二维随机变量的定义、分布函数

合集下载

《概率论》二维随机变量及其分布函数的定义、基本性质

《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。

二维离散型随机变量及其分布

二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1



Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球

二维随机变量的函数的分布

二维随机变量的函数的分布

2 数值方法
根据函数的定义和已知分布,可以通过 求解方程来得到函数的分布。
当方程难以求解时,可以使用数值方法 如蒙特卡洛模拟来近似计算函数的分布。
常见的二维随机变量函数的分布
介绍一些常见的二维随机变量函数和它们的分布,以及它们在实际问题中的应用。
线性变换
对于服从正态分布的二维随机变量,经过线性 变换后,其分布也将趋于正态分布。
介绍二维随机变量函数的定义和应用场景,以及一些常见的例子。
定义
二维随机变量函数是将一个或多个随机变 量映射到另一个随机变量的数学函数。
例子
一个常见的二维随机变量函数的例子是计 算两个变量之间的相关性。
二维随机变量函数的分布求解方法
讲解如何通过求解方程或使用数值方法得到二维随机变量函数的分布。
1 方程求解
其他函数示例
还有许多其他类型的二维随机变量函数,如指 数函数、对数函数等。
函数转换法的应用与实例
通过实际应用案例,展示函数转换法在解决二维随机变量函数的分布问题中的应用。
1
应用实例
以金融市场中的投资组合优化问题为例,展示如何使用函数转换法来计算最优投 资组合的分布。
2
优势与局限
介绍函数转换法的优势和局限性,以及如何在实际问题中准确应用。
3
实用案例
分享其他实用案例,如信用评级、股票市场分析等,来展示函数转换法的广泛应 用。
二维随机变量的函数的分 布
随机变量及其函数的定义和性质介绍
二维随机变量的概念和例子
通过实际例子,介绍二维随机变量的定义和特点,以及它们在现实生活中的应用。
定义
二维随机变量是由两个随机变量构成,表示两 个相关事件的联合概率分布。
例子

二维随机变量及其分布

二维随机变量及其分布
5
一、二维随机变量的联合分布函数与边缘分布函数
1、联合分布函数: F(x,y)
(1)定义:设(X,Y)为二维随机变量,对任意实数 x、y, 称
F (x, y) P {X x , Y y} P {(X x) (Y y )}
为二维随机变量(X,Y)的联合分布函数。
6
(2)联合分布函数的几何意义 (X,Y)平面上随机点的 坐标
三、二维连续型随机变量
23
1、联合概率密度函数:f(x,y)
定义:设二维随机变量(X,Y)的分布函数为 F
(x,y),若存在非负函数f(x,y),使对任意实数
x,y 有
xy
F(x, y)
f (u,v)dudv
则称(X,Y)是二维连续型随机变量,f(x,y)称为(X, Y)的联合概率密度函数。
f (x, y)
0, 其他
求:(1)k; (2)P(Y X );
(3)分布函数F (x, y);
(4)P(0 X 1, o Y X )
26
解:(1)1
f (x, y)dxdy
y
dx
ke2x3ydy
0
0
0
x
k e2xdx e3ydy k
0
0
6
e2xdx 1 e2xd (2x)
X与Y独立.
43
例2:设二维随机变量(X,Y)的概率密度为
f
(
x,
y)
2,
0
x 0,
y, 0 其他
y
1
问X与Y是否独立。
解:f X (x)
f (x, y)dy
3
二维随机变量的定义:
设E是一个随机试验,其样本空间为S .设X、Y是定义在S 上的两个随机变量,由 X,Y 构成的向量(X,Y)称为S的 一个二维随机变量。

3.1 二维随机变量的定义、分布函数

3.1  二维随机变量的定义、分布函数
2 X
当 2 x, 且 1 y 0 时 F ( x , y ) P{ X x , Y y }
P{ X 2, Y 1} 1 1 4 6
0
-1
Y X
-1
0
1 2


