基本初等函数公式定理

合集下载

基本初等函数

基本初等函数

基本初等函数包括以下几种:(1)常数函数y = c(c 为常数)(2)幂函数y = x^a(a 为非0 常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1)(5)三角函数:主要有以下6 个:正弦函数y =sin x余弦函数y =cos x正切函数y =tan x余切函数y =cot x正割函数y =sec x余割函数y =csc x此外,还有正矢、余矢等罕用的三角函数。

(6)反三角函数:主要有以下6 个:反正弦函数y = arcsin x反余弦函数y = arccos x反正切函数y = arctan x反余切函数y = arccot x反正割函数y = arcsec x反余割函数y = arccsc x初等函数是由基本初等函数经过有限次的有理运算和复合而成的函数。

基本初等函数和初等函数在其定义区间内均为连续函数幂函数简介形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。

因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。

特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q 次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。

(完整版),基本初等函数公式总结,推荐文档

(完整版),基本初等函数公式总结,推荐文档

( f g)dx f dx gdx kfdx k f dx
运算公式:
fg dx f dg fg g df
分部积分法计算法则




ln x
x
ex
sin x 、 cos x
两两组合,位置排在前面的选 f ,排列在后面的选 g
dx c dx
1 dx d ln x x
凑微分公式 1 dx 2d x x
导数公式
(c) 0 (0) 0
(x) 1 (x2 ) 2x
(log a
x)
1 x ln a
(ln x) 1 x
(sin x) cos x (cos x) sin x
1 0
1 x
1 x2
(a x ) a x ln a
( f g) ( f ) (g) ( fg) ( f )g f (g) (kf ) k( f )
0 dx c
1 dx x c
x
dx
1 2
x2
c
1 x2
dx 1 c x
不定积分公式
1 x
dx 2
x c
ax dx ax c
ln a
不定积分运算法则: 加减法,数乘
x
dx
2
3
x2
c
3
xa dx 1 xa1 c
a 1
1 x
dx
ln |
x | c
ex dx ex c sin x dx cos x c cos x dx sin x c
(x a ) ax a1
( x) 1 2x
(e x ) e x
f g
(
f
)g g2
f
(g)

基本初等函数公式

基本初等函数公式

基本初等函数公式1.线性函数公式线性函数的一般形式是 f(x) = ax + b,其中 a 和 b 是常数,且 a ≠ 0。

线性函数是一条直线,斜率为 a,截距为 b。

2.二次函数公式二次函数的一般形式是 f(x) = ax^2 + bx + c,其中 a、b 和 c 是常数,且a ≠ 0。

二次函数的图像为一个开口朝上或朝下的抛物线。

3.指数函数公式指数函数的一般形式是f(x)=a^x,其中a是常数且a>0,a≠1、指数函数的特点是以常数a为底数的指数变量x。

4.对数函数公式对数函数的一般形式是 f(x) = logₐ(x),其中 a 是一个正实数, a ≠ 1, x 是一个正实数。

对数函数是指数函数的反函数。

5.三角函数公式最常见的三角函数是正弦函数、余弦函数和正切函数。

它们的一般形式分别是:- 正弦函数:f(x) = sin(x)- 余弦函数:f(x) = cos(x)- 正切函数:f(x) = tan(x)这些函数的周期为2π,图像在坐标轴上周期性地重复。

6.反三角函数公式反三角函数是三角函数的反函数,用于解三角方程等。

最常见的反三角函数是反正弦函数、反余弦函数和反正切函数。

它们的一般形式分别是:- 反正弦函数:f(x) = arcsin(x)- 反余弦函数:f(x) = arccos(x)- 反正切函数:f(x) = arctan(x)这些函数的定义域和值域与原函数的定义域和值域相反。

7.指数对数函数公式指数对数函数是指数函数和对数函数的组合。

最常见的指数对数函数是指数增长函数和指数衰减函数,其一般形式分别是:- 指数增长函数:f(x) = a * e^(bx)- 指数衰减函数:f(x) = a * e^(-bx)其中a和b是常数,e是自然对数的底数。

