2012数学建模优秀论文A题(借鉴着去写摘要)

合集下载

2012年全国大学生数学建模优秀论文A题

2012年全国大学生数学建模优秀论文A题

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):S55001所属学校(请填写完整的全名):郑州科技学院参赛队员(打印并签名) :1. 刘超2. 赵芬芳3. 尹峰指导教师或指导教师组负责人(打印并签名):闫天增日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本文通过对27种红葡萄酒和28种白葡萄的理化指标数据进行分析,采用显著性差异分析法、可靠度分析、因子分析法、相关系数分析、主成分分析法以及聚类分析法,借助统计软件SPSS和数学软件MATLAB,分析了两组评酒员的评价结果有无显著性差异和可信度,给出了酿酒葡萄与葡萄酒的理化指标之间的联系,建立了基于酿酒葡萄理化指标和葡萄酒质量的聚类分析模型确定了葡萄酒质量的影响因素,最后通过补充相关信息,建立基于分析模型确定了葡萄酒质量的影响因素。

数学建模2012a题

数学建模2012a题

数学建模2012a题(实用版)目录一、数学建模 2012a 题概述二、题目背景及要求三、解题思路与方法四、具体解题过程五、答案与解析正文一、数学建模 2012a 题概述数学建模 2012a 题是一道经典的数学建模题目,主要考察学生运用数学知识解决实际问题的能力。

题目内容丰富,涉及多个学科领域,包括数学、物理、化学、生物等。

此题对学生的综合素质和创新能力有很高的要求,需要学生具备较强的分析问题和解决问题的能力。

二、题目背景及要求数学建模 2012a 题的背景是一个实际的生态问题,具体涉及到某种动植物的数量增长与环境因素之间的关系。

题目要求参赛者建立一个数学模型,描述这种关系,并利用模型分析和预测动植物数量的变化趋势。

三、解题思路与方法针对这道题目,首先要明确题目所给出的背景和要求,然后根据题目的特点,选择合适的数学模型进行建立。

一般来说,数学建模的解题思路包括以下几个步骤:1.充分理解题目,明确题目要求。

2.提炼题目中的关键信息,建立数学模型。

3.求解数学模型,得到问题的解。

4.分析解的合理性,并根据实际情况进行调整。

四、具体解题过程以某种动植物的数量增长为例,假设其数量与时间、环境因素(如温度、湿度等)有关,可以建立如下的数学模型:设动植物数量为 N(t),t 表示时间,环境因素为 E,可以得到如下的数量增长方程:dN(t)/dt = f(N(t), E)其中,f(N(t), E) 表示动植物数量的增长率,根据实际情况和生物学知识可以进行具体设定。

根据题目要求,需要利用该模型分析和预测动植物数量的变化趋势。

可以利用数值方法(如有限差分法、龙格库塔法等)对上述微分方程进行求解,得到动植物数量随时间的变化情况。

同时,可以根据实际情况对模型进行调整和优化,以提高预测的准确性。

五、答案与解析数学建模 2012a 题的答案并不唯一,关键在于参赛者能否根据题目要求建立合适的数学模型,并利用模型得出合理的结论。

2012年数学建模A题优秀论文

2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。

得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。

接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。

首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。

然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。

得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。

对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。

一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。

另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。

最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。

对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。

对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。

2012CUMCM全国大学生数学建模竞赛A题论文

2012CUMCM全国大学生数学建模竞赛A题论文

2012CUMCM全国大学生数学建模竞赛A题论文D进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): 132所属学校(请填写完整的全名)大连海事大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号)赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要:本文主要需要解决的问题是将葡萄酒从评酒师感官方面的定性评价通过一定的数据处理与数学模型的建立转化为由酿酒葡萄和葡萄酒理化指标做基础的定量的葡萄酒评价方法。

