流体力学实验指导书(雷诺、伯努利)
流体力学基础实验指导书
流体力学基础实验指导书编写:张进审核:何国毅、史卫成南昌航空大学飞行器工程学院飞行器设计与工程系实验一不可压缩流体定常流能量方程实验(伯努利方程实验)一、实验目的要求1.验证不可压定常流的能量方程;2.通过对流体动力学诸多水力现象的实验分析研讨,进一步掌握有压管流中的能量转换特性;3.掌握流速、流量、压强等流体动力学水力要素的实验量测技能。
二、实验装置本实验的装置如图1所示:图1自循环能量方程实验装置图l 自循环供水器 2. 实验台 3 可控硅无级调速器 4 溢流板5 稳水孔板6 恒压水箱7 测压计8 滑动测量尺9测压管10 实验管道11 测压点12 毕托管13 实验流量调节阀说明:仪器测压管有两种:① 用毕托管测压管探头对准测量处的轴心位置,测量该点的总水头H ’(=Z+g u g p 22+ρ),测得轴心处速度。
须注意一般情况下H ’与断面总水头H (=Z +gv p 2g 2+ρ)不同(因一般u ≠ v ),它的水头线只能定性表示总水头变化趋势;② 普通测压管用以定量量测测压管水头(位置水头与压强水头之和)。
实验流量用阀13调节,流量由体积时间法或重量时间法测量。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
可以列出进口断面(1)至另一断面(i )的能量方程式(i=2,3, … … ,n )Z 1+g va p 2g 2111+ρ= Z i +gv a p i i i 2g 2+ρ+h w取1a = 2a =… …= n a =1,选好基准面,从已设置的各断面的测压管中读出Z+gρp值;测出通过管路的流量,即可计算出断面平均流速v 及gav 22,从而得到各断面测管水头和总水头。
四、实验方法与步骤1.熟悉实验设备,分清哪些管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。
2.打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。
如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。
流体力学实验指导书
《流体力学》实验指导书目录实验装置简介及实验安排…………………………………………………… 1-2 实验一:伯努利方程验证实验………………………………………………… 3-8 实验二:雷诺实验…………………………………………………………… 9-12实验装置简介及实验安排实验装置:流体力学综合实验台是一个多功能实验装置,用此实验台可进行伯努利方程(能量方程)验证实验、雷诺实验、沿程阻力测定实验、局部阻力测定实验、毕托管测速实验和文丘里流量计实验等多个流体力学实验。
实验装置如图1-1所示。
1—供水箱,水泵;2—实验桌;3—层流测针;4—恒压水箱;5—彩色墨水罐;6—差压板;7—沿程阻力实验管;8—局部阻力实验管;9—伯努利实验管;10—雷诺实验管;11—伯努利差压板;12—毕托管;13—计量水箱;14—回水管。
图1-1 多功能流体力学综合实验台针对轮机工程专业36学时或32学时的流体力学课程,我们开设两个实验,即伯努利方程验证实验和雷诺实验。
在雷诺实验中,学生可以借助该实验装置观察层流和湍流(紊流)特征以及它们之间的转换特征,掌握测定临界雷诺数Re 的方法。
在伯努利方程实验中,学生可以借助该实验装置验证总流的伯努利方程,观察流体流动过程中的能量守恒关系,同时可以掌握流速、流量和压强等要素的实验量测技能。
实验学时分配:实验一:伯努利方程验证实验 2学时实验二:雷诺实验 2学时实验分组:每个实验7-8人一组,每个自然班分成四组。
实验一:伯努利方程验证实验一、实验目的1.掌握伯努利方程式中各项的物理意义及它们之间的转换关系; 2.验证流体总流的能量方程;3.掌握流速、流量、压强等动水力学水力要素的实验量测技术; 4.学习使用测压管、总压管测水头的实验技能及绘制水头线的方法。
二、实验原理1.伯努利方程(能量方程)在伯努利实验管路中沿水流方向取n 个过流断面。
在动能修正系数α近似取为1的情况下,可以列出进口断面(1)至任一断面(i )的能量方程式(i = 2,3,……,n )i ,i i i h gv p z g v p z -+++=++1f 2211122γγ (1)式中,z 、γp 和gv 22分别为位置水头(位头)、压力水头(压头)和速度水头(动头),单位为m (水柱);i ,h -1f 为从过流断面1到断面n 的水头损失,单位也是m (水柱)。
流体力学实验指导书.
