(完整word版)现代控制理论大作业1
现代控制理论大作业
现代控制理论直流电动机模型的分析姓名:李志鑫班级:测控1003学号:20100203030921直流电动机的介绍1.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。
在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。
[1]1.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。
直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分:-图1.1①磁极:电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。
②电枢:电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。
③电刷:电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。
直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。
电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。
2)启动时电枢电流要尽可能的小。
3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。
直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。
本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。
这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。
如图1.2Bm电枢线路图1.2——定义为电枢电压(伏特)。
——定义为电枢电流(安培)。
——定义为电枢电阻(欧姆)。
——定义为电枢电感(亨利)。
——定义为反电动势(伏特)。
现代控制理论大作业
现代控制理论大作业一、位置控制系统----双电位器位置控制系统由系统分析可知,系统的开环传递函数:2233.3s =s s 2*0.07s*s 205353G()(+1)*(++1)另:该系统改进后的传递函数:223.331s =s s 2*0.07s*s 3455353G ()(+1)*(++1)1、时域数学模型<1>稳定性>> s=tf('s');>> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)); >>sys=feedback(G,1); >> sysTransfer function:9.915e007 -----------------------------------------------------------53 s^4 + 1453 s^3 + 1.567e005 s^2 + 2.978e006 s + 9.915e007>> pzmap(sys)由零极点图可知,该系统有四个极点,没有零点,其中两个在左半s 开平面上,两个在s 平面的虚轴处,则,四个极点的坐标分别是:>> p=pole(sys)p =0.0453 +45.2232i0.0453 -45.2232i-13.7553 +26.9359i-13.7553 -26.9359i系统的特征方程有的根中有两个处于s的右半平面,系统处于不稳定状态<2>稳态误差分析稳态误差分析只对稳定的系统有意义,系统(G)处于不稳定状态,所以不做分析。
改进后系统(G1)如下,求其特征方程的极点:>> s=tf('s');>> G1=3.33/(s*(s/345+1)*(s^2/53^2+2*0.07*s/53+1));>> sys2=feedback(G1,1);>>p=pole(sys2);p =1.0e+002 *-3.4492-0.0206 + 0.5258i-0.0206 - 0.5258i-0.0338可以看出,改进后的传递函数G1的四个极点都在s平面的右半开平面上,则系统G1是稳定的,故对此系统做稳态误差分析:由系统G1的开环传递函数在原点处有一个极点,故属于1型系统。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论大作业
现代控制理论直流电动机模型的分析姓名:李志鑫班级:测控1003学号:20100203030921直流电动机的介绍1.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。
在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。
[1]1.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。
直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分:-图1.1①磁极:电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。
②电枢:电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。
③电刷:电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。
直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。