Y 1


F ( x , y ) P{ X x , Y y } P{ X 1, Y 1}
二维连续型随机变量的联合概率密度的 性质
(1)非负性 (2)正则性
f ( x, y) 0
F ( ,)
(3)可导性


f ( x , y )dxdy 1
2 F ( x, y) f ( x, y) xy
(4)(X,Y)落在平面区域G上的概率
设二维随机变量(X,Y)的概率密度为
1 , SG 0, ( x , y ) G; ( x, y) G.
f ( x, y)
其中G是平面上的有界区域,其面积为SG 则称(X,Y)在D上服从均匀分布.
例题讲解
例1: 设二维随机变量(X,Y)在区域G上服从均匀分 布,其中G是曲线 y=x2 和y=x 所围成的区域,则
定义3.1.4 (二元连续型随机变量)
若存在非负函数 f(x,y),使对任意实数x,y, 二元随机变量(X,Y)的分布函数可表示成如下形式
F ( x , y ) PX x , Y y
f (u, v )dudv
x
y
则称(X,Y)是二元连续型随机变量。
f(x,y)称为二元随机变量(X,Y)的联合概率密度函数.
2 12 2 , 0.75时二元正态分布的 • 下图是当 钟形密度曲面图。

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

2. 性质
(1) f ( x , y ) 0.
( 2)
f ( x, y ) d x d y F (, ) 1.

( 3) 设 G 是 xoy 平面上的一个区域, 点 ( X ,Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
2F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
P X a, Y c P (a X , c Y )
1 F (, c ) F (a, ) F (a, c )
(+,c)
x
例2. 设二维随机变量(X ,Y )的联合分布函数
x y F ( x, y ) A B arctan C arctan 2 2 x , y
F ( x, y)
x yy pij , x
i j
其中和式是对一切满足xi x , y j y 的 i , j 求和.
例如,在例4中
1 1 F (1, 2) P{ X 1, Y 2} p11 p12 0 . 3 3
3.2.3 二维连续型随机变量 1.定义
其中A , B , C 为常数. (1) 确定A , B , C ;
(2) 求P (X > 2).
解 (1) F (, ) A B C 1 2 2 y F (, y ) A B C arctan 0 2 2 x F ( x, ) A B arctan C 0 2 2 1 B ,C , A 2 . 2 2 1 x y (2) F ( x, y ) 2 ( arctan )( arctan ) 2 2 2 2

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

3.1 二维随机变量及其分布

3.1  二维随机变量及其分布

可得
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即Y的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即X的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
由 概率密度函数性质 4,得
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
三、二维连续型随机变量及其概率分布
两个常见二维连续型概率分布
三、二维连续型随机变量及其概率分布
关于二维正态分布的说明 (1)服从二维正态分布的密度函数的典型图形见下图; (2)二维正态分布的两个边缘分布是一维正态分布。
解:(1)由二维随机变量分布函数的性质, 可得
一、二维随机变量及其分布函数
例:设二维随机变量(X, Y)的分布函数为
解:由(1)式可得
第一节 二维随机变量及其分布
二维随机变量及其分布函数
二维离散型随机变量及其概率分布 二维连续型随机变量及其概率密度
二、二维离散型随机变量及其概率分布

第一节 二维随机变量及其分布

第一节  二维随机变量及其分布
x y
xi x y j y
F (4)二维离散随机变量的分布函数为: x , y px i , y j
对单变量 x 或 y 来说都右连续的。 二维连续随机变量的分布函数 F(x , y)是连续函数。
4
几何意义 F(x, y)表示随机点(X, Y)落在以(x, y)为顶 点,且位于该点左下方的无穷矩形区域内的概率。
解 (1 ) f ( x, y ) dxdy 1
0



0
ce
( x y )
dxdy c 0 (e
y

( x y )
)
0
dy
c e dy c(e ) 0
y 0
c1
c 1
( 2)P ( X Y 1)
x y 1
f ( x, y ) dxdy
17
P ( X Y 1)

1 0
1 y
0
e
( x y ) 1
dxdy
y
x y1
e dy
1 y 0
1 y
0
e
x
dx e y (1 e y 1 )dy
0 y x
x
1 (e y e 1 )dy 1 2e
XY
1
0
1 3
2
1 3 1 3
1
2
7
例3.2 设随机变量X在1,2,3,4四个整数中等可能 地取值,另一个随机变量Y在1~X中等可能地取一整 数值,试求(X,Y)的分布律. 解 由乘法公式容易求得(X,Y)的分布律,易知3,4,j取不大于 i的正整数,且
11 P X i, Y j P Y j | X i P X i , i 4 i 1, 2,3, 4, j i.