《流体力学》实验指导书郭广思王连琪沈阳理工大学2006年10月一伯努利方程综合性实验(一)实验目的伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。
1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律;2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律;3.了解总水头线沿程下降和测压管水头线升降都有可能的原理;4.用实例流量计算流速水头去核对测压板上两线的正确性;不同管径流速水头的变化规律(二)设备简图本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。
(三)实验原理过水断面的能量由位能、压能、动能三部分组成。
水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。
测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:gp Z ρ+,测速管中水位显示的是位能、压能和动能之和。
即伯努利方程中三项之和:gv g p Z 22++ρ。
将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。
本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。
注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。
(四)实验步骤1.开动水泵,将供水箱内之水箱至高位水箱;2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致;3.实验过程中,始终保持微小溢流;4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。
《流体力学》实验指导书
实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。
雷诺数的物理意义,可表征为惯性力与粘滞力之比。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。
此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。
图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。
tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。
三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。
启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。
2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。
3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。
雷诺试验
流体力学基础实验指导书I 、循环水槽流动显示实验1.观察流体拐弯时的流动特点。
取下水槽一个拐角处的导流片。
由于拐弯处流体质点受离心力的作用,使得流体质点的速度沿拐弯半径发生变化。
在拐弯后的内侧,由于粘性和流体质点处于逆压作用下,从而产生较大的流动分离区。
2.圆柱体尾流观察。
在圆柱体后面逆压区,由于粘性作用产生附面层分离,从而交替产生的离体旋涡顺气流而下形成两排交错出现的涡列,这就是有名的卡门涡街。
3.二元翼型的绕流和尾迹观察。
II 、雷诺染色线观察实验通常作用于流体质点上的力有表面粘性力和压力,与质量有关的重力和惯性力等。
随着粘性力所占的比重不同,流体有两种不同的流动状态:层流和紊流。
本实验就是通过在流过玻璃管内的水中所悬浮的红色墨水,来观察这两种不同的流动状态。
当打开水阀时,若水速不大,此时作用在流体质点上的粘性力则相对较大,管内是有规则的成层的流动,即层流(或片流)。
此时看到的红色水是一条规则的红线。
若水速不断增大,粘性力的影响也随着相对减小。
当水速超过一定值时,这时管内水中的红色墨水将由一条规律的红线开始波动,最后完全混乱。
整个流动呈现出一种毫无规则的混乱流动,叫做紊流(或湍流)。
影响管内流动由层流状态到紊流状态的因素不仅是与水速有关,而且还与管道直径大小和流体性质有关,亦即与雷诺数υμρ//Re VD VD ==的大小有关。
Re 数愈大,流动易呈紊流状态。
雷诺数Re 实质上是表征作用于流体质点上的惯性力与粘性力的比值。
III 、伯努利定理当气体流过截面为F 的管道时,流速V 不大(V<100m/s 左右),则流速变化带来的压强P 变化也不大,故可以认为气体的密度ρ是常数。
此时沿管道任一截面的流量由连续方程(质量守恒定理)给出:VF=常数 (1) 伯努力定理告诉我们,理想流体质点的动能221v ρ,压力能P 和势能gz ρ满足 常数=++gz P v ρρ221 (2) 对于水平管道(z=常数),由式(1)和(2)可知:管道截面小的地方流速大而压强小。
流体力学实验指导书(雷诺、伯努利)
工程流体力学实验指导书河北理工大学给排水实验室编者:杨永2014 . 5 . 12适用专业:给排水工程专业、建筑环境与设备工程专业实验目录:实验一:雷诺实验实验二:伯努利方程实验实验三:阻力及阻力系数测定实验实验四:孔口管嘴实验实验操作及实验报告书写要求:一、实验课前认真预习实验要求有预习报告。
二、做实验以前把与本次实验相关的课本理论内容复习一下。
三、实验要求原始数据必须记录在原始数据实验纸上。
四、实验报告一律用标准实验报告纸。
五、实验报告内容包括:1. 实验目的;2. 实验仪器;3. 实验原理;4. 实验过程;5. 实验数据的整理与处理。
六、实验指导书只是学生的指导性教材,学生在写实验报告时指导书制作为参考,具体写作内容由学生根据实际操作去写。
七、根据专业不同以及实验学时,由任课教师以及实验老师选定实验内容。
建筑工程学院给排水实验室编者:杨永 2014.5实验一雷诺实验指导书一、实验目的:(一)观察实验中实验线的现象。
(二)掌握体积法测流量的方法。
(三)观察层流、临界流、紊流的现象。
