规范和要求,掌握塔设备的设计流程;3. 引导学生掌握塔设备力学分析的基本方法,理解其强度、稳定性和疲劳寿命等方面的评价标准。
技能目标:1. 培养学生运用所学知识进行塔设备结构设计和计算的能力;2. 提高学生解决实际工程问题的能力,能够根据设计要求完成塔设备的机械设计;3. 培养学生查阅相关资料、运用专业软件进行塔设备设计和分析的能力。
情感态度价值观目标:1. 激发学生对化工设备机械设计的兴趣,培养其创新意识和实践能力;2. 培养学生严谨的科学态度和良好的团队协作精神,使其在工程设计中具备较强的责任感和使命感;3. 引导学生关注化工设备在实际生产中的应用,认识到所学知识在工程实践中的价值。
本课程针对高年级本科或研究生阶段的学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
通过本课程的学习,学生能够掌握塔设备机械设计的基本原理和方法,具备实际工程问题的分析和解决能力,为未来从事相关工作奠定坚实基础。
二、教学内容1. 塔设备概述:介绍塔设备的基本概念、分类及其在化工生产中的重要作用,对应教材第一章。
- 塔设备结构及工作原理- 塔设备的分类及特点2. 塔设备设计原理:讲解塔设备设计的基本原理、关键参数和设计要求,对应教材第二章。
- 塔设备设计的基本原理- 塔设备设计的关键参数- 塔设备设计的相关规范和要求3. 塔设备结构设计:学习塔设备的结构设计方法,包括力学分析、强度计算等,对应教材第三章。
- 塔设备力学分析- 塔设备强度计算- 塔设备稳定性分析4. 塔设备设计流程与实践:通过案例分析,使学生掌握塔设备设计的实际操作流程,对应教材第四章。
- 塔设备设计流程- 设计软件的应用- 案例分析与实践5. 塔设备设计评价与优化:介绍塔设备设计评价标准及优化方法,提高学生的工程设计能力,对应教材第五章。
第六章 塔设备的机械设计
自支承式塔设备的塔体除承受工作介质压力 之外,还承受自重载荷、风载荷、地震载荷及 偏心载荷的作用。
(1)塔设备自重载荷的计算
塔设备的操作质量:
(kg) (6-2) 塔设备水压试验时的质量,这时设备质量最大, 简称设备最大质量 m0 m01 m02 m03 m04 mw ma me (kg) (6-3) 设备吊装时的质量,这时设备质量最小,简称 设备最小质量: m0 m01 0.2m02 m03 m04 ma me (kg) (6-4)
M
00 E
8CZ 1 m0 g (10 H 3.5 14 H 2.5 h 4h3.5 ) 175H 2.5
(Nmm)
底部截面的地震弯矩 16 I I M E CZ 1 mo gH 35
(Nmm)
(3)风载荷的计算
图6-31所示为自支承式塔设备受风压作用 的示意图。塔体会因风压而发生弯曲变形。吹 到塔设备迎风面上的风压值,随设备高度的增 加而增加。为了计算简便,将风压值按设备高 度分为几段,假设每段风压值各自均布于塔设 备的迎风面上,如图所示。
Fk Cz α1k mk g (N )
式中 Cz—— 结构综合影响系数,对圆筒形 直立设备取Cz=0. 5; α1—— 对应于塔器基本自振周期T(利用图630查取α1值时,应使T =T1)的地震影响系数 α值; ηk—— 基本震型参与系数;
关于 α—— 地震影响系数,按图6-30确定;图中曲 Tg 0.9 线部分按公式
(6-19)
(4 )偏心载荷的计算
有些塔设备在顶部悬挂有分离器、热交换 器、冷凝器等附属设备,这些附属设备对塔体 产生偏心载荷。偏心载荷所引起的弯矩为: Me=me g e (6-20) 式中 me—— 偏心质量Kg e—— 偏心质量的重心至塔设备中心线的距离, mm
化工机械设备课程设计浮阀塔的设计
摘要 (2)1 前言 (3)1.1 研究的现状及意义 (3)1.2 设计条件及依据 (6)1.3 设备结构形式概述 (7)2 设计参数及其要求 (9)2.1 设计参数 (9)2.2设计条件 (9)2.3设计简图 (10)3 材料选择 (11)3.1 概论 (11)3.2塔体材料选择 (11)3.3裙座材料的选择 (11)4 塔体结构设计及计算 (12)4.1塔体和封头厚度计算 (12)4.1.1 塔体厚度的计算 (12)4.1.2封头厚度计算 (12)4.2塔设备质量载荷计算 (12)4.3风载荷与风弯矩的计算 (14)4.4地震弯矩的计算 (17)4.4.1地震弯矩的计算 (17)4.4.2偏心弯矩的计算 (18)4.5各种载荷引起的轴向应力 (19)4.6塔体和裙座危险截面的强度与稳定校核 (20)4.6.1塔体的最大组合轴向拉应力校核 (20)4.6.2.塔体和裙座的稳定校核 (21)4.7塔体水压试验和吊装时的应力校核 (22)4.7.1水压试验时各种载荷引起的应力 (22)4.7.2水压试验时应力校核 (23)4.8基础环的设计 (24)4.8.1 基础环尺寸 (24)4.8.2基础环的应力校核 (24)4.8.3基础环的厚度 (25)4.9地脚螺栓计算 (25)4.9.1地脚螺栓承受的最大拉应力 (25)4.9.2地脚螺栓的螺纹小径 (26)符号说明 (27)小结 (30)参考文献 (30)谢辞....................................................................................................................................... 错误!未定义书签。
图纸....................................................................................................................................... 错误!未定义书签。
塔设备设计课程设计
塔设备设计课程设计一、教学目标本课程的教学目标是使学生掌握塔设备设计的基本原理和方法,能够运用所学知识进行简单的塔设备设计。
具体来说,知识目标包括:掌握塔设备的基本结构和工作原理;了解塔设备设计的基本理论和方法;熟悉塔设备的常用材料和计算方法。
技能目标包括:能够运用CAD等软件进行塔设备的绘图;能够进行塔设备的选型和计算;能够独立完成简单的塔设备设计。
情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的认知和兴趣;培养学生对塔设备设计和制造的热爱和敬业精神。
二、教学内容本课程的教学内容主要包括塔设备的基本原理、塔设备的结构设计、塔设备的强度计算、塔设备的材料选择、塔设备的制造工艺等。
具体来说,教学大纲如下:1.塔设备的基本原理:包括塔设备的定义、分类和应用;塔设备的工作原理和性能指标。
2.塔设备的结构设计:包括塔设备的塔体、塔板、塔内件等的设计方法和步骤。
3.塔设备的强度计算:包括塔设备的压力容器强度计算、塔板的强度计算等。
4.塔设备的材料选择:包括塔设备的常用材料、材料的性能和选择原则。
5.塔设备的制造工艺:包括塔设备的制造流程、制造技术和质量控制。
三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、案例分析法、实验法等。
具体来说:1.讲授法:通过教师的讲解,使学生掌握塔设备设计的基本原理和方法。
2.案例分析法:通过分析实际案例,使学生了解塔设备设计的具体应用和注意事项。
3.实验法:通过实验操作,使学生掌握塔设备的制造工艺和质量控制。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的塔设备设计教材作为主要教学资源。
2.参考书:提供相关的塔设备设计参考书籍,供学生自主学习。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,丰富教学手段。
4.实验设备:准备齐全的塔设备实验设备,为学生提供实践操作的机会。
塔设备设计说明书
塔设备设计说明书概述塔设备的设计和选型是建立在对循环吸收工段、精制工段流程的模拟、优化的基础上。
在满足工艺要求的条件下,考虑设备的固定投资费用和操作费用,进行进一步模拟计算、设计和选型。
设计主要包括工艺参数设计、基本参数设计和机械设计。
