高中数学随机事件的频率与概率
高二数学随机事件的概率详细知识点总结2022
高二数学随机事件的概率详细知识点总结2022二数学知识点总结2021有哪些?马上要数学考试了,同学们复习好了吗?特别是上了高二的同学,高二数学难度大了不少,是不是觉得压力很大?一起来看看高二数学知识点总结2021,欢迎查阅!高二数学随机事件的概率知识点总结一、事件1.在条件SS的必然事件.2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.3.在条件SS的随机事件.二、概率和频率1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nAnA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A 出现的频率.3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).三、事件的关系与运算四、概率的几个基本性质1.概率的取值范围:2.必然事件的概率P(E)=3.不可能事件的概率P(F)=4.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B).5.对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).高二数学《导数》知识点总结导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作 .2. 导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t) 表示即时速度。
a=v/(t) 表示加速度。
3.常见函数的导数公式: ① ;② ;③ ;⑤ ;⑥ ;⑦ ;⑧ 。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果 ,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数 ;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
随机事件的频率与概率
随机事件的频率与概率1.随机事件的频率随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A).3.频率与概率的区别和联系(1) 频率本身是随机的,在试验前不能确定。
做同样次数的重复试验得到事件的频率会不同。
(2) 概率是一个确定的数,与每次试验无关。
是用来度量事件发生可能性大小的量。
(3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
例1.某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率是多少分析:(1)分清m ,n 的值,用公式nm 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动.解:(1)(2)从上表可以看出,这名运动员击中10环的频率在附近波动,且射击次数越多,频率越接近,故可以估计,这名运动员射击一次,击中10环的概率约为.点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm . 例2.为了估计水库中的鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.分析:用样本估计总体.解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值记作nˆ. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈A P . 所以500402000≈n . 解得n≈25 000,即nˆ=25 000.故可以估计水库中约有鱼25000尾.点评:随着试验次数的变化,事件发生的频率也可能发生变化,但总体来看频率趋于一个稳定值,所以我们也可借助于频率来对一些实际问题作出估计. 例3.某校举办2021年元旦联欢晚会,为了吸引广大同学积极参加活动,特举办一次摸奖活动.凡是参加晚会者,进门时均可参加摸奖,摸奖的器具是黄、白两色的乒乓球,这些乒乓球的大小和质地完全相同.另有一只密封良好且不透光的立方体木箱(木箱的上方可容一只手伸入).拟按中奖率为101设大奖,其余109则为小奖,大奖奖品的价值为40元,小奖奖品的价值为2元.请你运用概率的有关知识设计一个摸奖方案以满足校方的要求. 分析:借助于现有的乒乓球,使一种情况产生的可能性为101即可,并将其定为大奖的条件.解:方案一:在箱子里放10个乒乓球,其中1个黄色的,9个白色的.摸到黄球时为大奖,摸到白球时为小奖.方案二:在箱子里放5个乒乓球,3个白色的,2个黄色的.每位参加者在箱子里摸两次,每次摸一个乒乓球,并且第一次摸出后不放回.当摸到2个黄色乒乓球时为大奖,其他情况视为小奖.点评:概率知识来源于生活、生产实残,由实际问题可以总结出发生某一事件的可能性的大小,在实际生活中设计某一活动的实施方案,一般可以以希望得到的统计数据为依据,还要注意与实际相结合.。
随机事件的频率与概率
随机事件的频率与概率概率论与数理统计就是研究随机现象的统计规律的数学学科,因随机现象具有普遍性特点,概率论和数理统计也因此具有广泛的应用环境。
而在研究概率之前,我们必须先要清楚随机试验中关于随机事件发生可能性大小的度量问题,这就涉及随机事件的概率和频率。
首先必须明确随机事件的概念,即,在条件一定时,测验或观察研究对象,每进行一次条件组称为一次性试验,得到的结果为事件,在一次试验中对无法准确判断发生结果的事件为随机事件。
接着我们来分别了解频率及概率:一、频率的概念及性质举例引入:一个盒子中有10个相同的球,但5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球。
在该实验中,未将球取出来前,我们无法对实验结果进行判断,即取出的球是黑是白是未知的,但是实践经验告诉我们,如果我们从盒子中反复多次取球,会获得这样一种结果:当实验次数足够多,即n足够大时,黑、白两球出现次数几乎是相等的,即,黑、白球出现次数的比值趋于1。
条件相同时,如试验次数为n,那么这n次试验中事件A共发生的次数为nA,nA为事件A的发生频数。
而事件A的发生频率用nA/n这一比值表示,记作fn(A),即,不同对象出现的次数和总次数间的比值。
当试验次数n不断增大时,频率逐渐趋向于稳定,并与某常数接近,这一常数就是所说的时间A的概率,而频率稳定性即为统计规律性(统计规律性是指在大量试验中呈现出的数量规律),但频率与概率并不相同,由伯努利大数理论可知,当n为无穷大时,在一定意义下频率fn(A)和概率P(A)较为接近。
其中频率的值即为频数与总体数量的比值。
在n次试验中随机事件发生m次的相对频率为m/n。
而在物理学中频率用于衡量每秒物体振动次数的多少是确定的。
二、概率的概念及性质概率用于衡量事件发生的可能性大小,而随机事件A发生概率表示为P(A),取值范围在0和1之间。
在一定条件下,当P (A)=1时表示事件A一定发生;当P(A)=0时,表示事件A 没有发生的可能。
第04讲 随机事件、频率与概率 (精讲)(含答案解析)