电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。
2)启动时电枢电流要尽可能的小。
3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。
直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。
本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。
这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。
如图1.2Bm电枢线路图1.2——定义为电枢电压(伏特)。
——定义为电枢电流(安培)。
——定义为电枢电阻(欧姆)。
——定义为电枢电感(亨利)。
——定义为反电动势(伏特)。
现代控制理论大作业
2019/11/21
2
课题背景
系统工作原理
Accelerometer gyroscope 遥控器
电源
左轮 软件编码
AD 采样
滤波
MCU
驱动器1 驱动器2
无线模块
软件编码 右轮
减速机构 左电机
右电机 减速机构
2019/11/21
3
系统工作原理 前进(后仰)
后退(前倾)
2019/11/21
课题背景
后退(纠正后仰) 前进(纠正前倾)
Matlab计算程序:
pole=[-1,-2,-3,-4]; K=place(A,B,pole) A1=A-B*K; pole=[-3,-4,-5,-6]; K=place(A,B,pole) A2=A-B*K; pole=[-8,-9,-10,-11]; K=place(A,B,pole) A3=A-B*K;
figure; hold on; plot(curve1(:,2),'color','blue'); plot(curve2(:,2),'color','red'); plot(curve3(:,2),'color','green'); xlabel(‘时间(s)'); ylabel(‘摆动角度(rad)'); hold off
2019/11/21
N C,CA,CA2 ,CA3
计算结果:
rankc = 4 ranko = 4
结论: k(M)=4 系统完全能控 Rank(N)=4 系统完全能观
稳定性分析
运用Matlab解出矩阵A的特征值如下:
(完整)现代控制理论-大作业-倒立摆
摘要倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。
倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的.本文主要研究的是二级倒立摆的极点配置方法,首先用Lagrange方程建立了二级倒立摆的数学模型,然后对二级倒立摆系统的稳定性进行了分析和研究,并给出了系统能控能观性的判别。
基于现代控制理论中的极点配置理论,根据超调量和调整时间来配置极点,求出反馈矩阵并利用Simulink对其进行仿真,得到二级倒立摆的变化曲线,实现了对闭环系统的稳定控制。
关键词:二级倒立摆;极点配置;Simulink目录1.绪论 (1)2 数学模型的建立和分析 (1)2。
1 数学建模的方法 (1)2。
2 二级倒立摆的结构和工作原理 (2)2。
3 拉格朗日运动方程 (3)2。
4推导建立数学模型 (3)3 二级倒立摆系统性能分析 (9)3.1 稳定性分析 (9)3。
2 能控性能观性分析 (10)4 状态反馈极点配置 (11)4。
1 二级倒立摆的最优极点配置1 (11)4.2 二级倒立摆最优极点配置2 (12)5。
二级倒立摆matlab仿真 (14)5。
1 Simulink搭建开环系统 (14)5.2 开环系统Simulink仿真结果 (14)5.3 Simulink搭建极点配置后的闭环系统 (15)5.4极点配置Simulink仿真结果 (16)5.4。
2 第二组极点配置仿真结果 (18)6。
结论 (19)7.参考文献 (20)附录一 (21)1.绪论倒立摆最初诞生于麻省理工学院,仅有一级摆杆,另一端铰接于可以在直线导轨上自由滑动的小车上.后来在此基础上,人们又进行拓展,设计出了直线二级倒立摆、环型倒立摆、平面倒立摆、柔性连接倒立摆、多级倒立摆等实验设备。
在控制理论的发展过程中,为验证某一理论在实际应用中的可行性需要按其理论设计的控制器去控制一个典型对象来验证。
现代控制理论第一章答案
a0 3 a1 7 a2 5 b0 2 b1 1 b2 0 b3 0
标准型实现
1 0 0 0 x 0 u 0 x 0 1 3 7 5 1
y (b0 a 0 b3 ) (b1 a1b3 ) (b2 a 2 b3 )x 2 1 0x
1 0 0 0 x 0 0 1 x 0 u 3 7 5 1
y (b0 a 0 b3 ) (b1 a1b3 ) (b2 a 2 b3 )x 2 3 1x
【习题1-6】已知系统传递函数
10( s 1) (1) W ( s ) s ( s 1)(s 3) 6( s 1) (2) W ( s ) s ( s 2)(s 3) 2
x1
0 0 0 x 0 K1 Kp 0
1
0 Kb 0 J2 Kp 0 J1 0 K1 0 0 0 Kn
0 0 1 J1 0 0 0
0 0 Kp J1 K1 K1 Kp 0
0 0 0 0 1 0 J1 x 0 0 K1 Kp 0 0 0
y 0 0 1x
【解】(1)画模拟结构图的步骤 第一步:画出三个积分器 第二步:画出各增益系数和信号综合点 第三步:根据各变量的相互关系用信号线连接起来 (2)求系统的传递函数矩阵