考虑到红葡萄酒和白葡萄酒之间的差异性,我们对它们分别进行讨论。

针对题目中的问题,我们通过如下的方法去解决:(1)第一问是对评酒员评分的差异性的分析与可信度的分析。

我们通过传统统计学的平均数与标准差的计算方法,计算各葡萄样品评酒员所打分数的平均值与每组评酒员之间所打分数的标准差,再进行作图比较,得出我们想要的结论。

(2)第二问是根据酿酒葡萄的理化指标对酿酒葡萄进行分级。

我们首先通过计算各理化指标的Pearson相关系数矩阵,分析各指标之间的Pearson相关系数,得到高度相关的理化指标。

再通过聚类的方法,将这些理化指标聚合成一类因子。

最后通过对各因子与葡萄酒质量的数据拟合,得出一定的函数关系式,结合前苏联对葡萄酒的评价模型与张大鹏检验模型对关系式进行检验。

(3)第三问是分析酿酒葡萄和葡萄酒理化指标之间的联系。

我们首先选取一些含量大且对葡萄酒质量有较大影响的理化指标。

对这些指标进行数据拟合与修正,得出我们想要的函数关系式。

2012年数学建模A题优秀论文

2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。

得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。

接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。

首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。

然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。

得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。

对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。

一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。

另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。

最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。

对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。

对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。

2012年数学建模A题一等奖获奖论文

2012年数学建模A题一等奖获奖论文
6
秩和得到一个新的排序。由于此排序综合了 20 个评酒员的结果,因此,更能反 应酒样的排序真实性,即认为该综合排序为理想排序。记样品 j 在第一组、第二 组排序内的秩次为 X j (1) , X j (2) ,综合之后排序秩次为 X j 。红葡萄酒三种排序的 比较图如下:
关键词:葡萄酒评价
排序检验法
符号秩检验
TOPSIS 法
多重比较
1
一、问题重述
对于葡萄酒质量的确定,现如今通常采用感官评价的方法,即聘请一批有资 质的品酒员对葡萄酒进行品评,然后对其外观、口感等分类指标进行打分。最后 通过求和得到每种葡萄酒的总分,从而确定葡萄酒的质量。附件 1 中给出了某一 年份一些葡萄酒的打分结果。 同时,酿酒葡萄的好坏又直接影响着所酿葡萄酒的质量。除了感官评价的方 法之外,在某种程度上,葡萄酒和酿酒葡萄检测的理化指标也能反映葡萄酒和葡 萄的质量。附件 2 和附件 3 即给出了同一年份中,这些葡萄酒的和酿酒葡萄的成 分数据。 请分析题目,试建立合适的数学模型解决以下问题: 1. 对于附件 1 中的红葡萄酒与白葡萄酒, 每种葡萄酒均由两组评酒员对其进 行打分。试分析这两组品酒员的评价结果有无显著性差异,并判断哪一组的结果 更为可信。 2. 综合感官评价所得到的葡萄酒质量与酿酒葡萄的理化指标,对酿酒葡萄 进行分级。 3. 试分析酿酒葡萄、葡萄酒的两组理化指标之间有何关系。 4. 分析酿酒葡萄的理化指标、葡萄酒的理化指标对葡萄酒质量的影响,论 证能否只用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
3
分的差异是否在一定的置信区间内,若不在,则认为评分差异性显著。 考虑到本题的背景,两组评分的差异可体现在对样本酒的排名差异上。由于 该问属于食品评价中的感官评价问题,因此,可结合感官评价中的排序检验与非 参数检验中的符号秩检验,对两组评分的显著性进行评价。 1.1.1 样品秩次和秩和的求解 评酒员对每一个酒样均从四大方面进行了评分。根据题意,葡萄酒的质量由 总分所确定。 因此, 我们将每一个方面的评分加和, 得到 i 品酒员对葡萄酒样品 j 的总评分。 以红葡萄酒的评价为例,对于品酒员 i ,将其对 27 种样品的评分进行排序, 评分最高的酒样秩次为 1,当多个样品有相同秩次时,则取平均秩次。记在 i 品 酒员的评价排序中, j 酒样的秩次为 xij ,可得到秩次矩阵为:

2012年全国大学生数学建模优秀论文(A题) 2

2012年全国大学生数学建模优秀论文(A题) 2

地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。

本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。

首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。

在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。

将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。

纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。

通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。

进一步考虑实际储油罐,两端为球冠体顶。

把储油罐分成中间的圆柱体和两边的球冠体分别求解。

中间的圆柱体求解类似于第一问,要分为三种情况。

在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。

根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

再利用附表2中的数据列方程组寻找α与β最准确的取值。

αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

2012年数学建模A题

2012年数学建模A题

葡萄酒质量评定模型摘要葡萄酒质量的评定长久以来都是采用聘请品酒员,通过品酒员对葡萄酒各项指标打分求和来确定葡萄酒的质量。

葡萄酒的价格因品酒员评分高低的不同有显著的差别。

然而在这样的评定方式中人的主观因素对酒质量的评定占主导地位,葡萄酒质量的评定结果存在较大的不确定性。

随着人们对葡萄酒消费的增加及高质量化的追求,建立合理、规范、客观的葡萄酒质量评定模型显得尤为重要。

根据题中给出的相关数据,通过解决以下问题建立葡萄酒质量评定模型。

对于问题一:首先,将题目附录1中的数据经Excel处理,得到每组评酒员对每种酒样品的总分。

然后,对每一种酒样品运用两配对样本的非参数检验(符号秩和检验)对数据进行显著性差异分析,运用MATLAB软件比较各酒样品的两组数据发现两组结果差异显著。

其次,通过Excel求出每一种酒的品酒员所打总分的方差,得到两组品酒员分别对两类葡萄酒的方差走势图(见图1.1、1.2),根据总体方差最小,方差波动较小,确定第二组品酒员的评分更可信。

最后,采用SPSS软件作进一步检验,结果相同即模型合理。

对于问题二,选取一级理化指标作为酿酒葡萄分级参考,对理化指标运用主成分分析法降维,通过MATLAB计算得到红葡萄的主成分有8个,白葡萄的主成分有11个。

综合评分得到的葡萄酒质量影响,红葡萄的影响因素有9个,白葡萄的影响因素有12个。

然后,利用折衷型模糊决策模型,考虑到由主成分分析方法得到的酿酒葡萄的的主成分值在反应酿酒葡萄质量好坏问题上会有一定的偏差,利用三角模糊的表达方式对主成分指标值进行表示,分别将红、白两类酿酒葡萄按隶属度大小排序,在运用聚类分析的方法,利用SPSS软件将葡萄划分为五个等级(见表格2.1)。

对于问题三,数据的庞杂是解决该问题的难点。

我们运用问题二中的主成分分析方法将理化指标转化为几个主成分,并运用MATLAB编程求出具体的主成分数值,然后建立线性回归模型,求解出酿酒葡萄与葡萄酒理化指标主成分之间的相关关系,从而反映出酿酒葡萄与葡萄酒理化指标之间的联系。

2012数学建模论文A题-------阜阳师范学院数学与计算科学学院 (2)

2012数学建模论文A题-------阜阳师范学院数学与计算科学学院 (2)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):阜阳师范学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于统计分析的葡萄酒评价模型摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。

目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。

葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。

本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。

对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。

对于本题,我们主要采用SPSS软件对模型进行求解。

问题一:首先,我们对附录1中数据进行处理,利用excel分别求出两组评酒员分别对红葡萄酒和白葡萄酒的评价结果的平均值。

其次,我们在excel中,求出两组葡萄酒评价结果的平均值的标准差,通过对比两组相应葡萄酒评价结果的平均值的标准差,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。

2012年全国数学建模A题参考答案

2012年全国数学建模A题参考答案

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 葡萄葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)个表格)答案仅供参考:1. 分析附件1中两组评酒员的评价结果有无显著性差异 根据表根据表11计算的各取样点葡萄质量综合评分结果计算的各取样点葡萄质量综合评分结果, , 结合当地气象资料结合当地气象资料, ,进行相关普查和回归分析进行相关普查和回归分析, , 挑选出挑选出相关性显著相关性显著, , 并通过并通过0. 010. 01显著性检验的显著性检验的显著性检验的111111个因子个因子个因子, ,果实着色期平均最低气温最低气温(Tn45 )(Tn45 )、果实着色期平均日较差、果实着色期平均日较差、果实着色期平均日较差 (D45 )、果实着色期平均相对湿度果实着色期平均相对湿度(U45 (U45 )、果实着色期降水量果实着色期降水量(R (R45 )、果实着色期水热系数果实着色期水热系数(K 45 )(K 45 )、全生育期平均、全生育期平均相对湿度相对湿度(Ug )(Ug )、全生育期降水量、全生育期降水量、全生育期降水量(Rg )(Rg )、全生育期水热系数、全生育期水热系数、全生育期水热系数(Kg )(Kg )、7~ 8月份降水量月份降水量月份降水量(R 7- 8 )(R 7- 8 )、日照时数、日照时数( S7- 8 )( S7- 8 )、水、水热系数热系数(K 7- (K 7- 8 )。

