计量经济学

合集下载

计量经济学概念

计量经济学概念
13
第二节 计量经济学方法
一. 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实, 计量经济学的主要功能就是将这两个要素结合在一起。 计量经济研究既使用理论,也使用事实,将二者结合 起来,用统计技术估计经济关系,如图1.1所示。
14
理论统计理论
计量经济模型
加工好的数据
10
3. 学科发展环境 同时,随着科学技术的发展,各门学科相互渗透,数
学、系统论、信息论、控制论等相继进入经济研究领 域,使经济科学进一步数量化,有助于计量经济学的 发展。高速电子计算机的出现和发展,为计量经济技 术的广泛应用铺平了道路。
11
4. 发展过程
上世纪三十年代,侧重于个别商品供给与需求的计 量,基本上属于个量分析或微观分析。
1. 需求函数的数学模型
尽管需求定律假定价格(P)与需求量(Q)之间 呈反向关系,但并没有给出二者之间关系的精 确形式。例如,该定律并没有告诉我们价格与 需求量之间关系是线性的还是非线性的,如图 1.2中(a)和 (b) 所示。
21
Q
Q
(a)
P
(b)
P
图1.2 线性和非线性的需求函数
22
事实上,斜率为负的曲线有千千万万,在它们 之中选择正确的函数是计量经济学家的任务。
7
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一 定的艺术成分,主要体现在试图找出一组合适的假设 ,这些假设既严格又现实,使得我们能够使用可获得 的数据得到最理想的结果,而现实中这种严格的假设 条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统 的科学,是使人对它提供准确预测的能力产生怀疑的 主要原因。
31

计量经济学

计量经济学

计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。

计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。

这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。

接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。

一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。

这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。

计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。

在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。

计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。

例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。

2. 经济关系的建模。

计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。

例如,经济学家可以建立一个供求模型来研究商品价格的形成。

3. 假设检验。

计量经济学通过提出假设并使用统计检验方法来验证假设。

通过检验结果,经济学家可以同样的推理得出各种假设是否成立。

4. 统计分析。

该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。

统计分析包括回归分析、时间序列分析以及多元统计分析等方法。

二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。

其中最常使用的方法是回归分析。

1. 回归分析回归分析是计量经济学的核心方法。

回归分析将一个自变量与因变量相关联。

例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。

这个方程告诉我们,当X发生变化时,Y的变化程度。

回归分析需要建立方程,并根据现有数据的信息来确定系数。

[经济学]计量经济学

[经济学]计量经济学

名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。

3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。

4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。

6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。

7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。

11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。

12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。

13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。

14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。

15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。

计量经济学(共33张PPT)

计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在

计量经济学

计量经济学

第二讲

第一章 绪论 第3节 计量经济模型及其应用 第4节 统计和计量经济分析软件

第二章 计量经济分析的统计学基楚 第1节 概率和概率分布
一、计量经济模型的分类
● 单方程模型和连立方程模型:单方程模型描述一个因变量和若干自变量间 的结构关系;连立方程模型则是由多个方程组成的方程组,描述整个经济 系统或子系统。 例:① 消費函数就是一个单方程模型。
实证分析 实证分析
三、 计量经济分析的步骤(1)
● 下面通过一个实例来说明计量经济分析的步骤 例: 一空调生产商請计量经济学家为他研究价格上涨対空调需求的影响。下 面対该问题进行计量经济分析。 步骤1 陈述理论 根据需求定律:一商品的价格与其需求量成反比。 步骤2 建立计量经济模型 (1)根据需求定律建立需求函数的数学模型。需求定律只是说一商品 的价格与其需求量成反比,但没有说明具体的关系(图1-2,图1-3)。
三、 计量经济分析的步骤(6)
● 通过本次课的学习,主要了解计量经济学的定义、计量经济学研究的内容 和方法,重点把握计量经济分析的步骤:
1.陈述理论或假说 需求定律 2.建立计量经济模型 Q=α+βP+u 3.収集数据 表1-1 4.估计参数 5.假设检验 Q*=76.05-3.88P 是否β<0
〇 1979年,成立了“中国数量经济研究会”和“数量经学研究所”, 出版了《数量经济技术经济研究》 〇 1982年,召开了第一届数量经济研究学会 〇 1992年,开始毎年対中国宏观经济进行分析和预测,11月出版 《中国经济蓝皮书》 〇 1998年,经教育部审定,计量经济学确定为经济类各専业八门核 心课程之一
--1935年,J.Tinbergen建立了世界上第一个宏观经济模型,开創了微观转向宏观模 型的新阶段 --1936,Keynes《就业、利息和货币通论》为计量经济学提供了理论根据 --1950年代,H.Theil发表了二阶段最小二乗法、计算机技术的迅速发展为计量经济 学提供了重要手段 〇 发展应用时期(20世纪70年代后)