工艺参数设计对该塔的生产能力、分离效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计塔板负荷性能校核等内容的设计;机械工程设计部分设计内容为塔设备的材质壁厚、封头、开口和支座地基等,同时对塔的机械性能做了校核。
我们完成了对全厂2 座塔设备的工艺参数设计、基本参数设计和机械设计,并选取其中最有代表性的二氧化碳吸收塔给出了详细的计算和选型说明。
详细的设备装配图见工艺设计施工图。
烟道气吸收塔设计说明书第1 部分概要烟道气吸收塔是吸收的关键设备之一,其作用是贫液吸收烟道气中的二氧化碳,从而达到使二氧化碳从烟道气中分离的目的。
塔的吸收能力直接影响到二氧化碳的回收率。
吸收塔的设计应符合一下塔设备的基本要求:1生产能力大,即气液处理量大;2分离效率高,即气液相能充分接触;3 适应能力及操作弹性大,即对各种物料性质的适应性强并且在负荷波动时能维持操作稳定,保持较高的分离效率;4流体流动阻力小,即气相通过每层塔板或单位高度填料层的压降小;5 结构简单可靠,材料耗用量少,制造安装容易,以降低设备投资;设计说明书包括工艺参数设计、基本结构设计和机械工程设计三部分。
工艺参数设计对该塔的生产能力、吸收效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计、塔板负荷性能校核等内容的设计;机械工程设计部分设计内容为塔设备的材质壁厚、封头、开口和支座地基等,同时对塔的机械性能做了校核。
第2 部分工艺参数设计2.1 生产能力项目年产十万吨二氧化碳,根据物料横算,气体进料量为7119.88kg/h ,液体进料量为294619kg/h ,塔顶物流量为54990.8kg/h ,塔底物流量为309748Kg/h 。
塔式起重机设计说明书
摘要被人们喻为“巨人之臂”、“画在天空中的弧、“力与美的象征”的起重机,广泛应用于国民经济各部门进行物质生产和装卸搬运的重要设备。
塔式起重机是一种能在一定范围内垂直起升和水平移动物品的机械,是现代化工业与民用建筑中的主要施工机械。
本次设计是关于塔式起重机的传动部分,目标是使塔式起重机所提起的重物能够正常的升降以及让小车能够在横梁上水平的运行。
首先,根据已知条件确定好设计的传动方案;然后,根据传动方案所提升的负载选择电动机,在依次选择选择蜗杆传动减速器、联轴器、制动器等;接着根据起升高度设计卷筒以及钢丝绳的设计计算,最后是对小车的设计计算;根据上述所选出的标准件以及零部件应用工程软件绘制出塔式起重机的装配图,根据装配图拆出塔式起重机的零部图。
设计塔式起重机构时,根据机构传动选择标准元件实际情况进行零部件的强度和寿命校核验算。
最后把计算结果整理成设计说明书。
总之,为了确保产品的质量和水平,设计工作按照科学的程序进行,分清主次,合理取舍。
关键词:塔式起重机;起升机构;传动设计AbstractBy people known as the”Giant of the arm”,”draw the art in the sky”,”a symble of strength and beauty” ,of the crane is widely used in material production sectors of the national economy and the importance of loading and unloading equipment.Tower crane is a species in certain range of vertical lifting and horizontal movement items of machinery,a modern industrial and civil buliding in the major construction machinery.This design is part of the transmisson tower cranes,tower cranes which objective is to bring the weight down normal and allow car to run at the level of the beam.Fist,according to known the conditions of good design to determine the transmission program;then,according to the load drive upgrade program selection motor,wore drive in the orderof selection options reducer,couplings,brakes,etc;then roll under the lift,the design and Rope design calculation,the last car car is design and calculation;last elect under the standard condition and the application of engineering software to map out parts of tower crane’s assemble drawings,according to dismantle the tower crane assembley drawings of parts and plans.Design of tower crane bodies,in accordance with standard component for Driving choose the actual situation in parts of the intensity and lifetime calibration checking.Final results were organized into design sepcifications.In short,in order to ensure product quality and level of design work carried out in accordance with scientific procedures,to distiguish between primary and secondary,a reasonable choice.Keywords:Tower crane;Hoisting mechanism;Transmission Design.目录1 绪论错误!未定义书签。
蒸馏塔与裙座的机械设计
《化工设备基础及设计》课程设计蒸馏塔与裙座的机械设计目录板式塔设备机械设计任务书 (1)1. 设计任务及操作条件 (1)2. 设计内容 (1)3. 设计要求 (1)1、塔的设计条件及主要物性参数表 (2)2、塔设备设计计算程序及步骤 (3)按设计压力计算塔体和封头厚度 (3)塔设备质量载荷计算 (3)自振周期计算 (5)地震载荷与地震弯矩计算 (5)风载荷与风弯矩计算 (7)偏心弯矩 (9)最大弯矩 (9)圆筒轴向应力校核和圆筒稳定校核 (10)塔设备压力试验时的应力校核 (11)裙座轴向应力校核 (12)基础环设计 (14)地脚螺栓计算 (15)3、设计结果汇总表 (16)4、设计评论 (17)5、参考资料 (18)附图1 浮阀塔装配图板式塔设备机械设计任务书1. 设计任务及操作条件:试进行一蒸馏塔与裙座的机械设计。
已知条件为:塔体内径Di=1800mm,塔高40m,工作压力为1.2MPa,设计温度为350℃,介质为原油,安装在湛江郊区,地震强度为7度,塔内安装45层浮阀塔板,塔体材料选用20R,裙座选用Q235A。
2. 设计内容(1)根据设计条件选材;(2)按设计压力计算塔体和封头壁厚;(3)塔设备质量载荷计算;(4)风载荷与风弯矩计算;(5)地震载荷与地震弯矩计算;(6)偏心载荷与偏心弯矩计算;(7)各种载荷引起的轴向应力;(8)塔体和裙座危险截面的强度与稳定校核;(9)塔体水压试验和吊装时的应力校核;(10)基础环设计;(11)地脚螺栓计算;(12)板式塔结构设计。