(四)掌握临界雷诺数测量的方法。
二、实验仪器:实验中用到的主要仪器有:雷诺实验仪、1000mL 量筒、秒表、10L 水桶等三、实验原理:有压管路流体在流动过程中,由于条件的改变(例如,管径改变、温度的改变、管壁的粗糙度改变、流速的改变)会造成流体流态的变化,会出现层流、临界流、紊流等现象。
英国科学家雷诺(Reynolds )在1883年通过系统的实验研究,首先证实了流体的流动结构有层流和紊流两种形态。
层流的特点是流体的质点在流动过程中互不掺混呈线状运动,运动要素不呈现脉动现象。
在紊流中流体的质点互相掺混,其运动轨迹是曲折混乱的,运动要素发生脉动现象。
雷诺等人经过大量的实验发现临界流速与过流断面的特征几何尺寸管径d 、流体的动力粘度μ和密度ρ有关,即()ρμ、、d f u k =。
由以上四个量组成一个无量纲数,称为雷诺数e R ,即νμρudud R e ==其中:u 为流速,ρ为流体的密度,μ为流体的动力粘度,ν为运动粘度。
流体力学实验指导书_2
实验一 雷诺实验一、实验目的与要求1、了解流体的流动形态:观察实际的流线形状,判断其流动形态的类型;2、熟悉雷诺准数的测定和计算方法;3、确立“层流与湍流与Re 之间有一定关系”的概念。
二、基本原理流体在流动过程中有3种不同的流动形态,即层流、湍流和介于两者之间的过渡流。
雷诺用实验的方法研究流体流动时,发现影响流体流动类型的因素除了流速u 以外,还有管径d 、流体的密度ρ以及粘度μ,由这四个物理量组成的无因次数群μρdu =Re称之为雷诺数。
实验证明,流体在直管内流动时:当Re ≤2000时,流体的流动类型为层流。
当Re ≥4000时,流体的流动类型为湍流。
当2000<Re <4000,流体的流动类型可能是层流,也可能为湍流,将这一范围称之为不稳定的过渡区。
从雷诺数的定义式来看,对于同一管路d 为定值时,u 仅为流量的函数。
对于流体水来讲,ρ及μ仅为温度的函数。
因此确定了温度及流量即可计算出雷诺数Re 。
三、实验装置及流程实验装置如图所示,实验时水从玻璃水槽3流进玻璃管4(内径20mm ),槽内水由自来水供应,供水量由阀6控制,槽壁外有进水稳定槽7及溢流槽10,过量的水进溢流槽10排入图1-3 雷诺示范实验装置1-红墨水瓶 2.6.8.12-阀门 3-玻璃水槽 4-带喇叭口玻璃管(Φ20) 5-进水管 7-进水稳定槽 9-转子流量计 10-溢流槽 11-排水管下水道。
实验时打开阀门8,水即由玻璃槽进入玻璃管,经转子流量计9后,流进排水管排出,用阀8调节水量,流量由转子流量计9测得。
高位墨水瓶贮藏墨水之用,墨水由经墨水调节阀2流入玻璃管4。
四、实验数据记录表表1-2 雷诺实验数据记录表水温__________[℃] 水粘度_______________[10-3×Pa·S]水密度_____________[kg/m3] 管内径_______________[mm]五、讨论1、流量从小做到大,当刚开始湍流,测出雷诺数是多少?与理论值2000有否差距?请分析原因。
雷诺实验和伯努利实验报告
雷诺实验和伯努利实验报告一、实验目的雷诺实验的目的是观察流体在不同流动状态下的速度分布和流动特征,确定流体流动的临界速度,并了解雷诺数与流体流动状态之间的关系。
伯努利实验的目的是验证伯努利方程,即流体在流动过程中,其动能、压力能和势能之间的相互转换关系,加深对流体力学基本原理的理解。
二、实验原理(一)雷诺实验原理雷诺实验通过观察有色液体在玻璃管中的流动状态来判断流体的流动类型。
当流体的流速较低时,流体呈现层流状态,有色液体形成一条清晰的直线;随着流速的增加,流体逐渐过渡到湍流状态,有色液体与周围流体混合,呈现紊乱的流动。
雷诺数(Re)是判断流体流动状态的重要无量纲参数,其计算公式为:Re =ρvd/μ,其中ρ为流体密度,v 为流体流速,d 为管道直径,μ为流体动力粘度。
当雷诺数小于临界雷诺数时,流体为层流;当雷诺数大于临界雷诺数时,流体为湍流。
(二)伯努利实验原理伯努利方程表示为:p +1/2ρv² +ρgh =常数,其中 p 为流体压力,ρ为流体密度,v 为流体流速,g 为重力加速度,h 为高度。
在伯努利实验中,通过测量不同位置的压力、流速和高度,验证伯努利方程的正确性。
实验通常采用文丘里管或其他类似的装置,使流体在不同截面处的流速和压力发生变化。
三、实验设备(一)雷诺实验设备1、雷诺实验装置一套,包括水箱、水泵、玻璃管、调节阀、有色液体注入装置等。
2、秒表、尺子等测量工具。
(二)伯努利实验设备1、伯努利实验仪一套,包括水箱、水泵、文丘里管、测压管、调节阀等。
2、尺子、温度计等测量工具。
四、实验步骤(一)雷诺实验步骤1、打开水箱进水阀,向水箱注水,直至水位达到一定高度。
2、启动水泵,调节调节阀,使水流速度逐渐增加。
3、缓慢注入有色液体,观察有色液体在玻璃管中的流动状态,并记录不同流速下的流动特征。
4、测量不同流速下的流量和管径,计算雷诺数。
5、重复实验多次,以获取更准确的数据。
(二)伯努利实验步骤1、打开水箱进水阀,向水箱注水,直至水位达到一定高度。
伯努利实验指导书
伯努利方程实验指导书一、实验目的1、掌握流体流动中各种能量或压头的定义及其相互转化关系,加深对Bernoulli方程(能量方程)的理解,加深对流动过程中能量损失的了解;2、观察静压头、位压头、动压头相互转换的规律。
3、掌握流速、流量、压强等流动参量的实验测量技能。
二、基本原理1.不可压缩流体在管内作稳定流动时,由于管路条件的变化,会引起流动过程中三种机械能(位能、动能、静压能)的相应改变及相互转换。
对理想流体在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的。
2.对于实际流体,由于存在内摩擦,流体在流东时总有一部分机械能损耗。
3.以上机械能均可用测压管中的液柱高度表示。
当测压孔正对流体流动方向时测压管中的液柱高度为动压头和静压头之和,测压孔处流体的位压头由测压孔的几何高度确定。
三、实验装置图实验测试导管的结构尺寸见图二中标绘四、实验的操作方法1.将低位槽灌有一定数量的蒸馏水,关闭离心泵出口调节阀门及实验测试导管出口调节阀门而后启动离心泵。
2.逐步开大离心泵出口调节阀当高位槽溢流管有液体溢流后,调节导管出口调节阀为全开位置。
3.流体稳定后读取A、B、C、D截面静压头和冲压头并记录数据。
4.关小导管出口调节阀重复上述步骤。
5.分析讨论流体流过不同位置处的能量转换关系并得出结果。
6.关闭离心泵,实验结束。