第04讲随机事件、频率与概率(精讲)第04讲随机事件、频率与概率(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:随机事件之间关系的判断题型二:随机事件的频率与概率题型三:互斥事件与对立事件的概率第四部分:高考真题感悟知识点一:概率与频率一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率()n f A 会逐渐稳定于事件A 发生的概率()P A .我们称频率的这个性质为频率的稳定性.因此,我们可以用频率()n f A 来估计概率()P A .知识点二:事件的运算定义符号表示图示并事件事件A 与事件B 至少一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)A B ⋃或者A B+交事件事件A 与事件B 同时发生,称这个事件为事件A 与事件B 的交事件(或积事件)A B ⋂或者AB知识点三:事件的关系定义符号表示图示包含关系一般地,若事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B )B A Ê(或A B ⊆)互斥事件一般地,如果事件A 与事件B 不能同时发生,也就是说A B ⋂是一个不可能事件,即A B ⋂=∅,则称事件A 与事件B 互斥(或互不相容)A B ⋂=∅对立事件一般地,如果事件A 和事件B 在任何一次试验中有且仅有一个发生,即A B =Ω ,且A B ⋂=∅,那么称事件A 与事件B 互为对立,事件A 的对立事件记为AA B =Ω ,且A B ⋂=∅.(2022·全国·高一课时练习)1.袋内有3个白球和2个黑球,从中有放回地摸球,用A 表示“第一次摸得白球”,如果“第二次摸得白球”记为B ,“第二次摸得黑球”记为C ,那么事件A 与B ,A 与C 间的关系是()A .A 与B ,A 与C 均相互独立B .A 与B 相互独立,A 与C 互斥C .A 与B ,A 与C 均互斥D .A 与B 互斥,A 与C 相互独立(2022·吉林·长春市第二实验中学高一期末)2.命题“事件A 与事件B 对立”是命题“事件A 与事件B 互斥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·全国·高一课时练习)3.给出下列说法:①若事件A ,B 满足()()1P A P B +=,则A ,B 为对立事件;②把3张红桃J ,Q ,K 随机分给甲、乙、丙三人,每人1张,事件A =“甲得红桃J ”与事件B =“乙得红桃J ”是对立事件;③一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是“两次都不中靶”.其中说法正确的个数是()A .3B .2C .1D .0(2022·全国·高一单元测试)4.已知A 与B 是互斥事件,且()0.4P A =,()0.2P B =,则()P A B = ()A .0.6B .0.7C .0.8D .0.0(2022·全国·高一课时练习)5.利用如图所示的两个转盘玩配色游戏两个转盘各转一次,观察指针所指区域的颜色(不考虑指针落在分界线上的情况).事件A 表示“转盘①指针所指区域是黄色”,事件B 表示“转盘②指针所指区域是绿色”,用样本点表示A B ⋂,A B ⋃.题型一:随机事件之间关系的判断典型例题例题1.(2022·陕西渭南·高二期末(文))6.设靶子上的环数取1~10这10个正整数,脱靶计为0环.某人射击一次,设事件A =“中靶”,事件B =“击中环数大于5”,事件C =“击中环数大于1且小于6”,事件D =“击中环数大于0且小于6”,则下列关系正确的是()A .B 与C 互斥B .B 与C 互为对立C .A 与D 互为对立D .A 与D 互斥例题2.(2022·全国·高一课时练习)7.下列结论正确的是()A .若A ,B 互为对立事件,()1P A =,则()0P B =B .若事件A ,B ,C 两两互斥,则事件A 与B C ⋃互斥C .若事件A 与B 对立,则()1P A B ⋃=D .若事件A 与B 互斥,则它们的对立事件也互斥例题3.(2022·全国·高一课时练习)8.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,给出以下四个事件:事件A :恰有一件次品;事件B :至少有两件次品;事件C :至少有一件次品;事件D :至多有一件次品.下列选项正确的是()A .ABC = B .BD 是必然事件C .A B C = D .A D C= 同类题型归类练(2022·全国·高一单元测试)9.若随机事件A ,B 互斥,且()2P A a =-,()34P B a =-,则实数a 的取值范围为()A .43,32⎛⎤ ⎥⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .43,32⎛⎫ ⎪⎝⎭D .14,23⎛⎫ ⎪⎝⎭(2022·河南安阳·高一期末)10.从一批产品中逐个不放回地随机抽取三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,事件D 为“第一件是次品”则下列结论正确的是()A .B 与D 相互独立B .B 与C 相互对立C .AD ⊆D .A C ⋂=∅(2022·河北·高一阶段练习)11.从一批产品(既有正品也有次品)中取出三件产品,设{A =三件产品全不是次品},{B =三件产品全是次品},{C =三件产品有次品,但不全是次品},则下列结论中正确的是()A .A 与C 互斥B .B 与C 互斥C .任何两个都互斥D .A 与B 对立题型二:随机事件的频率与概率典型例题例题1.(2022·全国·高一课时练习)12.将容量为100的样本数据,由小到大排列,分成8个小组,如下表所示:组号12345678频数101314141513129第3组的频率和累积频率分别为()A .0.14,0.37B .114,127C .0.03,0.06D .314,637例题2.(2022·河南·高三阶段练习(理))13.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1423A.157石B.164石C.170石D.280石例题3.(2022·全国·高一专题练习)14.某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为0.19;(ⅱ)当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加0.05.为了使中签率超过0.9,则至少需要邀请________位好友参与到“好友助力”活动.例题4.(2022·全国·高一单元测试)15.某射击队统计了甲、乙两名运动员在平日训练中击中10环的次数,如下表:射击次数102050100200500甲击中10环的次数9174492179450甲击中10环的频率乙击中10环的次数8194493177453乙击中10环的频率(1)分别计算出甲、乙两名运动员击中10环的频率,补全表格;(2)根据(1)中的数据估计两名运动员击中10环的概率.同类题型归类练(2022·甘肃·兰州五十一中高一期末)16.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48B.0.5,0.5C.0.48,0.5D.0.5,0.48(2022·全国·高三专题练习)17.某同学做立定投篮训练,共3场,每场投篮次数和命中的次数如表中记录板所示.第一场第二场第三场投篮次数252030投中次数161318C .0635.D .0648.(2022·山西·平遥县第二中学校高一期末)18.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为__________.(2022·全国·高二课时练习)19.为了研究某种油菜籽的发芽率,科研人员在相同条件下做了8批试验,油菜籽发芽试验的相关数据如下表.