3. 设计要求:(1)进行塔体和裙座的机械设计计算;(2)进行裙式支座校核计算;(3)进行地脚螺栓座校核计算;(4)绘制装备图(2#图纸)1、塔的设计条件及主要物性参数表将全塔分为6段,计算截面分别为0-0、1-1、2-2、3-3、4-4、5-5、。
表1 设计条件及主要物性参数表已知设计条件分段示意图塔体内径D i2000mm塔体高度H40000mm工作压力p o 1.2MPa设计压力p 1.3MPa设计温度t350℃塔体材料20R 许用应力[σ] 133MPa[σ]t86MPa设计温度下弹性模量E 1.73×105MPa 常温屈服点σs235MPa厚度附加量C 1.8mm塔体焊接接头系数φ 1.0 介质密度ρ810kg/m3塔盘数N45每块塔盘存留介质层高度h w100mm 基本风压值q0750N/m2地震设防烈度7度场地土类别Ⅱ类偏心质量m e4000kg偏心矩e1800mm 塔外保温层厚度δs100mm保温材料密度ρs300kg/m3裙座材料Q235-A许用应力75MPa 常温屈服点σs225MPa 设计温度下弹性模量E s厚度附加量C s 1.8mm 人孔、平台数7地脚螺栓材料Q235-A 许用应力[σ]bt 147MPa 腐蚀裕量C23mm 个数n162、塔设备设计计算程序及步骤按设计压力计算塔体和封头厚度计算内容计算公式及数据液注静压力p H /MPa 可忽略计算压力p c /MPa 3.1==+=p p p p H c圆筒计算厚度δ/mm 71.133.10.186218003.1][2=-⨯⨯⨯=-=cti c p D p φσδ圆筒设计厚度δc /mm 51.158.171.13=+=+=C n δδ 圆筒名义厚度δn /mm 20=n δ圆筒有效厚度δe /mm 2.188.120=-=-=C n e δδ封头的计算厚度δh /mm66.133.15.00.186218003.15.0][2=⨯-⨯⨯⨯=-=ctic h p D p φσδ封头设计厚度δhc /mm 46.158.166.13=+=+=C h hc δδ 封头名义厚度δhn /mm 20=hn δ封头有效厚度δhe /mm2.188.120=-=-=C hn he δδ塔 设 备 质 量 载 荷 计 算计算内容计算公式及数据0~11~22~33~4 4~5 5~顶塔段内直径D i /mm 1800塔段名义厚度δni /mm20塔段长度l i /mm 100020007000100001000010000塔体高度H 1/mm 40000 筒体密度ρ/kg/m 3 7.85×103【1】单位筒体质量 m 1m /kg/m 898 筒体高度H 1/mm 36350筒体质量m 1/kg 30.3264235.368981=⨯=m 封头质量m 2/kg 2.114021.5702=⨯=m 【2】裙座高度H 3/mm3000计算内容 计算公式及数据 0~11~22~3 3~44~55~顶裙座质量m 3/kg 269438983=⨯=m塔体质量m 01/kg3647626942.114030.3264232101=++=++=m m m m8982366628689808980 8966塔段内件质量m 02/kg858875458.1442202=⨯⨯⨯=⨯⨯=ππN i q N D m(浮阀塔盘质量2/75m kg q N =)【3】 --1145267224812290保温层质量m 03/kg6832300)89.020.1(230035.36)84.104.2(42])2()22[(42203202203=⨯-⨯+⨯⨯-⨯='++-++=πρδδδπm H D D m n i s n i m 03'——封头保温层质量,(kg )【4】- 93 1280 1828 1828 1803平台、扶梯质量m 04/kg平台质量q p =150kg/m 2 笼式扶梯质量q F =40kg/m 平台数量n =7 笼式扶梯高度H F =39m5924394015075.0])1.0202.028.1()9.021.0202.028.1[(421])22()222[(4222203=⨯+⨯⨯⨯⨯+⨯+-⨯+⨯+⨯+⨯=⨯+⨯++-+++=πδδδδπFF p n i n i H q nq D B D m4080903 1647 1647 1607操作时塔内物料质量m 05/kg1370681089.0810)8.1451.0(8.14)(42110205=⨯+⨯+⨯⨯⨯=++=πρρπf w i V h N h D m-721 4947 2886 2679 2473人孔、接管、法兰等附件质量m a /kg按经验取附件质量为:91193647625.025.001=⨯==m m a224 592 1571 2245 2245 2242计算内容计算公式及数据 0~11~22~3 3~44~5 5~顶充液质量m w /kg9428081089.02100035.368.1424202=⨯⨯+⨯⨯⨯=+=πρρπwf w i w V H D m-890 17813 25447 25447 24683 偏心质量m e /kg再沸器:m e =4000--4000--- 操作质量m 0/kg8464540009119137065924683285883647605040302010=++++++=++++++=ea m m m m m m m m1162 3852 20132 20258 19860 19381 最小质量m min /kg64069400091195924683285882.0364762.004030201min =++++⨯+=+++++=ea m m m m m m m1162 3131 14269 15235 15196 15076最大质量m max /kg16521940009119942805924683285883647604030201max =++++++=++++++=ea w m m m m m m m m11624021 32998 42819 42628 41591自 振 周 期 计 算计算内容计算公式及数据塔体内直径D i /mm 1800 塔体有效厚度δe /mm 18.2 塔设备高度H ,mm 40000 操作质量m 0/kg84645塔设备的自振周期T 1/s55.1101800201073.140000846454000033.901033.903353301=⨯⨯⨯⨯⨯⨯⨯=⨯=--ie D E H m HT δ地 震 载 荷 与 地 震 弯 矩 计 算各段操作质量m i /kg 1162 3852 20132 20258 19860 19381 各点距地面高度500 20006500 150002500035000计算内容 计算公式及数据 0~1 1~22~3 3~44~5 5~顶h i 1.5 1.12×104 8.94×104 5.24×105 1.84×106 3.95×106 6.55×106m i h i 1.51.30×1073.44×108 1.05×1010 3.73×1010 7.84×1010 1.27×1011∑==615.1i ii h m A2.536×1011h i 3 1.25×1088.00×1092.75×10113.38×10121.56×10134.29×1013m i h i 31.45×1011 3.08×1013 5.54×1015 6.85×1016 3.10×1017 8.31×1017∑==613i ii h m B1.215×1018 A/B2.09×10-7基本振型参与系数ηk15.175.111009.2iik h h BA -⨯==η 0.00234 0.0187 0.110.3850.8261.37综合影响系数C Z取C Z =0.5【5】 地震影响系数最大值 αmaxαmax =0.23【5】(设计烈度为7度)各类场地土的特征周期T gT g =0.3【5】(Ⅱ类场地土、近震时)地震影响系数α1max9.0max 9.0112.0052.023.055.13.0ααα>=⨯⎪⎭⎫ ⎝⎛=∙⎪⎪⎭⎫ ⎝⎛=TT g1α不得小于46.023.02.02.0max =⨯=α水平地震力F k1/Ngm C F k k Z k 111ηα=0.69418.37 