(完整版)人教版小学五年级数学《简易方程》讲义

合集下载

2023-2024年小学数学五年级上册期末考点复习 第五单元《简易方程》(人教版含详解)

2023-2024年小学数学五年级上册期末考点复习 第五单元《简易方程》(人教版含详解)

期末知识大串讲人教版数学五年级上册期末章节考点复习讲义第五单元简易方程知识点01:用字母表示数1. 用字母表示数量关系(1)可以用字母或含有字母的式子来表示一个数或表示数量关系;(2)字母与数字相乘时,把乘号省略。

省略乘号时,一般把数字写在字母前面。

含有字母的式子中的加、减、除号不能省略。

2. 用字母表示运算定律和计算公式(1)在含有字母的式子里,只有字母与字母、数字与字母之间的“×”才能简写成“.”或者省略不写。

注意:省略乘号后,数字必须写在字母的前边。

(2)应用公式求值解决问题的步骤:第一步:写出字母公式第二步:把字母表示的数值代入公式第三步:计算出结果,记住写单位3. 用字母表示复杂的数量关系(1)不同的式子可以表示相同的数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4. 化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点02:解简易方程1.方程的意义(1)方程的意义:含有未知数的等式是方程。

(2)方程必须具备的两个条件:一是等式;二含有未知数。

2.方程一定是等式;但等式不一定是方程。

3. 所有的方程都是等式,但等式不一定都是方程。

4.等式的性质等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

5.方程的解使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

考点01:用字母表示数1.(2022秋•龙口市月考)静静今年10岁,妈妈比她大a岁,再过m年,妈妈比静静大()岁。

A.10+a B.a C.m【思路引导】不管过多少年,两人的年龄差是不会变的。

【完整解答】解:静静今年10岁,妈妈比她大a岁,再过m年,妈妈比静静大a岁。

故选:B。

2.(2022春•遂平县期末)妈妈今年a岁,比笑笑年龄的3倍少5岁,笑笑今年()岁。

人教版小学五年级数学上册第五单元《简易方程》课文课件全

人教版小学五年级数学上册第五单元《简易方程》课文课件全

对应练习
(教材第59页“做一做”)
1.动车的速度为220千米/ 时,普通列车 的速度为120 千米/ 时。
巩固练习
(教材第57页第12题)
4. 工作效率 工作时间 工作总量
(个/分) 分

x
5
5x
150÷m
m
150
a
t
c= at
王红每分钟打字50个,利用表中的公式计算她1
小时打多少个字。
1小时=60分
c=at=50×60=3000(个)
答:她1小时打3000个字。
拓展练习
(教材第57页第13题)
5* .在右图中,
120+10a (2)根据这个式子,当a等于25时,商店一共
有多少千克苹果?
a=25,120+10a=120+10×25=370(千克)
对应练习
(教材第58页“做一做”)
2.仓库里有货物96吨,运走了12车,每车运b 吨。
(1)用式子表示仓库里剩下货物的吨数。
96-12b (2)根据这个式子,当b等于5时,仓库里剩下
巩固练习
(教材第60页第2题)
4. 用含有字母的式子表示下面的数量关系。
(1)t与3的和。 t+3
(2)20减去a的差。20-a
(3)x的2倍。 2x
(4)b除以12的商。 b÷12
(5)a的5倍减去4.8的差。 5a-4.8 (6)比x小9的数。 x-9
巩固练习
(教材第60页第3题)
有20人,平均分成a组, 每组(20÷a)人。
当x等于8时,一共用了多少根小棒? 7×8=56(根)
摆x个正方形比摆x个三角形多用了多少根小棒呢?
方法小结