二维随机变量及其分布函数

二维随机变量及其分布函数

边缘概率密度函数的计算方法
边缘概率密度函数是二维连续随机变量的两个随机变量的Fra bibliotek缘分布的密度函数。
边缘分布函数的例子
例如,对于二维正态分布,边缘分布函数是标准正态分布函数。
二维随机变量及其分布函 数
本节将介绍二维随机变量的定义、表示方法,以及二维离散和连续随机变量 的分布函数和分布密度函数。
二维随机变量的定义
二维随机变量是由一对随机变量组成的随机变量,可以用一个有序对表示(X, Y),其中X和Y是两个单独的随机变量。
二维随机变量的表示方法
二维随机变量可以用概率分布函数或概率密度函数来表示其取值范围和概率 分布。
二维离散随机变量的分布函数
二维离散随机变量的分布函数是一个二维数组,其中每个元素表示随机变量 取对应值的概率。
二维连续随机变量的分布密度函数
二维连续随机变量的分布密度函数表示随机变量的取值在某个区域内的概率密度。
边缘分布函数的定义
边缘分布函数指的是一个随机变量的分布函数,忽略另一个随机变量的影响。

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算
二维连续型随机变量是指具有两个维度的随机变量,其取值可以是一个平面上的任意一个点。

与一维连续型随机变量类似,二维连续型随机变量也有分布函数和概率密度函数。

对于任意的实数x和y,定义二维随机变量(X,Y)的分布函数为:
F(x,y) = P(X≤x, Y≤y)
P表示概率,F(x,y)表示(X,Y)取值在区域(-∞,x] × (-∞,y]中的概率。

D表示平面上的任意一个区域,∬表示对D进行二重积分。

如果f(x,y)满足以下两个条件,即可称为(X,Y)的概率密度函数:
1. 非负性:f(x,y)≥0,对于任意的实数x和y成立。

2. 归一性:∬R f(x,y)dxdy = 1,其中R表示整个平面。

三、概率的计算
根据概率密度函数可以计算二维随机变量的概率。

对于任意的区域D,有:
如果要计算二维随机变量(X,Y)在区域D内的概率,可以通过计算概率密度函数在该区域上的积分来得到。

具体计算方法是将概率密度函数带入积分式中,并对x和y分别进行积分。

总结:二维连续型随机变量的分布函数是一个二维平面上的函数,可以用来描述随机变量在某个区域内取值的概率。

而概率密度函数则是用来计算二维随机变量在某个区域内的概率的函数。

在计算概率时,可以通过对概率密度函数进行积分来得到。

二维随机变量

二维随机变量

同理FY y F , y
二. 离散型边缘分布律
a. 定义:
FX x F x, pij p ij Pi , i 1,2,
xi x j 1 j 1
FY y pij P j , j 1,2,
问X和Y是否独立?
0


xe
dy xe x , x>0
y
fY ( y) xe
0
( x y )
dx e ,
y >0
即: xe x , x 0 f X ( x) 0, 其它
e y , y 0 fY ( y ) 0, 其它
若(X,Y)的概率密度为


[ cy (2 x)dy ]dx
0 0 1 2 0
1
x




f ( x, y)dxdy 1
确定C
c [ x ( 2 x ) / 2]dx =5c/24=1,
c =24/5
例2 设(X,Y)的概率密度是 cy (2 x ), 0 x 1, 0 y x f ( x, y ) 注意积分限 0 , 其它 求 (1) c的值; (2) 两个边缘密度 . 解: (2)
f ( x , y) 1 21 2 1 x 1 2 exp{ [( ) 2 2 2(1 ) 1 1
2 (
x 1
其中
1, 2 , 1, 2 ,
1
)(
y 2
2
)(
y 2
2
)2 ]}
均为常数,且
则称( X,Y)服从参数为 1, 2 , 1, 2 , 的二维正态分布. 记作( X,Y)~N( 1, 2 , 1, 2 , )

第三章随机变量及其分布.

