船用导航雷达
船舶导航雷达(可编辑)
船舶导航雷达船舶导航雷达应用于船舶导航的雷达称为船舶导航雷达Shipborne Navigation Radar 亦称航海雷达 Marine Radar 或船用雷达在本教材中简称雷达IMO在雷达性能标准中指出雷达通过显示其他水面船只障碍物和危险物导航目标和海岸线等相对于本船的位置有助于安全导航和避免碰撞雷达能够及时发现远距离弱小目标精确测量本船相对目标的距离和方位确定船舶位置引导船舶航行通过传感器的支持雷达还具备了目标识别与跟踪地理参考信息显示等功能能够更好地避免船舶碰撞保障航行安全第一节雷达目标探测与显示基本原理一雷达目标测距测方位1.雷达图像特点雷达通过发射微波脉冲探测目标和测量目标参数习惯上称雷达发射的电磁波为雷达波微波具有似光性在地球表面近似以光速直线传播遇到物体后雷达波被反射在雷达工作环境中能够反射雷达波的物体如岸线岛屿船舶浮标海浪雨雪云雾等等统称为目标这些目标的雷达反射波被雷达天线接收称为目标回波回波经过接收系统处理调制屏幕亮度最终在显示器上显示为加强亮点回波距离和方位的测量都是在显示器上完成的1 雷达图像基本元素雷达显示系统将雷达传感器探测到的本船周围目标以平面位置图像极坐标系显示在屏幕上早期的雷达显示器也田此被称为PPI如图6-9-1所示其中图a 为海面态势示意图本船周围有一岛屿另有一目标船与本船相向行驶图b 为海平面俯视图可以看出本船航向000°目标船正航行在本船右舷本船左舷后约245°处有一岛屿图 c 为雷达屏慕扫描中心起始点为本船参考位置又称为统一公共基准点 Consistence common reference pointCCRP 作为IBS中的重要组成部分雷达测量目标所得到的数据如距离方位相对航向和航速本船与目标船的最近会遇距离 Distance to the closest point of approachCPA 和航行到最近会遇距离所需时间 Time to the closest point of approachTCPA 等都必须参考CCRP这个位置点在传统的雷达上通常对应为雷达天线辐射器的位置最新性能标准要求CCRP可以由驾驶员根据需要设置典型位置通常为驾驶台指挥位置图6-91中雷达量程为12n mile即在雷达屏幕上显示了以本船为中心以12n mile 为半径本船周围海域的雷达回波在雷达屏幕上HL Head Line 称为船首线其方向由本船发送艏向装置 THD 或陀螺罗经驱动指示船艏方向发自于扫描起始点的径向线称为扫描线扫描线沿屏幕顺时针匀速转动转动周期与雷达天线在空间的转动周期一致屏幕上等间距的同心圆称为固定距标圈 Range RingRR 每圈间隔2n mile用来估算目标的距离与固定距标圈同心的虚线圆是活动距标圈 Variable Range MarkerVRM 它可以由操作者随意调整半径借助数据读出窗口的指示测量目标的准确距离EBL Electronic Bearing LineEBL 称为电子方位线可以通过面板操作控制其在屏幕的指向借助数据读出窗口的指示或屏幕边缘显示的方位刻度测量目标的方位很多雷达将VRM/EBL联动称为电子距离方位线 Electronic range/bearing lineERBL 可以通过一次性操作同时测量目标的距离和方位现代雷达用平面光栅显示器取代PPI如图6-9-2所示雷达回波图像区域仍然采用图6-91c 的形式在图像周围的功能区域大致可以划分为操作菜单状态指示和数据显示等区域屏幕上除了显示岛屿岸线导航标志船舶等对船舶导航避碰安全航行有用的各种回波之外还无法避免地显示出各种驾驶员不希望看到的回波如海浪干扰雨雪干扰同频干扰云雾回波噪声假回波等一个专业的雷达观测者应能够在杂波干扰和各种复杂屏幕背景中分辨出有用回波引导船舶安全航行2 雷达图像的特点雷达图像不同于诲图也不同于视觉图像设备自身的性能微波辐射的特性大气传播的条件目标的反射能力以及周围环境的变化都会影响雷达图像的形成与质量为了对雷达图像特点建立起感性认识下面以图691为例简单列举雷达图像的显示特点待详细研究了雷达的原理和目标的观测特性后我们对雷达图像的特点才会有全面的了解如果以本船雷达天线位置为中心以12nmile为半径的圆域及其所包含的所有目标按照比例缩小到雷达屏幕大小此时这个圆域内的所有海面和陆地的目标并不完全与雷达探测到的回波图像相符也就是说.雷达探测到的回波图像与真实目标相比可能会有很大的变形比如表现为1 雷达回波图像类似目标迎向天线面的垂直投影2 雷达只能操测目标的前沿后沿被遮挡的部分无法探测和显示3 目标的低矮部分如沙滩可能会被遮挡或回波微弱也无法被探测到4 雷达发射脉冲的宽度会使探测到的回波发生后沿拖尾现象回波与实际目标形状不相符5 雷达的辐射波束宽度引起回波沿圆周方向扩展造成回波向左右扩展6 雷达屏幕像素尺寸使回波的位置向周围扩展7 船舶运动涌浪波动及雷达设备因素引起回波位置闪烁不定目标边缘不清晰8 地球曲率影响雷达地平距离远距离的高大目标只有顶端能够被探测到图像与目标原貌甚至完全不同9 目标对雷达波的反射能力不同造成回波强度差别较大图像明暗不均10 由于气象海况以及船舶吃水的变化即使在同一海域船舶不同航次回波图像也会有差别11 雷达图像是动态图像观测习惯和个人操作能力不同对图像的解释因人而异12 以上所有因素综合影响使雷达图像经常很难与海图和视觉影像对应2.雷达测量目标基本原理雷达通过测量目标的距离和方位确定且标相对于本船的位置并在此基础上实现雷达定位导航和避碰1 雷达测距原理如果雷达发射脉冲往返于雷达天线与目标之间的时间为Δt电磁波在空间传播的速度为C约3×108ms则目标的距离R C·Δt2电子从雷达回波图像区域中心扫描到边缘的时间扫描线长度正好对应于雷达所选用量程的电磁波往返传播时间.对于图6-9-1中的例子12n mile的量程相当于雷达波传播24nmile路程所花费的时间即扫描线长度应为148.2μs 这样在12n mile以内的任意海上目标与本船的距离就与屏幕上目标显示的位置到回波图像区域中心的位置准确对应利用距离测量工具 RR或VRM 就能够估算或测量目标的位置2 雷达洲方位原理雷达天线是定向圆周扫描天线.在水平面内天线辐射宽度只有1°左右所以对于每特定时刻雷达只能向一个方向发射同时也只能在这个方向上接收回波雷达天线在空中以船艏为方位参考基准环360°匀速转动典型转速大约为20 rpm 雷达方位扫描系统能够以优于0.1°的方位量化值将天线相对于船艏的转动方位准确地记录在存储器中并按照显示的要求从存储器中读出数据送到屏幕显示于是天线所探测目标的相对方位就能够准确地显示在屏幕上借助于电子方位线就可以测量出目标的舷角本船的航向是可以知道的因此也就可以得到目标的真方位了二雷达显示方式雷达设有不同的图像显示方式以满足不同航行环境下的雷达观测需要首先从船舶运动参照系划分雷达图像的运动方式可以相对于本船.