(完整版)人教版小学五年级数学《简易方程》讲义

(完整版)人教版小学五年级数学《简易方程》讲义

(完整版)⼈教版⼩学五年级数学《简易⽅程》讲义五年级简易⽅程讲义第⼀课时:⽤字母表⽰数【学习⽬标】1、理解⽤字母表⽰数的意义和作⽤。

2、能正确运⽤字母表⽰运算定律,表⽰长⽅形、正⽅形的周长、⾯积计算公式。

并能初步应⽤公式求周长、⾯积。

3、能正确进⾏乘号的简写,略写。

【学习重点】理解⽤字母表⽰数的意义和作⽤。

【学习难点】能正确进⾏乘号的简写,略写。

⼀、⾃主学习(感知⽤字母表⽰数的意义)1、阅读教材主题图,理解图意。

在书上填出例1中⽤图形、符号、字母表⽰的数。

2、思考:这3道⼩题中,要求的未知数表⽰的⽅法都有⼀个共同的特点。

你还见过哪些⽤符号或字母表⽰数的例⼦,如,。

3、回忆学过哪些运算定律,怎样⽤字母表⽰,阅读理解例2后完成下⾯的题。

加法交换律:加法结合律:乘法交换律:乘法结合律:乘法分配律:【在这些⽤字母表⽰的定律、性质中,哪⼀个运算符号可以省略不写,是怎样表⽰的。

】a ×b=b×a可以写成:a·b=b·a或ab=ba(a×b)×c=a×(b×c) (a·b)·c=a·(b·c) 或(ab) c=a(bc)。

4、阅读理解例3,⽤字母表⽰计算公式的意义和⽅法。

⽤S表⽰,C表⽰,a表⽰边长,试写出正⽅形的⾯积公式和周长公式,学⽣先⾃⼰试写,然后⼩组交流,看书讨论。

5、完成教材第46页做⼀做。

⼆、合作探究、归纳展⽰1、㎡表⽰()相乘,读作( );省略( )和( )的乘号后,数字⼀定要写在( )的前⾯。

2、超市运回10箱⽅便⾯,每箱X元,卖出180袋。

(1)⽤含有字母的式⼦表⽰超市还剩下⽅便⾯多少袋()(2)根据这个式⼦,求当X=24时,超市还剩⽅便⾯多少袋?【⾃我检测】1、(1)省略乘号,写出下列格式。

x×y( ) 7×a( ) 1×a( ) y ×3+9( )(2)下⾯式⼦对吗?如果不对请改正过来。

五年级数学上册 解简易方程讲义 人教版

五年级数学上册 解简易方程讲义 人教版

五年级数学上册解简易方程讲义人教版简易方程简介简易方程是一个数学问题,其中包含一个未知数和一些运算符。

通过解方程,我们可以找出未知数的值,使等式成立。

解简易方程需要运用一些基本的数学概念和运算法则。

解简易方程的步骤1. 整理方程:将方程中的各项按照一定的顺序排列。

2. 消去系数:通过运用运算法则,将方程中的系数化简。

3. 合并同类项:将方程中的同类项合并,化简方程。

4. 移项:通过变换方程的形式,将未知数移到一侧,常数项移到另一侧。

5. 化简方程:对于得到的新方程,继续化简,消除系数,求解未知数的值。

6. 检验解:将求得的未知数值代入原方程进行验证,确认解的可行性。

解简易方程的例子例1:解方程`2x + 3 = 9`。

首先,我们将方程整理为`2x = 9 - 3`。

然后,将系数和常数项合并,得到`2x = 6`。

接下来,通过移项将未知数移到一侧,得到`x = 6 / 2`。

最后,化简方程得出结果,`x = 3`。

例2:解方程`3(x - 2) = 12`。

首先,展开括号,得到`3x - 6 = 12`。

然后,将系数和常数项合并,得到`3x = 12 + 6`。

接下来,通过移项将未知数移到一侧,得到`x = (12 + 6) / 3`。

最后,化简方程得出结果,`x = 6`。

总结解简易方程是数学学习中重要的基础内容,需要掌握整理方程、消去系数、合并同类项、移项、化简方程和检验解等步骤。

通过解方程,我们可以找出未知数的值,从而解决各种实际问题。

人教版五年级数学上册 简易方程的应用 讲义

人教版五年级数学上册 简易方程的应用 讲义

简易方程的应用今天水果店搞特价销售,黄妈妈很高兴。

于是她去水果店买了3千克苹果和4千克梨,共用去了54.5元。

已知苹果每千克8.6元,求梨每千克多少元?解题步骤:①找出未知数,用字母表示。

