基本不等式知识点和基本题型

合集下载

高中不等式的基本知识点和练习题(供参考)

高中不等式的基本知识点和练习题(供参考)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔>(2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:b a ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,列出线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解2a b +≤1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号. 2.如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫ ⎝⎛+b a ,当且仅当a=b 时取等号. 3.如果a,b ∈R+,a ·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S . 注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的重要条件“一正,二定,三取等”4.常用不等式有:(1(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c R ,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。

基本不等式知识点和基本题型

基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。

2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。

3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当$a=b$时取“=”。

4、求最值的条件:“一正,二定,三相等”。

5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。

若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。

若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。

若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。

6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。

题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。

2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。

3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。

不等式的总复习——常见题型总结

不等式的总复习——常见题型总结

不等式的总复习一、知识点归纳1、用不等号连接的式子叫不等式。

2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

思考:举例说明不等式与等式的基本性质的区别?3、不等式的解集:(1)能使不等式成立的未知数的值,叫做不等式的解;(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。

(3)求不等式解集的过程叫做解不等式。

4、一元一次不等式:不等式的两边都是整式,只含有一个未知数,且未知数的最高次数为1.5、解不等式的步骤:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化为1.例:下面是小明同学解不等式223125+<-+x x 的过程: 去分母,得 2315+<-+x x移项、合并同类项,得 22-<-x两边都除以2-,得 1<x他的解法有错误吗?如果有错误,请你指出错在哪里。

6、在数轴上表示不等式的解集:取等画实心,不等画空心7、常见的不等关系词:不少于、至少(≥);不超过、至多(≤)8、一元一次不等式与一次函数的关系:对于一次函数b kx y +=,它与x 轴的交点坐标为(k b -,0) 当0>k 时,不等式0>+b kx 的解为k b x ->,不等式0<+b kx 的解为kb x -< 当0<k 时,不等式0>+b kx 的解为k b x -<,不等式0<+b kx 的解为kb x -> 因此,在做此类题时,先看一次函数(直线)与x 轴的交点,观察交点左右两边函数值y 的大小关系。

9、一元一次不等式组:一元一次不等式组中各个不等式的解集的公共部分叫做这个一元一次不等式组的解集二、常见题型解析例1 解下列不等式,并把它们的解集分别表示在数轴上。