也可以相对于水面或相对于地面前者称为相对运动 RMRelative Motion 显示方式后者称为真运动 TMTrue Motion 对水真运动和对地真运动显示方式此外在不同的雷达图像运动方式下根据图像的指向方式即从船艏指向划分雷达显示方式可以进一步分为船首向上相对方位船首向上真方位真北向上和航向向上等雷达图像指向方式雷达图像的运动方式与指向方式结合形成多种多样的显示方式如下不同的显示方式方便不同航行环境下的雷达观测驾驶员应该熟练掌握和灵活运用各种显示方式的特点保证船舶航行安全l.相对运动 RM 显示方式所谓相对运动是指无论本船是否运动在雷达屏幕上代表本船参考位置的扫描中心固定不动所有目标都做相对本船的运动即目标在屏幕上的运动是其各自的真速度矢量与本船真速度矢量之差特别地与本船同向同速的船是固定不动的海上的固定目标则与本船等速反向运动此时如果扫描中心与雷达图像区域的几何中心重合则称为中心显示方式否则称为偏心显示方式偏心显示时通常使舶艏方向有更大的显示视野以便于观测如图6-9-2所示1 相对运动船首向上 H-up 显示这种显示方式雷达无需接入任何其他传感器信号便能够工作其显示特点如下1 具有上述相对运动显示的特点2 源自CCKP的船首线指向屏幕正上方固定不动雷达回波在屏幕上的分布与驾驶员视觉瞭望目标的实际情况一致方位测量仅能够得到目标的相对方位3 船首在风浪中偏荡时目标回波左右摇摆余晖使回波模糊甚至容易造成目标转向的假相本船转向时船首线不动目标回波反向转动尤其本船大幅度快速转向时回波会出现目标拖尾现象影响观测4 观测效果直观适合宽阔水域平静海况时船舶避碰5 不利于定位导航和航向频繁机动的环境比如船舶进港狭水道以及大多数情况的沿岸航行在雷达正常工作时RM H-up显示方式并非性能标准强制要求具备在航向传感器故障时作为应急工作方式雷达只能采用这种显示方式且有报警提示值得注意的是目前有的型号的雷达用本船航向信号同步方位刻度盘.船首线对应的方位始终指向屏幕上方使得在这种显示方式下也能够读取到目标真方位这种改良的H-up显示方式被称为船首向上真方位 H-up TB 显示图示可以看出不同显示方式下雷达观测的图像特点图6-9-3a 是航行态势图图6-9-3b 是RM H-up显示的图像特点2 相对运动真北向上 Nup 显示这种显示方式雷达只需接入本船航向信号即可工作其显示特点如下1 具有前面提到相对运动显示的特点2 屏幕正上方代表地理真北船首线指向本船艏向雷达回波在屏幕上的分布与所用海图类似方位测量可直接得到目标的真方位3 船艏在风浪中偏荡或本船转向时船首线随艏向转动目标回波保持稳定清晰便于观测4 适合于定位导航和航向频繁机动的环境比如船舶进港狭水道以及大多数情况的沿岸航行5 用于避碰时尤其是船舶艏向介于090和270之间时应特别注意雷达图像的左右与驾驶员从驾驶台瞭望时左右舷是相反的图6-94所示为RM N-up显示的图像特点3 相对运动航向向上 C-up 显示这种显示方式.雷达只需接入本船航向信号便可工作其显示特点如下1 具有前文提到相对运动显示的特点2 本显示方式启动时代表本船航向的船首线指示本船艏向并指向屏幕正上方.屏幕方位刻度由本船航向信号驱动000代表真北方位雷达回波在屏幕上的分布与驾驶员视觉瞭望目标的实际情况一致方位测量能够得到目标的真方位3 船艏在风浪中偏荡或本船转向时具有N-up的显示特点船首线随艏向偏荡或转动目标回波稳定清晰便于观测4 转向结束本船航向把定按下航向向上 C-up 后雷达图像迅速整体旋转恢复到特点 2 图像状态避免了H-up本船转向过程引起的目标拖尾模糊的显示缺点5 能够兼顾导航和避碰功能适合于比较广泛水域的航行环境但大多数情况真北方向与海图不一致不利于目标识别和定位图6-9-5所示为RM C-up显示的图像特点2.真运动 TM 显示方式这种显示方式雷达需同时接入本船航向和航速信号才能够工作真运动显示时代表本船参考位置的扫描中心根据所选择量程比例在屏幕上按照本船的航向和航速移动所有目标的运动都参考本船的速度输入如果输入的是对水速度则在水面上漂浮的船舶在屏幕上固定不动而陆地会以与风流压差相反的方向和速度移动对水稳定真运动用于船舶避让对水速度的取得.通常来自于船舶计程仪人工输入速度也可以使雷达工作在对水真运动显示模式如果输入的是对地速度则岛屿等固定目标是静止的本船和目标船在屏幕上按照其航迹向移动对地稳定真运动用于船舶在狭水道和进出港导航可以有多种方式取得对地速度如在对水速度的基础上进行风流压的校正或直接使用双轴计程仪或利用卫星定位系统还可以利用雷达目标跟踪功能跟踪对地稳定的目标作为速度参考检测对地速度是否准确可以观测陆地或对地固定的目标是否在屏幕上漂移来证实按照性能标准的规定扫描中心应在不少于雷达图像显示区域半径的50%和不超过其75%的屏幕范围内移动和自动重调并且可以随时人工重调扫描起始点使船艏方向有重大的显示视野方便雷达观测真运动显示时雷达也同样可以具有上述三种屏幕指向方式但考虑到TM H-up 显示方式不能很好地表现出运动的真实性现代雷达多数不提供这种显示方式但在本船航向信号丢失时雷达通常会给出航向丢失报警并执行H-up显示方式当本船速度信号丢失时雷达也会给出航速丢失报警并执行偏心相对运动显示方式3.雷达显示方式的选择不同的显示方式可以满足不同的雷达观测需要在相对运动方式下连续观测回波相对本船的变化有利于判断目标船的会遇危险及早做出避让决定在平静的大洋航行时雷达只用于避碰观测.采用H-up是最方便的选择在沿岸航行时需要雷达定位和导航为了便于识别目标最好使用N-up显示方式在沿岸尤其在狭水道或港口航行时船艏偏荡或船舶频繁转向C-up则更有利于避碰观测避碰观测时对水真运动能够方便准确地判断目标船的动态有助于驾驶员根据航行态势和规则做出避让行动真运动显示时目标船在屏幕上的运动不受本船机动的干扰.这对于本船避让过程中和避让结束后监测目标船的动向非常有益对地真运动显示方式能够及时观测本船相对于海岸的航行动态是船舶在狭水道导航或进港靠码头时最佳选择值得注意的是一定要严格区分对水稳定和对地稳定的模式避碰时误用了对地稳定或导航时误用了对水稳定都是相当危险的尤其在航行环境受限能见度不良时三雷达基本工作原理1.雷达系统配置传统的船舶导航雷达系统由天线收发机和显示器组成为了帮助驾驶员更好地获得海上移动目标的运动参数近代雷达大多配备了自动雷达标绘仪 ARPA 或具备了自动目标标绘功能使雷达在避碰中的作用得到了进步提高随着现代科技的发展基于信息化平台的新型航海仪器和设备不断出现与传统的导航雷达实现了数据融合与共享电子定位系统 EPFS 通常采用卫星导航系统如GPS 信号为船舶提供了高精度的时间和位置参考数据ENC或其他矢量海图系统为船舶航行水域提供了丰富的水文地理数据AIS为雷达目标提供了有效的身份识别手段这些技术的进步促进了船舶导航雷达技术的发展按照SOLAS公约要求2008年7月1日之后装船的雷达应满足IMO MSCl92 79 船舶导航雷达设备性能标准规定其系统配置如图6-9-6所示其中等分虚线部分不是性能标准要求的是雷达系统的选装配置船舶主GPS设备为系统提供WGS-84船位和时间数据罗经或发送艏向装置THD 为系统提供艏向数据SDME 船舶速度和航程测量设备通常为计程仪提供船舶速度数据雷达传感器提供本船周围海域的图像信息显示系统处理雷达图像跟踪移动目标获取目标运动参数协助驾驶员避碰和导航AIS报告周围船舶识别信息和动态数据以及航标数据协助驾驶员避碰导航选装的海图系统提供水文地理航行必要数据所有数据在雷达终端显示系统上融合共享所有的传感器都可以独立工作其中一个传感器的故障.