数学建模2012a题

数学建模2012a题

数学建模2012a题
2012年全国大学生数学建模竞赛A题《酒后驾车》
1. 问题重述
对于酒后驾车的问题,首先需要了解酒后驾车的定义。

根据相关法律法规,当驾驶员血液中的酒精含量大于或等于20mg/100ml,且小于
80mg/100ml时,被认为是酒后驾车。

现在,我们有一个具体的情境:一个驾驶员被检测到酒后驾车,并且他的血液中的酒精含量为35mg/100ml。

我们需要基于这个具体的情境,建立一个数学模型,并使用这个模型来预测在不同时间点上,他的酒精含量可能会是多少。

2. 模型假设
假设驾驶员的酒精代谢速率是恒定的,即单位时间内酒精含量的减少是线性的。

3. 变量定义
设初始酒精含量为 C_0 = 35 mg/100ml,代谢速率为 K。

4. 建立模型
基于假设和变量定义,我们可以建立如下的数学模型:
C(t) = C_0 - Kt
其中,C(t) 表示 t 时刻的酒精含量,t 表示时间(单位:小时),K 表示代谢速率(单位:mg/100ml/小时)。

5. 参数确定
为了确定代谢速率 K,我们需要查阅相关资料或进行实验研究。

假设经过研究或实验测定,发现某个驾驶员的代谢速率为 mg/100ml/小时。

将这个值代入模型中,可以得到该驾驶员在不同时间点的酒精含量预测值。

6. 求解和预测
根据已知条件和建立的模型,我们可以求解不同时间点上的酒精含量。

例如,如果我们要预测该驾驶员在2小时后的酒精含量,可以将 t=2 代入模型中
求解:
C(2) = 35 - × 2 = 32 mg/100ml。

2012数学建模优秀论文A题(借鉴着去写摘要).

2012数学建模优秀论文A题(借鉴着去写摘要).

基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。

针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染模型:2/12max22⎪⎪⎭⎫ ⎝⎛+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,m ax P 为土壤环境中针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。

同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。

针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。

针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]()22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为:u k zu c y u b x u a h u 2222222222-∂∂+∂∂+∂∂=∂∂, 针对以线为传染源我们建立了l c be u Y ∆-+=0模型,并通过线性拟合分析线性污染源的位置。

针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。

根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -⋅=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。

针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染模型:2/12m ax 22⎪⎪⎭⎫ ⎝⎛+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。

同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。

针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。

针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]()22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为:u k zu c y u b x u a h u 2222222222-∂∂+∂∂+∂∂=∂∂, 针对以线为传染源我们建立了l c be u Y ∆-+=0模型,并通过线性拟合分析线性污染源的位置。

针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。

根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -⋅=0。

在本题求解过程中,我们所建立的模型与实际紧密联系,有很好的通用性和推广性。

但在求点污染源时,我们假设只有一个污染源,而实际上可能有多个点污染源,从而使得误差增大,或者使污染源的位置够不准确。

关键词 内梅罗污染模型 无量纲化 相关性 回归模型 高斯浓度模型一、问题重述俗话说:“一方水土养一方人”。

城市是人类活动最密集的地区,但在废物处理设施仍不发达的绝大多数地区 ,城市及其周边土壤依然发挥着重要的容纳和净化污染物的功能,在强烈的环境负荷冲击下,土壤的服务功能面临极大的威胁,换言之,土壤的缓冲净化功能将接近极限并有被超过的危险,因而将导致严重土壤污染的产生,而其结果将是长远和危险的。