计量经济学

计量经济学

1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。

(同一)3、建立与应用计量经济学模型的主要步骤。

①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。

总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。

13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。

计量经济学1-5章(超详细完整版)

计量经济学1-5章(超详细完整版)

26
理论计量经济学和应用计量经济学
计量经济学根据研究对象和内容侧重面不同,
可以分为理论计量经济学和应用计量经济学。 理论计量经济学:是以介绍研究计量经济学的 理论与方法为主要内容,侧重于理论与方法的数学 证明与推导。
应用计量经济学:以建立与应用计量经济学模
型为主要内容,强调应用模型的经济学和经济统计
拉格纳·弗里希( R. Frish )
19
计量经济学是用数学语言 来表达经济理论,以便通 过统计方法来论述这些理 论的一门经济学分支。
计量经济学可定义为:根据
理论和观测的事实,运用合
适的推理方法使之联系起来 同时推导,对实际经济现象 进行的数量分析。
20
教科书中的一般表述: 统计学、经济
理论和数学
(1.1) (1.1)式为数理经济模型,该模型是不可以 估计的。要研究收入I 的变化对消费支出C的数量 影响程度,需要对(1.1)进行改造模型。
35
首先,明确(1.1)式的函数形式。例如, C a bI (1.2) 其中 a、 b 为未知的参数, 其次,在(1.2)式右端引入随机变量u,以
16
当前的计量理 论前沿问题
17
○ 计 量 经 济 学 在 中 国 的 发 展
我国计量经济学研究
和应用水平同世界前
沿的差距迅速缩小
2000年
我国计量经济学研 究和应用的普及阶 段
成立了“中国数量经济研
究会”,为创立我国的计
1984年 量经济学奠定了基础
1979年
18
二、什么是计量经济学?
用数学方法探讨经济学可以从好几个方面着手,但 任何一个方面都不能和计量经济学混为一谈。计量 经济学与经济统计学绝非一码事;它也不同于我们 所说的一般经济理论,尽管经济理论大部分具有一 定的数量特征;计量经济学也不应视为数学应用于 经济学的同义语。经验表明,统计学、经济理论和 数学这三者对于真正了解现代经济生活的数量关系 来说,都是必要的,但本身并非是充分条件。三者 结合起来,就是力量,这种结合便构成了计量经济 学。

计量经济学ppt课件(完整版)

计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。

计量经济学

计量经济学

计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。

计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。

计量经济学的研究对象:经济问题,包括各种经济现象。

经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议 1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》 20世纪40、50年代的大发展和60年代的扩张 20世纪70年代以来非经典(现代)计量经济学的发展 2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计 (4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法 3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。

4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。

5.参数的普通最小二乘估计(OL S )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。

由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。

6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性: (1)线性性,即它是否是另一随机变量的线性函数; (2)无偏性,即它的均值或期望值是否等于总体的真实值; (3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

这三个准则也称作估计量的小样本性质。

计量经济学

计量经济学

计量经济学第六章6.1 解释概念(1)双对数模型 (2)对数-线性模型 (3)线性-对数模型 (4)多项式回归(5)标准化变量 (6)边际效应 (7)弹性 (8)瞬时增长率 答:(1)双对数模型是一种广泛应用的函数形式,模型中的因变量和自变量都以对数度量,比如设定一个双对数模型12ln ln Y X u ββ=++(2)对数线性模型是指因变量取对数、解释变量为原有形式的模型。

比如:12log()wage educ u ββ=++。

(3)线性对数模型是指因变量为原有形式,解释变量取对数的模型。

比如:12ln Y X u ββ=++(4)多项式回归模型中解释变量并不都是以线性的形式出现,多项式是由常数和一个或多个解释变量及其正整数次幂构成的表达式。

多项式回归模型的一般函数形式表示为21123k k Y X X X u ββββ-=+++++(5)标准化变量是标准化变量就是将变量减去其均值并除以其标准差。

(6)边际效应是指一单位变量X 的变化所引起的变量Y 的单位变化。

(7)弹性是指一个变量变动的百分比相应于另一变量变动的百分比来反应变量之间的变动的灵敏程度。

(8)瞬时增长率是指仅当时间变动很小时,才近似等于因变量的相对变化。

6.2 考虑双对数模型12ln ln Y X u ββ=++分别描绘出21β=,21β>,201β<<,21β=-,21β<-,210β-<<时表现Y 与X 之间关系的曲线。