五、使用设备时应注意的事项1.不要将离心泵出口调节阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。
2.当导管出口调节阀开大应检查一下高位槽内的水面是否稳定,当水面下降时应适当开大泵出口调节阀。
3.导管出口调节阀须缓慢地关小以免造成流量突然下降测压管中的水溢出管外。
4.注意排除实验导管内的空气泡。
5.离心泵不要空转和出口阀门全关的条件下工作。
六、观察现象及实验结果实验分析:(以009实验装置为例)A截面的直径14mm;B截面的直径28mm;C截面、D截面的直径14mm;以桌面为零基准面ZD =0。
流体力学实验指导书
实验一 能量转换实验一、实验目的1、熟悉流体在流动中各种能量和压头的概念及其转换关系,加深对伯努利方程的理解;2、观察流速随管径变化的规律。
二、实验原理1、全压头的分析:全压头为静压头与动压头之和,任意两截面间的能量方程为12222121w ,12v p v p Z Z h g 2g g 2g ρρ-++=++- 。
图一所示实验装置中,从实验可以观测到B 截面的全压头低于A 截面的全压头,这符合伯努利方程。
2、A 、B 截面间静压头的分析:由于两截面同处于一水平位置,B 截面面积比A 截面面积大。
这样B 处的流速比A 处小。
设流体从A 流到B 的压头损失为w ,A B h -以A-B 截面列伯努利方程。
22A AB Bw ,A B p v p v ()()h g 2g g 2gρρ-+=++ B A Z Z =22B A A B w ,A B p p v v ()()h g g 2g 2gρρ--=-- 即两截面处的静压头之差是由动压头减小和两截面间的压头损失来决定。
3、C 、D 截面间静压头的分析:出口阀全开时,在C 、D 间列伯努利方程,由于C 、D 截面积相等即动能相等,则: CD C D w ,C D p p ()(Z Z )h g gρρ--=-- C 、D 截面静压头的增大值,决定于)(D C Z Z -和w ,C D h -当)(D C Z Z -大于w ,C D h -时,静压头的增值为正,反之,静压头的增值为负。
4、压头损失的计算:以出口阀全开时,从C 到D 的压头损失w ,C D h -为例,在C 、D 两截面间列伯努利方程得:22C CD DC D w ,C D p v p v Z Z h g 2g g 2gρρ-++=+++ 所以,压头损失的算法之一是用全压头来计算: 22C CD D w ,C DC D p v p v h ()()(Z Z )g 2gg 2g ρρ-⎡⎤=+-++-⎢⎥⎣⎦压头损失的算法之二是用静压头来计算:(D C V V =) C Dw ,C D C D p p h ()(Z Z )g gρρ-=-+- 三、实验装置与设备参数 1、设备参数截面直径()mm以D 截面中心AB CD为基准面()mm第一套142814140=D ZA Z .、B Z 、110=C Z第二套142814140=D ZA Z .、B Z 、120=C Z2、实验装置图一 能量转换实验装置图四、实验方法与注意事项 1、实验方法:(1)向低位水槽灌注一定数量的蒸馏水,关闭水箱进水调节阀门及实验测试导管出口调节阀门,然后启动离心泵。
流体力学实验指导书
实验一 雷诺实验一、实验目的1、增加对两种流态的感性认识.2、掌握测雷诺数的方法.二、实验原理实际流体在同一边界条件下流动时,由于速度不同,产生不同的流动形态-层流和紊流 当流速较小时,液体质点做有条不紊的线状运动,彼此互不混杂,称这种流动状态为层流. 当流速增加到某一定数值后,液体质点在沿管轴方向运动过程中,互相混掺,呈杂乱无章的运动称此流为紊流.运动的流体,受惯性力和粘滞力的作用,当惯性力占主导地位时,一般为紊流.当粘滞力占主导地位时,一般呈现层流.不同的流动类型,具有不同的阻力规律.在层流时水头损失∆P /γ与平均流速V 成正比,而在紊流时∆P /γ则于V n 成正比例,其中指数值n 在.1.75~2.0之间. 判别液体流动型态的准则是被称之为雷诺数的无因次数R еν/Re Vd =式中:Re ――雷诺数(无因次数) V ――液体断面平均速度(m /s ) d --管径 (m)ν――液体的运动粘度系数(㎡/s )当ν/Re Vd =≤2000时为层流, Re >2000为紊流。
由于ρμν/= 所以 μρ/Re Vd =.μ――液体的动力粘度系数,单位是Pa.•s,即(N•s /㎡)三、实验设备1、雷诺实验装置1套;2、量筒1个;3、温度计1支;4、秒表1块.四、实验步骤1、试验前的准备工作关闭泄水阀门D,打开进水阀C,并调节到整个试验过程中都有溢流水从溢流板溢流而过,以保证水箱中有稳定的水头.2、试验前的观察将阀门A微微开启,同时微开阀门B,使颜色水与清水同时从玻璃管中流过,调节到颜色水呈一条细线.此时即为层流状态,然后再将阀门A逐渐开大,直至颜色水纹线破碎,并将清水完全掺混,此时为紊流状态.3、由层流到紊流的测试<1>调节阀门A,使流动成为层流状态.注意颜色水纹线应达到清晰稳定.<2>逐渐地缓缓开启阀门A.同时注意玻璃管中段颜色水纹线的变化.当颜色水纹线开始破碎,分散成许多细线(偶尔出现集中的颜色水线)时,即表示已达到紊流状态,即上临界状态,此时立即停止开启阀门A的工作.<3>待水流稳定后,则可用量筒和秒表,应用体积法测定管内流量Q.<4>测定水的温度,以便查表确定水的运动粘性系数ν值.<5>将(2)至(4)步重复做三次4、由紊流到层流的测试<1>先将管中水流调节到紊流状态.<2>逐渐地缓缓关闭阀门A,同时注意玻璃管中段水流状态的变化,当开始出现一条颜色线时,即表示已达到层流状态或者说已达到了下临界状态,立即关掉阀门A的工作,并观察颜色水线是否连续稳定.<3>待颜色水纹线连续而稳定后,仍用体积法测算管中的流量Q.<4>测定水温.<5>将(2)至(4)步重复做三次五、实验注意事项1、调节阀门A时必须缓慢进行,并且在调节过程中阀门只允许往一个方向进行,中间不可逆转.2、为了避免玻璃管出口和入口对水流状态的影响,观察应以中段为准.3、在整个试验过程中要特别注意保持安静,以防环境对试验的干扰.六、实验报告1、对所测数据进行处理,求上临界雷诺数与下临界雷诺数所测数据如下:数据处理:分析误差产生原因:七、实验体会实验二 局部阻力损失测试实验一、实验目的1、 测定管路突然扩大局部阻力系数值,并与理论公式ξ=(D 2/d 2-1)2的计算值比较2、 通过本实验掌握一般局部阻力系数的测定。