(一般问什么设什么)②找出等量关系,并列方程。

③解答,有时间可以验算。

找等量关系的方法:①圈起关键字词,如“一共”、“剩下”、“平均”、“每”等②把“是”、“比”、“占”、“相当于”看作“=”。

③根据公式找出等量关系。

例1、水果店运来15筐桔子和12筐苹果,一共重600千克。

每筐桔子重20千克,每筐苹果重多少千克?例2、图书室科技书的本数比文艺书的3倍少75本,科技书有495本。

文艺书有多少本?例3、小东买8本笔记本,付给营业员20元,找回1.6元。

每本笔记本是多少元?例4、一个等腰三角形的顶角是72°,它的两个底角各是多少度?例5、猎豹是世界上跑得最快的动物,每小时能达到110km,比猫最快时的速度的2倍还多20km。

猫最快每小时跑多少千米?例6、有一个工程队,平均每天修路x米,修了35天之后还剩下30米,这个工程队修的路一共是1780米,问:平均每天修多少米?例7、有些题目涉及到公式,我们可以从公式入手,找出等量关系(1)行程问题:路程=___________________(2)工作问题:工作总量=_______________(3)商品问题:总价=__________________例8、A、B两地相距1500km。

甲、乙两车同时从A、B两地相对开出,10时两车相遇。

甲车每小时行80km,乙车每小时行多少km?例9、甲、乙两个工程队同时从两端修一条长77千米的公路,10天后,还剩15千米,已知乙队每天修2.2千米,甲队平均每天修多少千米?课堂练习1、李明到书店买了4本连环画和3本故事书,一共付了29.7元,连环画每本4.8元,故事书每本多少元?2、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

五年级上册数学讲义-简易方程第一讲(用字母表示数)-人教版(含答案)

五年级上册数学讲义-简易方程第一讲(用字母表示数)-人教版(含答案)

简易方程第一讲(用字母表示数)学生姓名年级学科授课教师日期时段核心内容用字母表示数,解简易方程课型教学目标1、弄清用字母表示数和方程的含义及解方程的原理。

2、掌握解方程的方法并能准确解答。

3、会灵活运用方程解决问题。

重、难点1、弄清用字母表示数和方程的含义及解方程的原理。

2、会灵活运用方程解决问题。

课首沟通师述:这次学习的主要是要求我们学会用字母可以表示我们已经学过的数、()、()和常见的数量关系。

当在数字与字母或数字与括号之间相乘时,中间的乘号可以记作“・”,也可以(),但在省略乘号的时候,要把数字写在字母或括号的()。

当字母在等式中代表什么数时,我们应当怎么去解决的问题。

知识导图课首小测口头小测提问:8+9=17 a+b=c 90+3x=120这些可以统称为什么;又有哪些区别?口答:加法:一个加数=();减法:被减数=(),减数=()乘法:因数=(),除法:被除数=(),除数=()书面小测1. 解下列方程90+3x=120 x-12×3=20【学有所获】进一步弄清数量之间的等量关系,掌握用等式的性质来解答的方法。

导学一:典型例题与易错题分析知识点讲解 1例如:a×b×7.5可以简写为:7.5・a・b或7.5ab。

例 1. 结合a2和2a 的表达方式填空。

42 =()×()=();52 =()×()=()4×2 =()+()=();5×2=()+()=()我爱展示1.省略乘号,写出下面各式。

(1)8×a=()(2)25×a×b×s=()(3)m×10=()(4)8×x×x=()(5)x×x-4=()(6)C×8+a=()2.用字母表示下面的数量关系。

(1)a表示工作效率,t表示工作时间,s表示工作总量S= a= t=(2)v表示速度,t表示时间,s表示路程S= v= t=(3)a表示单价,x表示数量,c表示总价C= a= x=3.一块地为a公顷,另一块地为b公顷,共收粮食x千克,这两块地平均每公顷收粮食()千克。