第三章随机变量及其分布.
1 66
1 1 , f Y (1 x 2 ) (1 Y 不独立 1 1 C 10. (1) 2 ;(2)16 ;(3) f X (4)X , Y 相互独立 11. e 1
12.
1 f Z ( z) (1 z 2 )
11
1 10000
• 6.设某批零件的长度服从 X ~ N (, 2 ),现从这批 零件中任取5个,求正好有2个长度小于的概率。 轾p p , , U [0,p ], U 0,2 的随 • 7.设分别为服从U 犏 犏 臌2 2 机变量,求 Y sin X 的概率密度函数. • 8 .设流入某水库的总水量(单位:百万立方米) 服从上的均匀分布,但水库最大容量为7,超过7 的水要溢出,求水库存水量的分布函数. • 9.在箱中装有12只球,其中2只黑球,现从箱中 随机地抽取两次,每次抽取一球,用 X , Y 分别表 示第一次与第二次取得的黑球数,试分别对有放 回抽取与无放回抽取两种情况:(1)写出 ( X ,Y ) 的联合分布列;(2)判断 X , Y 是否独立。
第 三 章
随 机 变 量 及 其 分 布
1
第三章 二维随机变量及其分布
一 主要内容 二维随机变量及其分布 1. 二维随机变量的定义 2. 二维随机变量的分布函数 3. 二维离散型随机变量及其分布律 4. 二维连续型随机变量的分布密度 5. 边缘分布, 6. 随机变量的独立性
2
7. 随机变量简单函数的分布 2). 二维随机变量函数的分布 二. 应记忆的公式
10
• 4.已知某元件使用寿命服从参数 的指数分布(单位:小时)。( 1 )从这类元 件中任取一个,求其使用寿命超过5000小时的 概率;( 2 )某系统独立地使用 10 个这种元件, 求在5000小时之内这些元件不必更换的个数的 分布律 • 5 .某加工过程,若采用甲工艺条件,则完成 时间 X ~ N (40,8 2 ) ;若采用乙工艺条件,则完成 时间 X ~ N (50,4 2 )。(1)若要求在60 小时内完 成,应选何种工艺条件?(2)若要求在50 小 时内完成,应选何种工艺条件?

二维随机变量及其分布

二维随机变量及其分布

§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ③ F(x,y)关于x、关于y 右连续
F(x0
0,
y)
lim
xx00
F(x,
y)
F(x0
,
y)
F(x,
y0
0) lim yy00
F(x,
y)
F(x,
y0
)
整理课件
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ④ F(, ) lim F(x,y)0
2
1
x 1, y 1
整理课件
§5.3 二维连续型随机变量
一、二维连续型随机变量及联合密度函数
1.定义:设(X,Y)的分布函数为F(x,y),若存在一非负函 数f(x,y),使得对于任意的实数x,y有
yx
F(x,y) f(x,y)dydx
则称(X,Y)是连续型二维随机变量,函数 f(x,y)称为二 维随机变量(X,Y)的(联合)概率密度函数. 2.概率密度f(x,y)的性质
第五章 二维随机变量及其分布
➢ 二维随机变量及分布函数 ➢ 二维离散型随机变量 ➢ 二维连续型随机变量 ➢ 边缘分布 ➢ 随机变量的独立性 ➢ 条件分布
整理课件
§1.1 二维随机变量及分布函数
一、 二维随机变量 一般地,如果两个变量所组成的有序数组即二 维变量(X,Y),它的取值是随着实验结果而 确定的,那么称这个二维变量(X,Y)为二维 随机变量,相应地,称(X,Y)的取值规律为 二维分布
1
2
9P(X=2,Y=1)=2/9 1 1/9
2/9
P(X=2,Y=2)=4/ 2 2/9
4/9
9
整理课件
§5.2 二维离散型随机变量