雷诺实验和伯努利实验报告
雷诺实验和伯努利实验报告一、实验目的雷诺实验的目的在于观察流体在管内流动时的不同流动形态,测定临界雷诺数,并了解其与流动状态之间的关系。
而伯努利实验则是为了验证伯努利方程,直观地理解流体流动过程中能量的转换规律。
二、实验原理(一)雷诺实验雷诺数(Re)是用来判断流体流动状态的无量纲数,其表达式为:Re =ρvd/μ,其中ρ 为流体密度,v 为流体平均流速,d 为管道直径,μ 为流体动力粘度。
当雷诺数小于某一临界值时,流体作层流流动;当雷诺数大于该临界值时,流体作湍流流动。
(二)伯努利实验伯努利方程表示为:p +1/2ρv² +ρgh =常量,其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
该方程表明在理想流体稳定流动中,单位体积流体的压力能、动能和势能之和保持不变。
三、实验装置(一)雷诺实验装置主要由水箱、玻璃管、调节阀、颜料注射管、量筒等组成。
水箱用于储存实验用水,玻璃管用于观察流体流动形态,调节阀用于调节水的流速,颜料注射管用于注入颜料以显示流体质点的运动轨迹。
(二)伯努利实验装置包括水箱、管道、测压管、调节阀等。
水箱提供水源,管道内不同位置设置测压管以测量压强,调节阀控制水的流量和流速。
四、实验步骤(一)雷诺实验1、打开水箱进水阀,使水箱充满水。
2、缓慢调节调节阀,使水流速度逐渐增大,同时通过颜料注射管注入颜料,观察流体在玻璃管中的流动形态。
3、当流动形态发生变化时,记录此时的流速,并测量水的温度,计算雷诺数。
4、重复上述步骤,多次测量不同流速下的流动形态和雷诺数。
(二)伯努利实验1、开启水箱进水阀,使水箱水位达到一定高度。
2、调节调节阀,改变水流速度。
3、观察不同位置测压管中的液面高度,记录相应的数据。
4、分析测压管液面高度的变化,验证伯努利方程。
五、实验数据与结果(一)雷诺实验通过多次实验,得到了不同流速下流体的流动形态和对应的雷诺数。
当雷诺数小于 2000 时,流体作层流流动,流体质点沿直线运动,层次分明;当雷诺数在 2000 至 4000 之间时,流动处于过渡状态,流体质点开始出现不规则运动;当雷诺数大于 4000 时,流体作湍流流动,流体质点杂乱无章地运动。
流体力学实验指导书
流体力学实验流体力学实验主要目的是使学生了解流体力学的基本实验方法和研究方法。
掌握基本实验技术和技能,增强对流体运动的直观认识,加深理解并掌握流体力学的基本知识和原理,通过实验训练进一步培养学生分析问题和解决问题的能力,培养学生的创新意识、创新精神和创新能力,为学生今后从事环境工程领域的科学研究和技术开发工作打下坚实的基础。
本实验适应环境工程、环境科学、给水排水、建筑环境工程等专业的实验教学。
本实验共开设7个实验项目,分别为静水压力实验、伯诺里方程式的验证、雷诺实验、管路沿程阻力实验、管路局部阻力实验、水跃实验和宽顶堰实验。
实验类型包括验证性实验和设计性实验,可根据课程教学的进度合理安排实验时间。
实验以小组为单位进行,每组5~6人。
实验前,学生必须认真阅读实验指导书,了解实验的目的和原理,明确本次实验中要测定什么量,最终要求什么量,用什么实验方法,使用什么仪器,控制什么条件,需要注意什么问题。
实验过程中,要求学生勤于动手,敏锐观察,细心操作,准确记录原始数据,经教师检查并签名,实验及其原始数据记录才有效。
本实验开始前,一些常见的共同性的的问题在此先作一下说明:1、我们认为实验中的工作液体——水是不可压缩的,即9807v =牛顿/米3=常数。
2、水的粘性系数随温度而变。
通常我们使用的是运动粘性系数v μρ=(μ为水的动力粘性系数,ρ为水的密度)。
运动粘性系数v 与温度的关系见实验三中所述。
3、流体的压力是采用测压管来测量,读数据应正视测压管的液柱面(如水的自由表面)这样才能读数准确。
因数据在大多数情况下仅读取其压差值,此时可不考虑测压管的毛细现象对读取数据的影响。
4、液体流量的测定。
通常在实验中采用下列方法: 1)体积法:用量水桶和秒表来测定;2)重量法:用盛水桶磅秤和秒表来测定,也可用电子秤; 3)差压法:用文德里管、毕托管、管中孔板或管嘴等来测定;4)堰流体:利用各种形式的水堰来测定,本室多用三角形量水堰,如下图所示。
流体力学实验指导书
流体力学实验指导书2013 年 5 月前言流体力学实验是《流体力学》课程教学的重要环节。
通过实验,可以对课堂讲授的理论知识加以巩固和进一步的验证,加强理论和实践的结合,同时可以培养学生实际动手能力和分析问题、解决问题的能力,为今后的科学研究打下基础。
本实验指导书是根据教学大纲的要求,并结合实验室的具体设备编写的。
实验内容包括水静压强实验,不可压缩流体定常流动动量方程实验,雷诺实验,管路沿程阻力实验,管路局部阻力实验,毕托管测速实验,文丘里流量计实验。
这些实验可以使学生掌握流体力学的实验技术和测量技巧,为进行科学实验研究做准备。
由于编者水平有限和实验设备的限制,书中不足之处在所难免,敬请读者批评指正。
编者2013年4月目录实验1 水静压强实验 (1)实验2 不可压缩流体定常流动动量方程实验 (3)实验3 雷诺实验 (6)实验4 管路沿程阻力实验 (8)实验5 管路局部阻力实验 (12)实验6 毕托管测速实验 (15)实验7 文丘里流量计实验 (17)实验8 孔口与管嘴出流实验 (18)2图1.1 水静压强实验装置图实验1 水静压强实验一、实验目的1.加深理解流体静力学基本方程及等压面的概念。
2.理解封闭容器内静止液体表面压强及其液体内部某空间点的压强。
3.观察压强传递现象。
二、实验装置实验装置如图1.1所示。
三、实验原理对密封容器(即水箱)的液体表面加压时,设液体表面压强为P 0,则P 0>P a ,a p 为大气压强。
从U 形管中可以看到有压差产生,U 形管与密封水箱上部连通的一面,液面下降,而与大气相通的一面,液面上升。
密闭水箱内液体表面压强0p 为:h p p a γ+=03 式中γ——液体的重度;h ——U 形管中液面上升的高度。
当密闭水箱内压强P 0下降时,U 形管内的液面呈现相反的现象,即P 0<P a ,这时密闭水箱内液面压强0p 为:h p p a γ-=0式中 h ——U 形管中液面下降的高度。
流体力学实验指导书
第一节雷诺实验一、实验目的1.观察流体在管道中的两种流动状态;2.测定几种流速状态下的雷诺数,并学会用质量测流量Q方法;3.了解流态与雷诺数的关系,并验证下临界雷诺数Re cr= 2000。