批次12345678每批粒数5101307001500200030005000发芽粒数491166371370178627094490(1)如何计算各批试验中油菜籽发芽的频率?(2)由各批油菜籽发芽的频率,可以得到频率具有怎样的特征?(3)如何确定该油菜籽发芽的概率?(2022·湖南·高一课时练习)20.某文具厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名,2000名,3000名,4000名,5000名时分别计算了各种颜色的频率,绘制的折线图如下:(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计中学生选取红色的概率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色笔袋的产量?题型三:互斥事件与对立事件的概率典型例题例题1.(2022·河北唐山·高一期末)21.甲、乙两人独立地破译一份密码,已知两人能独立破译的概率分别是0.3,0.4,则密码被成功破译的概率为()A .0.18B .0.7C .0.12D .0.58例题2.(2022·江西·高三阶段练习(理))22.甲、乙两人打台球,每局甲胜的概率为34,若采取三局两胜制,即先胜两局者获胜且比赛结束,则比赛三局结束的概率为()A .38B .427C .49D .29例题3.(2022·河南·商丘市第一高级中学高一阶段练习)23.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙是唐朝的两位投壶游戏参与者,且甲、乙每次投壶投中的概率分别为21,32,每人每次投壶相互独立.若约定甲投壶2次,乙投壶3次,投中次数多者胜,则甲最后获胜的概率为()A .318B .518C .13D .19例题4.(2022·全国·高一课时练习)24.某网站登录密码由四位数字组成,某同学将四个数字0,3,2,5,编排了一个顺序作为密码.由于长时间未登录该网站,他忘记了密码.若登录时随机输入由0,3,2,5组成的一个密码,则该同学不能顺利登录的概率是()A .124B .2324C .116D .1516同类题型归类练(2022·河南商丘·高一期末)25.已知袋子中有10个小球,其中红球2个,黑球和白球共8个,从中随机取出一个,设取出红球为事件A ,取出黑球为事件B ,随机事件C 与B 对立.若()0.5P A B +=,则()P C =()A.0.3B.0.6C.0.7D.0.8(2022·河南安阳·高一期末)26.银行定期储蓄存单的密码由6个数字组成,每个数字均是0~9中的一个,小王去银行取一笔到期的存款时,忘记了密码中某一位上的数字,他决定不重复地随机进行尝试,则不超过2次就按对密码的概率为()A.9100B.320C.19100D.15(2022·黑龙江·哈尔滨三中高一期末)27.甲乙两名运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则至少有一人中靶的概率为()A.0.26B.0.72C.0.74D.0.98(2022·山东聊城·高一期末)28.甲、乙两人打靶,已知甲的命中率为0.8,乙的命中率为0.7,若甲、乙分别向同一靶子射击一次,则该靶子被击中的概率为()A.0.94B.0.90C.0.56D.0.38(2020·海南·高考真题)29.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%(2020·天津·高考真题)30.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.参考答案:1.A【分析】根据相互独立和互斥的定义即可判断,或者根据概率的乘法公式验证也可判断相互独立.【详解】方法一:由于摸球是有放回的,故第一次摸球的结果对第二次摸球的结果没有影响,故A 与B ,A 与C 均相互独立.而A 与B ,A 与C 均能同时发生,从而不互斥.方法二:标记1,2,3表示3个白球,4,5表示2个黑球,全体样本点为()()()()()()()()()(){()()()()()121314152324253435452131415132,,,,,,,,,,,,,,,()()()()()}4252435354,,,,,用古典概型概率计算公式易得12312382(),(),()205205205P A P B P C ======.而事件AB 表示“第一次摸得白球且第二次摸得白球”,所以339()()()5525P AB P A P B =⨯==,所以A 与B 相互独立:同理,事件AC 表示“第一次摸得白球且第二次摸得黑球”,326()()()5525P AC P A P C =⨯==,所以A 与C 相互独立.故选:A .2.A【分析】根据对立事件与互斥事件的概念判断即可.【详解】解:若事件A 与事件B 是对立事件,则事件A 与事件B 一定是互斥事件;若事件A 与事件B 是互斥事件,不一定得到事件A 与事件B 对立,故命题“事件A 与事件B 对立”是命题“事件A 与事件B 互斥”的充分不必要条件;故选:A 3.C【分析】根据对立事件的知识对3个说法进行分析,从而确定正确答案.【详解】①A ,B 为对立事件,需满足()()1P A P B +=和A B ⋂=∅,故①错误;②事件A =“甲得红桃J ”的对立事件为“甲未得红桃J ”,即“乙或丙得红桃J ”,故②错误;③“至少有一次中靶”包括“一次中靶”和“两次都中靶”,则其对立事件为“两次都不中靶”,故③正确.所以说法正确的个数为1个.故选:C4.C【分析】根据互斥事件和对立事件的概率公式结合题意求解即可【详解】由题意知A ,B 是互斥事件,所以()()()P A B P A P B =+ ,且()()110.40.6P A P A =-=-=,则()0.60.20.8P A B ⋃=+=.故选:C.5.A B = {(黄,绿)},A B ⋃={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫),(红,绿),(蓝,绿)}.【分析】先列举出事件A ,B 的样本点,再利用事件间运算的定义求解.【详解】由题可得:转盘①转出的颜色红黄蓝转盘②转出的颜色蓝(红,蓝)(黄,蓝)(蓝,蓝)黄(红,黄)(黄,黄)(蓝,黄)红(红,红)(黄,红)(蓝,红)绿(红,绿)(黄,绿)(蓝,绿)紫(红,紫)(黄,紫)(蓝,紫)由表可知,共有15种等可能的结果,其中A ={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫)},B ={(红,绿),(黄,绿),(蓝,绿)},所以A B = {(黄,绿)},A B ⋃={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫),(红,绿),(蓝,绿)}.6.A【分析】根据互斥事件和对立事件的定义逐个分析判断即可【详解】对于AB ,事件B 和C 不可能同时发生,但一次射击中有可能击中环数为1,所以B与C 互斥,不对立,所以A 正确,B 错误,对于CD ,事件A 与D 有可能同时发生,所以A 与D 既不互斥,也不对立,所以CD 错误,故选:A 7.ABC【分析】根据对立事件的概念,可判断AC 正确;根据互斥事件的特征,可判断B 正确,D 错误;【详解】若A ,B 互为对立事件,()1P A =,则A 为必然事件,故B 为不可能事件,则()0P B =,故A 正确;若事件A ,B ,C 两两互斥,则事件A ,B ,C 不能同时发生,则事件A 与B C ⋃也不可能同时发生,则事件A 与B C ⋃互斥,故B 正确;若事件A 与B 对立,则()()()1P A B P A P B =+= ,故C 正确;若事件A ,B 互斥但不对立,则它们的对立事件不互斥,故D 错误.