Y ( s) 2s 2 7 s 3 1 W ( s) c( sI A) b U ( s) ( s 1)(s 2)(s 3) 2s 1 ( s 1)(s 2)
1 0
4 3
【习题1-10】已知两个子系统的传递函数分别为:
现代控制理论大作业
现代控制理论大作业“现代控制理论”课本质上是一门工学理论基础课,它在电气工程领域众多研究工作中也有着广泛的应用,例如发电机励磁控制、发电机调速控制、电力电子装置控制等。
“现代控制理论”课立足于近年来控制理论与工程应用的最新进展,旨在实现以下两个目的:一是将控制与系统理论的前沿领域介绍给研究生,使之理解基本思想并掌握基本设计方法;二是在工程实践(主要是电力系统)与先进理论之间架设一座桥梁,使研究生能正确地运用有关理论和方法解决实际工程问题。
通过实现上述目标,本课程可拓宽研究生的专业基础知识,了解和掌握学科前沿动态,培养和提高研究生独立从事科研的能力。
课程内容本课程的教学理念是“用生动鲜活的例子诠释复杂的控制理论,用教师的研究经历点亮学生思考的火炬”。
“现代控制理论”立足于近年来控制理论与工程应用的最新进展,紧紧围绕鲁棒控制和非线性系统控制两个重点,主要讲述以下内容:①线性最优控制系统理论。
②非线性最优控制系统设计——微分几何方法。
③线性H∞控制设计原理。
④非线性控制系统H∞设计原理。
课程教学方式本课程采用教师讲授、学生课外阅读、习题练习和研究型大作业相结合的教学模式。
为加强理论联系实际,避免过分理论化,课程结合控制工程特别是电力系统工程实际,设置了下述专题研究:a. 汽轮机汽门开度系统非线性控制器设计b. 可控串联补偿鲁棒控制器设计c. 水轮机调速非线性鲁棒控制器设计d. 静止无功补偿器非线性控制器设计e. 直流输电系统非线性控制器设计f. 倒立摆控制器设计(购置2级和3级倒立摆各1台)g. 电力巡线机器人越障控制上述专题研究的目的是:在基本掌握现代控制理论主要设计方法的基础上,让研究生开展某一专题的研究,以培养学生的综合能力和素质。
这一部分内容可以代替课程的期末考试(笔试闭卷)。
教师事先就专题研究的要求、选题、难度等方面进行指导;专题研究一般由个人独立完成,内容较多的题目可以两个人作为一组来完成。
现代控制理论作业
现代控制理论大作业要求:(1)自选一实际物理对象进行研究,建立实际物理系统的状态空间模型;(2)进行原系统的定性分析,包括稳定性、能控性、能观性分析;(3)根据系统提出的性能指标要求(如超调量、超调时间、调节时间等动态 性能指标以及稳态误差等稳态性能指标),进行原系统的仿真分析,和要求的性能指标做对比;(4)对不稳定系统且能镇定的系统,进行镇定控制;(5)对未达到性能指标要求的系统进行状态反馈控制设计,满足系统性能指 标要求;(6)设计状态观测器观测所有状态;(7)设计降阶状态观测器;(可选)(8)最优控制;(9)体会及对课程建议。
1实际物理模型:如图1所示,为一交接车前后连接振动简化模型。
设计一个调节器系统使得在无扰动的情况下,系统保持在零位置上(y1=0)。
其中m1=1,m2=2,k=36,b=0.62系统的描述方程:)()(m )()(m 212122121211y y b y y k yu y y b y y k y-+-=+-+-= 其空间状态模型为:设:。
,,,24132211y x yx y x y x ====[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡432121432143210001u 01003.03.018186.06.0-3636-10000100x x x x y y x x x x x x x x 3分析与求解过程:由根轨迹和特征根(a = -0.4500 + 7.3347i -0.4500 - 7.3347i -0.000 0 )知虽实根都为负数但都靠近零轴,是李雅普诺夫定义下的稳定,但存在震荡,所以把希望闭环极点配置在10-s ,10-s ,32-2-s ,322-s ===+=和把最小阶观测器希望极点配置在16-s ,15-s ==来改善系统的性能。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
现代控制理论课程设计(大作业)
现代控制理论课程设计报告题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠专业班级自动化112指导教师何小其分院信息分院完成日期2014-5-28目录1. 课程设计目的 (5)2.课程设计题目描述和要求 (5)3.课程设计报告内容 (6)3.1 原理图 (6)3.2 系统参数取值情况 (6)3.3 打印机皮带驱动系统的状态空间方程 (7)4. 系统分析 (10)4.1 能控性分析 (10)4.2 能观性分析 (10)4.3 稳定性分析 (11)5. 总结 (13)项目组成员具体分工打印机皮带驱动系统能控能观和稳定性分析课程设计的内容如下:1.课程设计目的综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。
加强大家对专业理论知识的理解和实际运用。
培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。
加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。
2.课程设计题目描述和要求(1)环节项目名称:能控能观判据及稳定性判据(2)环节目的:①利用MATLAB分析线性定常系统的可控性和客观性。
②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。