新人教版小学数学五年级上册《简易方程》PPT课件

新人教版小学数学五年级上册《简易方程》PPT课件
①如果每小时加工n个零件,6小时可以加工( 6n )个零件。
②如果每小时加工25个零件,( 4 )小时可以加工100个零件。
二、复习巩固
你能用含有字母的式子表示下面的数量关系吗?
(1)x的7倍; 7x (2)x的5倍加6;5x+6 (3)5减x的差除以3;(5-x)÷3 (4)200减5个a的差;200-5a (5)比7个b多2的数;7b+2 (6)边长为a的正方形的面积与周长。a2 4a
)。
A.5x+30=380
B.5x-30=380
C.x+5×30=380
备选练习
三、解方程。
4(x-16)=36.8
1.5x+16=20.5
1.5x=20.5-16 1.5x=4.5
x=3
x-16=36.8÷4 x-16=9.2
x=9.2+16 x=25.2
67.8-2x=34.8
9.5x+2.5x=6.6
)
3.甲数是a,乙数是甲数的2倍,甲、乙两数的和是3a。 (√ )
备选练习
二、选一选。(将正确答案的序号填在括号里) 1.下面两个式子相等的是(C
)。
A.a×a与2a
B.a+a与Ba×a
C.a×2与2a
2.下面方程的解是x=30的是(
)。
A.x÷150=5
B.270+x=300
C.90x=3
A
3.某工厂有煤380t,平均每月用xt,用了5个月后还剩30t,可列方程为(
如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通 关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩

人教版五年级数学上册 简易方程 讲义

人教版五年级数学上册 简易方程 讲义

简易方程讲义知识点一、用字母代表数今天,小明同学去妈妈的店铺里帮忙。

帮妈妈计算这几个月赚了多少钱。

请填写下表。

如果x月,收入为a,成本为b,那么利润应该为多少呢?在生活中的一些情况下,某一些量是会改变,例如上题的利润每个月都不同,如果要表示出它们的规律或者数量关系,我们就可以用字母表示数。

其实这个知识点我们以前也接触过,例如一些乘法定律:a×b=b×a、a×b×c=a×(b×c)、a×(b+c)=a×b+a ×c等。

写法规范:1、在含有字母的式子中,字母与字母、数字与字母之间的乘号可以记为“.” ,也可以省略不写。

加号、减号、除号不能省略,数字与数字之间的乘号也不能省略。

例:2×a 可以写作2a ;a ×b 可以写作ab ;但2×3不能..写作2.3,也不能..写作23 。

2、如果字母前面的数字是1,则省略这个1。

例:1a 要写成a ;1x 要写成x 。

例1、根据下列要求列式。

(1)比x 的2倍少3的数。

( )(2)一列火车每小时行78千米,t 小时行多少千米? ( )(3)李庄m 公顷的麦田,共收a 千克的小麦,平均每公顷产小麦多少千克? ( ) (4)a 与b 的差除以4的商。

( )(5)办公桌每张单价a 元,办公椅每把单价b 元,买m 套办公桌椅共付多少元? ( )例2、3a+4a=( );5a-3a=( )例3、如图所示,用含有字母的式子表示图中阴影部分的面积是( );当b=20厘米,a=18厘米时,阴影部分的面积是( )。

例4、小明身高142厘米;比哥哥矮a 厘米;哥哥身高( )厘米。

例5、爸爸今年a 岁;比妈妈大3岁;表示妈妈明年岁数的式子是( )。

A 、a+3 B 、a-3 C 、a-3+1课堂练习1、a与b的和的9倍用式子表示为()。

A、a+9bB、9a+bC、9(a+b)2、三个边长都是c厘米的正方形拼成一个长方形,这个长方形的周长是()厘米。

人教版数学小学五年级上册五单元《简易方程》集体备课主讲稿

人教版数学小学五年级上册五单元《简易方程》集体备课主讲稿

五上第五单元简易方程集体备课一、教学目标1.使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。

初步学会根据字母所取的值,求含有字母式子的值。

2.使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。

3.使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

培养学生根据县体情况,灵活选择算法的意识和能力。

二、教材说明和教学建议教材说明1.本单元的内容结构及其地位作用:本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