8.组合函数公式组合函数是多个函数的组合,其中一个函数的输出作为另一个函数的输入。

最常见的组合函数是复合函数和反函数。

这些函数的具体公式不唯一,取决于所组合的函数。

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

基本初等函数公式及运算法则

基本初等函数公式及运算法则

基本初等函数公式及运算法则一、基本初等函数公式:1. 幂函数公式: $(a^m)^n=a^{mn}$;2. 对数函数公式: $\log_{a^n}b=\frac{1}{n}\log_ab$;3. 指数函数公式: $a^{\log_ab}=b$;4.三角函数公式:$\begin{aligned} (\sin x)^2+(\cos x)^2&=1\\ (\secx)^2&=1+(\tan x)^2 \\ (\csc x)^2&=1+(\cot x)^2 \end{aligned}$。

5.反三角函数公式:$\begin{aligned} \sin^{-1}x+\cos^{-1} x&=\frac{\pi}{2}\\\tan^{-1}x+\cot^{-1} x&=\frac{\pi}{2} \end{aligned}$。

6.双曲函数公式:$\begin{aligned} \cosh^2x-\sinh^2x&=1\\ \cos^2x+\sinh^2x&=1 \end{aligned}$。

二、基本初等函数运算法则:1.基本四则运算法则:加法、减法、乘法、除法;2. 复合函数法则:$(f\circ g)(x)=f(g(x))$;3. 取模运算法则:$(a+b)\bmod m=(a\bmod m+b\bmod m)\bmod m$;4. 取整函数法则:$\lfloor x+y\rfloor=\lfloorx\rfloor+\lfloor y\rfloor,\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$;5.比较大小法则:对于正整数$a,b,c$,若。

$(1)\ a>b>0,c>0$,则$ac>bc$;$(2)\ a>b>0,c<0$,则$ac<bc$;$(3)\ a<b<0,c>0$,则$ac<bc$;$(4)\ a<b<0,c<0$,则$ac>bc$。

基本初等函数--复合函数

基本初等函数--复合函数

一、复合函数函数y=log2x是对数函数,那么函数y=log2(2x-1)是什么函数呢?我们可以这样理解:设y=log2u,u=2x-1,因此函数y=log2(2x-1)是由对数函数y=log2u和一次函数u=2x-1经过复合而成的。

一般地,如果y是u的函数,而u又是x的函数,即y=f(u),u=g(x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量。

二、复合函数。

定理:设y=f(u),u=g(x),已知u=g(x)在[a,b]上是单调增(减)函数,y=f(u)在区间[g(a),g(b)](或[g(b),g(a)]上是单调增(减)函数,那么复合函数y=f[g(x)]在[a,b]上一定是单调函数,并有以下结论:同增异减判断复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。

例1.讨论函数y=0.8x2-4x+3的单调性。

解:函数定义域为R。

令u=x2-4x+3,y=0.8u。

指数函数y=0.8u在(-∞,+∞)上是减函数,u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴ 函数y=0.8x2-4x+3在(-∞,2]上是增函数,在[2,+∞)上是减函数。

这里没有第四步,因为中间变量允许的取值范围是R,无需转化为自变量的取值范围。

例2.讨论函数y=(log2x)2+log2x的单调性。

解:显然函数定义域为(0,+∞)。

令 u=log2x,y=u2+u∵ u=log2x在(0,+∞)上是增函数,y=u2+u在(-∞,- ]上是减函数,在[- ,+∞)上是增函数(注意(-∞,-]及[-,+∞)是u的取值范围)因为u≤- log 2x≤- 0<x≤,(u≥- log2x≥-x≥)所以y=(log2x)2+log2x在(0,]上是减函数,在[,+∞)上是增函数。

高一数学基本初等函数的导数公式

高一数学基本初等函数的导数公式

1 4 t 4
例4.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
3 1 1 ∴y′= 4+4cosx ′=- sinx. 4
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
补充练习:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x; (4) y (2 x 2 3) 1 x 2 ;
1 4 答案: (1) y 2 3 ; x x
1 x2 ( 2) y ; 2 2 (1 x )
2 x1 2( x2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
所以所求l的方程为:y=0或y=4x-4.
[点评] 较为复杂的求导运算,一般综合了 和、差、积、商的几种运算,要注意:(1)先 将函数化简;(2)注意公式法则的层次性.
练习:求下列函数的导数:

基本初等函数公式

基本初等函数公式

百度文库基本初等函数1常数函数:c y =;1y =;y e = 2幂 函 数:y x α=;2x y =;x y =;1y x -=;/m n n m y x x == 3指数函数:x a y =;x e y = 4对数函数:x y a log =;x y ln =;x y 2log =;lg y x = 5三角函数:x y sin =;x y cos =三角函数是有界函数,sin x 奇函数;cos x 偶函数6奇函数:()()f x f x -=- 图形关于坐标原点对称;偶函数:()()f x f x -= 图形关于y 轴对称;含有x x a a -+因子的是偶函数;含有x x a a --因子的是奇函数,两个重要极限 1 e 和1sin lim 0=→x x x e x xx =⎪⎭⎫⎝⎛+∞→11lim 无穷小量×有界量=无穷小量当x →∞时,1sin n xπ是无穷小量1sin lim 0=→x x x ()e x xx =+→101lim极限运算法则:g f g f lim lim )lim(±=±sin lim0x xx→∞=lim sin 0x x x →=f k kf lim )lim(=;lim lim lim fg f g =⋅微分公式 dx y dy '=kdx dkx =dx ax dx x dx a a a 1)(-='= adx a dx a da x x x ln )(='=dx dx x x d 2)2(2='= 221log (log )ln 2d x x dx dx x '== xdx dx x x d cos )(sin sin ='= dxe dx e de x x x ='=)(dx xdx x x d 1)(ln ln ='= xdx dx x x d sin )(cos cos -='=导数公式0)(='c 1)(='x a x x a ln 1)(log =' x x cos )(sin =' 0)0(='2()2x x '=x x 1)(ln ='x x sin )(cos -=' ()01='211x x -='⎪⎭⎫ ⎝⎛ a a a x x ln )(=')()()('±'='±g f g f)()()('+'='g f g f fg )()('='f k kf1)(-='a a ax xxx 21)(='x x e e =')(2)()(g g f g f g f '-'='⎪⎪⎭⎫ ⎝⎛复合函数求导基本方法()()x x x x 2cos 222cos 2sin ='='()()22222x x x xex ee ='='()()22212ln x x x x ''==[](())(())()y f x f x x φφφ''''==不定积分公式0 dx c =⎰ 2dx x c x= ln xxa a dx c a =+⎰不定积分运算法则: 加减法,数乘1 dx x c =+⎰ 322 3x dx x c =+x x e dx e c =+⎰⎰⎰⎰±=±gdx dx f dx g f )(21 2x dx x c =+⎰ 11 1aa x dx x c a +=++⎰ sin cos x dx x c =-+⎰ dx f k kfdx ⎰⎰= 211 dx c x x=-+⎰ 1ln ||dx x c x =+⎰cos sin x dx x c =+⎰分部积分法计算法则 运算公式:fg dx f dg fg g df '==-⎰⎰⎰对幂指三x ln xx esin x 、cos x两两组合,位置排在前面的选f ,排列在后面的选g '凑微分公式dx c dx =+x d dx xln 1= x d dx x21= 原函数()F x 与被积函数()f x之间的关系kdx c dkx =+ x x de dx e = x d xdx cos sin -= ⎰+=c x F dx x f )()(221dx xdx =x d dx x112-= x d xdx sin cos =)()(x f x F ='定积分公式() ()|()()bbaaf x dx F x F b F a ==-⎰() bb baaaf g dx f dx g dx ±=±⎰⎰⎰bbaakf dx k f dx =⎰⎰(为常数)| bbb a aafg dx fg f g dx ''=-⎰⎰⎪⎩⎪⎨⎧=--=-=⎰⎰-aaa为偶函数时x 即当f x f x f dx x f 为奇函数时x 即当f x f x f dx x f 0)()()(,)(2)()()(,0)( 逆矩阵求法用初等行变换求逆矩阵的方法:()()1||P I I P −−−−→初等行变换-齐次方程0m n A X ⨯=有非零解和零解条件当()r A n =时齐次方程0AX =只有零解。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

基本初等函数与初等函数

基本初等函数与初等函数

y tan x
性质
(1)在定义域中是无界函数。 (4)周期为 l (2)是奇函数 , 内是单调增函数。 (3)在 2 2
(4)余切函数
y cot x
图形
x ,
x k
k 0, 1 ,2
y cot x
性质
(1)在定义域中是无界函数。 (4)周期为 l
其底数部分和指数部分都是自变量 x 的表达式,像
y [ f ( x)]
g ( x)
形式的函数称为幂指函数.
四、 初等函数
由基本初等函数经过有限次的四则运算和有限次的复
合运算得到的可用一个式子表示的函数称为初等函数.
例如,
y ax bx c,
2
1 y sin , x
ye
等都是初等函数.