(3)环节形式:课后上机仿真(4)环节考核方式:根据提交的仿真结果及分析报告确定成绩。
(5)环节内容、方法:①给定系统状态空间方程,对系统进行可控性、可观性分析。
②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验证上述判断。
3.课程设计报告内容3.1 原理图在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。
它用于驱动打印头沿打印页面横向移动。
图1给出了一个装有直流电机的皮带驱动式打印机的例子。
其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。
图1打印机皮带驱动系统3.2 系统参数取值情况表1打印装置的参数3.3 打印机皮带驱动系统的状态空间方程图2打印机皮带驱动模型状态空间建模及系统参数选择。
现代控制理论大作业1
Harbin Institute of Technology现代控制理论基础上机实验报告之一亚微米超精密车床振动控制系统的状态空间法设计课程名称:现代控制理论院系:航天学院自动化班号:1104103作者:皮永江学号:1110410228指导教师:刘杨、井后华哈尔滨工业大学2014年6月5日1.工程背景介绍超精密机床是实现超精密加工的关键设备,而环境振动又是影响超精密加工精度的重要因素。
为了充分隔离基础振动对超精密机床的影响,目前国内外均采用空气弹簧作为隔振元件,并取得了一定的效果,但是这属于被动隔振,这类隔振系统的固有频率一般在2Hz左右。
2.实验目的通过本次上机实验,使同学们熟练掌握:a)控制系统机理建模b)时域性能指标与极点配置的关系c)状态反馈控制律设计d)MATLAB语言的应用3.给定的实际参数与数学建模3.0参数与物理模型机床的已知参数上图表示了亚微米超精密车床隔振控制系统的结构原理,其中被动隔振元件为空气弹簧,主动隔振元件为采用状态反馈控制策略的电磁作动器。
床身质量的运动方程为:(1)空气弹簧所产生的被动控制力作动器所产生的主动控制力假设空气弹簧内为绝热过程,则被动控制力可以表示为:(2)标准压力下的空气弹簧体积相对位移(被控制量)空气弹簧的参考压力参考压力下单一弹簧的面积参考压力下空气弹簧的总面积绝热系数电磁作动器的主动控制力与电枢电流、磁场的磁通量密度及永久磁铁和电磁铁之间的间隙面积有关,这一关系具有强非线性。
由于系统工作在微振动状况,且在低于作动器截止频率的低频范围内,因此主动控制力可近似线性化地表示为:(3)力-电流转换系数电枢电流其中,电枢电流满足微分方程:(4)控制回路电枢电感系数控制回路电枢电阻控制回路反电动势控制电压综上得到如下方程组:3.1如果忽略非线性部分数学建模设状态变量为:得到状态方程:状态空间表达式:代入数据:那么状态空间表达式为:显然系统能控,可以采用状态反馈进行任意配置极点。
现代控制理论大作业
现代控制理论大作业现代控制理论大作业1.解:(1).选取状态变量为:x1=y, x2=y’,x3=y’’由题可得:a2=1 , a1=4, a0=5所以x3’=-5x1-4x2-x3+3u系统的状态方程为:x1’=x2x2’=x3x3’=-5x1-4x2-x3+3u输出方程为:y=x1将微分方程表达为矩阵形式即得其状态空间表达式:[x1’; x2’; x3’]=[0,1,0;0,0,1;-5, -4, -1][x1;x2;x3]+[0;0;3]uy=[1, 0, 0][x1;x2;x3](2).选取系统的状态变量为:x1=y-h0ux2=x1’-h1u=y’-h0u’-h1ux3=x2’-h2u=y’’-h0u’’-h1u’-h2u 由题可得:a0=0, a1=3/2, a2=0b0=-1/2, b1=0, b2=1/2, b3=0所以:[h0;h1;h2;h3]=[1 0 0 0;0 1 0 0;3/2 0 1 0;0 3/2 0 1]^-1*[0 ;1/2;0 ;-1/2]=[0;1/2;0;-5/4]取状态变量为:x1=y-h0u=yx2=x1’-h1u=x1’-1/2ux3=x2’-h2u=x2’所以该系统的状态空间表达式为:[x1’;x2’;x3’]=[0 1 0;0 0 1;0 -3/2 0][x1;x2;x3]+[0;1/2;0;-5/4]uy=[1 ,0, 0][x1;x2;x3](3)由题可得:a2=2, a1=3, a0=5;b3=5, b2=0, b1=0, b0=7所以[h0;h1;h2;h3]=[1 0 0 0;2 1 0 0;3 2 1 0;5 3 2 1]^-1*[5;0;0;7] =[5;-10;5;2]取状态变量为:x1=y-h0u=y-5ux2=x1’-h1u=x1’x3=x2’-h2u=x2’所以该系统的状态空间表达式为:[x1’;x2’;x3’;]=[0 1 0;0 0 1;-5 -3 -2][x1;x2;x3]+[5;-10;5;2]u2.经典控制理论是建立在常微分方程稳定性理论和以拉普拉斯变换为基础的根轨迹和奈奎斯特判断理论之上。
现代控制理论大作业
控制理论:控制理论是讲述系统控制科学中具有新观念、新思想的理论研究成果及其在各个领域中,特别是高科技领域中的应用研究成果,但是在民用领域即实际生活中有很严重的脱节。
飞行器控制技术的进步是与自动控制理论的发展密切相关的。
控制理论在飞行器控制技术方面获得了广泛的应用,取得了许多重要成果。
现代控制理论:建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
发展过程:现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
现代控制理论大作业资料