二、实验设备流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺实验管、阀门、颜料水(红墨水)盒及其控制阀门、上水阀、出水阀、水泵和计量水箱等,此外,还有秒表、水杯、电子称及温度计,如图3-1-1所示。
进水1.稳压水箱2.颜色罐3.实验管4.计量水箱5. 水箱图3-1-1 雷诺实验装置三、实验原理层流和紊流的根本区别在于层流各流层间互不掺混,只存在粘性引起的各流层间的滑动摩擦力;紊流时则有大小不等的涡体动荡于各流层间。
当流速较小时,会出现分层有规则的流动状态即层流。
当流速增大到一定程度时,液体质点的运动轨迹是极不规则的,各部分流体互相剧烈掺混,就是紊流。
反之,实验时的流速由大变小,则上述观察到的流动现象以相反程序重演,但由紊流转变为层流的临界流速νcr小于由层流转变为紊流的临界流速νcr´。
称νcr´为上临界流速,νcr为下临界流速。
雷诺用实验说明流动状态不仅和流速ν有关,还和管径d、流体的动力粘滞系数µ、和密度ρ有关。
以上四个参数可组合成一个无因次数,叫做雷诺数,用Re表示。
Re =ρνd/µ=νd/υ(3-1-1)对应于临界流速的雷诺数称临界雷诺数,用Re cr表示。
Re cr=ρνcr d/µ=2000 (3-1-2)工程上,假设流速时,流动处于紊流状态,这样,流态的判别条件是层流:Re=ρνd/µ < 2000紊流:Re=ρνd/µ > 2000四、实验步骤1.实验前准备工作首先,实验台的各个阀门置于关闭状态。
开启水泵,全开上水阀门,使水箱注满水,再调节上水阀门,使水箱的水位保持不变,并有少量流体溢流。
m,并作记录。
流体力学实验指导书20151007.(DOC)
工 程 流 体 力 学实验指导与实验报告姓 名:学 号:班 级:西南科技大学制造科学与工程学院中心实验室二零一五年十月目录实验说明 (I)TXZH-3型流体力学综合实验装置说明.............................................................................................. I I一、装置组成 (II)二、实验内容 (II)三、实验台参数 (II)四、实验装置组成 (III)实验一雷诺实验 (1)一、实验目的 (1)二、实验装置 (1)三、实验原理 (1)四、实验方法与步骤 (1)实验报告一雷诺实验 (4)1. 实验数据表 (4)2. 计算过程 (4)3. 实验结果分析 (5)4. 思考题 (5)实验二伯努利方程实验 (6)一、实验目的 (6)二、实验装置 (6)三、实验原理 (6)四、实验方法和步骤 (7)五、实验数据记录 (8)实验报告二伯努利方程实验 (9)1. 实验数据表 (9)2. 计算过程 (9)3. 实验结果分析 (10)4. 思考题 (11)实验三文丘里实验 (12)一、实验目的 (12)二、实验装置 (12)三、实验原理 (12)四、实验操作与步骤 (13)五、实验数据记录 (13)实验报告三文丘里实验 (14)1. 实验数据表 (14)2. 计算过程 (14)3. 实验结果分析 (15)4. 思考题 (15)实验说明工程流体力学实验作为《液压与气压传动》课程的随课实验,开设该实验的目的是通过本实验的教学,使学生初步了解流体力学的研究方法,学习流体力学实验中有关参数(如温度、流量、水位、测压管水头、总水头等)的测量;培养学生观测实验现象、正确记录与处理数据和运用所学知识分析实验结果的可靠性的能力。
通过实验验证工程流体力学主要理论的正确性,巩固加深对这些理论的理解。
培养学员严肃、认真的科学态度和严格、细致的工作作风。
雷诺实验和伯努利实验报告
雷诺实验和伯努利实验报告化工原理实验柏努利实验实验七雷诺实验一、实验目的1、观察液体流动时的层流和紊流现象。
区分两种不同流态的特征,搞清两种流态产生的条件。
分析圆管流态转化的规律,加深对雷诺数的理解。
2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。
绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。
进一步掌握层流、紊流两种流态的运动学特性与动力学特性。
3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。
学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二、实验原理1、液体在运动时,存在着两种根本不同的流动状态。
当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。
当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。
这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。
液体运动的层流和紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断:Re=Vd/νRe称为雷诺数。
液流型态开始变化时的雷诺数叫做临界雷诺数。
在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。
在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。
2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知:z1?p1??a1V12gp12?z2?p2??a2V22g2?hf 因为管径不变V1=V2 ?hf?(z1?)?(z2?p2?)?△h所以,压差计两测压管水面高差△h即为1-1和1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速V?QA,作为lghf和lgv关系曲线,如下图所示,曲线上EC段和BD段均可用直线关系式表示,由斜截式方程得:lghf=lgk+mlgv lghf=lgkvm hf=kvm m为直线的斜率式中:m?tg??lghf?lghf21lgv2?lgv1实验结果表明EC=1,θ=45°,说明沿程水头损失与流速的一次方成正比例关系,为层流区。
流体力学实验指导书
实验一流动演示实验(一)雷诺实验一、实验目的1、观察流体在管内流动的不同流态。