答:当21β=时,Y 和X 对应的是曲线是:当21β>时,对应的曲线是:201β<<时:21β=-时,Y 和X 对应的图形为:21β<-时,对应的函数为:210β-<<时,Y 和X的曲线为:6.3 在研究生产函数时,我们得到如下结果2ln 8.570.460ln 1.285ln 0.272(4.2)(0.025)(0.347)(0.041)360.889K L t se n R θ=-+++===其中θ为产量,K 为资本,L 为劳动时数,t 为时间变量。

计量经济学课件全完整版

计量经济学课件全完整版
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。

计量经济学

计量经济学

计量经济学第一章1、什么是计量经济学计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、计量经济学的研究步骤选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用3、为什么要对参数进行估计一般来说参数是未知的,又是不可直接观测的。

由于随机项的存在,参数也不能通过变量值去精确计算。

只能通过变量样本观测值选择适当方法去估计。

4、模型检验的内容经济意义的检验—所估计的模型与经济理论是否相符统计推断的检验—检验参数估计值是否抽样的偶然结果,包括拟合优度检验,总体显著性检验,变量显著性检验计量经济学检验—是否符合计量经济方法的基本假定,包括异方差性检验,序列相关性检验,多重共线性检验模型预测检验—将模型预测的结果与经济运行的实际对比,包括稳定性检验,预测性能检验5、模型应用有哪些方面经济结构分析,经济预测,政策评价6、数据类型有时间数列数据(同一空间、不同时间)截面数据(同一时间、不同空间)混合数据(面板数据 Panel Data)虚拟变量数据第二章1、注意几个概念和公式Y的条件分布:当解释变量X取某固定值时(条件),Y的值不确定,Y的不同取值形成一定的分布,即Y的条件分布。

Y的条件期望:对于X的每一个取值,对Y所形成的分布确定其期望或均值,称为Y的条件期望或条件均值E(Y|Xi)公式:2、回归线:对于每一个X的取值,都有Y的条件期望E(Y|Xi)与之对应,代表这些Y的条件期望的点的轨迹所形成的直线或曲线,称为回归线。

3、回归函数:应变量Y的条件期望E(Y|Xi)随解释变量X的的变化而有规律的变化,如果把Y的条件期望E(Y|Xi)表现为X的某种函数,这个函数称为回归函数。

4、总体回归函数的概念:假如已知所研究的经济现象的总体应变量Y和解释变量X的每个观测值, 可以计算出总体应变量Y的条件均值E(Y|Xi),并将其表现为解释变量X的某种函数,这个函数称为总体回归函数(PRF)。

计量经济学

计量经济学
2
1.826
b t 15.653 s e b
t0.025 (3) 3.182
接受" =0"的假设,拒绝" =0"的假设.
当样本容量n=30左右, t ≥ 2时 则至少以0.05的显著水平拒绝零假设。
一、基本思想
二、预测的点估计
三、平均值的区间估计
四、个别值的区间估计
2 2 X Y nXY X nX t tt




定义: S XX X t X X t2 nX 2
2
S XY X t X Yt Y X tYt nXY 则 式变为: S XX S XY S XY S XX
部分占的比重越大,模型拟合优度越好。反乊可决系数 越小,说明模型对样本观测值的拟合程度越差。 可决系数的特点: 2 ●可决系数取值范围: 0 R 1 ●随抽样波动,样本可决系数 是随抽样而变 动的随机变量 ●可决系数是非负的统计量
39
3、可决系数与相关系数的关系
R2 ˆ x) ˆ y ( y y ˆ x ( x y ) x ( x ) y y
t t 2 t XX
a vtYt wt ,vt 均为确定性变量。
t
Xt X 令:wt ,wt 满足: wt 0 S XX
w X
t
t
1
1 1 a Y bX Y wtYt X Xwt Yt , 令vt wt X n n
Y X
Y:某国家(地区)消费 X:收入
2、计量经济学的发展史 1926年,挪威经济学家、第一届诺贝尔经济学奖得主 弗里希(R.Frish)仿照生物计量学(biometrics)提出 来计量经济学(econometrics)这个词。

计量经济学(共11张PPT)

计量经济学(共11张PPT)