现代控制理论(主汽温对象模型)班级:学号:姓名:目录一. 背景及模型建立1.火电厂主汽温研究背景及意义2.主汽温对象的特性3.主汽温对象的数学模型二.分析1.状态空间表达2.化为约当标准型状态空间表达式并进行分析3.系统状态空间表达式的求解4.系统的能控性和能观性5.系统的输入输出传递函数6.分析系统的开环稳定性7.闭环系统的极点配置8.全维状态观测器的设计9.带状态观测器的状态反馈控制系统的状态变量图10.带状态观测器的闭环状态反馈控制系统的分析三.结束语1.主要内容2.问题及分析3.评价一.背景及模型建立1.火电厂主汽温研究背景及意义火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。
由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。
主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。
其重要性主要表现在以下几个方面:(1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。
例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。
而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。
再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。
(2) 汽温过低,会使得机组循环热效率降低,增大煤耗。
根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。
同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。
此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。
(3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。
现代控制理论课程设计(大作业)
现代控制理论课程设计报告题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠专业班级自动化112指导教师何小其分院信息分院完成日期2014-5-28目录1. 课程设计目的 (5)2.课程设计题目描述和要求 (5)3.课程设计报告内容 (6)3.1 原理图 (6)3.2 系统参数取值情况 (6)3.3 打印机皮带驱动系统的状态空间方程 (7)4. 系统分析 (10)4.1 能控性分析 (10)4.2 能观性分析 (10)4.3 稳定性分析 (11)5. 总结 (13)项目组成员具体分工打印机皮带驱动系统能控能观和稳定性分析课程设计的内容如下:1.课程设计目的综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。
加强大家对专业理论知识的理解和实际运用。
培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。
加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。
2.课程设计题目描述和要求(1)环节项目名称:能控能观判据及稳定性判据(2)环节目的:①利用MATLAB分析线性定常系统的可控性和客观性。
②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。
(3)环节形式:课后上机仿真(4)环节考核方式:根据提交的仿真结果及分析报告确定成绩。
(5)环节内容、方法:①给定系统状态空间方程,对系统进行可控性、可观性分析。
②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验证上述判断。
3.课程设计报告内容3.1 原理图在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。
它用于驱动打印头沿打印页面横向移动。
图1给出了一个装有直流电机的皮带驱动式打印机的例子。
其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。
图1打印机皮带驱动系统3.2 系统参数取值情况表1打印装置的参数3.3 打印机皮带驱动系统的状态空间方程图2打印机皮带驱动模型状态空间建模及系统参数选择。
(完整版)现代控制理论试卷答案与解析
现代控制理论试卷作业一.图为R-L-C电路,设u为控制量,电感L上的支路电流11121222121212010Y xUR R R RY xR R R R R R⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦+++⎢⎥⎢⎥⎣⎦⎣⎦和电容C上的电压2x为状态变量,电容C上的电压2x为输出量,试求:网络的状态方程和输出方程(注意指明参考方向)。
解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。
以电感L上的电流和电容两端的电压为状态变量,即令:12,L ci x u x==,由基尔霍夫电压定律可得电压方程为:2221R C x x L x••+-=1121()0R x C x L x u••++-=从上述两式可解出1x•,2x•,即可得到状态空间表达式如下:121121212()()R Rx R R LRxR R C••⎡-⎡⎤⎢+⎢⎥⎢=⎢⎥⎢-⎣⎦⎢+⎣121121221212()()11()()R RxR R L R R LuxR R C R R C⎤⎡⎤⎥⎢⎥++⎡⎤⎥⎢⎥+⎢⎥⎥⎢⎥⎣⎦-⎥⎢⎥++⎦⎣⎦⎥⎦⎤⎢⎣⎡21yy=⎥⎥⎦⎤⎢⎢⎣⎡++-21121211RRRRRRR⎥⎦⎤⎢⎣⎡21xx+uRRR⎥⎥⎦⎤⎢⎢⎣⎡+212二、考虑下列系统:(a)给出这个系统状态变量的实现;(b)可以选出参数K(或a)的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。