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.例30. 已知正数b a ,满足4=+b a ,求3111+++b a 的最小值. 解: ∵4=+b a ∴()()831=+++b a .∵b a ,均为正数∴()()[]31813111+++=+++b a b a ⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛+++113311813111a b b a b a ⎪⎭⎫ ⎝⎛++++++=13318141a b b a ≥21133128141=++⋅++⨯+a b b a . 当且仅当1331++=++a b b a ,即1,3==b a 时,等号成立. ∴3111+++b a 的最小值为21. 例31. 若实数2,1>>b a ,且满足062=-+b a ,则2211-+-b a 的最小值为______. 解: ∵062=-+b a∴()()2212=-+-b a .∵2,1>>b a ,∴02,01>->-b a . ∴()()[]212212211-+-=-+-b a b a ⎪⎭⎫ ⎝⎛-+-2211b a()()⎥⎦⎤⎢⎣⎡--+--+=⎥⎦⎤⎢⎣⎡+--+--+=12214212212214221a b b a a b b a≥()4122142212=--⋅--⨯+a b b a . 当且仅当()12214--=--a b b a ,即3,23==b a 时,等号成立. ∴2211-+-b a 的最小值为4. 例32. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】 (A )5 (B )6 (C )7 (D )8 (参见例9)解: ()33-++=+y x y x .∵0,0>>y x ,且21131=++y x∴()⎪⎭⎫⎝⎛++=-++=+y x y x y x 131233()[]33-++y x ⎪⎭⎫ ⎝⎛++++=-⎪⎭⎫ ⎝⎛+++++=y x x yy x x y 3321313312≥533221=+⋅+⨯+yx x y . 当且仅当yx x y 33+=+,即4,1==y x 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.另解: ∵21131=++y x ,∴31211+-=x y . 整理得:()()2141412132++=+++=++=x x x x x y . ∵0,0>>y x ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x . 当且仅当141+=+x x ,即1=x (此时4=y )时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.点评 在利用基本不等式求最值时,根据需要有时要对关键条件进行变形,或对要求最值的代数式进行变形,以使和为定值或积为定值. 例33. 已知0>>y x ,求()y x y x -+42的最小值.分析: 注意到()x y x y =-+,所以()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+,这样就消去了字母y ,因此()y x y x -+42≥2216x x +≥4.当且仅当2216,xx y x y =-=时,等号成立.解: ∵0>>y x∴()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+(当且仅当y x y -=时,等号成立) ∴()[]42maxx y x y =-,()22min16444x x y x y ==⎥⎦⎤⎢⎣⎡-. ∴()y x y x -+42≥2216xx +≥816222=⋅x x .当且仅当2216x x =,y x y -=,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.另解: ∵0>>y x ,∴()0>-y x y .∵()[]22y x y x -+=≥()y x y -4(这里,ab ≤22⎪⎭⎫⎝⎛+b a )(当且仅当y x y -=时,等号成立) ∴()y x y x -+42≥()()y x y y x y -+-44≥()()8442=-⋅-y x y y x y .(当且仅当()()y x y y x y -=-44,即()1=-y x y 时,等号成立)当且仅当()1,=--=y x y y x y ,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.例34. 若b a >,且2=ab ,求证:ba b a -+22≥4.证明: ∵b a >,∴0>-b a .∵2=ab∴()ba b a b a ab b a b a b a -+-=-+-=-+42222≥()442=-⋅-b a b a .当且仅当ba b a -=-4,即13,13-=+=b a 或13,13--=+-=b a 时,等号成立.∴ba b a -+22≥4.例35. 已知b a ,为正数,求证:b a 41+≥()ba ++21222. 证明: ∵b a ,为正数,∴02>+b a .∴()b a a b b a a b b a b a 86482241++=+++=+⎪⎭⎫ ⎝⎛+ ≥()()21222232246826+=+=+=⋅+baa b . 当且仅当baa b 8=,即a b 22=时,等号成立. ∴b a 41+≥()ba ++21222.(这里,02>+b a ) ★例36. 若10<<x ,0,0>>b a .求证:xb x a -+122≥()2b a +. 分析: 注意到()11=-+x x 这一隐含条件. 证明: ∵10<<x ,∴01>-x .∴()[]()2222222211111b x x a x x b a x b x a x x x b x a +-+-+=⎪⎭⎫ ⎝⎛-+-+=-+ ≥()()22222222112b a ab b a xx a x x b b a +=++=-⋅-++. 当且仅当()x x a x x b -=-1122,即b a ax +=时,等号成立. ∴xb x a -+122≥()2b a +. 例37. 已知c b a ,,均为正数.求证:ccb a b bc a a a c b 33222332-++-++-+≥3. 