故选:ABC .8.AB【分析】根据已知条件以及利用和事件、积事件的定义进行判断.【详解】对于A 选项,事件A B ⋃指至少有一件次品,即事件C ,故A 正确;对于B 选项,事件B D 指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B 正确;对于C 选项,事件A 和B 不可能同时发生,即事件A B ⋂=∅,故C 错误;对于D 选项,事件A D 指恰有一件次品,即事件A ,而事件A 和C 不同,故D 错误.故选:AB .9.A【分析】根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.【详解】由题意,知0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+≤⎩,即0210341221a a a <-<⎧⎪<-<⎨⎪-≤⎩,解得4332a <≤,所以实数a 的取值范围为43,32⎛⎤⎥⎝⎦.故选:A.10.B【分析】根据互斥事件,对立事件,相互独立事件的定义逐个判断即可.【详解】A为三件产品全部是次品,指的是三件产品都是正品,B为三件全是次品,C为三件产品不全是次品,包括一件次品,两件次品,三件全是正品三个事件,D为第一件是次品,指的是最少有一件次品,包括一件次品,两件次品,三件次品三个事件.由此可知A与B是互斥事件,A与C是包含,不是互斥,B与C对立故选:B.11.ABC【分析】根据已知条件,根据互斥事件和对立事件的定义,即可求解.【详解】解:由题意可知,{C=三件产品有次品,但不全是次品},包括1件次品、2件次正品,2件次品、1件次正品两个事件,{A=三件产品全不是次品},即3件产品全是正品,{B=三件产品全是次品},由此知,A与C互斥,B与C互斥,故A,B正确,A与B互斥,由于总事件中还包含“1件次品,2件次正品”,“2件次品,1件次正品”两个事件,故A与B不对立,故C正确,D错误,故选:ABC.12.A【分析】根据频数分布表和频率概念求解即可。
人教B版高中数学必修第二册课后习题 第五章 5.3.4 频率与概率
5.3.4 频率与概率课后训练巩固提升1.下列关于随机事件的频率与概率的关系的说法正确的是( )A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增多,频率越来越接近概率D.概率是随机的,在试验前不能确定,所以A不正确;概率是客观存在的,与试验次数无关,所以B不正确;概率不是随机的,所以D不正确;很明显,随着试验次数的增多,频率越来越接近概率,故选C.2.某人将一枚硬币连抛了10次,6次出现正面.若用A表示“出现正面”这一事件,则A的( )A.概率为35B.频率为35C.频率为6D.概率接近353.随机事件A的频率mn满足( )A.mn =0 B.mn=1C.mn >0 D.0≤mn≤14.某篮球运动员的投篮命中率为98%,估算该运动员投篮1 000次命中的次数为( )A.98B.980C.20D.998次命中的次数约为98%×1000=980.A.设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品B.做100次抛硬币的试验,结果51次出现正面,因此,出现正面的概率是51100C.随机事件发生的频率一定小于这个随机事件发生的概率D.抛掷骰子100次,得到朝上的面的点数为1的结果是18次,则朝上的面的点数为1的频率是9506.在抛一枚硬币的试验中,共抛了100次,“出现正面”的频率为0.49,则“出现反面”的次数为.49次“出现正面”,故有100-49=51(次)“出现反面”.7.某工厂为了节约用电,规定每天的用电量指标为1 000 kW·h,按照上个月的用电记录,在30天中有12天的用电量超过指标.若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是.=0.4,频率是概率的由频率的定义可知用电量超过指标的频率为1230估计值,因此该月的第一天用电量超过指标的概率约是0.4.8.容量为200的样本的频率分布直方图如图所示,根据此图计算样本数据落在区间(6,10]上的频数为,估计数据落在区间(2,10]上的概率约为.,知样本数据落在区间(6,10]上的频数为200×0.08×4=64,数据落在区间(2,10]上的概率约为(0.02+0.08)×4=0.4.0.49.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:估计纤度的数值落在区间(1.38,1.50]上的概率及纤度的数值小于等于1.42的概率.(1.38,1.50]上的频数是30+29+10=69,则纤度的=0.69,所以估计纤度的数值落数值落在区间(1.38,1.50]上的频率是69100在区间(1.38,1.50]上的概率为0.69.纤度的数值小于等于1.42的频数是4+25+30=59,则纤度的数值小于等于1.42的频率是59=0.59,所以估计纤度的数值小于等于1.42的概率为1000.59.。
23.3(1)随机事件的概率和频率
历史上有人曾经做过大量重复掷硬币的试验,结果如下表: 历史上有人曾经做过大量重复掷硬币的试验,结果如下表: m 上的 试验 ( n ) (n) ( m) 2048 4040 12000 24000 30000 72088 m/n
1
试 验 次 数 增 加
频 率 稳 定 在
1061 2048 6019 12012 14984 36124
某批乒乓球产品质量检查结果表: 某批乒乓球产品质量检查结果表:
优等品数 抽取球数
m
45 50
92 100
194 200
470 500
954 1000
1902 2000
n
n
优等品频率 m 0.9 0.92 0.97 0.94 0.954 0.951
当抽查的球数很多时,抽到优等品的 当抽查的球数很多时, 很多 m 常数0.95, 接近于常数0.95 在它附近摆动。 频率 接近于常数0.95,在它附近摆动。
n m
m n
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 32
0.80
50 38
0.76
(1)计算表中进球的频率; (1)计算表中进球的频率; 计算表中进球的频率 (2)这位运动员投篮一次 进球的概率约是多少 概率约是 这位运动员投篮一次,进球的概率约是多少 概率约是0.8 这位运动员投篮一次 进球的概率约是多少? (3)这位运动员进球的概率是 这位运动员进球的概率是0.8,那么他投 次篮一定能 那么他投10次篮一定能 这位运动员进球的概率是 那么他投 投中8次吗 次吗? 投中 次吗 不一定. 次篮相当于做10次试验 不一定 投10次篮相当于做 次试验 每次试验的结果都 次篮相当于做 次试验,每次试验的结果都 是随机的, 所以投10次篮的结果也是随机的 次篮的结果也是随机的. 是随机的 所以投 次篮的结果也是随机的 但随着投篮 次数的增加,他进球的可能性为 他进球的可能性为80%. 次数的增加 他进球的可能性为
高考数学《随机事件、频率与概率》课件
索引
3.已知随机事件 A,B 发生的概率满足条件 P(A∪B)=34,某人猜测事件A-∩B-发
生,则此人猜测正确的概率为( C )
A.1
B.12
C.14
D.0
解析 ∵事件A-∩B-与事件 A∪B 是对立事件,
∴事件A-∩B-发生的概率 P(A-∩B-)=1-P(A∪B)=1-34=14, 则此人猜测正确的概率为14.