随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

我们将城区分为生活区、工业区、山区、主干道路区及公园绿地区五个部分,分别进行土壤地质环境的调查,对城市环境质量做出评价,希望能有效控制重金属污染物的排放及扩散,制定相关措施保护好我们赖以生存的周边环境,根据题意,本文需要解决的问题有:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4)为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?二、模型假设⑴不考虑元素间的相互作用的影响⑵短期内重金属元素的物理、化学变化及迁移对周围环境影响不大 ⑶假设附录中所给8种重金属元素的背景值真实 ⑷不考虑历史沉积的重金属的影响三、符号说明i x 第i 种元素在第j 个采样点的浓度(8,...2,1=i );x 第i 种元素浓度的平均值(8,...2,1=i ); i x ' 第i 种元素在第j 个采样点无量纲化后的数值(5,...2,1=j ); i P 第j 个功能区重金属i 的单项污染指数(5,...2,1=j ); i C 第j 个功能区重金属i 含量的实测值(5,...2,1=j );D 污染距离积;h 污染源位置与已知采样点的距离;()()()i yi x,给定采样点的坐标;四、数据处理4.1 对重元素的分析城市工业“三废”排放,金属采矿和冶炼,家庭燃煤,生活垃圾,汽车尾气排放都增加了城市土壤重金属的负荷。

重金属污染环境的主要有汞、铅、铬、锌镉、铜等。

其中汞的毒性最大,铬、铅、锌等也有相当大毒性。

此外还有砷,砷虽不属于金属.但它的毒性与重金属相似,因此归于重金属一类阐述,称为类金属。

目前对我国土壤污染比较普遍的重金属有汞、铬、砷。

根据该城区重金属污染的情况,下面对重金属在土壤污染中的来源及传播途径作简要介绍。

4.1.1砷元素该元素毒性很低,水体中含砷污染物主要来自砷和含砷金属矿的开采、冶炼,以及和砷化物为原料的玻璃、颜料、药物、纸张的生产都可产生含砷的废水,造成水体的砷污染。