这些内容是在学生学了一定的算术知识.(如整数、小数的四则运算及其应用),已初步接触了一点代数知识(如用字母表示运算定律,用O、△或口表示数)的基础上,进行学习的。

- -般地说,在小学教学简易方程有以下几方面的意义。

是有助于培养学生的抽象概括能力,发展学生思维的灵活性。

因为对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。

而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一.次飞跃,它将使学生运用数学知识解决实际问题能力提高到-一个新的水平。

二是有助于巩固和加深理解所学的算术知识。

通过用字母表示所学过的数量关系、运算定律以及一些图形的周长、面积计算公式,可以使学生加深对这些知识的理解。

同时,由于用字母表示比用文字表述更简明易记,所以便于学生巩固所学知识。

三是有利于加强中小学数学的衔接。

让学生初步接触一点代数知识,能使学生摆脱算术思维方法中的某些局限性(逆向思考,未知数不参加运算,等于缺少一个条件,思维的步骤增加),为进--步学习代数知识做好认识的准备和铺垫。

本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。

人教版五年级上册数学第五单元《简易方程》方程的意义和解方程教学课件

人教版五年级上册数学第五单元《简易方程》方程的意义和解方程教学课件

(教材P66 练习十四T5)
2. 如果a=b,根据等式的性质填空。 a+3=b+( 3 ) a-( 9 )=b-9 a×1.5=b×(1.5) a+( m)=b+m a-( c )=b-c a÷(10)=b÷10
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
平衡的天平两边的物品数量都缩小到 原来的几分之一,天平仍保持平衡。
等式就像平衡的天平, 也具有同样的性质。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,
左右两边仍然相等。
巩固运用
(教材P66 练习十四T4)
1. 要保持天平平衡,右边应该添加什么物品?
右边添加一个圆柱。
右边应该添加两个球 或两个长方体或一个 球和一个长方体。
50+50=100 100+x=250
100+x>100 100+x<300
100+x>200 3x=2.4
50+50=100 100+x=250
3x=2.4 等式
100+x>100 100+x>200 100+x<300
不等式
50+50=100 100+x=250
3x=2.4 等式
在这些等式中,有的含有 未知数,有的不含未知数。
(1)x与3的和是16。 x+3=16
(2)x的5倍与20相等。 5x=20
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
第6课时 等式的性质
复习导入 在下面的这些式子中,哪些是等式,哪些是方程?
15+x<38 35+12=47 18y=3600 90-a 3b=4c 60-x=28
义务教育人教版五年级上册

人教版五年级上册数学第五单元《简易方程》说课稿

人教版五年级上册数学第五单元《简易方程》说课稿

人教版五年级上册数学第五单元《简易方程》说课稿一. 教材分析人教版五年级上册数学第五单元《简易方程》是本册教材中的重要内容,它是在学生已经掌握了四则运算、分数和小数等知识的基础上进行教学的。

本单元的主要内容是一元一次方程的解法和应用,旨在让学生了解方程的概念,掌握解方程的方法,并能够运用方程解决实际问题。

教材中通过引入“单价、数量和总价”的关系,让学生初步认识方程,并学会用字母表示未知数。

接着,教材引导学生通过“移项、合并同类项”的方法解一元一次方程,使学生掌握解方程的基本步骤。

最后,教材通过一系列的实际应用题,让学生巩固所学知识,提高解决问题的能力。

二. 学情分析五年级的学生已经具备了一定的数学基础,对于四则运算、分数和小数等知识有一定的掌握。

但是,学生在学习过程中可能存在以下问题:1. 对方程的概念理解不深刻,容易与算式混淆;2. 解方程的方法不够熟练,容易出错;3. 解决实际问题时,不能很好地将数学知识与实际情境相结合。

三. 说教学目标1.知识与技能目标:学生能够理解方程的概念,掌握解一元一次方程的基本步骤,能够运用方程解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的精神。