业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整
理如下:
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
等级 A B C D
等级 A B C D
频数 40 20 20 20
频数 28 17 34 21
索引
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率; 解 由试加工产品等级的频数分布表知, 甲分厂加工出来的一件产品为 A 级品的概率的估计值为14000=0.4; 乙分厂加工出来的一件产品为 A 级品的概率的估计值为12080=0.28.
中奖的概率.( ×)
解析 随机事件的概率是频率的稳定值,频率是概率的近似值,故(1)错. (4)中,甲中奖的概率与乙中奖概率相同.
索引
2.(2021·珠海期末)一个人打靶时连续射击两次,与事件“至少有一次中靶”互
斥的事件是( D )
A.至多有一次中靶
B.两次都中靶
C.只有一次中靶
D.两次都不中靶
解析 “两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.
训练1 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)
按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级
频率与概率的区别
频率与概率的区别这是频率与概率的区别,是优秀的数学教案文章,供老师家长们参考学习。
频率与概率的区别第1篇频率和概率虽然都有个“率”,但是物理意义几乎完全不相同。
它们都有“率”字完全是汉字的巧合。
在英语里面,前者是frequency,后者是probability。
频率一般是大概统计数据经验值,概率是系统固有的准确值,频率是近似值,概率是准确值。
1)频率:(英语:Frequency)是单位时间内某事件重复发生的次数。
在n次重复试验中,事件A发生了m(A)次,则称:m(A)/n 为事件A发生的频率。
2)概率:它反映随机事件出现的可能性大小的量度。
随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n越来越接近于某个确定的常数。
该常数即为事件A出现的概率,常用P (A) 表示。
频率与概率的区别第2篇概率是一个稳定的数值,也就是某件事发生或不发生的概率是多少。
频率是在一定数量的某件事情上面,发生的数与总数的比值。
频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率。
概率和频率有什么区别和联系联系与区别1、他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值;3、频率是近似值,概率是准确值;4、频率值一般容易得到,所以一般用来代替概率。
频率与概率的区别第3篇他们都是统计系统各元件发生的可能性大小;频率一般是大概统计数据经验值,概率是系统固有的准确值;频率是近似值,概率是准确值;频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率。
频率和概率的区别与联系知识拓展概率是度量偶然事件发生可能性的数值。
假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。
频率与概率的关系与计算
频率与概率的关系与计算频率与概率是概率论中的重要概念,它们之间存在着密切的联系和计算方法。
频率指的是某个事件在重复试验中发生的次数与试验总数的比值,而概率则是描述事件发生可能性的数值。
本文将探讨频率与概率之间的关系以及它们的计算方法。
一、频率和概率的基本概念频率是指在一系列独立观察或试验中,某个事件发生的次数与总次数之比。
在统计学中,频率可以用来估计概率。
当试验次数足够大时,频率趋近于概率。
例如,我们抛掷一个均匀的硬币,记录正面朝上的次数,并将该次数除以总次数,得到的比值就是频率。
概率是指某个事件在所有可能事件中发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
概率可以从分析、实验或数学模型中得出。
例如,掷骰子时,每个点数的概率都是1/6。
二、频率与概率的关系频率和概率之间存在着紧密的关系。
频率是通过实验得到的结果,反映了实际事件发生的频繁程度。
概率则是通过理论推导得到的,反映了事件发生的可能性大小。
当试验次数很大时,频率会逐渐接近概率。
这一点可以由大数定律进行解释。
三、频率和概率的计算方法频率的计算方法相对简单。
在进行一系列独立重复试验时,我们只需要记录事件发生的次数,然后将该次数除以试验的总次数即可得到频率。
例如,我们进行100次抛硬币实验,记录到正面朝上的次数为60次,那么该事件的频率为60/100=0.6。
概率的计算方法则需要根据具体情况来确定。
对于样本空间中的有限个事件,我们可以通过统计频数来计算概率。
例如,抛掷一个均匀六面骰子,每个点数出现的可能性相等,所以每个点数的概率都是1/6。
对于连续型随机事件,则需要使用积分等数学方法来计算概率。
例如,在统计身高时,我们无法用一个个具体的数值来表示概率,而是用一个区间范围来描述。
我们可以通过概率密度函数来计算某个身高在特定区间内的概率。
四、频率与概率的应用频率和概率的概念和计算方法在现实生活和科学研究中有着广泛的应用。
频率与概率的概念与计算
频率与概率的概念与计算频率与概率是概率论中重要的概念,用来描述事件发生的可能性。