不影响其他传感器信息的显示雷达图像信息提供绐VDR保存记录系统自动判断数据的可信性有效性和完善性拒绝使用无效数据如果输入数据质量变差系统会加以提示驾驶员在操作雷达时应随时注意屏幕警示信息驾驶员通过雷达显示系统操控面板控制雷达系统.获得最佳定位导航和避碰信息雷达传感器采用收发一体的脉冲体制通常由收发机和天线组成俗称为雷达头信号处理与显示系统是基本雷达系统的必要组成部分根据分装形式不同雷达设备可分为桅下型俗称三单元雷达和桅上型俗称两单元雷达桅下型雷达主体被分装为天线收发机和显示器三个箱体一般天线安装在主桅或雷达桅上显示器安装在驾驶台收发机则安装在海图室或驾驶台附近的设备舱室里如果收发机与天线底座合为一体装在桅上这样的分装形式就称为桅上型雷达桅上型雷达便于维护保养多安装在大型船舶上.一般发射功率较大而中小型船舶常采用发射功率较低的桅上配置设备成本也较低2.基本雷达系统组成框图一个基本雷达系统的工作原理框图如图69-7所示与雷达出厂分装相比原理图中的定时器发射系统双工器和接收系统构成了雷达收发机3.基本雷达系统工作原理1 定时器定时器或定时电路又称为触发脉冲产生器或触发电路是协调雷达系统的基准定时电路单元该电路产生周期性定时触发脉冲分别输出到发射系统接收系统信号处理与显示系统以及雷达系统的其他相关设备用来同步和协调各单元和系统的工作2 发射系统雷达发射系统主要由调制器磁控管和发射控制电路组成通过发射开关和量程转换发射控制电路控制着雷达发射机工作和发射脉冲参数的改变在触发脉冲的控制下调制器产生10KV以上的矩形调制脉冲控制磁控管产生具有一定宽度和幅度的大功率射频矩形脉冲通过微波传轴线送到天线向空间辐射雷达采用磁控管作为发射器件其典型的工作寿命大约为10000小时磁控管在能够正常发射之前需要大约3 min的预热时间在这段时间之内驾驶员应将雷达置于备机 standby 状态与雷达观测密切的发射机主要技术指标包括发射频率发射功率脉冲宽度脉冲重复频率等雷达的工作频率有3cm波段和9 cm波段两种又分别称为x波段和S波段前者探测精度较高在晴好天气中使用后者目标的发现能力和抗雨雪杂波能力较强在恶劣天气探测远距离目标时使用较多雷达的发射功率根据船舶的航区和吨位大小通常在几至几十千瓦发射脉冲的起始时间由触发脉冲的前沿决定脉冲的宽度受雷达面板上量程和/或脉冲宽度选择控钮控制在近量程采用窄脉冲随着量程段增加脉冲宽度逐段增加量程段改变时脉冲重复频率也由随之变化近量程重复频率高远量程重复频率低这些技术参数的变化是为了满足目标探测距离回波强度距离分辨力等观测指标的要求参看本章第二节获得最佳观测效果3 双工器双工器又称收发开关雷达采用收发共用天线发射的大功率脉冲如果漏进接收系统就会烧坏接收系统前端电路发射系统工作时双工器使天线只与发射系统连接发射结束后双工器自动断开天线与发射系统的连接恢复天线与接收系统的连接实现天线的收发共用显然双工器阻止发射脉冲进入接收系统保护了接收电路目前雷达通常采用铁氧体环流器作为双工器雷达天线的收发转换时间t′影响了雷达的近距离探测性能参看本章第二节4 天线1 雷达天线基本特性雷达采用隙缝波导天线具有较强的方向性能够定向发射和接收微波天线的辐射特性由图6-9-8所示的方向性图描述分为主瓣和旁瓣雷达是靠天线主瓣来探测目标的波瓣的水平波束 HBW 较窄只有1°左右垂直波束 VBW 较宽为20°左右.波束的空间示意图如图6-9-8a 所示主瓣轴线方向根据不同天线的生产加工以及装配在不同的雷达发射机上的情况可以偏离天线辐射窗口的法线方向3°5°如图6-98b 所示称为偏离角雷达安装时应考虑偏离角的因素调整好方位误差在雷达辐射主瓣方向周围还对称分布了许多旁瓣辐射这些旁瓣辐射功率通常较弱且不稳定对于正常距离上的通常目标而言旁瓣辐射对雷达观测不会构成重要影响但对于近距离强回波而言旁瓣辐射也会探测到目标形成旁瓣假回波参看本章第四节对雷达观测构成比较严重的干扰①阴影扇形成因通常雷达天线安装在龙骨正上方主桅之上的船舶最高处以减少障碍物的阻挡保持良好的探测视野尽管如此雷达天线也不可避免由于安装环境限制受到障碍物或船舶建筑结构的遮挡在一定扇形区域内雷达探测目标的能力减弱甚至无法探测到目标这样的区域称为阴影扇形区域②阴影扇形观测特性由于雷达天线的辐射窗口有一定长度水平波束宽度大约为1°左右而且雷达波具有一定的绕射能力因此被障碍物遮挡的阴影扇形区域并非完全探测不到目标其中在阴影扇形的核心可能存在无法探测到目标的区域称为阴影扇形盲区其他目标探测能力减弱的区域称为阴影扇形灵敏度降低弧船舶建筑结构如船艏楼前桅桅顶横杆将军柱主桅烟囱和船尾楼等引起的阴影扇形对于雷达是永久的对航行安全的影响也最大图6-9-9a 和 b 定性图示了船舶建筑结构引起雷达阴影扇形的成因及对雷达观测的影响图69-9d 为实际船舶雷达屏幕截图可以看到由于本船主桅和烟囱而形成的阴影扇形对雷达观测的影响阴影扇形区域的大小与障碍物的大小障碍物到天线的距离障碍物相对天线的高度以及天线尺寸等因素有关障碍物越高体积越大离天线越近所形成的阴影扇形区域就越大在安装雷达时应精心考虑雷达天线的安装位置按照IMO雷达安装导则要求雷达天线的位置应保证阴影扇形区最小而且不应出现在从正前方到左右舷正横后22.5°的范围内在余下的扇区内不应出现大于5°的独立的或整体之和大于20°的阴影扇形实际的船舶上一般大船前桅造成的阴影扇形区范围约为1°-3°雷达天线附近若有大型吊杆和桅杆存在时其产生的阴影扇形区范围可达5°10°粗大的烟囱且离天线较近时其阴影扇形区范围可达10°以上在雷达阴影扇形区范围内向本船驶近的大船其雷达的发现距离可能从12nmile降到6nmile以下在此区域内的小型船舶探测距离可从4n mile 阴影扇形区域外降到0.5nmile 阴影扇形区域内以下为了更好地理解阴影扇形对雷达观测的影响我们假设一目标船正在。
船用雷达的操作和使用
船用雷达的操作和使用船用雷达是船舶上常见的导航设备,它通过发射和接收微波信号来探测周围环境,并提供相关的信息给船舶驾驶员,以确保航行的安全。
以下是关于船用雷达的操作和使用的详细说明。
1.雷达系统组成船用雷达一般由以下几个部分组成:-雷达发射器:产生微波信号并向四周发射。
-雷达接收器:接收反弹回来的信号,并将其转化为图像。
-显示器:显示雷达所接收到的图像,并提供相关的信息。
-软件控制系统:用于控制雷达的各项参数和功能。