(1 )
y u ,u 3x 1
u, u sin v, v 5x 3
2
(2 ) y (3 )
y u , u ln v,v w , w 2x 3
三、 幂指函数
有一类既不能称为幂函数也不能称为指数函数的函数, 如
yx
x
y (1 2x) sin x 等,
0

0.017453 弧度

在直角坐标系中取单位圆 在圆周上任意一点 M x, y 圆的半径 R OM 1
1
1 y M x, y y
0
1 x
从现在开始角度用弧度x 表示 1 y (1)正弦函数 sin x y sin x x , 1 图形 性质:
合运算.
例3
函数 y = arcsin(x2 1)可以看成是函数 y = f (u) = arcsinu 和 u=g (x)= x2 1

六大基本初等函数图像及性质

六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

基本初等函数定义及性质知识点归纳

基本初等函数定义及性质知识点归纳

基本函数图像及性质一、基本函数图像及其性质:1、一次函数:(0)y kx b k 2、正比例函数:(0)y kx k 3、反比例函数:(0)k yxx4、二次函数:2(0)y axbx c a (1)、作图五要素:2124(,0),(,0),(0,),(),(,)()224b b ac bx x c x aaa 对称轴顶点(2)、函数与方程:2=4=00bac 两个交点一个交点没有交点(3)、根与系数关系:12b x x a,12c x x a5、指数函数:(0,1)xya aa 且(1)、图像与性质:(i )1()(0,1)xxya ya aa与且关于y 轴对称。

(ii )1a 时,a 越大,图像越陡。

(2)、应用:(i )比较大小:(ii )解不等式:1、回顾:(1)()mmmab ab(2)()m mma a bb2、基本公式:(1)mnm naaa(2)m m nna aa(3)()m nm na a3、特殊:(1)1(0)aa (2)11(0)aa a(3)1(;0)nnaa n a R n a 为奇数,为偶数,(4);0;0||nna n a a aaaa n 为奇其中,为偶例题1:(1)22232[()()]3x xyxy y xx y x y ;32235()()(5)x xy xy (2)11232170.027()(2)(21)79;20.52371037(2)0.1(2)392748(3)44(3);1122aaa例题2:(1)化简:212212)9124()144(a aa a(2)方程016217162xx的解是。

(3)已知32121xx,计算(1)1x x ;(2)37122xxx x例题3:(1)若4812710,310yx,则yx 210= 。

(2)设,0,,,xyzR z y x 且zyx14464,则()A.yxz111 B.yxz112 C.yxz121 D.yxz211(3)已知,123ba 则aba339= 。

基本初等函数公式定理

基本初等函数公式定理

基本初等函数公式定理1. 二次函数的顶点公式:对于二次函数f(x) = ax^2 + bx + c,顶点的横坐标为x = -b / 2a,纵坐标为f(-b / 2a) = -Δ / 4a,其中Δ = b^2 - 4ac为二次函数的判别式,用来判断函数的开口方向和与x轴的交点情况。

2. 二次函数的两根公式:对于二次方程ax^2 + bx + c = 0,它的两个根为x1,2 = (-b ± √Δ) / 2a,其中Δ为判别式。

当Δ > 0时,方程有两个不等实根;当Δ = 0时,方程有两个相等实根;当Δ < 0时,方程无实根。

3. 余弦和正弦的和差公式:cos(x ± y) = cos(x)cos(y) ∓sin(x)sin(y),sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)。