本文将对频率与概率的概念进行解释,并介绍如何进行频率和概率的计算。
1. 频率的概念频率是指某个事件在一定时间内发生的次数与总观测次数的比值。
频率通常用来近似估计概率,并可以通过大量观测数据进行计算。
频率的计算公式如下:频率 = 事件发生次数 / 总观测次数2. 概率的概念概率是指某个事件发生的可能性,它介于0和1之间。
概率可以通过理论计算,也可以通过频率进行估计。
概率的计算公式如下:概率 = 事件发生次数 / 总观测次数3. 频率与概率的关系频率与概率之间存在着密切的关系。
当观测次数趋近于无穷大时,频率将逐渐接近真实的概率。
因此,频率可以作为概率的估计值。
然而,频率并不总是能够准确地估计概率,尤其在观测次数较少的情况下。
4. 频率与概率的计算例子为了更好地理解频率和概率的计算,我们来看一个实际的例子。
假设某个硬币被投掷100次,其中正面朝上的次数为60次。
我们可以用频率和概率来计算正面朝上的概率。
首先,通过频率计算:频率 = 60 / 100 = 0.6然后,通过概率计算:概率 = 60 / 100 = 0.6可以看到,通过频率和概率的计算,我们得出的结果是一样的。
这表明,在这个例子中,频率可以准确地估计概率。
5. 概率的计算方法除了通过频率进行估计外,我们还可以使用数学方法来计算概率。
根据概率论的基本原理,我们可以使用以下方法进行概率的计算:- 古典概率法:适用于各个结果的概率相等的情况。
例如,抛一枚均匀的骰子,每个面出现的概率都是1/6。
- 几何概率法:适用于连续性的随机事件。
例如,计算某个点落在一个区域内的概率。
- 统计概率法:根据大量的观测数据来估计概率。
6. 概率的性质概率具有以下几个重要的性质:- 概率的取值范围为0到1之间。
- 所有可能结果的概率之和等于1。
- 对于互斥事件,其概率之和等于各个事件概率的和。
高中数学频率与概率
况出现了8次,若用A表示“正面朝上”这一事件,则A
的( )
A.概率为 4
5
C.频率为8
B.频率为 4
5
D.概率接近于8
2.下面是某批乒乓球质量检查结果表:
抽取球数 50 优等品数 45
优等品出 现的频率
100 200 500 1000 2000 92 194 470 954 1902
(1)在上表中填上优等品出现的频率. (2)中常常用随机事件发生的概率来估 计某个生物种群中个别生物种类的数量、某批次的产 品中不合格产品的数量等.
【习练·破】某中学为了了解高中部学生的某项行为 规范的养成情况,在校门口按系统抽样的方法:每2分钟 随机抽取一名学生,登记佩戴胸卡的学生的名字.结 果,150名学生中有60名佩戴胸卡.第二次检查,调查了 高中部的所有学生,有500名学生佩戴胸卡.据此估计该 中学高中部一共有多少名学生.
C.任意取定10 000个标准班,其中大约9 700个班A发生 D.随着抽取的标准班数n不断增大,A发生的频率逐渐稳 定在0.97,在它附近摆动
【思维·引】 抓住事件的概率是在大量试验基础上得到,它只反映事 件发生的可能性大小来判断.
【解析】1.选D.一对夫妇生两小孩可能是(男,男),(男, 女),(女,男),(女,女),所以A不正确;中奖概率为0.2是 说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可 能中一张、两张、三张、四张,或者都不中奖,所以B不 正确;10张票中有1张奖票,10人去摸,每人摸到的可能 性是相同的,即无论谁先摸,摸到奖票的概率都是0.1, 所以C不正确,D正确.
提示:概率从数量上反映了一个事件发生的可能性的大 小,概率意义下的“可能性”是大量随机事件的客观规 律,与我们日常所说的“可能”“估计”是不同的.
人教版高中数学必修2《频率与概率》PPT课件
④抛掷骰子 100 次,得点数是 1 的结果有 18 次,则出现 1 点的频率是590.
其中正确的命题为
()
A.①
B.②
C.③
D.④
[解析] ①错,次品率是大量产品的估计值,并不是针对 200 件产品来说
的.②③混淆了频率与概率的区别.④正确.
[答案] D
[方法技巧] 理解概率与频率应关注的三个方面 (1)概率是随机事件发生可能性大小的度量,是随机事件 A 的本质属性, 随机事件 A 发生的概率是大量重复试验中事件 A 发生的频率的近似值. (2)由频率的定义我们可以知道随机事件 A 在一次试验中发生与否是随 机的,但随机中含有规律性,而概率就是其规律性在数量上的反映. (3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的 问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的 事件.
(1)若每辆车的投保金额为 2 800 元,估计赔付金额大于投保金额的概率; (2)在样本车辆中,车主是新司机的占 10%,在赔付金额为 4 000 元的样 本车辆中,车主是新司机的占 20%,估计在已投保车辆中,新司机获赔金额 为 4 000 元的概率.
[解] (1)设 A 表示事件“赔付金额为 3 000 元”,B 表示事件“赔付金额为 4 000 元”,以频率估计概率得 P(A)=1105000=0.15,P(B)=1102000=0.12.
•10.3 频率与概率
明确目标
发展素养
1.结合实例,会用频率估计概率.了 1.通过对频率与概率的联系和区别的学
解随机数的意义.
习,培养数学抽象素养.
2.会用模拟方法(包括计算器产生随 2.通过利用随机模拟的方法估计事件的
机数进行模拟)估计概率.