564.84 1989.30 4184.10 6772.35操作质量m 0/kg84645底截面处地震弯矩001-E M/N ·mm801001109478.34000081.984645052.05.035163516⨯=⨯⨯⨯⨯⨯==-gHm C M Z E α计算内容计算公式及数据 0~11~22~3 3~44~5 5~顶底截面处地震弯矩00-EM/N ·mm880010010935.4109478.325.125.1⨯=⨯⨯==--E EMM截面1-1处地震弯矩11-EM/N ·mm85.35.25.35.25.35.25.35.2011111110861.4)10004100040000144000010(4000017581.984645052.05.0825.1)41410(175825.125.1⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯⨯⨯=+⋅-⨯==--hh HHHg m C M MZ E Eα截面2-2处地震弯矩22-EM/N ·mm85.35.25.35.25.35.25.35.2012212210417.4)30004300040000144000010(4000017581.984645052.05.0825.1)41410(175825.125.1⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯⨯⨯=+⋅-⨯==--hh HHHg m C M MZ E Eα风 载 荷 与 风 弯 矩 计 算计算内容计算公式及数据0~11~22~33~44~55~顶各计算段的外径D Oi /mm184020218002=⨯+=+=n i Oi D D δ塔顶管线外径d O /mm 300 第i 段保温层厚度 δsi /mm100 管线保温层厚度 δps /mm100 笼式扶梯当量宽度K 3400 各计算段长度l i /mm 1000 2000 7000 10000 10000 10000 操作平台所在计算段的长度l 0/mm 1000 2000 7000 10000 10000 10000 平台数0 0 1 2 2 2 各段平台构件的投影面积∑A/mm 28.1×1052×8.1×1052×8.1×1052×8.1×105风 载 荷 与 风 弯 矩 计 算计算内容计算公式及数据 0~11~2 2~3 3~44~5 5~顶操作平台当量宽度K 4/mm42l A K ∑=操作平台当量宽度 K 4/mm0 0231.4 324 324 324各计算段的有效直径D ei /mmpsO si Oi ei d K D D δδ224++++= 2540 2540 2771 28642864 2864432K K D D si Oi ei +++=δ24402440 2671 2764 2764 2764 各计算段顶截面距地面的高度h it /m 1310203040风压高度变化系数f i 根据h it 查课程设计指导书表5-7【6】 0.80.81.01.25 1.42 1.56体型系数K 1 0.7 基本风压值 q 0/N/m 2750 塔设备的自振周期 T 1/s1.55 q 0T 121802脉动增大系数ξ(B 类) 查课程设计指导书表5-8【6】2.75脉动影响系数νi (B 类) 查课程设计指导书表5-8【6】 0.72 0.72 0.72 0.79 0.82 0.85 h it /H 0.0250.0750.250.50.751u1.0第i 段振型系数φzi 根据h it /H 与u 查课程设计指导书表5-10【6】0.020.020.11 0.35 0.66 1.00各计算段的风振系数K 2iizii i f K φξν+=121.0491.049 1.2181.6082.048 2.498各计算段的水平风力P i /N602110-⨯=ei i i i i D l f q K K P1119.1 2238.1 12403.4 30222.4 43727.1 58593.5风 载 荷 与 风 弯 矩 计 算计算内容 计算公式及数据0~11~22~3 3~44~5 5~顶0-0截面的风弯矩0-WM /N ·mm96543216321321211001068.35.58593350001.43727250004.30222150004.1240365001.223820001.1119500)2()2()2(2⨯=⨯+⨯+⨯+⨯+⨯+⨯=++++++⋅⋅⋅⋅⋅⋅++++++=-l l l l l l P l l l P l l P l P M W1-1截面的风弯矩11-WM /N ·mm9654326432432322111054.35.58593340001.43727240004.30222140004.1240355001.22381000)2()2()2(2⨯=⨯+⨯+⨯+⨯+⨯=+++++⋅⋅⋅⋅⋅⋅++++++=-l l l l l P l l l P l l P l P M W2-2截面的风弯矩22-WM /N ·mm965436543543433221024.35.58593320001.43727220004.30222120004.124033500)2()2()2(2⨯=⨯+⨯+⨯+⨯=+++++++++=-l l l l P l l l P l l P l P M W偏 心 弯 矩计算内容 计算公式及数据偏心质量m e /kg 4000 偏心距e/mm 1800偏心弯矩M e /N ·mm710063.7180081.94000⨯=⨯⨯==ge m M e e最 大 弯 矩计算内容计算公式及数据0-0截面1-1截面 2-2截面 eii W M M +-3.75×1093.61×109 3.31×109 eii W i i E MM M++--25.01.48×109 1.43×109 1.32×109 最大弯矩ii M -max /N ·mm3.75×1093.61×1093.31×109计算内容 计算公式及数据0-0截面1-1截面2-2截面有效厚度 δei /mm 18.2 筒体内径D i /mm 1800计算截面以上的操作质量m 0i-i/kg846458348379631设计压力引起的轴向应力σ1/MPa14.322.18418003.141=⨯⨯==eii pD δσ32.14操作质量引起的轴向应力σ2/MPaeii ii D gm δπσ-=02 8.07 7.967.59最大弯矩引起的轴向应力σ3/MPa eii ii D M δπσ2max24-=80.97 77.95 71.59载荷组合系数K 1.2系数A00094.0100010094.0094.0=⨯==ieiR A δ 设计温度下材料的许用应力[σ]t /MPa(20R ,350℃), []MPat86=σ【7】(Q235-A ,350℃),[]MPat75=σ【7】757586系数B/MPa(20R ,350℃),118=B 【8】(Q235-A ,350℃),118=B 【8】118118 118 KB/MPa 141.6 141.6 141.6 K[σ]t /MPa9090 103.2 许用轴向压应力[σ]cr /MPa 取以上两者中小值 90 90 103.2 K[σ]t φ/MPa 9090103.2圆筒最大组合压应力(σ2+σ3)/MPa对内压塔器[]cr K σσσ≤+32(满足要求)89.0485.91 79.06计算内容 计算公式及数据0-0截面1-1截面2-2截面圆筒最大组合拉应力(σ1—σ2+σ3)/MPa对内压塔器[]φσσσσtK ≤+-321(满足要求)72.90 69.99 96.02塔设备压力试验时的应力校核计算内容计算公式及数据试验介质的密度(介质为水)γ/kg/cm 30.001 液柱高度H/cm 4000 液柱静压力 γH/9.81/MPa 0.408 有效厚度δei /mm 18.2 筒体内径D i /mm18002-2截面最大质量m T 2-2/kg 1600364027116216521922=--=-T m试验压力p T /MPa [][]513.2861333.125.125.1=⨯⨯==tT pp