2.雷达的工作原理船用雷达利用微波信号来测量和跟踪目标物体的位置和距离。
当雷达发射器发射出的微波信号遇到物体时,一部分信号会被物体反射回来,雷达接收器接收到反射回来的信号后,通过信号处理和图像重建,形成雷达图像。
3.雷达的操作步骤以下是一般的雷达操作步骤:-打开雷达开关:将雷达接通电源,打开相关开关。
-设置雷达参数:根据航行需求,设置雷达的工作频率、功率、扫描范围等参数。
-定位雷达:将雷达安装到适当的位置,确保雷达可以360度无阻碍的扫描周围环境。
-调整雷达扫描模式和范围:根据航行需求,调整雷达的扫描模式和范围,可以选择水平扫描、垂直扫描、或者组合扫描等模式。
-观察雷达图像:通过观察雷达的显示器,获取周围环境的信息,包括航道、目标物体、岩礁、其他船只等。
-自动或手动跟踪目标:根据需要,雷达可以根据用户设置自动跟踪目标,也可以手动选择跟踪目标。
-分析和决策:根据雷达提供的信息,船舶驾驶员进行分析和决策,选择适当的航向和航速。
4.雷达的使用注意事项在使用船用雷达时,需要注意以下几个方面:-正确设置雷达参数:根据航行条件和需求,合理设置雷达的频率、功率、扫描范围等参数,以获取准确的雷达图像。
-关注目标物体:通过观察雷达图像,及时发现与船只航行有关的目标物体,如其他船只、浮标、岩礁等,并根据需要采取相应的行动。
-定期校准雷达:定期对雷达进行校准和维护,以确保其准确性和可靠性,同时保持雷达设备的清洁。
船用导航雷达接收机中频匹配滤波电路的设计
船用导航雷达接收机中频匹配滤波电路的设计船用导航雷达的接收机中频匹配滤波电路设计是船舶雷达系统中至关重要的一部分。
它能够将从雷达天线接收到的信号的高频部分转换成低频信号,在后续中频处理中起到了至关重要的作用。
以下是船用雷达接收机中频匹配滤波电路设计的重点。
1.电路结构设计船用雷达接收机中频匹配滤波电路结构包含三个主要部分:天线前置放大器、中频变换器和中频放大器。
其中,中频变换器的作用是将接收到的高频信号转化为中频信号,中频放大器则负责将低弱的中频信号放大。
整个电路结构采用串联放大器的结构,可有效实现对信号的放大和滤波。
2.滤波器的选型在船用雷达中频匹配滤波电路中,滤波器是最重要的部分。
它可以有效地滤除高频杂波,稳定输出信号。
在选型时需要考虑滤波器的频带宽度、通带和阻带波动、阻带抑制等指标。
常用的滤波器有两极和低通滤波器,选择合适的滤波器有利于提高信号的质量。
3.器件的优化匹配在电路设计时需要考虑各个器件的优化匹配,以保证电路的效率和稳定性。
在中频变换器中,变压器的匹配对信号的质量产生着重要影响。
除此之外,在中频放大器中,放大器管件的优化性能提高了放大器的灵敏度和稳定性。
4.电路板的参数设计在实际制作中频匹配滤波电路时,需要考虑电路板的参数设计。
如电路板的厚度、宽度等参数对信号的质量都有着重要影响。
制作电路板时也要注意提高电路布局的紧凑度,这有利于减少电磁相互干扰和局部反射所引起的信号失真。
综上所述,船用雷达接收机中频匹配滤波电路设计是船舶雷达系统中重要的电路部分,它对从天线接收到的信号进行滤波、放大和变换,使得信号能够正确被处理。
设计中需要考虑电路结构、滤波器选型、器件的优化匹配以及电路板的参数设计等各个方面,以保证电路的高性能、高稳定性和高效率。
在实际应用中,更多的研究和改进还需要通过实践来进行。
在数据时代,数据分析已成为许多行业和领域中不可或缺的环节,通过对数据的分析提取有价值的信息和洞见,可以帮助人们更好地理解问题和现象,辅助决策和调整策略。
船用雷达
船用雷达0引言雷达概念形成于20世纪初。
雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。
它是利用电磁波探测目标的电子设备。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。
1雷达的基本工作原理雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
2船用导航雷达2.1 船用导航雷达简介船用导航雷达(marine radar )是保障船舶航行,探测周围目标位置,以实施航行避让、自身定位等用的雷达,也称航海雷达。
它特别适用于黑夜、雾天引导船只出入海湾、通过窄水道和沿海航行,主要起航行防撞作用。
2.2 船用雷达与普通雷达的区别一般雷达把自身作为不动点表示在平面位置显示器的中心。
但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。
适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。
2.3船用导航雷达的最小作用距离—盲区导航雷达是用来探测水上目标的方位和距离,它不受气候影响,可以全天候引导船舶进出港口、码头和海上安全航行。
导航雷达最大作用距离主要取决于雷达脉冲的传播天线,如雷达天线高度、目标大小、形状及反射天线等。
浅析船用雷达和AIS的综合应用的优势与局限性
船用导航雷达和AIS综合应用的优势与局限性摘要:船用导航雷达和船舶自动识别系统(AIS)是两部重要的助航仪器,本文分析了导航雷达和AIS在单独使用时各自的功能和特点,并指出二者在综合应用中所表现出的优势和局限性以及针对其局限性的注意事项。
关键词:导航雷达、AIS、综合应用目前,全球经济趋于一体化,航运业迅猛发展,船舶数量急剧增加,于此同时海难、海损事故也随之增加,给广大海员的生命安全、国家财产和海洋环境造成严重威胁。
为加强航行安全,保护海洋环境,船舶间、船岸间信息的充分、快速、准确交换就显得尤为重要和突出。
一、船用导航雷达的功能和特点1.雷达在应用中的优势伴随船舶数量的激增,船舶碰撞事故的事故率也居高不下,因此,如何实现船舶间的协调行动,避免船舶碰撞就显得异常重要。
雷达作为船舶避碰的主要助航仪器,从出现至今一直发挥着重要的作用。
雷达是自主式导航设备,可以扫描到海面上的具有一定大小的物标并将其回波显示在雷达显示器上,从而将海面上物表和本船的相对位置关系清晰显示,让操作者获得较为全面的交通形式图像。
通过对物标船的标绘,可以判断物标船和本船是否存在碰撞危险,更可以求取避让措施,核实避让行动的效果。
传统的船舶避碰是用眼睛实际观察周围船舶的运动态势,进而凭借经验采取改向或变速措施来实现船舶间的安全避让。
不难发现,传统的避让方法受受能见度的影响较大,比如海上大雾天气,航海员仅凭肉眼能观测到的距离大大减小,有时会减小到几十米,就不能实现安全航行的目标。
而有了雷达就大不相同,雷达受能见度影响小,精度高(30米左右),决策时间短(通过雷达自动标绘仪—ARPA跟踪物标并求取避让措施仅需3-5分钟时间),雷达的探测距离可以达到10—20海里,驾驶员的工作负担大大减轻。
另一方面,当船舶发生碰撞事故时,在避让行动中得雷达观测信息可以作为海事调查的证据,给海事处理也带来了很大方便。