2、层流和湍流的判别。
二、实验原理流体流动有两种不同流态,即层流和湍流。
流体作层流流动时,其流体质点作平行于管轴的直线运动,喘流时流体质点在沿管轴流动的同时还做着杂乱无章的随机运动。
雷诺数是判断流动型态的特征数。
若流体在圆管内流动,雷诺数可用下式表示Re =μρ⋅⋅ud式中:d ——管内径,m;u ——流速, m∕s,ρ——流体密度, k g∕m³,μ——流体黏度,Pa•s。
一般,Re < 2000时,流动型态为层流;Re > 4000时,流动为喘流。
在两者之间时,有时为层流,有时为喘流,流动型态与环境有关。
对于一定温度下的流体,在特定的圆管内流动时,雷诺数仅与流速有关。
本实验通过改变水在管内的流速,观察流体在管内流动型态的变化。
三、实验装置实验装置见图1-1。
图中4为高位槽,实验时水由此高位槽进入玻璃管5。
槽内设有溢流槽3,用以维持平稳、恒定的液面。
实验时打开流量控制阀7,水即由高位槽进入观察用的玻璃管5中,着色水由高位玻璃瓶1经阀9调节流量,通过针形孔进入玻璃管5中心处。
调节阀门7和阀门9,改变流体流速,可以在玻璃管5内观察到不同的流动形态。
流量很小,流体处于层流时,着色水的流动呈一条直线;随着水流量的逐渐加大,着色水由直线开始抖动,继而着色水被扰动成波状前进;随着水流量的继续加大,着色细线变为螺旋前进,再增大流量则出现断裂、旋涡、混合,最后完全与水流主体混在一起,整个水都染上了颜色。
四、实验内容和主要实验步骤1、打开进水阀,向高位槽4送水,使高位槽内的水成溢流状态,以保持高位槽内液位恒定。
2、关闭水流量控制阀7,打开着色水流量控制阀9,观擦着色此时在玻璃管中的状态。
当着色水流出5cm左右后,缓慢打开水流量控制阀7,使水流量尽可能的小,观察层流时流速分布曲线的性状及层流时着色水的流动情况。
3、待玻璃管内的层流流动稳定后,缓慢调节流量控制阀7, 逐渐增大水的流量,观察着色水的流动有何变化,并测定流量,计算不同流动型态时的雷诺数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程流体力学实验指导书河北理工大学给排水实验室编者:杨永2014 . 5 . 12适用专业:给排水工程专业、建筑环境与设备工程专业实验目录:实验一:雷诺实验实验二:伯努利方程实验实验三:阻力及阻力系数测定实验实验四:孔口管嘴实验实验操作及实验报告书写要求:一、实验课前认真预习实验要求有预习报告。
二、做实验以前把与本次实验相关的课本理论内容复习一下。
三、实验要求原始数据必须记录在原始数据实验纸上。
四、实验报告一律用标准实验报告纸。
五、实验报告内容包括:1. 实验目的;2. 实验仪器;3. 实验原理;4. 实验过程;5. 实验数据的整理与处理。
六、实验指导书只是学生的指导性教材,学生在写实验报告时指导书制作为参考,具体写作内容由学生根据实际操作去写。
七、根据专业不同以及实验学时,由任课教师以及实验老师选定实验内容。
建筑工程学院给排水实验室编者:杨永 2014.5实验一 雷诺实验指导书一、实验目的:(一)观察实验中实验线的现象。
(二)掌握体积法测流量的方法。
(三)观察层流、临界流、紊流的现象。
(四)掌握临界雷诺数测量的方法。
二、实验仪器:实验中用到的主要仪器有:雷诺实验仪、1000mL 量筒、秒表、10L 水桶等三、实验原理:有压管路流体在流动过程中,由于条件的改变(例如,管径改变、温度的改变、管壁的粗糙度改变、流速的改变)会造成流体流态的变化,会出现层流、临界流、紊流等现象。
英国科学家雷诺(Reynolds )在1883年通过系统的实验研究,首先证实了流体的流动结构有层流和紊流两种形态。
层流的特点是流体的质点在流动过程中互不掺混呈线状运动,运动要素不呈现脉动现象。
在紊流中流体的质点互相掺混,其运动轨迹是曲折混乱的,运动要素发生脉动现象。
雷诺等人经过大量的实验发现临界流速与过流断面的特征几何尺寸管径d 、流体的动力粘度μ和密度ρ有关,即()ρμ、、d f u k =。
由以上四个量组成一个无量纲数,称为雷诺数e R ,即νμρudud R e ==其中:u为流速,ρ为流体的密度,μ为流体的动力粘度,ν为运动粘度。
雷诺数可以作为判别流态的准则。
雷诺数公式右边的分母、分子分别反映了流动流体的惯性力和粘滞力的比值。
R小,反映了粘滞力作用大,对流体质点运动起约e束作用,到一定程度,质点互不掺混,呈层流;反之,则呈现紊流状态。
四、实验步骤:打开开关使水箱充水至水位溢流,经稳定后,微开启调节阀,并注颜色水人玻璃管内,便颜色水流成一直线,通过颜色水质点的运动观察管内水流的层流流态;然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征;待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。
打开出水阀门让水流经实验管路,在此过程中有小到大逐渐开打阀门。
在阀门开起比较小的情况下,水流在管路中成一条线性流动,水流在横向断面上没有掺混的现象,这种状态下就是层流状态。
然后随着阀门的不断开大,水流开始产生一定的波动现象,出现比较稳定的脉动现象,这时水流达到临界状态,此时的临界雷诺数值达到2000—20000,数值变化范围比较大,没有实际应用价值。
将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减少(不许增大),当流量调到使颜色水在全管中刚刚呈现为一稳定直线时,即为下临界状态。
注意:每调节阀门一次,均需等待稳定几分钟,并且流量不可开得太大,以免水箱中的水体引起紊动。
若因水箱中的水体紊动而干扰进口水流时需关闭阀门,静置3~5min,再按步骤重复进行实验。
a. 待管中出现临界状态时,用体积法测定流量,此操作重复两次。
b. 根据所测流量计算下临界雷诺数。
c. 重新打开调节阀,使其形成完全紊流,按照上述步骤测量下临界雷诺数3次。
d. 同时由水箱中的温度计测量水温,根据公式求得水的运动黏度。
e. 记录实验管路的管径,量测水温。
重复以上操作3-5次(要求每位同学最少调试一次),然后关闭进水阀、出水阀、墨水的阀门。
五、实验数据整理及数据处理:实验数据需要记录当时做实验的水温,管路管径,出水体积以及时间。
根据公式νμρudud R e ==计算临界值雷诺数。
运动粘度可以根据水温通过以下公式进行计算。