分析与模型应 用阶段
是否可用于决策? 应用
修改整理模型
结构分析
预测未来
模拟
检验发展理论
第五节 经济计量学和其它学科的关系
数理经济学是运用数学研究有关经济理论
数理统计学是运用数学研究统计问题 经济统计学是对经济现象的统计研究
经济计量学是经济学、统计学、数学三者结合在一起的交叉学科。
经济学
数理经济学
经济统计学
四、我国经济计量学的发展
70-80年代
80-90年代 1998年
开始介绍《经济计量学》的学科内 容和国外发展情况
1995年《经济计量学》的教学大纲 正式发表;全国许多高校相继开设 《经济计量学》课程。
将《经济计量学》列入经济类各专 业八门公共核心课程之一
五、经济计量学的内容体系
按照研究的方 法不同
《Econometrics》。
从30年代到今天,尤其是二次大战以后,计量经济学在西方各 国的影响迅速扩大。曾说:“二次世界大战以后的经济学是计量经 济学的时代”。1969年首届诺贝尔经济学奖授予弗里希和丁伯根。 自1996年设立诺贝尔经济学奖至1989年27为获奖者中有15位是计量 经济学家,其中10位是世界计量经济学会的会长。
(时间序列数据、截面数据)
二、参数估计
三、模型检验(拟合优度、t 检验、F 检验) 四、模型应用(预测、结构分析、 模拟)
第三节 经济计量学的特点
1.它是研究经济现象的,它不但给出质的解释,而且给出确切的量的 描述,从而使经济学成为一门精密的科学。 定性分析-定量分析(简单的数量对比-模型分析)
2.能综合考虑多种因素,通过描述客观经济现象中极为复杂的因果关系,对 影响某一经济现象的众多因素(哪些是主要、次要因素)给出一目了然的 回答。

计量经济学

计量经济学

1-1什么是计量经济学?它与经济学,统计学,数学的关系是怎样的?计量经济学是在经济理论的指导下,根据实际观测的统计数据,运用数学和统计学的方法,借助计算机技术从事经济关系和经济数量规律的研究,并以建立和应用计量经济模型为核心的一门经济学科。

简单地说,计量经济学是经济学、统计学和数学三科结合而成的交叉型学科。

计量经济模型建立的过程,是综合应用经济理论、统计和数学方法的过程,经济学为其提供理论基础,数学为其提供研究方法。

理论模型的设定和样本数据的收集是直接以经济理论为依据,建立在对研究对象的透彻认识的基础上的,而参数模型的估计和有效性的检验则是统计学和数学方法在经济研究中的具体应用。

没有理论模型和样本数据,统计学和数学方法将无法发挥作用的对象和原料,反过来如果没有统计学和数学提供的方法,原料将无法成为产品。

因此计量经济学广泛涉及了经济学、统计学、数学这三科的理论、原则、方法。

缺一不可。

1-4、建立与应用计量经济学模型的主要步骤有哪些?计量经济学模型主要有哪些应用领域?(1)、设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;估计模型参数;检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

(1)、结构分析,即研究一个或者几个经济变量发生变化及结构参数的变动对其他变量以至整个经济系统产生何种影响。

其原理是:弹性分析、乘数分析和比较静力分析;经济预测,即进行中短期经济的因果预测。

其原理是:模拟历史,从已经发生的经济活动中找出变化规律;政策评价,即利用计量经济学模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的“模拟仿真”;检验与发展经济理论,即利用计量经济学模型和实际统计资料实证分析某个理论假说正确与否。

其原理是:如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据,则意味着该理论是符合客观事实的,否则,则表明该理论不能解释客观事实。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章6.1 解释概念(1)双对数模型 (2)对数-线性模型 (3)线性-对数模型 (4)多项式回归(5)标准化变量 (6)边际效应 (7)弹性 (8)瞬时增长率 答:(1)双对数模型是一种广泛应用的函数形式,模型中的因变量和自变量都以对数度量,比如设定一个双对数模型12ln ln Y X u ββ=++(2)对数线性模型是指因变量取对数、解释变量为原有形式的模型。