2.雷达在应用中的局限性尽管雷达在应用中有上述的优势,但其局限性也不容忽视。
船用雷达与定位与导航
雷达导航系统
探测障碍物
利用雷达发射的电磁波探测周围 障碍物,提供实时、准确的距离
和方位信息。
气象监测
雷达系统可以监测海洋气象信息, 如风向、风速、海浪等,为航行提 供参考。
自动避障
通过雷达探测周围障碍物,自动调 整航向和航速,避免碰撞事故。
惯性导航系统
船用雷达的应用场景
船用雷达广泛应用于船舶导航、避碰、气象观测和海洋调查等领域。在船舶导航中,雷达可以帮助船员探测周围的目标,避 免碰撞事故的发生。
在避碰中,雷达可以实时监测周围船舶的动态,为船舶提供安全航行的信息。在气象观测中,雷达可以探测降雨、风向和风 速等信息,为航行提供气象保障。在海洋调查中,雷达可以用于探测海底地形、水深和流速等信息,为海洋科学研究提供数 据支持。
标准化和互操作性
为了促进集成系统的广泛应用和发展,需要制定统一的标准和规范, 提高不同设备和系统之间的互操作性和兼容性。
05 安全与法规考虑
安全与法规考虑 国际海上避碰规则
雷达设备的合规性
船用雷达设备必须符合国际电工委员会(IEC)和国际海事组织(IMO)的相关标准和规定,以确保其性 能、安全性和可靠性。在使用船用雷达设备时,应确保其符合相关法规和标准的要求,并定期进行维护和 校准。
船用雷达与定位与导航
目录
• 船用雷达系统 • 定位系统 • 导航系统 • 船用雷达与定位与导航的集成应用 • 安全与法规考虑
01 船用雷达系统
船用雷达工作原理
船用雷达通过发射电磁波并接收反射 回来的信号来探测目标,根据目标距 离、方位和高度等信息,形成雷达图 像。
雷达波在传播过程中会受到气象、海 浪等因素的干扰,因此需要对接收到 的信号进行滤波、放大和去噪等处理 ,以提高探测精度。
船舶导航雷达
第一节 雷达目标探测与显示基本原理
雷达图像的特点:
由于雷达设备自身的性能、大气传播的条件、 目标的反射能力以及周围环境的变化都会影响雷达图像 的形成与质量,使雷达探测到的目标回波图像与真实目 标相比,可能会有很大的变形,比如:
► 雷达回波图像类似目标迎问天线面的垂直投影; ► 雷达只能探测目标的前沿,后沿被遮挡的部分无法
第一节 雷达目标探测与显示基本原理
早期的雷 达显示器也称PPI (平面位置显示 器),现代雷达采 用平面光栅显示器 取代了PPI,如右 图。屏幕上包括了 雷达图像区域、操 作菜单区域、状态 指示区域、数据显 示区域等。
通常,雷 达屏幕上除了显示 岛屿、岸线、导航 标忐、船舶等对船 舶导航避碰安全航 行有用的各种回波 之出外各, 种还 驾无 驶法 员避不免希望看到的回波,如海浪、雨雪、同频干扰、云雾、噪声、假 地回显波示 等。一个专业的雷达观测者,应能够在各种杂波干扰和复杂屏幕背景中分 辨出有用回波,引导船舶安全航行。
探测和显示; ► 目标的低矮部分(如沙滩)可能会被遮挡或回波微
弱,也无法被探测到; ► 雷达发射脉冲的宽度会使探测到的回波发生后沿
“拖尾”现象,造成回波与实际目标形状不相符; ► 雷达屏幕像素尺寸使回波的位置向周围扩展;
第一节 雷达目标探测与显示基本原理
► 雷达的辐射波束宽度引起回波沿周方向扩展,造成 回波向左右扩展;
► 船舶运动、涌浪波动及雷达设备因素引起回波位置 闪烁不定,目标边缘不清晰;
► 地球曲率影响雷达地平距离,远距离高大目标只有 顶端能够被探测到,图像与目标原貌甚至完全
不同; ► 目标对雷达波的反射能力不同,造成回破强度差别
好大,图像明暗不均; ► 由于气象海况以及船舶吃水的变化,即使在同一海
船用雷达详细介绍
如发射功率不足、发射脉冲宽 度不正确或发射机频率不稳定 等。
接收机故障
如接收机灵敏度下降、接收机 噪声增大或接收机动态范围减 小等。
显示器故障
如显示器黑屏、显示器亮度不 足或显示器色彩失真等。
故障排除流程和方法
观察故障现象
首先观察雷达的故障 现象,了解故障的具 体表现。
分析故障原因
根据故障现象,分析 可能的原因,缩小故 障范围。
检查发射机的工作状态,测试 发射功率和波形,确保符合规 定要求。
天线系统
检查天线转动是否灵活,馈线 连接是否良好,天线罩是否破 损。
雷达主机
检查主机外观是否完好,各部 件连接是否紧固,散热系统是 否正常工作。
接收机
检查接收机灵敏度、噪声系数 等参数,确保接收性能良好。Fra bibliotek电源系统
检查电源输出电压和电流是否 稳定,电池组是否正常充电和 放电。
将雷达与其他传感器(如红外、光电等)数据进 行融合,提高探测和识别能力。
多功能一体化设计趋势
导航与避碰一体化
将雷达导航与自动避碰系统相结合,实现船舶安全航行。
雷达与通信系统融合
通过共享硬件和信号处理算法,实现雷达探测与通信功能的集成。
多频段、多极化技术
采用多频段、多极化技术,提高雷达抗干扰能力和探测性能。
正确使用操作规范
开机前检查
在开机前,应对雷达系统进行检查,确保各 部件连接正确、紧固可靠。
参数设置
根据航行需要和海况条件,合理设置雷达参 数,如量程、增益、雨雪抑制等。
正确开机
按照规定的开机顺序进行操作,避免误操作 导致设备损坏。
观察与瞭望
在使用雷达时,应始终保持对周围海况和航 行环境的观察与瞭望。
船用导航雷达
2
按显示 目标动 态方式 不同分
①矢量型
目标动态矢 量显示
②图示型 (PAD型)
目标动态用 PAD显示
精度高、 画面清晰
直观方便
不 如 PAD 直观
精度差、 图象画 电 视 光
栅光标
《航海雷达与ARPA〉第二篇
计程仪
雷达
陀螺罗经
Ch1 绪论
传感器
信号预处理与目标检测
目标船相对速度relspd相对航向relcrs真速度truespd和真航向truecrs5cpatcpa安全界限值mincpamintcpamincpacpa安全界限值允许目标安全通过本船所需的最小会遇距离mintcpatcpa的安全界限值允许目标到达cpa点的最小时间航海雷达与arpa第二篇ch1绪论6在arpa中mincpamintcpa由驾驶员来设定输入7设置mincpamintcpa应考虑的因素1本船大小速度操纵性能若船大速度mincpa大2水域宽阔程度船舶密度若窄密mincpa小3气象条件风浪雾雪若风浪大雾大nincpa大航海雷达与arpa第二篇ch1绪论mincpatcpamintcpa则判断为安全船无碰撞危险mincpatcpamintcpa危险船但尚不紧迫本船应考虑避让措施mintcpa非常危险船本船应立即采取避让措施航海雷达与arpa第二篇ch1绪论图214相对运动雷达人工标绘避碰流程图传感器在crt上观测目标检测目标目标录取选择避让目标确定目标初始位置数据人工标绘避碰作图按规定的时间间隔观测目标位置数据并标绘计算目标的航向航速方位距离cpatcpa分析每个目标速度三角形及避碰三角形计算目标参数人工设定mincpamintcpa设置安全判据危险船
CPA、MIN
设置安全判据
危险船?