2000221.00377.0101775.0t t ++=ν表1-1 管路管径: mm 水温: ℃次数体积V(ml )时间t(s ) 流量Qml/s 流速m/s 平均流速m/s 雷诺数12345总平均雷诺数六、实验问题:1. 实验中常常会出现临界水流不稳定的现象2. 实验流量的计量用体积法记录,量桶刻度观察时,要放在比较平的地方。
七、实验中应当注意的事项:1. 实验中因为临界状态的不稳定,因此要求在实验过程中,不能碰实验仪器。
2. 在实验过程中可以打开实验管路下面灯箱的管灯,但是应当注意不要使水流进灯箱。
八、实验报告要求:1. 实验报告必须按照实验要求写全所有的项目2. 实验报告必须用标准的实验报纸3. 实验的原始数据写在实验报告原始数据记录纸上,注意实验原始数据是没有经过处理的原始记录数据。
4. 实验数据的处理要求有根据,注意和实验原始数据区分开。
九、实验原始数据记录表格:表1-1 管路管径:mm 水温:℃组数次数体积V(ml)时间t(s)流量Qml/s(一)12 (二)12 (三)12 (四)12 (五)12实验二 伯努利方程综合实验一、实验目的:1. 加深对伯努利方程的理解。
2. 观察流体流经能量方程实验管的能量转化情况。
3. 对实验中出现的能量转化的现象进行分析。
4. 掌握一种测量液体流速的原理。
5. 验证静压原理。
6. 掌握数据的记录、整理、处理的方法。
7.了解伯努利方程实验的实验原理。
8.掌握浮子法测流量的方法。
二、实验内容:1. 验证静压原理同时进行压力管的校正。
2. 掌握毕托管测定流速的原理和方法。
3. 掌握运用体积法测定平均流量的方法。
4. 验证伯努力方程。
三、实验原理:在实验管路中沿管内水流方向取i 个过水断面,可以列出进口断面l 至另一断面i 的能量方程式:i w i i i i w h g v g p z h g vg p z g v g p z ~122~12222221111222+++=Λ=+++=++αραραρ 3.1取α1=α2=Λ=1,选好基准面,从已设置的各断面的测压管中读出管路的流量,即可算出断面平均流速v 及 从而即可得到各测压管水头和总水头 (α为各断面动能修正系数)。
四、实验装置:伯努力方程实验装置图五、实验方法与步骤:①熟悉实验设备,了解各测压管与各测点的对应关系,以及普通测压管与毕托管测压管的区别。
②打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平;若不平则需查明原因,并加以排除直至调平。
③打开出水阀观察测压管线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。
④调节出水阀的开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量。
⑤调节出水阀的开度1~2次,按步骤④重复测量,并使其中一次为阀门的最大开度。
六、实验数据记录及处理:1. 验证静压原理:打开进水阀门,是水箱内的溢流堰口出水,以保证水箱内水位稳定,保持一个定水头。
关闭出水阀门以及进水阀门,此时能量方程测压管上各个测柱的高度应该相等。
因为水在管路中没有流动,没有能量损失,因此根据静压压力传递原理各个液柱的高度应该相等。
即在静止不可压缩、均匀分布重力流体中,任意点单位重量的总能量保持不变。
但实际中,由于各种实际条件的不同,使得液柱高度不同,因此需要对液柱进行校正。
关闭和打开出水端水口时观察测压管液柱的升降速度,即观察测压管内液柱哪个先上升,哪个先下降。
表2-1静压强液柱校正数据液柱号 1 2 3 4 5 6 7 8 9 10左 右 左 右 左 右 左 右 左 右 左 右 左 右 左 右 左 右 左 右液柱高度校正值2. 毕托管测速原理:毕托管是广泛应用于测量水流和气流中流速的一种仪器,管段前段开一小孔正对水流方向。
内部通过一条管路连接到测压管上。
管的侧壁开若干小孔,小孔通过管壁的环路连另一个测压管。
当测定水流时两管连接的测压管的水面差反映了开口处的压力差。
液体流进正对水流的开口段,水流开始由于压强的存在水柱液面上升,直到液柱高度停止上升,读取此时的压力值。
毕托管测速是根据伯努力方程推导得出。
2~1222222111122w h gvg p z g v g p z +++=++αραρ 3.2式中:⑴⑸本实验中认为开口在一个水平面上,因此式子两端的Z 值认为相等。
⑵g p ρ1 , gpρ2 通过测压管的制读出来。
⑶ 正对水流的进口处由于管路的作用,此处的动能转化为势能体现在测压管上;侧避开孔所连接的测压管,由于对水流没有阻挡作用因此此处的总能量有水流的动能以及此处的静压。
⑷ 2~1w h 在实验中水头损失不考虑 因此通过上述分析,2.2式可以化简为:gvg p g p 222221αρρ+= 3.3 gp g p gv ρρα212222-=3.4 因此可以运用毕托管测量流速:⎪⎪⎭⎫⎝⎛-=g p g p g u ρρ212 3.5因此可以运用2.5公式进行速度的求解。
要求有计算过程和计算数值(见表2-2中平均流速) 3.流量测定原理: ⑴浮子法测定流量原理:毕托管测量流速测得的为管路中点的流速,由于有压管路中阻力的存在,根据层流状态知道,水流在有压管路中流态呈抛物线。
根据数学微分方程求积分知道平均流速为最大点流速的2倍。
本实验中流量的测量运用浮子法求流量,然后根据连续流原理,求解管路的平均流速。
当水的液面增长到下面的小浮子的时候,由于小浮子的感压会传输信号给记录装置,当上面小浮子感受压力以后,产生传输信号给记录装置停止记录数据。
记录装置回在一定的体积下记录实验时间,从而计算出流量。
tVQ =3.6 241D QA Q u π==3.7 ⑵文丘里管测定流量的原理:在文丘里管流量计入口取1-1断面,在其喉部收缩断面处取2-2断面,由于流量计水平放置,因此z 1=z 2,则可以列能量方程(不计水头损失,因为喉部为光滑曲面,局部水头损失较小,同时由于文丘里管较短,沿程水头损失可忽略)22112222p p g gννγγ+=+…………………………… 3.8式 根据连续性方程得到:1122w w Q νν==…………………………… 3.9式 解(6)式(7)式,可以得出计算流量的公式21222121w p p Q gw w γ-=∙⎛⎫- ⎪⎝⎭或 212421421d p p Q gd d πγ-=∙⎛⎫- ⎪⎝⎭式中:12p p γ-——两断面间测压管水头差,也就是测压管内的液面高度差Δh 。