证明: ∵c b a ,,均为正数∴ccb a b bc a a a c b 33222332-++-++-+ 33223332213231232132-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-++-++-+=c b b c c a a c b a a b cb c a b c b a a c a b≥336332232332222=-=-⋅+⋅+⋅cb bc c a a c b a a b . 当且仅当cbb c c a a c b a a b 3223,33,22===,即c b a 32==时,等号成立. ∴c c b a b b c a a a c b 33222332-++-++-+≥3. 例38. 已知0,0>>y x ,y yx x -=-812,则y x +2的最小值为 【 】 (A )2 (B )22 (C )23 (D )4分析: 注意到02>+y x ,根据题目所给条件的特点可先求出()[]min22y x +,然后开方即可得到()min 2y x +,而()()⎪⎭⎫ ⎝⎛++=+y x y x y x 81222.解: ∵y yx x -=-812,∴y x y x 812+=+.∵0,0>>y x ,∴02>+y x .∴()()y x y x +=+222⎪⎭⎫ ⎝⎛+y x 81x y y x x y y x ++=+++=16108162 ≥1816210=⋅+xyy x . 当且仅当xyy x =16,即22,22==y x (x y 4=)时,等号成立. ∴()22y x +的最小值为18. ∴y x +2的最小值为2318=. ∴选择答案【 C 】.例39. 已知0,0>>b a ,且8=+b a ,则ba ab43+的最大值是_________. 解: ∵0,0>>b a ,8=+b a∴()a b b a a b b a b a b a b a ab b a b a ab 452414424148131434343++=+++=⎪⎭⎫ ⎝⎛++=+=+=+ ≤38924452442524==+=⋅+abb a . 当且仅当a b b a 4=,即38,316==b a 时,等号成立. ∴b a ab 43+的最大值是38. 例40. 已知93,0,0=++>>xy y x y x ,则y x 3+的最小值为_________. 解: ∵93=++xy y x ,∴39+-=x xy . ∵0,0>>y x ∴()()633633336336333933-+++=-++=+++-+=+-+=+x x x x x x x x x x y x ≥()6612633632=-=-+⋅+x x . 当且仅当3363+=+x x ,即1,3==y x 时,等号成立. ∴y x 3+的最小值为 6. 点评: 上面的方法为消去元y 后,利用基本不等式求得最值.例41. 已知x 为正实数,且1222=+y x ,求21y x +的最大值. 解: ∵x 为正实数∴()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=+22122212112222222y x y x y x y x≤423221122221222=+⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⨯y x .当且仅当22122y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 另解: ∵1222=+y x ,∴2222=+y x .∵x 为正实数∴()()()22222221222122111y x y x y x y x +=+⋅=+=+ ≤()4232122221222212222222=+⨯=++⨯=⎥⎦⎤⎢⎣⎡++⨯y x y x . 当且仅当2212y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 例42. 求函数131-++-=x x x y 的最大值.解: 设1-=x t ,则t ≥0,∴12+=t x . ∴41312++=-++-=t t tx x x y .当0=t ,即1=x 时,0=y ; 当0>t ,即1>x 时,141++=t t y ≤511421=+⋅tt . 当且仅当tt 4=,即5,2==x t 时,取等号. ∴当1>x 时,函数131-++-=x x x y 的最大值为51.综上所述,函数131-++-=x x x y 的最大值为51.例43. 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,代数式zy x 212-+的最大值为 【 】 (A )0 (B )1 (C )49(D )3 解: ∵04322=-+-z y xy x ,∴2243y xy x z +-=.∵z y x ,,为正实数 ∴341431432222-+=+-=+-=x y y x xy y xy x y xy x xy z xy ≤13421=-⋅xy y x .当且仅当xyy x 4=,即y x 2=时,等号成立,此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x ≤1 ∴当1=y 时,zy x 212-+的最大值为1. ∴选择答案【 B 】.例44. 若正数y x ,满足3039422=++xy y x ,则xy 的最大值是 【 】(A )34 (B )35 (C )2 (D )45解: ∵xy y x 39422++≥xy xy xy xy y x 153123322=+=+⋅⋅∴xy 15≤30,∴xy ≤2. ∴xy 的最大值是2. ∴选择答案【 C 】.例45. 设0,0>>b a ,且ba kb a +++11≥0恒成立,则实数k 的最小值等于 【 】 (A )0 (B )4 (C )4- (D )2-解: ∵ba kb a +++11≥0恒成立∴k ≥()abb a 2+-恒成立.(这里,注意0>+b a )只需k ≥()max2⎥⎦⎤⎢⎣⎡+-ab b a 即可,此时()ab b a 2+取得最小值. ∵0,0>>b a ∴()abb a 2+≥()4422==ababab ab ,当且仅当b a =时,等号成立. ∴()abb a 2+-≤4-,∴()4max2-=⎥⎦⎤⎢⎣⎡+-ab b a ∴k ≥4-,即k 的最小值为4-. ∴选择答案【 C 】.例46. 设c b a >>,且c b b a -+-11≥ca m-恒成立,求m 的取值范围; 解: ∵c b a >>,∴0,0,0>->->-c a c b b a .∵c b b a -+-11≥ca m-恒成立 ∴c b ca b a c a --+--≥m 恒成立,只需m ≤min⎪⎭⎫ ⎝⎛--+--c b c a b a c a 即可.