砷及砷化物在水中会在水生物体内累积,但累积程度比其他重金属要低。

砷和砷化物,一般可通过水、大气和食物进入人体。

4.1.2镉元素当环境受到镉污染后,镉可在生物体内富集,通过食物链进入人体引起慢性中毒。

镉的主要污染源是电镀、采矿、冶炼、染料、电池和化学工业等排放的废水。

相当数量的镉通过废气、废水、废渣排入环境,造成污染。

镉对土壤的污染主要有气型和水型两种。

气型污染主要来自工业废气。

镉随废气扩散到工厂周围并自然沉降,蓄积于工厂周围的土壤中,可使土壤中的镉浓度达到40ppm。

水型污染主要是铅锌矿的选矿废水和有关工业(电镀、碱性电池等)废水排入地面水或渗入地下水引起。

4.1.3铬元素对水体污染的铬主要来源于电镀、制革、铝盐生产以及铬矿石开采所排放的废水。

是我国水体中一种普遍的污染物。

水体中铬污染主要是三价铬和六价铬,它们在水体中的迁移转化有一定的规律性。

4.1.4铜元素铜(Cu)及其化合物在环境中所造成的污染称为铜污染。

主要污染来源是铜锌矿的开采和冶炼、金属加工、机械制造、钢铁生产等。

冶炼排放的烟尘是大气铜污染的主要来源。

世界铜的年迁移量为:岩石风化20万吨,河流输送11万吨4.1.5汞元素汞是在常温下唯一呈液态的金属元素。

人类活动造成水体汞污染,主要来自氯碱、塑料、电池、电子等工业排放的废水。

由于天然本底情况下汞在大气、土壤和水体中均有分布,所以汞的迁移转化也在陆、水、空之间发生。

4.1.6镍元素镍污染是由镍及其化合物所引起的环境污染。

大部分煤含有微量镍,通过燃烧过程被释放出来,这是大气中镍的主要来源。

镍可以在土壤中富集。

土壤中的镍主要来源于岩石风化,大气降尘,灌溉用水(包括含镍废水),农田施肥,植物和动物残体的腐烂等。

全世界每年镍的迁移状况是:岩石风化量为320 000吨,河流输送量为19 000吨,开采量为560 000吨,矿物燃料燃烧排放5 600吨。

4.1.7铅元素铅对环境的污染,一是由冶炼、制造和使用铅制品的工矿企业,尤其是来自有色金属冶炼过程中所排出的含铅废水、废气和废渣造成的。

二是由汽车排出的含铅废气造成的,汽油中用四乙基铅作为抗爆剂(每公斤汽油用1~3克),在汽油燃烧过程中,铅便随汽车排出的废气进入大气,成为大气的主要铅污染源4.1.8锌元素锌在土壤中富集,会使植物体中也富集而导致食用这种植物的人和动物受害。

金属锌本身无毒,但在焙烧硫化锌矿石、熔锌、冶炼其他含有锌杂质的金属的过程中,以及在铸铜过程中产生的大量氧化锌等金属烟尘,对人有直接的危害。

其他如橡胶轮胎的磨损以及煤的燃烧也是大气锌污染的原因。

各种工业废水的排放是引起水体锌污染的主要原因。

4.2 对基本数据的分析用 EXCELL软件和 SPSS统计软件处理数据如表1所示:表14.3 元素浓度的无量纲化处理在利用SPSS 统计软件数据进行聚类分析的时候,因为单位不统一需要进行无量纲化处理,我们采用均值化方法,即每一个变量除以该变量的平均值,即xx x ii =', (1) 标准化以后各变量的平均值都为1,标准差为原始变量的变异系数。

该方法在消除量纲和数量级影响的同时,保留了各变量取值差异程度上的信息,差异程度越大的变量对综合分析的影响也越大。

4.4 重金属元素间的相关性分析研究土壤中重金属的相关性可以推测重金属的来源是否相同,若重金属含量有显著的相关性,说明有相同来源的可能性较大,否则来源可能不止一个.我们用积差法来计算各重金属之间的相关系数,所谓积差法就是用两个变量的协方差与两个变量的标准差的乘积之比:()()()()()()2222222yyxxyx xy y y x x y y x x r yx xy---=----==∑∑∑σσσ表2 重金属元素间的相关系数A 组:Cr ,Ni ,CuB 组:Pb ,Cd ,Zn而对于As 、Hg 由相关系数表可见,其相关系数较小,我们认为相关参数小的元素间没有关系,所以将其各自单独一组。

下面我们建立回归模型图像验证它们之间的函数关系:00.51 1.52N i图1 Cr 与Ni0.51 1.50.51.5P b图2 Cd 与Pb0.51 1.52Z n图3 Pb 与Zn0.51.5C u图4 Cr 与Cu显然Cr ,Ni 和Cu 及Pb ,Cd 和Zn 显示属于适度空间相关性,反映区域因素(土壤母质)对其含量的影响较大 ,而As 、Hg 元素则属于低空间相关性,说明其受到人为因素 (工业布局 施肥 灌溉和土地利用方式等 )作用较强。

五、模型的分析、建立与求解5.1 问题一5.1.1重金属的空间分布由附件中所给的数据,我们考虑将各采样点的坐标和重金属的浓度建立对应关系,利用Matble 软件画出等高线来体现该城区8种重金属的空间分布。

y图1 城市土壤As 的空间分布特征012x 10450001000015000y图2 城市土壤Cd 的空间分布特征012x 10450001000015000y图3 城市土壤Cr 的空间分布特征012x 10450001000015000y图4 城市土壤Cu 的空间分布特征012x 10450001000015000从图中可以看出:该城市土壤中As 元素的分布没有出现明显的富集,整体有从西向东递减的趋势(见图1)。

说明人类活动对As 元素的分布影响不大。

所以可以推断城市土壤中这种元素主要是自然来源,另外它的浓度在中国土壤背景值范围内,这说明它的含量可能主要受成土母质影响。

该城市土壤中Cd 元素的分布没有出现明显的富集,整体浓度偏差不大(见图2)。

对比数据可以看出,整个城市除边缘部分外Cd 的浓度都明显高于背景值的范围。

相关文档
最新文档