比如:12log()wage educ u ββ=++。

(3)线性对数模型是指因变量为原有形式,解释变量取对数的模型。

比如:12ln Y X u ββ=++(4)多项式回归模型中解释变量并不都是以线性的形式出现,多项式是由常数和一个或多个解释变量及其正整数次幂构成的表达式。

多项式回归模型的一般函数形式表示为21123k k Y X X X u ββββ-=+++++L(5)标准化变量是标准化变量就是将变量减去其均值并除以其标准差。

(6)边际效应是指一单位变量X 的变化所引起的变量Y 的单位变化。

(7)弹性是指一个变量变动的百分比相应于另一变量变动的百分比来反应变量之间的变动的灵敏程度。

(8)瞬时增长率是指仅当时间变动很小时,才近似等于因变量的相对变化。

6.2 考虑双对数模型12ln ln Y X uββ=++分别描绘出21β=,21β>,201β<<,21β=-,21β<-,210β-<<时表现Y 与X 之间关系的曲线。

答:当21β=时,Y 和X 对应的是曲线是:当21β>时,对应的曲线是:201β<<时:21β=-时,Y 和X 对应的图形为:21β<-时,对应的函数为:210β-<<时,Y 和X的曲线为:6.3 在研究生产函数时,我们得到如下结果·2ln8.570.460ln 1.285ln 0.272(4.2)(0.025)(0.347)(0.041)360.889K L t se n R θ=-+++===其中θ为产量,K 为资本,L 为劳动时数,t 为时间变量。

(1)解释系数0.460、1.285、0.272的含义。

(2)对资本、劳动时数的回归系数做显著性检验(写出原假设、备择假设、计算检验统计量)。

答:(1)0.460表示的是产量对资本的弹性。

同理,1.285表示的是产量对劳动时数的弹性,0.272表示的是产量对时间的弹性。

(2)对于资本的系数2β:原假设:02=0H β:,备择假设:10H β≠2:¶220.46018.4()0.025t se ββ===, 由Excel 计算可得:32(18.4)=1.4018prob t E ≥-,可知2β是显著的。

对于劳动时数的系数3β:原假设:03=0H β:,备择假设:10H β≠3:µ33 1.285 3.70()0.347t se ββ=== 由Excel 计算可得:32( 3.70)=0.000807prob t ≥ 由此可以看出,3β也是显著的。

6.4 一个劳动经济学家想分析教育程度和工作经验对收入的影响。

使用横截面数据,她获得如下关系式:·22log()7.710.0940.0230.000325(0.113)(0.005)(0.009)(0.000187)0.33760income educ exper exper se R n =++-=== 式中,income 为收入;educ 为受教育程度;exper 为工作经验。

括号内为标准误。

请写出以下检验的原假设和备择假设。

(1)检验“受教育程度对收入没有影响”;(2)检验:“受教育程度和工作经验对收入都没有影响”;(3)检验“工作经验对收入没有影响”,如果有必要你还会进行什么回归?写出检验统计量的表达式,说明其分布和自由度。

(4)写出收入对 a.受教育程度;b.工作经验的边际效应的表达式。

如果有需要的话,计算这些边际效应你还需要什么其他信息?(5)写出收入对 a.受教育程度;b.工作经验的弹性的表达式。

如果有需要的话,计算这些弹性你还需要什么其他信息?(6)分析以不同单位度量收入,估计结果有变化吗?答:设educ 的系数为2β,exper 的系数为3β,2exper 的系数为4β。

(1)原假设:02=0H β:,备择假设:20β≠。

(2)原假设:0234:=0H βββ==,备择假设:1H :2β,3β,4β不全为0。

(3)原假设:034=0H ββ=: ,备择假设:134:,0H ββ不全为。

如果有必要还要进行辅助回归。

检验统计量:22(1)(1)()i i i R k F R n k -=--其分布服从自由度为(2,57)的F 分布。

(4)21dyY dx β=⨯(1X 表示受教育程度,Y 表示收入) 3422(2)dyX Y dx ββ=+⨯,如果有需要的话,还要知道各变量的均值。

(5)1211educ X dy E X dx Yβ=⨯=⨯ 2exp 34222(2)er X dy E X X dx Yββ=⨯=+⨯, 如果有需要的话,计算这些弹性还需要有这些变量的均值。