∵cb ba b a c b c b c b b a b a c b b a c b c a b a c a --+--+=--+-+--+-=--+--2 ≥422=--⋅--+cb ba b a c b ∴当且仅当b c a 2=+时,等号成立,4min=⎪⎭⎫⎝⎛--+--c b c a b a c a . ∴m ≤4.∴m 的取值范围是(]4,∞-.例47. 对于任意∈x R ,不等式031222>++-x a x 恒成立,求实数a 的取值范围. 解: ∵031222>++-x a x 恒成立∴13222++<x x a 恒成立,只需<a min 22132⎪⎭⎫ ⎝⎛++x x 即可.()⎪⎪⎪⎪⎭⎫⎝⎛+++=+++=+++=++12112111*********2222222x x x x x x x x . 设t x =+12,则[)+∞∈,1t ,⎪⎪⎪⎪⎭⎫ ⎝⎛+=++t t x x 21213222. ∵[)+∞∈,1t ,且()⎪⎪⎪⎪⎭⎫ ⎝⎛+=t t t f 212在⎪⎪⎭⎫⎢⎣⎡+∞,22上单调递增 ∴()()321121min=⎪⎭⎫ ⎝⎛+==f t f ,即3132min22=⎪⎭⎫ ⎝⎛++x x . ∴3<a ,即实数a 的取值范围是()3,∞-.注意 本题不能用基本不等式求最值.当111222+=+x x 时,方程无解.例48. 设0,0>>b a ,5=+b a ,则31+++b a 的最大值为_________. 解: ∵()()()()()31293124312+++=+++++=+++b a b a b a b a≤()()18319=++++a a . 当且仅当31+=+b a ,即23,27==b a 时,取等号. ∴()231+++b a 的最大值为18.∵031>+++b a∴31+++b a 的最大值为2318=.例49. 已知3,2>>y x ,()()432=--y x ,则y x +的最小值是 【 】(A )7 (B )9 (C )5 (D )11解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x ∴()()232-+-y x ≥()()2432==--y x∴25-+y x ≥2,∴y x +≥9. ∴y x +的最小值是9.∴选择答案【 B 】.另解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x∴()()532+-+-=+y x y x ≥()()95425322=+⨯=+--y x .∴y x +的最小值是9.∴选择答案【 B 】. 例50. 若关于x 的不等式ax x -+4≥5在()+∞∈,a x 上恒成立,则实数a 的最小值为_________.解: ∵()+∞∈,a x ,∴0>-a x .∵ax x -+4≥5恒成立 ∴只需min 4⎪⎭⎫ ⎝⎛-+a x x ≥5即可. ∵a ax a x a x x +-+-=-+44≥()a a a x a x +=+-⋅-442 当且仅当ax a x -=-4,即2+=a x 时,等号成立. ∴a a x x +=⎪⎭⎫ ⎝⎛-+44min ∴a +4≥5,解之得:a ≥1.∴实数a 的最小值为1.例51. 已知0,0>>y x ,且121=+yx ,则y x xy ++的最小值为_________. 解: ∵121=+yx ∴xy y x =+2∴y x y x y x y x xy 232+=+++=++.∵0,0>>y x ∴⎪⎭⎫ ⎝⎛+=+y x y x 2123()y xx y y x x yy x 627462323++=+++=+≥3476227+=⋅+y xx y. 当且仅当y x x y 62=,即23,3323+=+=y x 时,等号成立.∴y x 23+,即y x xy ++的最小值为347+.例52. 已知0,0>>y x ,且053=+-+xy y x ,求xy 的最小值.解: ∵053=+-+xy y x∴xy y x 35=++.∵0,0>>y x∴5++y x ≥52+xy ,即xy 3≥52+xy ∴523--xy xy ≥0 ∴()()531-+xy xy ≥0解之得:xy ≥35.∴xy ≥925,当且仅当35==y x 时,等号成立.∴xy 的最小值为925.例53. 已知z y x ,,为正数,则222z y x yzxy +++的最大值为【 】 (A )1 (B )2 (C )22(D )2解: ∵z y x ,,为正数 ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+++222222222z y y x yz xy z y x yz xy ≤yz xy yz xy 222222⨯+⨯+ ()22212==++=yz xy yzxy . 当且仅当y z x 22==时,等号成立. ∴222z y x yz xy +++的最大值为22. ∴选择答案【 C 】.例54. 设0>>b a ,则()b a a ab a -++112的最小值是 【 】 (A )1 (B )2 (C )3 (D )4解: ∵0>>b a ,∴0>-b a .∴()()()()ab ab b a a b a a b a a ab ab ab a b a a ab a 11111122++-+-=-+++-=-++ ≥()()41212=⋅+-⋅-abab b a a b a a . 当且仅当()()abab b a a b a a 1,1=-=-,即22,2==b a 时,等号成立. ∴()b a a ab a -++112的最小值是4. ∴选择答案【 D 】.例55. 设y x ,都是正数,且()1=+-y x xy .(1)求xy 的最小值;(2)求y x +的最小值.分析: 关于(1)的解决,参见例52.解:(1)∵()1=+-y x xy ∴xy y x =++1. ∵y x ,都是正数 ∴y x ++1≥xy 21+,即xy ≥xy 21+. ∴12--xy xy ≥0. 解之得:xy ≥21+. ∴xy ≥()223212+=+. 当且仅当21+==y x 时,等号成立. ∴xy 的最小值为223+;(2)由(1)知:xy y x =++1. ∵y x ,都是正数∴xy ≤()4222y x y x +=⎪⎭⎫ ⎝⎛+. (当且仅当21+==y x 时取等号) ∴()42y x +≥y x ++1,()()142-+-+y x y x ≥0. ∴()()442-+-+y x y x ≥0. 解之得:y x +≥222+. 当且仅当21+==y x 时,等号成立. ∴y x +的最小值为222+.。