这些公式用于计算给定角度的正余弦值。

4. 三角函数的周期性:sin(x + 2πn) = sin(x),cos(x + 2πn) = cos(x),其中n为任意整数。

这表示正弦和余弦函数在每个周期内的值是相同的。

5. 对数函数的换底公式:loga(b) = logc(b) / logc(a),其中a、b、c为正实数,且a、c不等于1、这个公式可以用来将一个对数的底换成任意其他的底。

6. 指数函数的幂的性质:a^m ∙ a^n = a^(m+n),(a^m)^n = a^(mn),(ab)^n = a^n ∙ b^n,a^m / a^n = a^(m-n),其中a、b为正实数,m、n为任意实数。

7.二分法定理:如果一个连续函数在区间[a,b]上取得不同符号的两个值,那么在这个区间内必然存在一个根。

这个定理可以用于求解方程的近似解。

8.中值定理:如果一个函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间内至少存在一点c,使得f'(c)=(f(b)-f(a))/(b-a)。

基本初等函数的导数公式的推导过程

基本初等函数的导数公式的推导过程

基本初等函数的导数公式的推导过程1.常数函数的导数:常数函数的导数为0。

这可以通过导数的定义来证明。

假设常数函数为f(x) = C,其中C是一个常数。

导数的定义为f'(x) = lim(h->0)[f(x+h)-f(x)]/h,将f(x) = C代入该式,可得f'(x) = lim(h->0) [C - C]/h = 0。

2.幂函数的导数:幂函数的导数可以使用幂函数的定义和导数的定义来推导。

假设幂函数为f(x) = x^n,其中n是一个正整数。

根据导数的定义,可以计算出f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

将f(x) = x^n代入该式,有f'(x) = lim(h->0) [(x+h)^n -x^n]/h。

可以采用二项式定理展开分子表达式:(x+h)^n = C(n, 0)x^n + C(n, 1)x^(n-1)h + C(n, 2)x^(n-2)h^2 + ... + C(n, n-1) xh^(n-1) + h^n其中C(n,k)表示从n中选取k个元素的组合数。

因此,分子展开为[(x+h)^n-x^n]/h=C(n,1)x^(n-1)+C(n,2)x^(n-2)h+...+C(n,n-1)h^(n-1)+h^n可以观察到,在这个表达式中,只有第一项不含h,其他项都有h的幂次方。

因此,当h趋近于0时,这些含有h的幂次方都会趋近于0,只剩下第一项C(n, 1)x^(n-1),即f'(x) = C(n, 1)x^(n-1) = nx^(n-1)。

3.指数函数和对数函数的导数:指数函数和对数函数的导数可以通过化简导数的定义来推导。

假设指数函数为f(x) = a^x,其中a是一个正实数且不等于1、对于任意实数x和x+h,有f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