二维随机变量及分布

二维随机变量及分布

二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。

1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。

(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。

第五章 二维随机变量及其分布

第五章 二维随机变量及其分布
x −∞ −∞

y
p(u, v )dudv .
则称( 则称(X,Y)为二维连续型随机变量,p(x,y)称为 为二维连续型随机变量, (X,Y)的联合密度(函数)。 的联合密度(函数)。 偏导存在的点处有: 注:在F(x,y)偏导存在的点处有: ∂2 p( x, y) = F( x, y). ∂x∂y
1 1 2 + P ( X = 2,Y = 2) = 0 + + = . 3 3 3
2011-11-8 皖西学院 数理系 13
一口袋装有3个球 分别标有数字1,2,2, 个球, 例2 一口袋装有 个球,分别标有数字 从袋中任取一球;放回袋中,再从袋中任取一球。 从袋中任取一球;放回袋中,再从袋中任取一球。
变量分成离散型、连续型及混合型, 变量分成离散型、连续型及混合型,主要研究离 散型和连续型的随机变量。 散型和连续型的随机变量。
2011-11-8 皖西学院 数理系 3
二、二维随机变量的分布函数 定义:设有二维随机变量( X ,Y ), 对∀x, y ∈ R, 称概率 P( X ≤ x,Y ≤ y)为随机变量( X ,Y )的联合分布函数。记 概 率 作:F ( x, y), 即 F ( x, y) = P( X ≤ x,Y ≤ y).
概 率 论 与 数 理 统 计
x1 < x2 ⇒ F ( x1 , y) ≤ F( x2 , y);
y1 < y2 ⇒ F ( x, y1 ) ≤ F ( x, y2 ) .
有界性: 有界性:
0 ≤ F ( x, y) ≤ 1; F (−∞, y) = 0, F ( x, −∞) = 0, F (+∞, +∞) = 1.
xi
M

高等数学3.3 随机变量及其函数分布

高等数学3.3 随机变量及其函数分布

注 (1) 以上结论必须在 X 与 Y 相互独立的前提下 才能成立, 否则无此结论 . (2) 结论可推广到 n 个相互独立随机变量的情况 .
即设 X 1 , X 2 , … , X n 是 n 个相互独立的
随机变量, 它们的分布函数分别为
FXi ( xi ) (i = 1, 2, , n ) , 则
X Z= 的分布函数为 Y
FZ ( z ) = P Z z =
=
从而有
x z y

f ( x, y ) dxdy
0

0

zy

f ( x, y ) dxdy +



zy
f ( x, y ) dxdy .
fZ (z) =


0
y f ( zy, y )dy +

0

( y ) f ( zy, y )dy
于是
FZ ( z ) =



z

f ( u y, y ) dudy
= f (u y, y )dy du , z
故 Z 的密度函数为
fZ (z) =



f ( z y, y )dy ,
由 X 与Y 的对称性知, f Z ( z )又可写成
z
z =1/y
0 zy 1 , 0 y 1 . 如图所示
1
O
1
y
于是有
(1) 0 z 1 时 , (2) z 1 时 ,
于是得
1 f Z ( z ) = ydy = ; 0 2 1 1 z f Z ( z ) = ydy = 2 . 0 2z