σσ筒体常温屈服点 σs /MPa235 2-2截面0.9K σs /MPa253.8 2-2截面KB/MPa141.6压力试验时圆筒材料的许用轴向压应力[σ]cr /MPa取以上两者中小值 141.6试验压力引起的周向应力σT /MPa9.1452.182)2.181800)(408.0513.2(2))(81.9/(=⨯++=++=eiei i T T D H p δδγσ液压试验时:s T K σσ9.09.145<=(满足要求)试验压力引起的轴向应力σT1/MPa13.622.1841800513.241=⨯⨯==ei i T T D p δσ重力引起的轴向应力 σT2/MPa25.152.18180081.9160036222=⨯⨯⨯==-πδπσeii TT D gm塔设备压力试验时的应力校核计算内容计算公式及数据弯矩引起的轴向应力 σT3/MPa5.222.181800)10063.71024.33.0(4)3.0(42792223=⨯⨯⨯+⨯⨯⨯=+=-πδπσeii e WT D M M压力试验时圆筒最大组合应力/MPa38.695.2225.1513.62321=+-=+-T T T σσσ液压试验时:φσσσσs T T T K 9.038.69321<=+-(满足要求)cr T T ][75.375.2225.1532σσσ<=+=+(满足要求)裙 座 轴 向 应 力 校 核计算内容 计算公式及数据裙座有效厚度δes /mm18.2 裙座筒体内径D is /mm 18000-0截面积A sb /mm 2 521003.12.181800⨯=⨯⨯==πδπis is sb D A0-0截面系数Z sb /mm 3 7221063.42.18180044⨯=⨯⨯==πδπs is sb D ZKB/MPa 141.6 K[σ]t s /MPa141.6 裙座许用轴向应力/MPa取以上两者中小值 141.60-0截面最大弯矩00max-M/N ·mm91075.3⨯0-0截面操作质量m 00-0/kg846450-0截面组合应力/MPa KBA g m Z Msbsb<=⨯⨯+⨯⨯=+-06.891003.181.9846451063.41075.3579000max检查孔加强管长度l m /mm120【9】 检查孔加强管水平方向的最大宽度b m /mm 450【9】检查孔加强管厚度 δm /mm12【9】 裙座内直径D im /mm1800裙 座 轴 向 应 力 校 核计算内容 计算公式及数据A m28801212022=⨯⨯==m m m l A δ1-1截面处裙座筒体的截面积A sm /mm 241014.9]28802.18)122450[(22.181800])2[(⨯=-⨯⨯+⨯-⨯⨯=-+-=∑πδδδπm es m m es im sm A b D A Z m622221081.3225900120102222⨯=-⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=m im mes m b D l Z δ1-1截面处的裙座筒体截面系数Z sm /mm 3()76221092.31081.31.9180045022.181800424⨯=⨯-⨯⨯⨯-⨯⨯=⎪⎭⎫ ⎝⎛--=∑πδδπm es im m es im sm Z D b D Z1-1截面最大弯矩11max-M/N ·mm3.75×1091-1截面处的风弯矩11-WM/N ·mm3.54×1091-1截面以上操作质量110-m /kg834831-1截面以上最大质量11max-m /kg1640571-1截面组合应力/MPaKBA g m Z Msmsm <=⨯⨯+⨯⨯=+--05.1011014.981.9834831092.31061.347911011max6.14150.461014.981.91640571092.310063.71054.33.03.0477911max 11<=⨯⨯+⨯⨯+⨯⨯=++--smsmeW A g m Z M M计算内容计算公式及数据裙座内径D is /mm 1800裙座外径D os /mm 4.18362.18218002=⨯+=+=es is os D D δ基础环外径D ob /mm 21003001800300=+=+=is ob D D 基础环内径D ib /mm 15003001800300=-=-=is is D D基础环伸出宽度b/mm 132)4.18362100(21)(21=-=-=os ob D D b相邻两筋板最大外侧间距l /mm160【9】基础环面积A b /mm 26222210696.1)15002100(4)(4⨯=-=-=ππib ob b D D A基础环截面系数Z b /mm 3844441073.6210032)15002100(32)(⨯=⨯-=-=ππobib ob b D D D Z最大质量m max /kg 165219 操作质量m 0/kg 84645 0-0截面的风弯矩00-WM/N ·mm3.68×1090-0截面最大弯矩00max-M/N ·mm3.75×109 偏心弯矩M e /N ·mm7.063×107基础环材料的许用应力[σ]b /MPa []MPab140=σ【10】水压试验时压应力 σb1/MPa1.610696.181.9846451073.61075.3689000max1=⨯⨯+⨯⨯=+=-bbb A g m Z Mσ操作时压应力σb2/MPa7.210696.181.91652191073.610063.71068.33.03.06879max 002=⨯⨯+⨯⨯+⨯⨯=++=-bbeWb A g m Z M M σ混凝土基础上的最大压力σbmax /MPa 取以上两者中大值 6.1 b/l825.0160/132/==l b计算内容计算公式及数据2max b b σ1062861321.622max =⨯=b b σ 2max l b σ1561601601.622max =⨯=l b σ对X 轴的弯矩M x /N ·mm/mm由b/l 得:【11】8.1756310628616525.0=⨯=x M对Y轴的弯矩M y /N ·mm/mm 由b/l 得:【11】2.1219915616007812.0=⨯=y M计算力矩M s /N ·mm/mm取以上两者中大值17563.8有筋板时基础环厚度/mm 44.271408.175636][6=⨯==bs b M σδ 经圆整取30=b δ地 脚 螺 栓 计 算计算内容 计算公式及数据最小质量m min /kg 64069 操作质量m 0/mm 84645 0-0截面的风弯矩00-WM/N ·mm3.68×109底截面处地震弯矩001-E M/N ·mm4.935×108 偏心弯矩M e /N ·mm7.063×107最大拉应力σB1/MPa20.510696.181.9640691073.610063.71068.36879min 001=⨯⨯-⨯⨯+⨯=-+=-bbeWB A g m Z M M σ最大拉应力σB2/MPa72.110696.181.9846451073.610063.71068.325.010935.425.0687980000002=⨯⨯-⨯⨯+⨯⨯+⨯=--++=---bVbeWEB A F g m Z M M M σ基础环中螺栓承受的最大拉应力σB取以上两者中大值020.5>=B σ 塔设备必须设置地脚螺栓地脚螺栓计算计算内容计算公式及数据地脚螺栓个数n 16【12】地脚螺栓材料的许用应力[σ]bt/MPa 对Q-235A,取[]MPabt147=σ地脚螺栓腐蚀裕量C2/mm 地脚螺栓取mmC32=地脚螺栓螺纹小径d1/mm[]1.7231471610696.120.544621=+⨯⨯⨯⨯⨯=+=πσπσCnAdbtbB故取16—M76地脚螺栓满足要求3、设计结果汇总表计算结果塔体圆筒名义厚度δn/mm20(满足强度和稳定性要求)塔体封头名义厚度δhn/mm20(满足强度和稳定性要求)裙座圆筒名义厚度δen/mm20(满足强度和稳定性要求)基础环名义厚度δb/mm30(满足强度和稳定性要求)地脚螺栓个数16(满足强度和稳定性要求)地脚螺栓公称直径d/mm76(满足强度和稳定性要求)4、设计评论本次是进行一蒸馏塔与裙座的机械设计,设计结果如汇总表所示。