解:(a)模拟结构图如下:13123312312321332133x u kx xx u kxx x x axy x x•••=--=-=+-=+则可得系统的状态空间表达式:123xxx•••⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦32-⎡⎢⎢⎢⎣112311xkk x ua x-⎡⎤⎤⎡⎤⎢⎥⎥⎢⎥-+⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥-⎦⎣⎦⎣⎦[2y=1]123xxx⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(b ) 因为 3023A -⎡⎢=⎢⎢⎣ 001 k k a -⎤⎥-⎥⎥-⎦ 110b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦302Ab -⎡⎢=⎢⎢⎣ 0013 k k a -⎤⎥-⎥⎥-⎦131001-⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 23023A b -⎡⎢=⎢⎢⎣ 0013 k k a -⎤⎥-⎥⎥-⎦301-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦92k k a -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ [M b = Ab 2110A b ⎡⎢⎤=⎦⎢⎢⎣ 301- 91020k k a -⎤⎡⎥⎢-→⎥⎢⎥⎢--⎦⎣ 010 31k a -⎤⎥-⎥⎥-⎦所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。
现代控制理论作业
特高压电网与超高压电网的电磁环网运行安全性控制技术研究综述
特高压电网与超高压电网的电磁环网运行安全性控制技术研究综述
摘要
电磁环网是电力系统建设中必然存在的过渡环节,本文在论证了我国特高压电网建设初期特高压与超高压电磁环网存在的必要性的基础上,依据现有文献,论述了电磁环网形成原因及危害,运行原则,传输功率稳定控制,潮流控制,热稳定控制,功率环流控制及经济性因素等问题,对特高压与超高压的电磁环网安全性控制技术研究有一定的帮助与指导作用。
2、连锁切机,即故障后及时切除电网中部分机组;
3、送受端同时进行控制,即在送端电网切机的同时,在受端电网开机快速增加出力;
4、快速降低特高压电网间传输功率水平,近似于在受端电网采取的机组快开措施;
5、挖掘线路输电能力,提高输电线的热稳限额。
故障后在安控措施的基础上协调控制AGC(自动电压控制automatic generator control)系统调节送受端电网机组出力,也有助于缓解故障后可能产生的热稳问题。此项研究正在特高压鄂豫断面电磁环网的运行中进行。
六、电磁环网热稳定控制
如果在主要的受端负荷中心,用高低压电磁环网供电而又带重负荷时,当高一级电压线路断开后,所有原来带的全部负荷将通过低一级电压线路送出,容易出现超过导线热稳定极限的问题。从目前常用的控制措施来看,可采取以下5种方法来缓解故障后线路稳态恢复功率超过热稳极限的问题:
1、运行方式预控,即降低特高压输电功率或降低低压电网外送功率水平;
然而由于特高压问题的研究在世界范围内都属于新兴领域,且学术界在电磁环网研究方向上多偏重于开环问题的评估与实际操作。具体体现在研究500kV/220kV电磁环网开环问题的论述很多,而特高压与超高压电磁环网的控制技术方面的研究十分稀缺。故本文将综合前人的研究成果,推导特高压电磁环网控制的可行技术。
(完整word版)现代控制理论习题解答
(完整word版)现代控制理论习题解答《现代控制理论》第1章习题解答1.1 线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+&线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,⽽对线性时变系统,其系数矩阵A ,B ,C 和D 中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的⼀类系统,⽽线性时变系统的参数则随时间的变化⽽变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答: 传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪⼏种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对⾓线标准型。