四. 说教学重难点1.重点:理解方程的概念,掌握解一元一次方程的基本步骤。

2.难点:将实际问题转化为方程,并熟练解方程。

五. 说教学方法与手段1.采用“情境导入、自主探究、合作交流”的教学方法,激发学生的学习兴趣,培养学生解决问题的能力。

2.利用多媒体课件、实物模型等教学手段,直观展示教学内容,帮助学生理解和掌握知识。

六. 说教学过程1.情境导入:通过展示商品的单价、数量和总价,引导学生发现并提出问题,激发学生探究方程的兴趣。

2.自主探究:学生自主尝试用字母表示未知数,并列出方程,体验解方程的过程。

3.合作交流:学生之间互相讨论、交流解题方法,教师引导学生总结解方程的基本步骤。

第五单元 简易方程--五年级上册数学单元总结归纳知识讲义(人教版)

第五单元 简易方程--五年级上册数学单元总结归纳知识讲义(人教版)

第五单元简易方程思维导图重难点梳理典例解析典例1(易错题—混淆a²和2a表示的意义)判断:当a=2时,a²=2×2=4,2a=2×2=4,所以,a²一定等于2a。

()解析不要混淆了a²和2a表示的意义,a²表示两个a相乘,可以写成a×a;2a表示两个a相加,可以写成a+a,a可以表示任何数,只有当a等于0或2时,才能得出a²=2a,所以a²不一定等于2a。

解答×典例2(易错点—对含有字母的式子理解不正确)判断:x+x+x=3+x。

()解析3个x相加,不应该写成3+x,而应写成3与x相乘的形式,即3x。

几个相同的字母相加,简写时应写成相同字母的个数与字母相乘的形式。

解答×典例3(易错点—年龄差不变)选择:小亮今年a岁,小丽今年(a-5)岁,b年后两人年龄相差()岁。

A、bB、5+bC、5解析已知小亮今年a岁,小丽今年(a-5)岁,可以求出两人的年龄相差5岁。

b年后,两人的年龄差仍是5岁。

解答 C典例3 (用含字母的式子表示图形的面积)教材P57第13题在右图中(1)哪一部分的面积是ac?(2)哪一部分的面积是bc?(3)整格图形的面积是多少?解析题中有三个长方形,只要分别找出三个长方形的长宽,再根据“长×宽=长方形的面积”,就可以表示出每个长方形的面积。

解答(1)左边长方形的面积是ac。

(2)右边长方形的面积是bc。

(3)整个图形的面积是(a+b)或ac+bc。

典例4 (用含有字母的式子解决实际问题)小彤家、小涵家和学校在一条直线上,已知小彤家和小涵家相距x千米,小彤家和学校相距y千米(x>y),用字母表示小涵家到学校的距离。

解析(1)小彤家和小涵家在学校的同侧:(2)小彤家和小涵家在学校的两侧:解答小涵家到学校的距离为(x+y)千米或(x-y)千米。

典例5(含有字母的式子带入求值)教材P61第11题当x=6时,x²和2x各等于多少?当x的值时多少时,x²和2x正好相等?解析x²表示两个x相乘,2x表示2和x相乘。

【典例精讲】第5讲 简易方程-五年级上册数学精品讲义 人教版(含答案)

【典例精讲】第5讲 简易方程-五年级上册数学精品讲义    人教版(含答案)

第5讲 简易方程(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“.”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )乘法交换律:ab=ba乘法结合律:(ab )c=a (bc )乘法分配律:(a+b )c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。

3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

简易方程用字母表示数方程的意义解方程解简易方程实际问题与方程解不同类型的方程解方程等式的性质4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。

2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

注意:方程一定是等式,但等式不一定是方程。

知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。

注意:解方程的依据是等式的性质;解方程时等号要上下对齐。

4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。

(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级简易方程讲义第一课时:用字母表示数【学习目标】1、理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。

并能初步应用公式求周长、面积。

3、能正确进行乘号的简写,略写。

【学习重点】理解用字母表示数的意义和作用。

【学习难点】能正确进行乘号的简写,略写。

一、自主学习 (感知用字母表示数的意义)1、阅读教材主题图,理解图意。

在书上填出例1 中用图形、符号、字母表示的数。

2、思考:这3 道小题中,要求的未知数表示的方法都有一个共同的特点。

你还见过哪些用符号或字母表示数的例子,如,。

3、回忆学过哪些运算定律,怎样用字母表示,阅读理解例2 后完成下面的题。

加法交换律:加法结合律:乘法交换律:乘法结合律:乘法分配律:【在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写,是怎样表示的。