课程思政案例
课程思政案例塔设备的机械设计——职业素养之工匠精神教育一、教学目标1、课程教学目标:了解塔设备机械设计的基本知识。
2、思政育人目标:(1)设计思路,通过塔设备机械设计知识的讲解,告诫学生要全面的分析问题,自然地达到思政育人的效果;(2)思政育人目标:培养学生辩证思维。
(3)育人主题:科学精神,工匠精神,价值主题二、教学实施过程1、引出课堂知识——案例分析2007年9月13日,由张家港市化工机械有限公司为大唐国际年产46万吨煤基烯烃项目制造的“亚洲第一塔”——C3分离塔在内蒙古锡林格勒建设现场成功吊装。
该C3分离塔以其塔身主体板厚(68毫米),直径(8米)、高度(100。
115米)、重量(总重2460吨),不仅创造了多项国内第一,在亚洲同行业内也属首创,被誉为“亚洲第一塔”。
这是我国具有完全自主知识产权的、大规模塔设备的应用,在塔制造领域,我们可以自豪地说“中国制造”。
这是塔设备设计人员和机械设计人员设计出来的。
通过该案例的引入,激发学生的民族自豪感。
另外也启示学生,要培养工匠精神。
图6亚洲第一塔2、塔设备的机械设计通过引入电影《我和我的祖国》,展现国家成就以及大国工匠精神,作为新时代的大学生更应该注重培养这样的精神。
塔设备,其工作条件差,在运行和使用中损坏的可能性比较大。
因此对它的设计一定要合理,并且要定期维护,作为学习化学工程与工艺的学生,设计符合工艺要求的化工容器更需要这种精神。
以此激发注重学生培养敬业精神。
塔设备的设计包含塔体和裙座的设计,要设计的内容包含厚度计算,压力计算,质量载荷计算,应力校核等多个方面,是前面学过所有的知识的总结。
因此,需要一定的知识储备才可以设计出符合要求的塔设备。
知识的储备不是一天两天就能储备的,而是日积月累的过程。
如果没有丰富的知识,坚实的基础,也只能是竹篮打水一场空,更别谈为建设国家出力。
另外知识也代表着财富,对于未来,谁掌握知识,谁就能立足社会。
以此告诫学生注重学习的积累,才能为建设祖国贡献力量,才能实现自己的初心和使命。
塔设备机械强度校核
(一) 已知条件:(1) 塔体直径i D =800mm ,塔高H=29.475m 。
(2) 设计压力p=2.3Mpa 。
(3) 设计温度t=19.25O C ,(4) 介质为有机烃类。
(5) 腐蚀裕量2C =4mm 。
(6) 安装在济南地区(为简化计算,不考虑地震影响)。
(二) 设计要求(1) 确定塔体和封头的厚度。
(2) 确定裙座以及地脚螺栓尺寸。
(三) 设计方法步骤A 材料选择设计压力p=2.3Mpa,属于中压分离设备,三类容器,介质腐蚀性不提特殊要求,设计温度19.25O C ,考虑选取Q235-C 作为塔体材料。
B 筒体、封头壁厚确定先按内压容器设计厚度,然后按自重、液重等引起的正应力及风载荷引起的弯曲应力进行强度和稳定性验算。
a 筒体厚度计算按强度条件,筒体所需厚度d δ=[]22it pD C pσ+Φ-= 2.3800420.85125 2.3⨯+⨯⨯-=12.75 mm 式中[]t t σ——Q235-C 在19.25O C 时的许用应力。
查《化工设备机械基础》为125MpaΦ——塔体焊缝为双面对接焊,局部无损检测,Φ=0.85。
2C ——腐蚀裕量,取值4mm 。
按刚度要求,筒体所需最小厚度min δ=22800 1.610001000i D mm ⨯==。
且min δ不小于3mm 。
故按刚度条件,筒体厚度仅需3mm 。
考虑到此塔较高,风载荷较大,而塔的内径不太大,故应适当增加厚度,现假设塔体厚度 n δ=20mm ,则假设的塔体有效厚度e δ=12n C C δ--=20-4.8=15.2mm式中1C ——钢板厚度负偏差,估计筒体厚度在8~25mm 范围内,查《化工设备机械基础》的1C =0.8mm 。
b 封头壁厚计算采用标准椭圆形封头,则[]2 2.3800421250.850.5 2.320.5id t pD C p δσ⨯=+=+⨯⨯-⨯Φ- =12.71mm 。
为便于焊接,取封头与筒体等厚,即n δ=20mm 。
塔设备机械设计讲解
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
板式塔设备机械设计
1 板式塔设备机械设计任务书设计任务及操作条件试进行一蒸馏塔与裙座的机械设计已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。
设计内容(1)根据设计条件选材;(2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力;(8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。
.设计要求:(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)2 塔设备已知条件及分段示意图按设计压力计算塔体和封头厚度塔设备质量载荷计算自振周期计算地震载荷与地震弯距计算风载荷与风弯距计算偏心弯距最大弯距圆筒轴向应力校核和圆筒稳定校核地脚螺栓计算计算结果4 计算结果总汇1 按设计压力计算塔体和封头厚度4 后记本设计的任务是进行一蒸馏塔与裙座的机械设计。
计算量比较大,计算公式繁琐,数据比较大。
在计算过程中遇上一些参数是需要从书本的图或表格中查找出,有些数据还需要结合我们的理论课的书本来查找相关系数。
在设计的过程中,我们都会遇到各种各样的问题,但是大家一起努力工作的同时,对不懂的问题进行讨论之后,把遇到的问题都解决了。
只要把大家的力量聚集起来,就没有解决不了的问题。
这次课程设计让我们感受到,工程类的设计是多么的有特色,数据查找难,计算量大,公式繁琐。
最后感谢老师的指导,组员的帮助,其他舍友以及其他同学的共同努力,让本次课程设计顺利完成。
5 设计图纸见附图6 参考文献[1] 蔡纪宁.张秋翔.化工设备机械基础课程设计指导书.北京:化学工业出版社.2000 .6,63~64[2] 陈国桓.化工机械基础.第二版.北京:化学工业出版社.,169~171[3] 陈国桓.化工机械基础.第二版.北京:化学工业出版社.,125~125[4] 蔡纪宁.张秋翔.化工设备机械基础课程设计指导书.北京:化学工业出版社.2000 .6,85~85[5] 路秀林.王者相主编.化工设备设计全书塔设备.北京:化学工业出版社.2004 .1,324~3277主要符号说明。
塔设备机械设计
塔设备机械设计成绩华北科技学院环境工程学院《化工设备机械基础》课程设计报告设计题目塔设备机械设计学生姓名张森学号201101034210指导老师任学军专业班级化工B112班教师评语设计起止日期: 2014年6月16日至2014年6月29日化工设备机械基础课程设计塔设备设计任务书一、设计内容1、根据操作条件选择塔体、裙座材料;2、法兰选型;3、塔设备机械设计;4、塔设备结构设计;5、编写设计计算说明书,主要内容:①目录;②设计任务书(题目);③设计方案的确定,包括材料选择、塔设备结构设计等;④塔设备机械设计过程;⑤标准零部件的选择,如法兰等;⑥设计小结;⑦参考资料;⑧附图:总装图法兰结构图塔盘板结构示意图;塔板连结结构示意图;塔盘支撑结构示意图;裙座与塔体焊缝结构图;116MnR s []183a, []189MPa, 345t MP MPa σσσ===51.9110E MPa =⨯Q235-B MPa MPa MPa s t 235,113][,113][===σσσ9、 塔体与裙座对接焊接,焊接接头系数0.85ϕ=;10、塔体与封头厚度附加量C=2mm ,裙座厚度附加量C=2mm 。
二、按计算压力计算塔体和封头厚度1、塔体厚度计算[]mm 74.72.1-85.0183220002.1p -2p c t i c =⨯⨯⨯==ϕσδD 考虑厚度附加量C=2mm ,经圆整后取12n mm δ=。
2、封头厚度计算mm P D P c t i c 73.72.15.085.0183220002.15.0][2=⨯-⨯⨯⨯=-=ϕσδ 考虑厚度附加量C=2mm ,经圆整后取12n mm δ=。