3-3二维连续型随机变量及其分布

3-3二维连续型随机变量及其分布

1 1 x2 y 2 2 8
1 y [ x2 ] 2 2
2

1 故进而 1 1, 2 2 ,所以 ( X , Y ) ~ N (0,0,1, 4,0) ,且 k . 4 •10
1.二维均匀分布 定义 3.2 设平面有界区域 D 的面积为 A ,如果二维随机变量
1 , ( x, y ) D, ( X , Y ) 的密度函数为 f ( x, y ) A 0, ( x, y ) D, 就称 ( X , Y ) 服从区域 D 上(内) 的 均匀分布, 记为 ( X , Y ) ~ U ( D) .
【1】 ( X , Y ) 落入某平面区域 G 内(上)的概率为
G D的面积 P{( X , Y ) G} P{( X , Y ) G D} 。 A 【 2】 ( X , Y ) ~ U ( D) , 区域 G 为 D 的任意子区域, 则 P{( X , Y ) G} 1 与 G 的面积成正比, 比例系数为 , 而与 G 的位置和形状无关. A
f ( x, y)
1 2 1 2 1 2
e
x , y ,
其中 1 , 2 , 1 , 2 , 均为常数,且满足:
(3.1)
1 , 2 , 1 0, 2 0 , 1 1 ,
f ( x, y)dxdy .
D
【注】概率 P{( X , Y ) D}的数值等于以 D 为底,曲面 z f ( x, y) 为顶的曲顶柱体的体积.
结论 3.2
如果 L 为平面上任一曲线,则 P{( X , Y ) L} 0 .
ke x , 0 y x, 例 3.1 设 ( X , Y ) 的密度函数为 f ( x, y ) ⑴ 求常数 其它. 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Ae
(2 x 3 y)
故A 6.
(2 x 3 y ) 6 e , x 0, y 0 求:⑵F(x,y); f ( x, y) 0, 其它
解( 2) 当x 0, y 0时,
F ( x, y)
6e 0 0
x y
( 2 x 3 y )
0
-1
1
2
X
Y X
-1
0
1 2


Y


F ( x , y ) P{ X x , Y y } 1 P{ X 1, Y 1}
X
当 1 x 2 且 1 y 0 时
0
-1
1
2
4
Y X
-1
0
1 2


Y


P{ X 1, Y 1}
当 2 x, 且 1 y 0 时 F ( x , y ) P { X x , Y y }
例1 飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定的.
身高Y
例2:检查某大学的全体学生的身体状况,
从其中随机抽取一个学生,
分别以X 和Y 表示其体重和身高.
体重X
例如 E:抽样调查15-18岁青少年的身高 X与体重 Y,
以研究当前该年龄段青少年的身体发育情况。
任务: 需要研究的不仅仅是X及Y各自的性质,
3.1.3 二维连续型随机变量
定义3.1.4 (二元连续型随机变量)
若存在非负函数 f(x,y),使对任意实数x,y, 二元随机变量(X,Y)的分布函数可表示成如下形式
F ( x , y ) PX x , Y y
f (u, v )dudv
x
y
则称(X,Y)是二元连续型随机变量。
若二维 随机变量 (X,Y)的
所有可能取值只有限对或可列对,
则称(X,Y)为二维离散型随机变量。
(X,Y)的联合概率分布(分布律)
表达式形式 表格形式
P{X=xi ,Y=yj}=pij,i,j=1,2, …
X
Y
y1 … ym …
x1
x2

xn

p11
… …
p12
… …
p1n

pm1
(4)(X,Y)落在平面区域G上的概率
P{( X , Y ) G }
几何解释

G =曲顶柱体的体积
f(x,y)

f ( x , y )dxdy
f ( x, y )
G
o
x
例题讲解
例1: 已知二维随机变量(X,Y)的概率密度
(2 x 3 y) Ae , x 0, y 0 f ( x, y) 0, 其它
若(X,Y)是随机变量,对于任意的实数 x,y.
F ( x, y ) P( X x ) (Y y )
记作P{ X x, Y y}
称为二维随机变量的联合分布函数
二维随机变量(X,Y)的分布函数F(x,y)的含义 F ( x, y) P( X x ) (Y y)
P{ X 0, Y 1} 10 2
12 11
P{ X 1, Y 0} 2 10
12
11
P{ X 1, Y 1} 2 1
12 11
(X,Y)的联合分布律 X 0 1
Y
0
15 22 5 33
5 33 1 66
1
例2.设随机变量 X 在 1,2,3 中等可能地取值,
dxdy