TCPA
船用雷达详细介绍
船用雷达详细介绍船用雷达是指安装在船舶上,用来探测和测量周围环境的雷达系统。
它是船舶上必备的重要设备之一,具有广泛的应用领域,包括航海、渔业、船舶导航和安全等。
船用雷达的基本原理是利用电磁波的反射和回波来探测目标物体的位置和距离。
雷达系统会通过发射器发射一束脉冲电磁波,并追踪这些波的回波来确定目标物体的位置和距离。
通过测量回波的时间和频率,船用雷达能够计算出目标的位置、距离和速度等重要信息。
船用雷达通常由以下几个主要部件组成:天线、发射器、接收器、显示器和控制装置。
天线用于发射和接收电磁波,发射器产生电磁波脉冲,接收器接收和处理回波信号,显示器显示目标物体的信息,控制装置用于操作和控制雷达系统。
船用雷达的主要功能包括航海导航、碰撞防范、目标检测和跟踪等。
船舶在海上航行时,通过船用雷达可以确定周围环境的情况,包括其他船只、浮标、礁石等。
船用雷达能够提供目标物体的位置、距离和速度等信息,帮助船舶避免碰撞和安全导航。
船用雷达的技术特点主要包括雷达分辨率、探测距离、工作频率和功率等。
雷达分辨率是指雷达系统能够分辨出的最小目标物体的大小,通常与天线的直径有关。
探测距离是指雷达系统能够探测到目标物体的最远距离,通常取决于功率和工作频率。
工作频率是指雷达系统发射和接收电磁波的频率,通常根据不同的应用需求选择合适的频率。
船用雷达有多种不同类型,包括X波段雷达、S波段雷达、L波段雷达、K波段雷达等。
不同类型的雷达在性能和应用方面有所差异。
例如,X波段雷达具有较高的分辨率和探测距离,适用于长距离航行和海上作业;而S波段雷达则适用于近距离导航和安全防范。
除了基本功能外,现代船用雷达还具有一些先进的特性和功能,如自动目标跟踪、天气雷达、海上目标识别系统等。
自动目标跟踪可以自动追踪目标物体的运动轨迹,方便船舶管理和操作;天气雷达可以探测和预测天气情况,提供给船舶相关的气象信息;海上目标识别系统可以识别和跟踪目标物体,确保船舶的安全航行。
海上导航雷达的使用教程和注意事项
海上导航雷达的使用教程和注意事项海上导航雷达是现代航海技术中不可或缺的重要设备,它通过接收和发送电磁信号来探测、跟踪和定位船只、岛屿和其他物体。
它在船舶导航中发挥着关键作用,为船员提供了准确和即时的信息,以确保航行的安全和顺利。
然而,正确使用海上导航雷达并非易事,需要一定的培训和实践经验。
本文将为您提供海上导航雷达的使用教程和注意事项,以帮助您更好地理解和应用这一关键航海工具。
一、了解雷达原理在学习如何使用海上导航雷达之前,我们首先需要了解雷达的基本原理。
雷达工作基于微波的特性。
雷达将微波的脉冲发送出去,并通过接收返回的回波来确定目标物体的位置和距离。
回波的特征会在雷达屏幕上显示出来,帮助船员识别和跟踪目标物。
二、熟悉雷达显示海上导航雷达的显示屏通常显示船舶和其他物体的位置、距离和方位角。
当使用雷达时,您需要熟悉这些显示,并能准确地解读和理解它们。
在雷达屏幕上,船舶通常以一个点的形式显示,而岛屿和其他物体则以固定的形状显示。
此外,船舶的运动方向也会以箭头或线段的形式显示在屏幕上。
三、调整雷达设置正确的雷达设置对于准确和可靠的导航至关重要。
您应该熟悉如何调整雷达的增益、脉冲长度和脉冲重复频率等参数。
增益控制调整回波信号的强度,脉冲长度控制雷达发送的脉冲时长,而脉冲重复频率则控制雷达发送脉冲的速度。
根据不同的环境和海况,您需要根据需要灵活调整这些设置,以获得最佳的导航效果。
四、理解雷达反射特性在使用雷达时,您需要了解各种物体对雷达信号的反射特性。
船舶、岛屿和其他物体都具有不同的雷达反射截面积,这直接影响到它们在雷达屏幕上的显示效果。
大而坚固的物体通常有较大的雷达反射截面积,而小而脆弱的物体则有较小的截面积。
因此,在识别和判断目标物体时,您需要根据反射特性来进行推测和判断。
五、掌握雷达的航道标识功能海上导航雷达还具有航道标识功能,它可以帮助船员准确地判断船舶是否偏离航道。
雷达会在航道两侧显示虚线,并在航道中心显示一条实线。
船用导航雷达 天线类型
船用导航雷达天线类型
船用导航雷达的天线类型通常可以分为两大类,开阵天线和旋转天线。
开阵天线是指由多个小型天线组成的阵列,可以同时进行多波束扫描,具有较高的目标分辨率和抗干扰能力。
这种天线通常用于要求高精度导航和目标探测的船舶,如军舰和特种船舶。
旋转天线则是指安装在雷达旋转支架上的单一大型天线,通过旋转运动来完成对周围环境的全方位扫描。
这种天线结构简单,成本较低,适用于一般商用船舶和渔船等。
此外,根据雷达工作频率的不同,船用导航雷达的天线还可以分为X波段、S波段、C波段等不同频段的天线。
不同频段的天线在传输距离、穿透能力和抗干扰能力上有所差异,船舶根据自身的需求和预算选择合适的天线类型。
总的来说,船用导航雷达的天线类型多样,船舶可以根据自身的需求和实际情况选择合适的天线类型,以确保航行安全和导航精度。
海事雷达概念
海事雷达概念雷达是一种利用电磁波和回波的原理进行目标识别和测距的设备。
而海事雷达则是在海洋环境下使用的雷达系统。
本文将详细介绍海事雷达的概念、原理和应用。
一、概念海事雷达是一种船舶导航设备,用于检测和确定船只周围的水域。
它通过发射无线电波,接收并分析回波,识别和跟踪其他船只、浮标、岛屿等物体,从而帮助船舶避免碰撞、确定航线及港口导航。
二、原理海事雷达的原理基于电磁波的传播和回波的分析。
雷达发射器发射特定频率和脉冲宽度的无线电波,并将其定向发送到海面。
当波束遇到物体时,部分能量会被反射回雷达接收器。
接收器将接收到的回波信号转化为可视化的目标图像,并计算出目标与雷达之间的距离、方向和速度等信息。
三、功能和应用海事雷达在航海过程中发挥着重要的作用,提供以下功能和应用:1. 碰撞预警:海事雷达可以及时检测到其他船只、障碍物或浮标,通过实时显示目标位置、距离和运动方向,提醒船舶避免航道冲突和潜在的碰撞风险。
2. 航线规划:海事雷达可以帮助船舶确定最佳航线,避免危险区域和浅水区,确保船只安全地到达目的地。
通过雷达的图像和数据,船长可以评估海况和潮流对航行的影响,做出相应的决策。
3. 天气预警:海事雷达能够探测到远离船只的天气变化,如暴风雨、浓雾等。
及时获得天气信息可以帮助船舶调整航行计划,防止遭遇恶劣天气造成安全风险。
4. 搜救和救援:在紧急情况下,海事雷达可以用于定位和追踪遇险船只。
它可以帮助搜救人员确定目标位置,提供宝贵的搜索线索,提高搜救效率。
5. 港口导航:海事雷达可以帮助船舶确定港口入口、防止搁浅,找到正确的进港通道,确保安全停靠。
四、雷达系统的组成海事雷达系统由以下主要组件组成:1. 发射器和接收器:发射器负责发射电磁波,而接收器则接收和分析回波信号。
2. 天线:天线用于将发射器产生的电磁波转化为空间中的电磁场,并接收回波信号。
不同的天线设计可以提供不同的雷达性能,如增加探测距离和放大回波信号。
船用雷达技术要求和使用要求
船⽤雷达技术要求和使⽤要求1. 主题内容和适⽤范围本标准适⽤于船⽤导航雷达。
1.1 ⽆线电频率雷达设备⼯作的⽆线电频率在任何时刻均应在国际电信联盟颁发的“⽆线电规则”所规定的范围内。
2. ⽬的雷达设备应能相对于本船的其他⽔⾯船舶和障碍物、浮标、海岸线以及导航标志的位置,这将有助于导航和避碰。
设备的安装应满⾜该设备所规定的性能标准。
3. 性能要求所有雷达设备均应满⾜下述最低要求。