三、塔设备质量载荷计算1、筒体圆筒、封头、裙座质量01m圆筒质量: kg 1442921.24596m 1=⨯=封头质量: 24382876m kg =⨯=裙座质量: kg 182406.3596m 3=⨯=kg 17129182487614429m m m m 32101=++=++=说明:(1)塔体总高度1m 21.2404.0206.365.00=⨯---=H H ;(2)查的DN2000mm ,厚度12mm 的圆筒质量为596kg/m ;(3) 查的DN2000mm ,厚度12mm 的椭圆形封头质量为438kg/个(封头曲面深度500mm ,直边高度40mm );(4)裙座高度3060mm ,厚度按12mm 计。
塔器设备设计
根据塔器设备的材料和结构特 点,选择合适的焊接方法,如 手工电弧焊、气体保护焊等。
焊接工艺评定
对焊接工艺进行评定和验证, 确保焊接质量符合要求。
焊接操作要点
制定焊接操作规程,规范焊接 工艺参数和操作要求,确保焊 接质量稳定可靠。
焊接质量检测
对焊接质量进行检测和检验, 包括外观检查、无损检测等, 确保焊接质量符合标准要求。
故障诊断与预测
利用智能化技术对塔器设备进行故障诊断和预测,通过分析设备运行数据和历史数据,预 测设备可能出现的故障和问题,提前采取措施进行维护和修复,降低设备故障率。
优化操作
通过智能化技术对塔器设备进行优化操作,提高设备的运行效率和生产效益。例如,利用 人工智能算法对塔器设备的操作参数进行优化调整,实现节能减排、降低能耗和提高产品 质量的目标。
检测与试验操作要点
制定检测与试验操作规程,规范检测 与试验工艺参数和操作要求,确保检 测与试验结果准确可靠。
检测与试验结果评价
对检测与试验结果进行评价和分析, 确定塔器设备的性能和质量是否符合 设计要求和使用安全。
04
塔器设备的设计优化
塔器设备的节能设计
01
节能设计
塔器设备的节能设计旨在降低能耗,提高能源利用效率。例如,采用高
器重量、提高传热效率、降低能耗。
塔器设备的可靠性设计
可靠性评估
在塔器设备设计阶段进行可靠性评估,预测设备在各种工 况下的性能表现和故障模式,以便及时采取措施提高设备 的可靠性和稳定性。
冗余设计
通过增加备份系统、采用并联结构等方式,提高塔器设备 的可靠性。在设备发生故障时,冗余系统可以迅速投入运 行,确保生产过程的连续性和稳定性。
塔器设备的强度计算
过程设备机械设计基础-18塔设备设计
课程设计讲座—塔设备的设计
主讲:潘红良教授
一、课程设计的目的和意义
综合运用所学的知识 培养学生的工程设计能力 熟悉相关的设计规范
二、设计内容—塔设备的设计
机械设计
1、结构设计
2、材料选择
3、强度和刚度设计
4、稳定性设计
5、标准件的选择 6、技术要求的提出 7、制图
7 完成图纸
要求完成一张A1
图纸。
三、任务及时间安排
时间安排:周四
布置任务和准备工作 周五、六完成设计计算工作 周日、周一完成设计图纸 周二、三交设计
四、制图中应注意的几个问题
1、 结构设计
1)确定筒体的直径和高度
2、材料的选择
根据介质、温度、压力等要求确定反
应器各部分的材料。
3、强度和刚度设计
塔设备载荷:
1、内压
2、风载 3、地震载荷 4、设备自重 5、设备内介质 6、设备附件
Ⅰ-Ⅰ
Ⅱ-Ⅱ
Ⅲ-Ⅲ
按内压设计壁厚:
P Di C td t 2 P
各危险截面的强度校核
4 稳定性设计
B P ( Do / t e )
将实际工作压力P与许可工作压力[P]比较
要求: P略小于 [P]
水压试验下的强度和稳定性校核
5 标准件的选择
1)人孔、视镜、温度计、压力表接口
2)工艺接口
6 技术要求的提出
对设备设计、制造、按装、检验等图
纸上还未表示清楚的问题用文字说明。
塔设备的机械设计
b. 塔盘板之间下可拆的螺纹连接。
塔设备的机械设计
c. 塔盘板间双面可拆的螺纹连接。
塔设备的机械设计
(2)螺纹卡 板紧固件
塔设备的机械设计
(3)楔形紧固件 龙门楔结构和楔卡结构
塔设备的机械设计
二、塔盘的机械计算
需要进行强度校核和挠度计算,以满足其强度和刚度 要求。
(一)塔盘的设计载荷
fmax35q8lE44 If 塔设备的机械设计
塔设备的机械设计
三、塔盘构件的最小厚度
为保证塔盘在制造、安装过程中的强度和刚度, 规定了塔盘构件的最小厚度。
四、塔节简介
塔设备的机械设计
第三节 填料塔结构设计
一、液体分布装பைடு நூலகம் 二.液体收集及再分布装置 三、填料支承装置 四、填料压板和床层限制板
塔设备的机械设计
支承圈和支承板的尺寸参见表。
塔设备的机械设计
塔盘紧固件
是连接构件,用于塔盘之间的连接,塔盘板与支 承圈、支承板、受液盘或支承梁,以及降液板与支持 板之间的连接。
常用紧固件有螺纹、螺纹卡板 楔卡等结构。
塔设备的机械设计
(1)螺纹紧固件
a.塔盘之间上可拆的螺纹连接。
(a)为槽式塔板之间可拆螺纹结构。 (b)为自身梁式塔盘板之间上可拆螺纹连接结构。
塔径D=400 ~ 600mm, δ =3~4mm 塔径D=700 ~ 1200mm, δ =4~6mm 分布器定位块外缘与塔壁的间隙:8~12mm 塔径〉600mm,分布盘常设计成分块式结构,一般分 2~3块
塔设备的机械设计
液体通过分布盘上方的中心管加入盘内的,中心管口距 围环上缘~200mm。
塔设备的机械设计
3.降液管结构
塔设备设计
24
3.7 最大弯矩
塔设备任意计算截面 I-I 处的最大弯矩按下式计算:
I− M maxI I ⎧ MW− I + M e ⎪ = ⎨ I−I I M E + 0.25 MW− I + M e ⎪ ⎩
取其中较大值
塔设备底部截面 0-0 处的最大弯矩按下式计算:
0− 0 M max 0 ⎧ MW− 0 + M e ⎪ = ⎨ 0− 0 0− 0 ⎪ M E + 0.25 MW + M e ⎩
取其中较小值
FVh−h —— 仅在最大弯矩为地震弯矩参与组合时计入。
h− h h 0.3 MW− h + M e m max g ⎧ KB + ≤⎨ Z sm Asm ⎩ 0.9σ s
取其中较小值
Asb ——h-h截面处裙座的截面积,mm2 Z sb ——h-h截面处裙座壳截面系数,mm3
33
3.11 地脚螺栓座(基础环设计)
35
3.11 地脚螺栓座(地脚螺栓)
δ b ,max ——混凝土基础上的最大压力, MPa
0− 0 ⎧ M max m0 ⋅ g ⎪ Z + A ⎪ b b =⎨ 0 0.3 MW− 0 + M e mmax ⋅ g ⎪ + ⎪ Zb Ab ⎩
δ b ,max
取其中较大值
36
3.12 裙座与塔壳焊缝(搭接焊缝)
M
0− 0 W
l3 ⎞ l1 l2 ⎞ ⎛ ⎛ = P1 + P2 ⎜ l1 + ⎟ + P3 ⎜ l1 + l2 + ⎟ + LL 2 2⎠ 2⎠ ⎝ ⎝
23
3.6 偏心弯矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶梯环:一头为鲍尔环,一头翻卷,由于不对 称,装入塔内可减少填料环相互重叠,使填料 表面得以充分利用,同时增大了空隙,使压降 降低,传质效率提高。
鞍形填料:这种填料重迭部分少,空隙率大,利 用率高。它有两种形式,一种是矩鞍环,一种是 弧鞍环,都是敞开式填料,这种填料比拉西环传 质效率的波纹成45°,盘与盘之间成90°排列,结 构紧凑,比表面积大。传质好,且可根据物料温 度及腐蚀情况采用不同的材料。
一、 喷淋装置
液体喷淋装置设计的不合理,将导致液体 分布不良,减少填料的润湿面积,增加沟流和 壁流现象,直接影响填料塔的处理能力和分离 效率。液体喷淋装置的结构设计要求是:能使 整个塔截面的填料表面很好润湿,结构简单, 制造维修方便。
塔径DN=300~500mm时,塔节高度L=800~ 1000mm;塔径DN=600~700mm时,塔节高度 L=1200~1500mm。 为方便安装,每个塔节中的塔盘数为5-6块。
降液管的结构有弓形和圆形两类
另设溢流堰圆形降液管
圆形降液管伸出塔盘表面兼作流堰的圆形降液管
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
塔盘结构有整块式和分块式两种。当塔径 在800~900 mm以下时,建议采用整块式塔盘。 当塔径在800~900 mm以上时,人可以在塔内 进行装拆,一般采用分块式塔盘。