(6)有变化。

当单位不同时,Y 值也会不同,ln Y 的大小也不一样,而其他的变量的单位是保持不变的,所以对Y 值的估计是有影响的。

6.5 一家公司的销售经理认为公司的销售增长遵从模式0(1)t t S S g =+。

他得出以下回归结果:·ln3.68890.0583t S t =+。

(1)他得出的增长率g 的估计值是多少? (2)他得出的0S 的估计值是多少? (3)估计公司未来5个期间的销售额。

答:(1)对原方程两端都取对数可得:0ln ln ln(1)t S S t g =++, 对应回归结果可知:ln(1)0.0583g +=,可得g=0.06。

(2)由µµ00ln() 3.6889,=40S S =可得, (3)由(1)和(2)可知,未来1个期间内的销售额14040(10.06)82.4t S =+⨯+= 未来2个期间的销售额为:282.4+40(10.06)127.3⨯+= 未来3个期间的销售额为:3127.340(10.06)174.9+⨯+= 未来4个期间的销售额为:4147.940(10.06)198.4+⨯+= 未来5个期间的销售额为:5198.440(10.06)251.9+⨯+=计算机习题6.6 数据集Data6-7是美国1958~2004年间的失业率(UNEMPLOY )和通货膨胀率(infl )的数据。

(1)对1958~1969、1958~2004年间的失业率与通货膨胀率作图,图形是否与菲利普斯曲线的假设一致?(2)分别估计上述两个样本期间的菲利普斯曲线12t t t infl UNEMPLOY u ββ=++你的结论是什么?(3)在上述模型中加入预期,使用上一期的通货膨胀率来预期本期的通货膨胀率,分别估计两个样本期间的附加预期的菲利普斯曲线112t t t t infl infl UNEMPLOY u ββ--=++你的结论是什么?与菲利普斯曲线的假设相一致吗?答:(1)对1958-1969年间的失业率和通货膨胀率进行作图:图形和菲利普斯的假设是一致的。

对1958~2004年间的失业率与通货膨胀率作图:图形和菲利普斯曲线不保持一致。

(2)对1958-1969年间的失业率和通货膨胀率进行估计得:2inf 0.0640.008 (4.37) ( 2.91) 0.458l unemployt R =-⨯=-= (1)对1958~2004年间的失业率与通货膨胀率进行估计得:2inf 0.00870.0054 (0.477) (1.806) 0.0675l unemploy t R =+⨯== (2)由模型(1)可以看出拟合优度是比较低的。

由模型(2)可以看出拟合优度很低,再加上模unemploy 的系数和假设是不相符的。

(3)估计方程:112t t t t infl infl UNEMPLOY u ββ--=++ 可得:1958-1969年间:12inf inf 0.00100.0011 (0.6216) (0.3473) 0.0119t t tl l unemploy t R --=-⨯=-=对1958~2004年间:12inf inf 0.03700.0062un (3.7365) ( 3.8038) 0.2433t t l l employt R --=-⨯=-=由以上结果可以看出,加上预期之后,模型的估计更好,而且菲利普斯曲线的假设保持了一致。

6.7 数据集Data6-8给出了1995~2000年间Qualcom 公司每周股票价格的数据。

(1)做收盘价格对时间的散点图。

散点图呈现出什么样的模式? (2)建立一个线性模型预测Qualcom 股票的收盘价格。

(3)建立一个二次模型,解释变量包括时间和时间的平方。

模型的拟合效果如何?(4)建立一个三次模型:230123i i i i i Y X X X u ββββ=++++其中,Y 是股票价格,X 是时间。

哪一个模型更好地拟合了数据? 答:(1)做散点图:可以看出价钱随时间呈上升趋势。

(2)构建回归模型:12i price time u ββ=+⨯+ 可得:24.690.58time (0.68) (12.70) 0.385price t R =-+⨯=-=(3)构建模型:2123i price time time u βββ=+⨯+⨯+ 可得:227.68 1.190.007 (8.92) (8.27) (12.69) 0.622price time time t R =-⨯+⨯=-=由拟合优度可以看出拟合的程度比(2)中的要好。

(4)估计:230123i i i i i Y X X X u ββββ=++++ 可得:23210.85 2.620.03(9.2905)( 1.42) (10.29) (13.09) (16.33) 0.815Y X X E X t R =-+⨯-⨯+-⨯=--=从显著性水平和拟合优度上,可以看出这个模型的拟合程度最好。

6.8 数据集Data6-9给出了40个国家平均寿命Y 的数据。

数据来自《世界年鉴》(1993)。

解释变量是电视机普通率1X 和医生覆盖率2X 。

(1)利用数据拟合一个LIV (变量线性)模型,解释回归系数的涵义。

模型拟合的效果如何?分别做Y 对1X 和Y 对2X 的散点图。

散点图是否呈现出线性模式?(2)分别做ln Y 对1ln X 和ln Y 对2ln X 的散点图。

散点图是否呈现出线性模式?(3)估计一个双对数模型。

相关文档
最新文档