将f(x) = a^x代入该式,有f'(x) = lim(h->0) [a^(x+h)-a^x]/h。

基本初等函数16个公式

基本初等函数16个公式

基本初等函数16个公式
1. 线性函数:y = ax + b,其中a和b是常数,表示一条直线。

2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,表示二次曲线。

3.指数函数:y=a^x,其中a是常数,表示以a为底的指数曲线。

4. 对数函数:y = log_a(x),其中a是常数,表示以a为底的对数曲线。

5. 正弦函数:y = a sin(bx + c),其中a、b和c是常数,表示正弦曲线。

6. 余弦函数:y = a cos(bx + c),其中a、b和c是常数,表示余弦曲线。

7. 正切函数:y = a tan(bx + c),其中a、b和c是常数,表示正切曲线。

8. 反正弦函数:y = arcsin(x),表示正弦曲线的反函数。

9. 反余弦函数:y = arccos(x),表示余弦曲线的反函数。

10. 反正切函数:y = arctan(x),表示正切曲线的反函数。

11.绝对值函数:y=,x,表示一条以原点为对称中心的V型曲线。

12.幂函数:y=x^a,其中a是常数,表示幂曲线。

13.开方函数:y=√x,表示以原点为起点的开方曲线。

14.反比例函数:y=k/x,其中k是常数,表示一个双曲线。

15.零点函数:y=0,表示一条平行于x轴的直线。

16.恒等函数:y=x,表示一条直线,过原点,斜率为1。

基本初等函数的导数公式的推导过程

基本初等函数的导数公式的推导过程

基本初等函数的导数公式的推导过程一、幂函数的导数公式:考虑函数y=x^n,其中n是实数。

为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。

首先,我们将函数写成y=x*x*...*x(n个x相乘)的形式。

然后,我们计算x处的斜率,即函数在x0处两个极接近的点之间的变化率。

这个斜率可以通过求极限得到。

因此,对于y=x^n,我们可以使用极限计算导数:dy/dx = lim(h→0) [ (x0 + h)^n - x0^n ] / h利用二项式定理展开,并除以h,我们得到dy/dx = lim(h→0) [ C(n, 0) * (x0)^(n-0) * h^0 + C(n, 1) * (x0)^(n-1) * h^1 + C(n, 2) * (x0)^(n-2) * h^2 + ... + C(n, n) * (x0)^(n-n) * h^n ] / h化简上式,我们可以得到:dy/dx = n * x0^(n-1)所以,幂函数 y = x^n 在任意一点 x0 的导数为 dy/dx = n *x^(n-1)。

二、指数函数的导数公式:考虑函数y=a^x,其中a是一个正实数且a≠1、为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。

首先,我们将函数写成 y = e^(x * ln(a)) 的形式。

然后,我们计算 x 处的斜率,即函数在 x0 处两个极接近的点之间的变化率。

这个斜率可以通过求极限得到。

因此,对于y=a^x,我们可以使用极限计算导数:dy/dx = lim(h→0) [ a^(x0 + h) - a^x0 ] / h利用指数的性质a^(b+c)=a^b*a^c,并除以h,我们得到dy/dx = lim(h→0) [ a^x0 * a^h - a^x0 ] / h化简上式,我们可以得到:dy/dx = a^x0 * lim(h→0) [ (a^h - 1) / h ]当 h 趋近于 0 时,我们可以使用极限公式 lim(h→0) [ (a^h - 1) / h ] = ln(a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与指数函数
1
同次公式:;
n
a
=,||,a n a n =
为奇数
为偶数
2指数幂的运算法则:m n
m n
a a a +•=;m m n n a a a
-=;()m n mn a a =
4几种图形的作法:
①(||)y f x =:先画出()y f x =函数在y 轴右边的图像,然后再根据y 轴对称画出左边的函数图像 ②|()|y f x =:先画出()y f x =函数的图像,然后将x 轴下边的图像翻折到x 轴上边。

5 ①
||
x y a
=
②||y x a =-
如图三
③2
2
||(40)y ax bx c b ac =++->
④1
y b x a
=+-的图像,如图五
对数与对数函数
1如果b
a N =,那么
b 叫做以a 为底N 为对数,即为log a b N =
2 ①log 10,log 1a a a == ②两个恒等式:log ,log a N
b a a N a b ==
③常用对数10log lg N N =,自然对数记作ln N
3.对数的运算法则:①log ()log log a a a MN M N =+; ②log log log a
a a M
M N N
=-; ③log log n
a a M n M =
4..换底公式:log log log m a m N
N a
=
①1log log a N N a =
②log log m n
a a n N N m
= ③log log log 1a b c b c a ••=
5对数函数和指数函数互为反函数,互为反函数的图像关于y=x 对称 两个特别的反函数(理解,不需掌握)
① 函数11x x a y a -=+与函数1log 1a x
y x +=-互为反函数
② 函数2
x x a a y --=与函数log )a y x =互为反函数
对数函数log a x 有两个很重要的点(1,0),(a ,1),在高考题中经常出现比较大小的值,要利用x 与1和a ,来判断其
值是属于(,0)(0,1)(1,)-∞∞哪个区间的
例题1:3log a π=,7log 6b =,12
log 3c =比较三个数的大小.
幂函数
1..幂函数在第一象限的图像的分布情况
但是对于具体的幂函数的图像并不局限于第一象限,应该先画出第一象限,根据其奇偶性画出其在y 轴左边的图像
2..0α>,图像横过定点(0,0)和(1,1);在区间[0,)+∞上单调递增; 0α<,图像都过定点(1,1)
;在区间(0,)+∞单调递减 对应图像牢记当α变化时,几条线(包含辅助的几条虚线)的特点,尤其是当x 在(0,1)和(1,)+∞这两个区间变化时,与y=x 图像的比较。

相关文档
最新文档