对于n 阶传递函数1212101110()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++L L ,分别有⑴能控标准型: []012101210100000100000101n n n xx u a a a a y b b b b x du---=+??----????=+LL &M M M O M M L LLb a b y xdu ---?--=-+?????-????=+??L L &%%L M M M M M M L %L ⑶对⾓线标准型: []1212001001001n n p p x x u p y c c c x du=+??????=+?L L &M M O M M L L 式中的12,,,n p p p L 和12,,,n c c c L 可由下式给出,12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p ------++++=+=++++++++---L L L 能控标准型的特点:状态矩阵的最后⼀⾏由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分⼦多项式系数,输⼊矩阵中的元素除了最后⼀个元素是1外,其余全为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology现代控制理论基础上机实验报告之一亚微米超精密车床振动控制系统的状态空间法设计课程名称:现代控制理论院系:航天学院自动化班号:1104103作者:皮永江学号:1110410228指导教师:刘杨、井后华哈尔滨工业大学2014年6月5日1.工程背景介绍超精密机床是实现超精密加工的关键设备,而环境振动又是影响超精密加工精度的重要因素。
为了充分隔离基础振动对超精密机床的影响,目前国内外均采用空气弹簧作为隔振元件,并取得了一定的效果,但是这属于被动隔振,这类隔振系统的固有频率一般在2Hz左右。
2.实验目的通过本次上机实验,使同学们熟练掌握:a)控制系统机理建模b)时域性能指标与极点配置的关系c)状态反馈控制律设计d)MATLAB语言的应用3.给定的实际参数与数学建模3.0参数与物理模型机床的已知参数⁄m=120kgk0=1200N mk e=980N A⁄c=0.2R=300ΩL=0.95H上图表示了亚微米超精密车床隔振控制系统的结构原理,其中被动隔振元件为空气弹簧,主动隔振元件为采用状态反馈控制策略的电磁作动器。
床身质量的运动方程为:ms̈+F p+F a=0(1)F p−空气弹簧所产生的被动控制力F p−作动器所产生的主动控制力假设空气弹簧内为绝热过程,则被动控制力可以表示为:F p=cẏ+k0y+p r{1−[V r(Vr +A e y)n⁄]}A e(2) V r−标准压力下的空气弹簧体积y=s−s0−相对位移(被控制量)p r−空气弹簧的参考压力A r−参考压力下单一弹簧的面积A e=4A r−参考压力下空气弹簧的总面积n−绝热系数电磁作动器的主动控制力与电枢电流、磁场的磁通量密度及永久磁铁和电磁铁之间的间隙面积有关,这一关系具有强非线性。
由于系统工作在微振动状况,且在低于作动器截止频率的低频范围内,因此主动控制力可近似线性化地表示为:F a=k e I a(3)k e−力-电流转换系数I a−电枢电流其中,电枢电流I a满足微分方程:LI a+RI a+E(I a,ẏ)=u(t)(4) L−控制回路电枢电感系数R−控制回路电枢电阻E−控制回路反电动势u−控制电压综上得到如下方程组:{ms̈+F p+F a=0 (1) F p=cẏ+k0y+p r{1−[V r(Vr+A e y)n⁄]}A e (2) F a=k e I a (3) LI a+RI a+E(I a,ẏ)=u(t) (4)3.1如果忽略非线性部分数学建模{ms̈+Fp +F a =0 (1)F p =cẏ+k 0y (2)F a =k e I a (3)LI a+RI a =u (t ) (4)y =s̈⇒ {mÿ=−(cẏ+k 0y +k e I a )my ⃛=−(cÿ+k 0ẏ+k e I a ) 整理 ⇒ { I a =−1k e(mÿ+cẏ+k 0y)I a =−1k e (my ⃛+cÿ+k 0ẏ)带入(4)式⇒ −L k e (my ⃛+cÿ+k 0ẏ)−Rk e(mÿ+cẏ+k 0y )= u (t )整理得⇒ −Lm k e y ⃛−Rm +Lc k e ÿ−Rc +Lk 0k e ẏ−Rk 0k ey = u (t ) 设状态变量为:x 1=y,x 2=ẏ,x 3=ÿ得到状态方程:{x 1=x 2x 2=x 3x 3=−Rk 0Lm x 1−Rc +Lk 0Lm x 2−Rm +Lc Lm x 3−k eLmu状态空间表达式:[x 1x 2x 3]=[01001−Rk 0Lm−Rc +Lk 0Lm −Rm +Lc Lm ]+[0−k e Lm ]uy =[100][x 1x 2x 3]代入数据:{ −Rk 0Lm =−300∗12000.95∗120=−3157−Rc +Lk 0Lm =−300∗0.2+0.95∗12000.95∗120=−10.52−Rm +Lc Lm =−300∗120+0.95∗0.20.95∗120=−316−k e Lm =−9800.95∗120=−8.6那么状态空间表达式为:[x 1x 2x 3]=[010001−3157−10.52−316]+[00−8.2]u y =[100][x 1x 2x 3] 显然系统能控,可以采用状态反馈进行任意配置极点。