】a×b=b ×a 可以写成:a ·b=b ·a 或ab=ba(a ×b) ×c=a ×(b × c) (a ·b) ·c=a · (b ·c) 或(ab) c=a(bc) 。

4、阅读理解例3,用字母表示计算公式的意义和方法。

用S表示,C 表示,a 表示边长,试写出正方形的面积公式和周长公式,学生先自己试写,然后小组交流,看书讨论。

5、完成教材第46 页做一做。

二、合作探究、归纳展示1、㎡表示()相乘,读作();省略()和()的乘号后,数字一定要写在()的前面。

2、超市运回10箱方便面,每箱X元,卖出180 袋。

(1)用含有字母的式子表示超市还剩下方便面多少袋()(2)根据这个式子,求当X=24 时,超市还剩方便面多少袋?【自我检测】1、(1)省略乘号,写出下列格式。

x×y()7× a()1×a() y ×3+9()(2)下面式子对吗?如果不对请改正过来。

㎡写作m×2()a×b 写作ba ()1×a 写作1a ()。

2、填一填。

(1)小红体重36 千克,比小莉重a 千克,小红体重()千克。

(2)李佳有10 元钱,买钢笔用去x 元,还剩()元。

第二课时:简易方程【使用说明及学法指导】1、结合问题自学课本第教材P47-P48 页,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。

2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。

【学习目标】1、进一步理解用字母表示数的意义和作用。

2、正确运用字母表示常用数量关系。

3、较熟练地利用公式、常用数量关系求值。

【学习重点】正确运用字母表示常用数量关系。

【学习难点】用字母表示常用数量关系。

一、自主学习1、用字母表示数,有哪些好处?但要注意什么?2、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

2×3 a ×7 14+b a÷7 a×a 5-x 0.6×0.63、阅读教材主题图,理解图意。

4、(1)爸爸比小红大()岁。

当小红1 岁时,爸爸()岁,当小红2岁时,爸爸()岁⋯⋯.这些式子,每个只能表示某一年爸爸的年龄。

(2)你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)法1:小红的年龄+30 岁=爸爸的年龄,法2:a +30 。

(3 )你喜欢()种表示方法,为什么,理由是()。

想一想:a可以是哪些数?a 能是200吗?为什么?(4)当a =11 时,爸爸的年龄是(),算式写在书上47 页。

5(1)你能用含有字母的式子表示出人在月球上能举起的质量吗,(2)式子中的字母可以表示哪些数(3)图中小朋友在月球上能举起的质量是()千克。

6、完成教材第48 页做一做。

二、合作探究、归纳展示1、用含有字母的式子不仅可以表示()、(),也可以表示()。

2、请结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?【自我检测】1、用含有字母的式子表示下面的数量关系。

a 与b 的差()x 与8.5 的积()比b 多c 的数()y 的4 倍() b 除c ()x 减去a 的2 倍()2、根据运算定律填空。

b ×(a+c)= □×□ +□×□56x+44x= (□ +□)×□ a-b-c= □-(□+□)第四课时:解方程1学习目标:1、结合问题自学课本第57 页,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。