3.1 作⽤距离在正常传播条件下,当雷达天线架设在海⾯以上15⽶⾼度时,在⽆杂波的情况下,设备应清楚地显⽰出:3.1.1 海岸线⾼度为60⽶的陆地,距离为20海⾥。
⾼度为6⽶的陆地,距离为7海⾥。
3.1.2 ⽔⾯⽬标对5000吨(总吨,下同)的船舶,不管其⾸向如何,距离为7海⾥。
对10⽶长的⼩船,距离为3海⾥。
对有效反射⾯积约10平⽅⽶的导航浮标之类的⽬标,距离为2海⾥。
3.2 显⽰3.2.1 雷达设备应提供⾸向向上⾮稳定相对平⾯位置显⽰,在没有外部放⼤装置的情况下,其有效显⽰直径不⼩于下列规定:3.2.1.1 500 吨到1600 吨以下的船舶为180毫⽶;3.2.1.2 1600 吨到10000 吨以下的船舶为250毫⽶;3.2.1.3 10000 吨和10000 吨以上的船舶,⼀台雷达的显⽰器为340毫⽶,另⼀台雷达的显⽰器为250毫⽶。
3.2.1.4 若放⼤后的显⽰精度在本标准的精度范围内,也可以使⽤光学放⼤装置。
3.2.1.5 与雷达导航或避碰⽆关的任何信息只允许显⽰在屏幕有效直径的外⾯。
3.2.2 设备应供应下列两组显⽰量程中的任⼀组:3.2.2.1 1.5、3、6、12、24海⾥以及⼀档不⼩于0.5海⾥且不⼤于0.8海⾥的量程组;3.2.2.2 1、2、4、8、16、32海⾥的量程组。
3.2.3 设备还可以提供其他量程。
3.2.3.1 所提供的其他量程应⽐第3.3.2条所要求的最⼩量程更⼩,或者⽐第3.3.2条所要求的最⼤量程更⼤。
船舶航行中的海上导航设备
船舶航行中的海上导航设备导语:船舶航行中的海上导航设备是确保船舶安全、准确航行的关键装备。
本文将介绍几种常见的海上导航设备,并探讨其作用和应用。
一、雷达(Radar)雷达是船舶上最常见的导航设备之一,它通过发射电磁波并接收反射回来的信号来探测目标物体。
雷达可以帮助船舶确定目标物体的位置、距离、速度和方向等信息,进而提供实时的导航和避碰决策。
在船舶航行中,雷达的作用至关重要,能够有效地帮助船员识别周围的船只、岩礁、冰山等障碍物,保障航行安全。
二、全球卫星定位系统(Global Positioning System, GPS)GPS是另一个不可或缺的船舶导航设备。
通过接收卫星发射的信号,GPS能够确定船舶的准确位置,并提供精确的导航指引。
由于GPS系统全球覆盖且定位精度高,它成为船舶航行中常用的导航设备。
船员通过GPS可以获得船舶的位置、速度和航向等关键信息,以便准确定位和计算航行路线。
三、电子海图(Electronic Chart Display and Information System, ECDIS)电子海图是一种电子化的船舶导航系统,可以替代传统的纸质海图。
ECDIS通过将船舶位置与电子海图上的信息相结合,向船员提供全面的导航和避碰辅助。
ECDIS能够显示船舶周围的航道、浅滩、港口等信息,并能够发出警报提醒船员潜在的危险。
与传统海图相比,ECDIS具有实时更新、多功能和易于操作等优点,大大提高了航行的安全性。
四、自动识别系统(Automatic Identification System, AIS)AIS是一种基于无线电通信技术的船舶识别和信息交换系统。
通过AIS,船舶可以实时交换位置、航速、航向等信息,以增强航行的可视性和安全性。
AIS系统能够有效避免船舶相撞事故,并提供其他船舶的基本信息,如船名、船籍、货物类型等。
对于航行中的危险情况,AIS 系统还能够向周围船舶发出警告,保障船舶航行安全。
雷达基本工作原理
19
二 雷达显示方式
按船舶运动参照系划分
真运动TM 相对运动RM
按图像的指向模式划分
艏向上(H-UP) 航向向上(C-UP) 真北向上(N-UP)
20
1、 相对运动显示方式
是指无论本船是否运动,在雷达屏幕 上,代表本船位置的扫描中心固定不动, 所有目标都与本船作相对运动即目标在屏 幕上的运动是其各自的真速度矢量与本船 真速度矢量之差.
圈0°为止。
26
海图平面
270°(T)
240°(T)
Course 240 航海视景
Course 270
240
240
0
0 270
0
0
Course up
270 0
0
27
2、 真运动雷达显示方式
需要接入罗经(航向)和计程仪(航速)信号. 显示特点:
代表本船的扫描中心在屏上按本船的航向航速 移动,固定物标在屏上稳定不动,活动物标与其在海 上实际运动状态相同,按各自的航向和航速移动。 屏上画面像在空中俯看海面一样。
31
32
航海雷达与ARPA
1、 组成框图
绪论
原理组成——七部分
33
航海雷达与ARPA
1、 组成框图
绪论
原理组成——七部分
2、各部分作用
1)触发电路(Trigger) (又称定时电路,或称定时器)
每隔一定时间(Tr)产生一触发脉冲(定时脉冲) 它是雷达整机的定时系统. Tr--------脉冲重复周期
船用雷达只研究水平面 和垂直面的方向性图。
L
CB
半功率点
P
θH ABiblioteka BRC半功率点
水平方向性图
54
中国船用导航雷达行业市场策略
中国船用导航雷达行业市场策略1. 市场分析船用导航雷达是船舶上必备的重要导航设备之一,用于在航行过程中提供准确的位置和周围环境信息。
随着全球航运业的快速发展,船用导航雷达市场也呈现出稳步增长的趋势。
1.1 市场规模根据市场调研数据显示,船用导航雷达市场预计在未来几年内每年以5%的复合年增长率增长。
2019年市场规模为10亿美元,到2025年预计将达到15亿美元。
1.2 市场竞争态势目前船用导航雷达市场竞争激烈,主要竞争对手包括Garmin、Furuno、Sperry Marine等国际知名企业。
这些企业凭借独特的技术优势和良好的品牌声誉在市场上占据一定的份额。
此外,新兴企业也逐渐涌现,并以较低的价格和市场定位吸引一部分消费者。
1.3 市场趋势随着科技的不断发展,船用导航雷达市场也面临着一些新的变化和趋势。
首先,高清晰度和大屏幕导航雷达越来越受欢迎,船舶操作人员能够更清晰地观察周围的航行环境。
其次,无线和互联网技术的应用,使得导航雷达可以与其他设备实现更好的连接和数据共享。
另外,环保和能效需求的增加也促使船用导航雷达向更节能、环保的方向发展。
2. 市场策略2.1 定位策略面对竞争激烈的市场,我们的船用导航雷达产品应该明确定位,选择目标市场细分进行专业化定位。
例如,可以针对巡航船舶、货船或渔船等特定船只类型,提供符合其需求的特色功能和服务。
2.2 产品策略为了在市场中占据竞争优势,我们应该不断创新船用导航雷达产品,提升其性能和功能。
例如,引入人工智能技术,使导航雷达能够根据历史数据和实时信息做出更准确的判断和预测。
此外,还可以加强用户界面设计,提供更友好、直观的操作体验。
2.3 渠道策略选择合适的渠道对船用导航雷达进行销售和宣传至关重要。
除了传统的经销商渠道,我们还应该积极发展在线销售渠道,利用互联网的优势拓展市场份额。
同时,在渠道选择上,应重点考虑与船舶制造商和航运公司等合作,以扩大产品的覆盖范围。
船用雷达的操作和使用
主要内容
◆ 雷达操作注意事项 ◆ FR-7100D型雷达操作面板介绍 ◆ 雷达开机及雷达操作 ◆ 雷达关机
第六章 船用导航雷达的操作使用
雷达操作注意事项
1、开机前要检查天线附近是否有人或障碍物 2、开机及关机前、转换量程前应适当减小“亮度” 3、发射前磁控管要充分预热(2~5分钟) 4、慢慢调整旋钮至最佳位置 5、暂时不用雷达时,按“TX / OFF”键关断高压,