3.2考虑非线性部分数学建模因为系统工作在低速,微位移情况下,那么对于(2)式中p r {1−[Vr (V r +A e y)n ⁄]}A e 0点泰勒一阶展开⇒ np r A e 2V rn y n =1.41P r =0.4∗105Pa d =0.3m ⇒A r =πd 34= 0.0707⇒A e =4A r =0.2827m 2h =0.28m ⇒V r =A r ×ℎ=0.0198m 3q =np r A e 2V rn =1.41∗4∗10000∗0.282720.01981.41=1.14×107 (4)式中E (I a ,ẏ)=5.4ẏ ,{ ms̈+F p +F a =0 (1)F p =cẏ+(k 0+q)y (2)Fa =k e I a (3)LI a+RI a +5.4ẏ=u (t ) (4)y=s ⇒ {mÿ=−(cẏ+k 0y +k e I a )my ⃛=−(cÿ+k 0ẏ+k e I a ) 整理 ⇒ { I a =−1k e [mÿ+cẏ+(k 0+q )y]I a =−1k e[my ⃛+cÿ+(k 0+q)ẏ]带入(4)式⇒ −L k e (my ⃛+cÿ+k 0ẏ+qẏ)−Rk e(mÿ+cẏ+k 0y +qy )+5.4ẏ= u (t ) 整理得⇒ −Lm k e y ⃛−Rm +Lc k e ÿ−Rc +Lk 0+Lq −5.4k e k e ẏ−Rk 0+Lq k ey = u (t )设状态变量为:x 1=y,x 2=ẏ,x 3=ÿ得到状态方程:{x1=x2 x2=x3x3=−R(k0+q)Lmx1−Rc+L(k0+q)−5.4k eLmx2−Rm+LcLmx3−k eLmu状态空间表达式:[x1x2 x3]=[010001−R(k0+q)Lm−Rc+Lk0+Lq−5.4k eLm−Rm+LcLm]+[−k eLm]uy=[100][x1x2x3]代入数据:{−Rk0+RqLm=−300∗1200+300∗1.14×1070.95∗120=−3×107−Rc+Lk0+Lq−5.4k eLm=−300∗0.2+0.95∗(1200+1.14×107)−5.4∗9800.95∗120=−1.2×108−Rm+LcLm=−300∗120+0.95∗0.20.95∗120=−316−k eLm=−9800.95∗120=−8.6[x1x2x3]=[010001−3×107−1.2×108−316]+[−8.6]uy=[100][x1x2x3]显然系统能控,可以采用状态反馈进行任意配置极点。
4.性能指标与理论设计4.0性能指标:闭环系统单位阶跃响应的a)超调量不大于5%b)过渡过程时间不大于0.5秒(∆=2%)。
由经验公式得到:σp≈√1−ξ2π×100%<5%⇒ ξ>0.7t s≈4ξωn≤0.5(∆=2%)⇒ξωn>8为留有一定余量,设ξωn=10,ξ=√22(θ=45。
)得到闭环主导极点为:−10±j10,取第三个极点为−100;得到闭环特征多项式为:f∗(λ)=(λ+100)(λ+10+j10)(λ+10−j10)=λ3+120λ2+2200λ+200004.1忽略非线性状态控制采用状态反馈控制,设状态反馈矩阵为:K=[k1k2k3]u=v+KX=v+[k1k2k3] [x1 x2 x3 ]f(λ)=det[λI−(A+bK)]=|[λ000λ000λ]−[010001−(3157+8.2k1)−(10.52+8.2k2)−(316+8.2k3)]| =|λ−100λ−1(3157+8.2k1)(10.52+8.2k2)λ+(316+8.2k3)| =λ3+(316+8.2k3)λ2+(10.52+8.2k2)λ+3157+8.2k1{f(λ)=λ3+(316+8.2k3)λ2+(10.52+8.2k2)λ+3157+8.2k1f∗(λ)=λ3+120λ2+2200λ+20000{316+8.2k3=12010.52+8.2k2=22003157+8.2k1=20000⇒{k1=2054k2=267k3=−24得出状态控制规律为:v=u+KX=u+[2054267−24] [x1x2x3]系统校正框图如下图:4.2考虑非线性状态控制K=[k1k2k3]u=v+KX=v+[k1k2k3] [x1 x2 x3 ]f(λ)=det[λI−(A+bK)]=|[λ000λ000λ]−[010001−(3157+8.2k1)−(10.52+8.2k2)−(316+8.2k3)]| [x1x2x3]=[010001−3×107−1.2×108−316]+[−8.6]uFigure 1系统模拟结构图=|λ−100λ−1(3×107+8.2k 1)(1.2×108+8.2k 2)λ+(316+8.2k 3)|=λ3+(316+8.2k 3)λ2+(1.2×108+8.2k 2)λ+3×107+8.2k 1{f (λ)=λ3+(316+8.2k 3)λ2+(1.2×108+8.2k 2)λ+3×107+8.2k 1f ∗(λ)=λ3+120λ2+2200λ+20000{316+8.2k 3=1201.2×108+8.2k 2=22003×107+8.2k 1=20000 ⇒ {k 1=−3.65×106k 2=−1.46×107k 3=−24得出状态控制律为:u =v +KX =v +[−3.65×106−1.46×107−24] [x 1x 2x 3]控制流程简图在此处键入公式。
Figure 2系统模拟结构图5.数字仿真5.1闭环传递函数校正后系统状态空间表达式:[x1x2x3]=[010001−20000−2200−120][x1x2x3]+[−8.6]uy=[100][x1x2x3]Simulink仿真框图:Figure 3 Simulink仿真框图系统0初始状态响应曲线:Figure 4闭环系统0初始状态响应曲线系统非0初始状态响应曲线:Figure 5系统非0初始状态响应曲线:5.2闭环传递函数与数字仿真Φ(s)=C(sI−A)−1BΦ(s)=[100][s−100s−1 200002200s+120]−1[−8.6]=−8.6s3+120s2+2200s+20000为了更好的观测系统的超调量σp,以及调整时间t s,可以将系统闭环传递函数增益调整为1,或者将阶跃响应的幅值调到20000−8.6,那么系统的稳态输出为1。