(1 e 2 x )(1 e 3 (1 e 2 x )(1 e 3 y ), F ( x, y) 0,
(2 x 3 y ) , x 0, y 0 6e f ( x, y) 0, 其它
求:⑴系数A;⑵F(x,y);⑶P{X<2,Y<1}; (4)P{2X+3Y≤6}
解(1):由F ( ,)
即:
A A 2x 3y (e ) (e ) 1 6 6 0 0
0 0

f ( x, y)dxdy 1
dxdy 1
y 1
f(x,y) ≠0
解(3): P{ X<2, Y<1}


2
{ x 2, y 1}
f ( x, y )dxdy
1 2 x 3 y
0 dx 0 6e
dy
{x<2, y<1}
2 x
4 3 1 e 1 e
-1
1
1 1 4 4
Y X
-1
0
1 2


Y


F ( x , y ) P{ X x , Y y }
当 x 2, 且0 y 时
1
0
-1
1
2
X
Y=-1
X =1
Y=
0




X =2
0 x 1或y 1 1 1 x 2且 1 y 0 4 1 1 F ( x, y) 1 x 2且0 y 4 4 1 1 2 x且 1 y 0 6 4 x 2且y 0 1
上服从均匀分布,则
x 0, y 0, x y 1

1 1 P{0 x ,0 y } 2 2

1 1 2 dx 2 2dy 0 0

=
2, f ( x, y) 0,
x 0, y 0, x y 1; 其他
6e ( 2 x 3 y ) , x 0, y 0 f ( x, y) 0, 其它
解(4):
y
2
f(x,y) ≠0
P{2 X 3Y 6}

2x 3 y6

6e
(2 x 3 y )
dxdy
0
3 x

三角形
3 0

6e
( 2 x 3 y )
P{ X 2, Y 1} 1 1 4 6
0
-1
1
2
X
Y X
-1
0
1 2


Y


F ( x , y ) P{ X x , Y y } P{ X 1, Y 1}
P{ X 1, Y 0}
2 X
当 1 x 2, 且0 y 时
0
F(x2,y2)
-F(x2,y1)
x1 , y1
x1

x2 , y1
x2
-F(x1,y2)
+F(x1,y1)
P(x1 X x2,y1 Y y2) = F(x2,y2)- F(x2,y1)- F(x1,y2) + F(x1,y1)
二维随机变量的联合分布函数的性质
性质(1) F(x,y)分别关于X和Y 性质(2) 0 单调不减; . ≤ F(x,y) ≤ 1 . F(x, - ∞)= 0 ;F(- ∞,y)= 0 . F(- ∞, - ∞)= 0 ;F(+ ∞, + ∞) = .1 F(x,y)分别关于X和Y 右连续; .
y
几何解释 : F(x, y) 表示 随机点(X ,Y )落在 以(x,y )为顶点,且 位于该点左下方的 无穷矩形内的概率.
( x, y )
o
x
用联合分布函数F(x,y)表示矩形域概率
P(x1 X x2,y1 Y y2)
y2
y1
x1 , y2

x2 , y2

X 1 2 3
Y
1
1/3 1/6 1/9
2
0 1/6 1/9
3
0 0 1/9
=++ =2/ 3
例:(X,Y)的联合分布律如下:
Y X
-1
0
求(1)k=?; (2) F(x,y)=?
1 2



k
+ + +k=1
k =
Y X
-1
0
1 2
当 x1 或
Y




0
y 1 时, F ( x , y ) P{ X x , Y y }
1 1 3 i
F ( x , y) = P ( X x , Y y)
F ( 2 , 2) = P ( X 2, Y 2)
P ( X 1, Y 1 ) P ( X 1, Y 2 ) P ( X 2, Y 1 ) P ( X 2 , Y 2 )
Y 在 1—X 中等可能地取整数值, 求( X, Y )的分布列及F(2,2).

X Y
1
1/3 0
2
1/6
1/6 0
3
1/9 1/9
1
2
3
0
1/9
P ( X i , Y j ) P( X i ) P ( Y j X i ) ( i 1, 2, 3, j i )
例题讲解
例1: 设二维随机变量(X,Y)在区域G上服从均匀分 布,其中G是曲线 y=x2 和y=x 所围成的区域,则
(X,Y)的联合概率密度
fx,y=
1 SG 0,
x x dx
1 2 0
1
6, ( x , y ) G; 其他
0
1
相关文档
最新文档