1. 整块式塔盘
此种塔的塔体由若干塔节组成,塔节与塔 节之间则用法兰连接。每个塔节中安装若干块 层层叠置起来的塔盘。塔盘与塔盘之间用管子 支承,并保持所需要的间距。图为定距管式支 承塔盘结构。
2.分块式塔盘
在直径较大的板式塔中,如果仍然用整块式 塔盘,则由于刚度的要求,势必要增加塔盘板 的厚度,而且在制造、安装与检修等方面都很 不方便。因此,当塔径在800 ~900 mm以上 时,都采用分块式塔盘。此时塔身为一焊制整 体圆筒,不分塔节 。
分块式塔盘
做成分块式的原因
1)在工艺上,塔径大,塔盘过大,分液不均匀; 2)对碳钢,塔板厚3~4mm,不锈钢2~3mm,塔 径过大,易形成弧形,安装时水平度不好,从刚 度出发,仍要分块; 3)塔板过大,不能放进塔内,因一般从人孔进出, 人孔尺寸有限制,因而塔盘受此限制要分块。
1—塔盘板 2—降液管 3—拉杆 4—定距管 5—塔盘圈 6—吊耳 7—螺栓 8—螺母 9—压板 10 —压圈 11—石棉绳
定距管式塔盘结构
定距管式塔盘
用定距管和拉杆将同一塔节内的几块塔盘支承并固定 在塔节内的支座上,定距管起支承塔盘和保持塔盘间 距的作用。
塔盘与塔体之间的间隙,以软填料密封并用压圈压紧。 高度随塔径增加。
科技前沿
(1)开发多种形式、规格和材质的高效,低压降,大流 量的填料。 (2) 与不同填料相匹配的塔内件结构。 (3) 填料层中液体的流动及分布规律。 (4) 蒸馏过程的模拟。
填料塔结构
填料塔在传质形式上与板式塔不同,它是 一种连续式气液传质设备。这种塔由塔体、喷 淋装置、填料、再分布器、栅板以及气、液的 进出口等部件组成,典型结构如图所示。
图 6-13用楔形紧固件盘连接
三、塔盘的支承
对于直径不大的塔(例如2000mm以下), 塔盘的支承一般用焊在塔壁上的支持圈。支持 圈一般用扁钢弯制成或将钢板切为圆弧焊成, 有时也有用角钢的。若塔盘板的跨度较小,本 身刚度足够,则不需要用支承梁, 可以只用 支承圈支承。
对于直径较大的塔(例如2000mm以上),则 由于塔盘板的跨度过大以致刚度不够,需要用 支撑梁结构。
塔设备完成的单元过程有:精馏、吸收、解 吸、萃取。这些过程是在一定的温度、压力、流 量等工艺条件下完成的。因此,塔的结构必须保 证气-液两项,或者液-液两项的充分接触,和 必要的传质、传热面积、以及两项分离的空间。
塔设备除要满足工艺条件以外,还应满足下列条 件:
1. 气液两相充分接触,相际间传热面积大, 接触时间充分。
降液管及溢流堰、紧固件和支承件等。 3.除沫装置 用于分离气体夹带的液滴,多位于塔顶出口处。 4.设备管道 包括用于安装、检修塔盘的人孔,用于气体和物料进出的接管,
以及安装化工仪表的短管等。 5.塔附件 包括支承保温材料的保温圈、吊装塔盘用的吊柱以及扶梯平台等。
二、 塔盘结构
塔盘实际上是塔中的气、液通道。为了满足正 常操作要求,塔盘结构本身必须具有一定的刚 度,以维持水平;塔盘与塔壁之间应有一定的 密封性,以避免气、液短路;塔盘应便于制造、 安装、维修,并且成本要低。
图6-25 分布槽
1-主槽
2-分槽
槽式孔流分布器
3、冲击型
反射板式喷淋器
二、 液体再分布器
当液体流经填料层时,液体有流向器壁造 成“壁流”的倾向,使液体分布不均,降低了 填料塔的效率,严重时可使塔中心的填料不能 润湿而成“干锥”。因此在结构上宜采取措施, 使液体流经一段距离后再行分布,以便在整个 高度内的填料都得到均匀喷淋。
与整块式的区别
分块式:无塔盘圈,有支持圈(支持板),无密封结构 整块式:有塔盘圈,无支持圈(支持板),有密封结构
塔盘板结构
主要有自身梁式和槽式。
图6-9 塔盘板结构
通道板——
接近中央处设置,塔内清洗和维修。 在同一垂直位置上,以利采光和拆卸。 也可用一块塔盘板代替,见下图
分块式塔盘之间的连接
m02一塔设备内件质量,kg;
m03—塔设备保温材料质量,kg;
m04一平台、扶梯质量,kg;
m05—操作时塔内物料质量,kg;
ma—人孔、法兰、接管等附属件质量,kg;
mw—液压试验时,塔器内充液质量,kg;
me—偏心质量,kg;
(2)地震载荷的计算
当发生地震时,塔设备作为悬臂梁,在
图6-20 管式喷洒器
环管多孔喷洒器
DN≤1200mm,可选用单环管多孔喷洒器,结构 简单,制造和安装方便,缺点是喷洒面积小,不 够均匀,而且液体要求清洁,否则小孔易堵塞。 (环管下面开小孔,一般为3~5排)。
图6-21 环管多孔喷洒器
莲蓬头喷洒器
主要有半球形、碟形、杯形,优点是结构简单,制 造安装方便,缺点是小孔易堵塞,不适于处理污浊 液体,一般可用于塔径小于600mm的塔中。
喷淋装置的类型很多,常用的有喷洒型、溢流 型、冲击型等。
1. 喷洒型
对于小直径的填料塔(例如300mm以下) 可以采用管式喷洒器,通过在填料上面的进液 管(可以是直管、弯管或口管)喷洒,如图所 示。该结构的优点是简单,缺点是喷淋面积小 而且不均匀。
管式喷洒器
DN≤300mm,可选用管式喷洒器,通 过填料上的进液管(直、弯或缺口) 进行喷洒,结构简单,但喷淋面积较 小且不均匀。
填料
填料大致可分为实体填料和网体填料两种。
拉西环:(瓷环)填充方式有乱堆和整砌两种。 拉西环填料于1914年由拉西(F. Rashching)
发明,为外径与高度相等的圆环。拉西环填料的 气液分布较差,传质效率低,阻力大,通量小, 工业上已较少应用。
鲍尔环:在金属拉西环的壁上开了一排或两排 长方形的小窗,小窗叶片向环中心弯入,在中 心处相搭,上下两排小窗的位置相错,增加了 接触面积,效率得到了提高。
图6-22 莲蓬头喷洒器
2.溢流型
盘式分布器是常用的一种溢流式喷淋装
置,液体经过进液管加到喷淋盘内,然后从喷
淋盘内的降液管溢流,淋洒到填料上。中央进
料的盘式分布器如图所示。喷淋盘一般紧固在
焊于塔壁的支持圈上,与塔盘板的紧固相类似。
分布板上钻有直径约3mm的小泪孔,以便停
车时将液体排净。
槽式分布器 主要用于DN>1000mm的塔,其优点是自由截面大,适应性 好,处理量大,操作弹性大,其结构见(图8-52),液体先 加入分配槽,然后再由分配槽的开口处到喷淋槽,喷淋槽上 有堰口,两侧有三角形或矩形的开口,各开口的下缘应位于 同一水平面上,再由此溢流到填料上。
2. 阻力小,压降小,塔内热量损失少 。 3. 生产能力大,即气液处理量大。 4. 操作稳定,操作弹性大。 5. 尽力减少雾沫夹带和泄露量,及液泛的可
能。 6. 结构简单,制造、安装、维修方便,设备
的投资及操作费用低。 7. 耐腐蚀,不易堵塞,检修方便。
下列情况优先选用填料塔:
1)在分离程度要求高的情况下,因某些新型填料具有高的 传质效率,故可采用新型填料以为降低高度; 2)对于热敏性物料的蒸馏分离,因新型填料的持液量较小, 压降小,故可有限选择真空操作下的填料塔; 3)具有腐蚀性的物料,可选择填料塔; 4)容易发泡的物料,宜选用填料塔;
m0 m01 m02 m03 m04 mw ma me (kg) (6-3)
设备吊装时的质量,这时设备质量最小,简称 设备最小质量:
m0 m01 0.2m02 m03 m04 ma me (kg) (6-4)
式中m01—— 塔设备壳体(包括裙座)质量,按求出 的壁厚Sn,Sns,及SnH计算,(Sn,Sns,及SnH分 别为塔体、裙座和封头的名义壁厚,mm。);
在液体再分配器中,分配锥是最简单的,如 图所示,沿壁流下的液体用分配锥再将它导至 中央。
三、 支承结构
填料的支承结构不但要有足够的强度和刚度,而 且须有足够的自由截面,使在支承处不致首先发生液 泛。
在填料塔中,最常用的填料支承是栅板,如图所示。 在设计栅板的支承结构时,需要注意下述各点。
(1)栅板必须有足够的强度和耐腐蚀性; (2)栅板必须有足够的自由截面,一般应和填料的自由
2.塔体承受的各种载荷的计算
自支承式塔设备的塔体除承受工作介质压力 之外,还承受自重载荷、风载荷、地震载荷及 偏心载荷的作用。
(1)塔设备自重载荷的计算
塔设备的操作质量:
m0 m01 m02 m03 m04 m05 ma me (kg) (6-2)
塔设备水压试验时的质量,这时设备质量最大, 简称设备最大质量