海浪控制 抑制 海浪引起的杂波
增益 调整接收 机的增益
Anti-Clutter Sea,通过减小 近距离目标增益实现的 (R≤4nm)
适当调整增益,可提高目 标分辨力
第六章 船用导航雷达的操作使用
二、按键介绍
图标 按键含义
按键功能及备注
电源开/关 发射/关
系统开关机,关机时需同时按 下此键和“TX/OFF”键
雷达开机及雷达操作
二、雷达的调整
1、增益控制的调整
将量程调到远量程上(48或72海里),按 出增益旋钮,并慢慢旋转,使目标回波最 佳,之后,可将按下旋钮锁定。
第六章 船用导航雷达的操作使用
二、雷达的调整
2、调谐控制的调整
按出调谐旋钮,并慢慢旋动,使较远处的、较弱的 目标回波具有最大的清晰度,之后,可将按下旋钮 锁定;调谐至最好的位置时,CRT右上角的调谐指 示框亮得最多。(开机30分钟内要反复调整)
置雷达于“ST-BY” 状态
第六章 船用导航雷达的操作使用
FR-7100D型雷达操作面板介绍
一、调整旋钮介绍
图标 旋钮名称及功 能
备注
调谐 调整本振 频率,使fS-fL=FI
雨雪控制 抑制 雨雪引起的杂波
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《航海雷达与ARPA〉第二篇
1-3 ARPA系统的分类及特点
Ch1 绪论
ቤተ መጻሕፍቲ ባይዱ
序 分类
类型
特点
优点
缺点
号 方式
按 系 统 ①分立式
主雷达显示 两者图象 设备多、
器与ARPA显 可比较
价格高
1 组合方
示分开
式分
②组合式
主雷达显示 器与ARPA显 示合二为一
设备少、 价格低
一旦出现 故障影响 雷达
《航海雷达与ARPA〉第二篇
雷达 检测目标
传感器 在CRT上观测目标
Ch1 绪论
目标录取 选择避让目标 确定目标初始位置数据
人工标绘
避碰作图 按规定的时间间隔观测 目标位置数据,并标绘
计算目标的航向、航速、 方位、距离、CPA、TCPA
分析每个目标速度三角形及避
碰三角形,计算目标参数 人工设定MIN
Ch1 绪论
三、名称:自动雷达标绘仪——Automatic Radar Plotting Aids 简称 ARPA ,中 文译音 “阿帕”。
四、发展简况
1、雷达作用→特别能见度低劣↑,但随船(速 度↑、体积↑、密度↑)→避碰事件不断发生 →改革(很多措施)→但只有与计算机结合→ (自动化、智能化)→ARPA
7、设置MINCPA、MINTCPA应考虑的因素
1)本船大小、速度、操纵性能(若船大(速度↑) →MINCPA大)
2 ) 水 域 宽 阔 程 度 , 船 舶 密 度 ( 若 窄 、 密 ↑ —— MINCPA小)
3)气象条件(风浪、雾、雪)(若风浪大、雾大— —NINCPA大)
《航海雷达与ARPA〉第二篇
Ch1 绪论
《航海雷达与ARPA〉第二篇
Ch1 绪论
二、普通船用雷达用于船舶避碰的局限性
1、低亮度显示,影响相遇船回波的识别 2、只能显示目标的瞬时位置,难以判断危险船 3、需通过人工标绘获得目标碰撞及航行参数,但
人工标绘存在局限性 4、验证避让效果仍须重新进行人工标绘
《航海雷达与ARPA〉第二篇
2、ARPA起源,美国,1976年秋天,连续发生油 轮事故→提出要求→IMO→1981制定ARPA标准。
3、目前已经在远洋船上安装ARPA。学习重要性, 正确使用APPA→大大减轻负担
《航海雷达与ARPA〉第二篇
Ch1 绪论
1-2 ARPA系统的组成及各部分作用
1、传感器:
❖ 由它们提供必要的信息供标绘用 1) X/S波段高质量雷达提供 : ① 触发脉冲(trigger) ② 视频脉冲(Video) ③ 天线角位置信号及船首标志信号 2)陀螺罗经: ❖ 提供本船航向信号 3)船舶计程仪: ❖ 提供本船航速信号(对水、对地) 4)外存器:磁盘或光盘, ❖ 提供视频地图或电子海图。
5)电子计算机:
自动录取、跟踪和计算目标的航行和碰撞参数、自动判断有无碰撞危险、 完成自动标绘的任务。
《航海雷达与ARPA〉第二篇
Ch1 绪论
6)显示器:
❖ PPI综合图形显示器:
显示回波、矢量等各种标志符号。
❖ 数据显示器:
显示本船及目标航行与碰撞数据。
7)控制台: PPI及数据显示器的控制器
8)接口电路: 将各种传感模拟信号变换成计算机可接受的数字信号
第二篇 自动雷达标绘仪(ARPA)
《航海雷达与ARPA〉第二篇
第一章 绪论
Ch1 绪论
❖ 1-1 普通船用雷达用于船舶避碰的局限性 ❖ 1-2 ARPA系统的组成及各部分作用 ❖ 1-3 ARPA系统的分类
《航海雷达与ARPA〉第二篇
Ch1 绪论
第一章 绪论
一、§普1.通1 船普用通雷船达用在雷船达舶用避于碰船中舶的避应碰用的局限性
◆ 船舶避碰包含“预测”和“避让”两个涵义。
❖ 预测:预测本船与相遇船在何时(何处)会存在 碰撞危险。
❖ 避让:本船对危险船采取的避让机动。 ❖ 普通雷达采用:人工标绘
目的:求出 CPA、TCPA 方法:
❖相对运动人工标绘避碰法 ❖真运动人工标绘避碰法
《航海雷达与ARPA〉第二篇
人工标绘进行避碰的步骤
Ch1 绪论
8、碰撞危险判断
❖当 CPA > MINCPA TCPA > MINTCPA -----------则判断为安全船,无碰撞危险
❖当 CPA ≤ MINCPA TCPA > MINTCPA -----------危险船但尚不紧迫,本船应考虑避让措施
❖当 CPA ≤ MINCPA 0 < TCPA ≤ MINTCPA ------------非常危险船,本船应立即采取避让措施
CPA、MIN
设置安全判据
危险船?
TCPA
NO
保向、保速
减速
减速指令
YES 权利船或 义务船
义务船
改向或减 速
避碰规则,本船操纵性能,操船经验
权利船
保向保速 加强了望
改向
改向指令
图2-1-4 相对运动雷达人工标绘避碰流程图
《航海雷达与ARPA〉第二篇
人工标绘的局限性
1)费时(3——7分钟)、麻烦 2)不直观、不准确 3)难以应付复杂局面 2、真运动雷达用于船舶避碰
1、选择要进行标绘的相遇船回波(A) 2、监视该目标回波的移动 3、隔一定时间间隔(6min)标出B点 4、作图并求碰撞及航行参数 ① 碰撞参数: ❖ DCPA:最接近会遇距离(简称为 CPA) ❖ TCPA:到达最接近点的时间
Ch1 绪论
《航海雷达与ARPA〉第二篇
② 航行参数:
Ch1 绪论
◆目标船相对速度(REL SPD)、相对航向( REL CRS)、真速度(TRUE SPD)和真航向(TRUE CRS)
2
按显示 目标动 态方式 不同分
①矢量型
目标动态矢 量显示
②图示型 (PAD型)
《航海雷达与ARPA〉第二篇
2、ARPA 部分
Ch1 绪论
1)预处理:对原始视频
杂波处理 模数转换
2)目标检测:
对的回波信号自动检测,满足存在目标条件者输出发现目标的数字信号。
3)目标录取(人工/自动录取)
将已检测到的目标的初始位置送入跟踪器。
4)跟踪器:
对已被录取的目标进行自动跟踪并建立目标的运动轨迹
5、CPA TCPA安全界限值( MINCPA 、MINTCPA )
① MINCPA(CPA安全界限值)
允许目标安全通过本船所需的最小会遇距离
② MINTCPA(TCPA的安全界限值) 允许目标到达CPA点的最小时间
《航海雷达与ARPA〉第二篇
Ch1 绪论
6、在ARPA中,MINCPA、MINTCPA由驾驶员来设定 (输入)