随机事件的频率与概率
排列数 A52,即 n = A52
A 中所含样本点的个数m为
m = C21A31A21
P( A)
=
C21 A31A21 A52
=
3 5
例5 从1、2、3、4、5这五个数字中等可能 地、有放回地接连抽取三个数字,试求“三 个数字完全不同”这一事件的概率。
解:所求概率为
A53 53
=
12 25
例6(分赌注问题)甲乙两人赌技相同,各出赌 注500元,约定:谁先胜三局,谁就拿走全部赌 本1000元.现已赌了3局,甲两胜一负,因故要中 止赌博,问:这1000元要如何分配才算公平?
P( A) =
r n
=
A中包含的样本点个数 样本点总数
例3 取一颗骰子,将它抛掷一次,朝上的那一面为 奇数的概率是多少?将它连掷两次,两次掷得的点 数之和为8是多少?
解:抛掷一次的情形
Ω1 ={1,L,6}, A1表示“掷得奇数点”,则
A1 ={1,3,5}
则P(A1)=
3 6
=
1 2
抛掷二次的情形
为
P(
A)
=
G的测度 Ω 的测度
作业
n 习题1 7、9、11、15、17、18
Ω2 = {(i, j),i = 1,L,6; j = 1,L,6}
A2表示“两次掷得点数之 和为8”,则
A2 =({ 2,6), (6,2),(3,5), (5,3), (4,4)}
故P(
A2
)
=
5 36
例4 (抽球问题):设盒中有3个白球,2个红 球,现从盒中任抽2个球,求取到一红一白 的概率。
有两 人生 日相 同的 概率
二、几何概型
例9 某人的表停了,他打开收音机听电台报时,
高考数学复习考点知识讲解课件55 随机事件 频率与概率
若最高气温不低于 25,则 Y=6×450-4×450=900;
若最高气温位于区间[20,25),
则 Y=6×300+2(450-300)-4×450=300;
若最高气温低于 20,
则 Y=6×200+2(450-200)-4×450=-100.
所以,Y 的所有可能值为 900,300,-100.
Y 大于零当且仅当最高气温不低于 20,由表格数据知,最高气温不低于 20 的频率为
图示
— 返回 —
— 5—
(新教材) 高三总复习•数学
— 返回 —
3.事件的关系
定义
表示法
包含 若事件 A 发生,事件 B 一定发生 ,称事件 B⊇A
关系 B 包含事件 A(或事件 A 包含于事件 B) (或 A⊆B)
互斥 如果事件 A 与事件 B 不能同时发生 ,称 若 A∩B=∅,
事件 事件 A 与事件 B 互斥(或互不相容)
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满
意”的概率是( C )
A.175
B.25
C.1115
D.1135
[解析] 由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”
或“满意”的人数为 1200+2100=3300,所以所求概率为34350000=1115.故选 C.
— 18 —
(新教材) 高三总复习•数学
考点二 随机事件的频率与概率——师生共研
ห้องสมุดไป่ตู้
— 返回 —
【例 1】 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售
价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销
随机事件与概率及其概率和频率的关系
随机事件与概率及其概率和频率的关系一、引言本文将探讨随机事件与概率之间的关系,以及概率和频率之间的关联。
我们将从随机事件的定义入手,逐步介绍概率的概念和计算方法,并分析概率和频率在实际应用中的联系和差异。
二、随机事件的定义随机事件是指在一定条件下可能发生也可能不发生的事件。
通俗来说,它是具有某种不确定性的事件,例如抛硬币、掷骰子等。
随机事件的发生是由各种因素相互作用的结果,无法事先准确预测。
三、概率的基本概念3.1概率的定义概率是描述随机事件发生可能性大小的数值。
用数学语言来表达,概率就是随机事件发生的频率与总试验次数之间的比值。
它的取值范围在0到1之间,其中0代表事件不可能发生,1代表事件一定会发生。
3.2概率的计算方法等可能性事件概率的计算方法可以分为两种常见的情况:和**不等可能性事件**。
对于等可能性事件,计算概率很简单,只需要用有利结果的个数除以所有可能结果的个数即可。
古典概型对于不等可能性事件,常用的计算概率方法有、**几何概型**和**统计概型**等。
四、概率和频率的关系4.1概率和频率的定义概率和频率都可以用来描述随机事件的发生情况,但它们是从不同的角度出发进行观察和分析的。
理论上的数值概率是通过总体试验次数与事件发生次数之间的比值来衡量事件的可能性大小,是一种。
实际观察到的数值频率是通过大量的试验实验所得的事件发生次数与实验总次数之间的比值来衡量事件的发生情况,是一种。
4.2概率和频率的关联系数频率到概率的收敛概率和频率之间存在一定的关联,可以通过大量试验的频率逼近概率值,这就是。
随着试验次数的增加,频率趋于概率,两者的差距逐渐减小。
数学上可以通过极限的概念来描述概率和频率的关联,即频率趋近于概率的极限值。
4.3概率和频率的差异概率和频率之间存在一定的差异,主要有以下几个方面:观察对象不同-:概率是基于推理和理论的观察,而频率是基于实际观察和统计的结果。
试验次数要求不同-:概率不需要进行大量试验,只需要考虑总体的因素;而频率需要进行大量的试验,以实际观察到的结果进行统计。
随机事件必然事件不可能事件关系频率的稳定性频率和概率的区别与联系
一、频率的稳定性即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;二、“频率”和“概率”这两个概念的区别是频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
三、随机事件的定义:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:必然会发生的事件叫做必然事件;不可能事件:肯定不会发生的事件叫做不可能事件;概率的定义:1.在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。
这时就把这个常数叫做事件A的概率,记作P(A)。
2.m,n的意义:事件A在n次试验中发生了m次。
3.因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
四、随机事件概率的定义:对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
五、必然事件包括不可能事件吗必然事件不包括不可能事件。
必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件。
不可能事件:概率论中把在一定条件下不可能发生的事件叫不可能事件。
必然事件和不可能事件统称为确定事件。
概率论术语:表示在一定条件下,必然出现的事情。
如从混有四件次品的产品中任意抽取五件,那么“其中必有一件是正品”就是一个必然事件。
是随机事件的一种极端情形。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件连续型随机变量X,取值为样本空间中任意有限个点的概率为0,从整个样本空间剔除这有限个点,取到'非该有限个点'概率依然为1。
频率和概率的异同
频率和概率的异同
频率和概率是研究随机事件发生的可能性大小常用的特征量,它们既有区别也有联系.随机事件A发生的频率,是指在相同条件下重复n次试验,事件A发生的次数m与试验总次数n的比值,是较少数据统计的结果,是一种具体的趋势和规律.在大量重复试验时,频率具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增加,这种摆动幅度越来越小,这个常数叫做这个事件的概率.由此可见,频率是概率的近似值,随着试验次数的增多,频率会越来越接近于概率,概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性.