结合具体的题目,初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高比较、分析的能力。

学习重点、难点:比较方程的解和解方程这两个概念的含义。

、自主学习1、回忆填空。

(1)天平两边同时增加或减少()的物品,天平保持平衡;(2)天平两边的()同时扩大或缩小相同的()数,天平保持平衡2、阅读教材主题图,理解图意。

(1)从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250 克。

用一个方程来表示这一等量关:(),x是()方程左右两边才相等呢?也就是求杯子中水究竟有多重。

如何求到x 等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

(2)观察根据数感直接找出一个x 的值代入方程,看看左边是否等于250 。

(3)利用加减法的关系:250-()=150 。

(4)把250 分成100+ (),再利用等式不变的规律从两边减去100 ,或者利用对应的关系,得到x 的值。

(5)直接利用等式不变的规律从两边减去()。

对于这些不同的方法,分别予以肯定。

从而得到x 的值等于150,将150 代入方程,左右两边()。

3、认识和区别方程的解和解方程。

(1)像这样,使方程()两边相等的未知数的值,叫做方程的解,刚才,x=150 就是方程100+x=250 的解。

2)而求方程的解的过程叫做解方程,刚才,我们用这种方法来求 100+x=250 的解的过程就是( )。

、合作探究、归纳展示自我检测:1、后面的括号中哪个是方程的解?(2) 12- x=4 ( x=16, x=8 ) (3)3 ÷ x=1.5( x=0.5, x=2)2、探究创新题。

小晴家、小强家和学校都在成一条直线的路上,并且位于学校两侧,小晴从家出发,每 分钟走 60 米,m 分钟可到学校,小强从家出发,每分钟走 65 米, m 分钟可以到学校。

(1) 小晴和小强,谁家离学校远?远多少米?(2) 如果 m=20 ,小晴家与小强家相距多少米?1、方程的解是一个具体的( ),而解方程是一个( ),方程的解是解方程的目的2、解方程。

X+3.5=79.46x=7.5 x ÷ 5=4.25(1) x+32=76 (x=44, x=108 )第五课时:解方程 2学习目标:1、结合问题学课本第58 、59 页,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法并结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

学习重难点:掌握解方程的方法。

一、自主学习1、解方程。

6.5+ x=80.5 50÷ x=2.5 x-5=4.252、阅读教材58 页主题图,理解图意。

(1)从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的 3个皮个球加起来共有()个,列方程:()。

(2)要求盒子中一共有多少个皮球,也就是求x 等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢,方程两边同时减去一个(),左右两边仍然相等,列式:(),化简后x= (),这就是方程的解。

(3)左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3 以后,左边刚好剩下一个(),这样,右边就刚好是()。

因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x 即可。

(4)x=6 带不带单位呢,x 在这里只代表一个(),因此不带单位。

(5)检验x=6 是不是正确的答案,还需要()。

方程左边=x+3=()+3=9= 方程()边所以,x=6 是方程的()。

3、阅读教材59 页主题图,理解图意.(1)方程3x=18 ,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

(2)在方程两边同时()3 即可。

刚好把左边变成1 个()。

让学生打把例2 中的解题过程补充完整。

二、合作探究、归纳展示1、通过刚才解方程的过程,我们知道了在方程的()两边同时减去一个()的数,左右两边仍然()。

2、通过刚才的学习,我们知道了在方程的两边同时()一个不为0 的数,()两边仍然相等。

自我检测:1、完成59 页的“做一做”。

2、根据题意列方程,并解答。

(1)把x 粒糖平均分给4 个小朋友,没人得5 粒,刚好分完。

2)学校买了2 箱乒乓球,每箱25 元,共花了25 元。

每个乒乓球多少元,﹡3、根据题意写出等量关系,再列出方程。

一本书有x页,小化看了27 页,还剩34页没看+ = 。

列方程:3、总结、评价:今天的学习,我学会了:()。

我在(方面的表现很好,在()方面表现不够,以后要注意的是:(第六课时:解方程3学习目标:1、结合问题自学课本第60—61 页,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。

初步学会如何利用方程来解应用题。

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

学习重点:找题中的等量关系,并根据等量关系列出方程。

学习难点:根据等量关系列出方程。

一、自主学习1、解下列方程:x+5.7=10 x-3.4=7.6 1.4x=0.56 x ÷ 4=2.72、阅读教材主题图,理解图意(1)观看洪泽湖的图片,了解洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。

每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。

密切关注水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的))。

总体表现(优、良、差),愉悦指数(高兴、苦痛高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。

(2)“今天上午8 时,洪泽湖蒋坝水位达()m ,超过警戒水位()m。

”(3)填关系式。

警戒水位+超出部分=今日水位①()—()= 超出部分②()—超出部分= ()③(4)根据数量关系,列出方程:①x+()=14.14 ②()-x= 0.64 ③14.14-0.64= ()3、阅读教材主题图,理解图意。

相关文档
最新文档