频率在一定程度上可以反映随机事件发生的可能性的大小,但频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率.概率是由大量数据统计后得出的结论,是一种大的整体趋势.概率是一个确定的常数,是客观存在的,与试验次数无关.
例如,掷一枚硬币,正面和反面出现的概率相等,都是,这是经过上百万次试验取得的理论数据.某人只掷20次,正面出现的频率为,反面出现的频
率仅为. 若就此下结论,出现正面的可能性一定大于出现反面的可能性就不对了.
再比如,对某品牌乒乓球质量抽查,得到如下数据:
在上述抽查试验中可以看出,当抽取的乒乓球个数较少时,优等品的频率波动较大,但当抽取的球数很大时,频率基本上稳定在0.95,在其附近摆动,所以可认为该品牌的乒乓球优等品的概率是0.95.
由此可见,概率和频率的关系是整体和具体、理论和实践、战略和战术的关系,频率随着随机事件发生次数的增加,会趋向于概率,这是求一个事件概率的最基本的方法.
概率的统计定义是用频率表示的,但它又不同于频率的定义,只是用频率来估算概率.频率是试验值,有不确定性,而概率是稳定值.。
1.2事件的频率与概率
件, 称实值函数 P(A) 为 A 的概率,如果 P(A) 满足下述三条
公理
1 (非负性)对任一事件 , 有P( A) 0 A 2 (规范性)对必然事件 , 有P( ) 1 3 (完全可加性) 对两两互斥事件列 A1 , A2 ,, 有
P Ai P ( Ai ) i 1 i 1
P ( A) p f n ( A) (无法计算)
频率的稳定性和基本性质启示我们给出如下的公理化定义
概率统计(ZYH)
二、概率的公理化体系
柯尔莫哥洛夫
1933年 , 苏联数学家柯尔莫哥洛夫提出了概率论的公
理化体系, 给出了概率的严格定义, 使概率论有了迅速发展.
定义2 设Ω为试验 E 的样本空间, Ω 的子集 A 是随机事
3 设A, B是任意两个随机事件 A B, 则有 ,若
P B A P( B) P( A), P( B) P( A)
4 对任一随机事件, 有 A
P A 1, P( A ) 1 P( A)
概率统计(ZYH)
性质的证明
1 对不可能事件 , 有 P() 0
k k P Ai P ( Ai ) i 1 i 1
证 令Ai (i k ), 则由公理 与公理3 得 1
k k P Ai P Ai P ( Ai ) P ( Ai ) i 1 i 1 i 1 i 1
概率统计(ZYH)
例1 将一枚硬币抛掷 5 次、50 次、500 次, 各做 7 遍, 观察正面出现的次数及频率. 试验 序号
1 2 3 4 5 6
n5
nA
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机事件的频率与概率》教案
一、[教学目标]
1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。
2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。
3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。
二、[教学重点]
随机事件的概念及其概率.
三、[教学难点]
随机事件的概念及其概率.
四、[教学方法]
探究讨论法。
五、[教学过程]
(一)新课引入
1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶.
分析结果:
(1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生
2.(1)“如果a>b,那么a-b>0”;
(2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”;
(4)“没有水份,种子能发芽”;
分析结果:(略)
(二)探究新课
1.事件的定义:
随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件.
说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化.
2.随机事件的概率:
(1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性.
实验一:抛掷硬币试验结果表:
m n)
抛掷次数(n)正面朝上次数(m)频率(/
2048 1061 0.5181
4040 2048 0.5069
12000 6019 0.5016
24000 12012 0.5005
30000 14984 0.4996
72088 36124 0.5011
当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动.
实验二:某批乒乓球产品质量检查结果表:
抽取球数n50 100 200 500 1000 2000
优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951
频率/
当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动
(2)定义:一般地,在大量重复进行同一试验时,事件A 发生的频率m
n 总是接近
某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性.(2)概率是一个客观常数,它反映了随机事件的属性.
大量重复试验时,任意结果(事件) A 出现的频率尽管是随机的,却”稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小.这一常数就成为该事件的概率.
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形. 5.随机现象的两个特征:(1)结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生.(2)频率的稳定性:即大量重复试验时,任意结果(事件) A 出现的频率尽管是随机的,却”稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小.这一常数就成为该事件的概率. (三)巩固练习
例1.(1)某厂一批产品的次品率为110,问任意抽取其中10件产品是否一定会
发现一件次品?为什么?
(2)10件产品中次品率为110,问这10件产品中必有一件次品的说法是否正确?
为什么?
解:(1)错误(2)正确.
例2.不做大量重复的试验,就下列事件直接分析它的概率: ①掷一枚均匀硬币,出现“正面朝上”的概率是多少?
②掷一枚骰子,出现“正面是3”的概率是多少?出现“正面是3的倍数”的概率是多少?出现“正面是奇数”的概率是多少?
③本班52名学生,其中女生24人,现任选一人,则被选中的是男生的概率是多少?被选中的是女生的概率是多少?
答案:①1
2②
113
,,
636③
76
,
1313
(四)课堂小结
1.随机事件、必然事件、不可能事件的概念;2.概率的定义和性质六、[布置作业]
1.课本上P131A组1,3.
2.上抛一个刻着1,2,3,4,5,6字样的正六面体方块;
(1)出现字样为“5”的事件的概率是多少?
(2)出现字样为“0”的事件的概率是多少?。