不等式知识点及题型总结

不等式知识点及题型总结

不等式一、知识点:1. 实数的性质:0>-⇔>b a b a ;0<-⇔<b a b a ;0=-⇔=b a b a .2. 不等式的性质:性 质内 容对称性 a b b a >⇔<,a b b a <⇔>. 传递性 a b >且b c a c >⇒>.加法性质 a b a c b c >⇒+>+;a b >且c d a c b d >⇒+>+.乘法性质 ,0a b c ac bc >>⇒>;0a b >>,且00c d ac bd >>⇒>>. 乘方、开方性质 0,n n a b n N a b *>>∈⇒>;0,n n a b n N a b *>>∈⇒>.倒数性质 11,0a b ab a b>>⇒<.3. 常用基本不等式:条 件结 论 等号成立的条件a R ∈20a ≥ 0a = ,a R b R ∈∈ 222a b ab +≥,2()2a b ab +≤,222()22a b a b ++≥ a b =0,0>>b a基本不等式: 2a b ab +≥常见变式:2≥+b a a b ; 21≥+aa ab =0,0>>b a2211222b a b a ab b a +≤+≤≤+ a b =4.利用重要不等式求最值的两个命题:命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b=时,和a +b 有最小值2.命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2s时,积ab 有最大值42s .注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积为定值,取最值时等号能成立,以上三个条件缺一不可.5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有结论:ax 2+bx+c>0⇔2040a ab ac >⎧=⎨-<⎩或检验;ax 2+bx+c<0⇔2040a ab ac <⎧=⎨-<⎩或检验 6. 绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。

基本不等式的常见题型

基本不等式的常见题型
2a b b 2b a a
12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1

的最小值是 _____.
1 x 1 2 y
1
1

1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.

完整版的不等式知识点和基本题型

完整版的不等式知识点和基本题型

完整版的不等式知识点和基本题型不等式是数学中一种重要的关系符号,它用来描述数值之间的大小关系。

以下是不等式的基本知识点和常见题型:1. 不等式基本概念- 不等式是指在两个数之间用不同的关系符号来表示大小关系,比如大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

- 不等式的解集是使不等式成立的所有实数的集合。

2. 不等式的性质- 若 a > b,则 b < a。

- 若 a > b 且 b > c,则 a > c。

- 若 a > b 且 a > 0,则 ac > bc(c > 0)。

- 若 a > b 且 c < 0,则 ac < bc(c < 0)。

- 若 a > b 且c ≠ 0,则 ac > bc。

3. 不等式的解法- 在不等式两边同时加(减)相同的数,不等式的方向不变。

- 在不等式两边同时乘(除)正数,不等式的方向不变。

- 在不等式两边同时乘(除)负数,不等式的方向反向。

- 若不等式两边有平方根,应考虑正负情况。

4. 不等式的常见题型4.1. 一元一次不等式- 形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 为常数,x 为变量。

- 解法类似一元一次方程,通过移项和化简来求解。

4.2. 一元一次绝对值不等式- 形如 |ax + b| > c 或 |ax + b| < c 的不等式,其中 a、b、c 为常数,x 为变量。

- 需要根据绝对值的定义来分情况讨论和求解。

4.3. 二元一次不等式- 形如 ax + by > c 或 ax + by < c 的不等式,其中 a、b、c 为常数,x、y 为变量。

- 解法类似于解一元一次不等式,通过移项和化简来求解。

4.4. 二次不等式- 形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的不等式,其中 a、b、c 为常数,x 为变量。

基本不等式知识点总结与例题讲解

基本不等式知识点总结与例题讲解

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.。

(初级篇2)基本不等式技巧和题型

(初级篇2)基本不等式技巧和题型

基本不等式技巧和题型一、基本不等式的常用结论1、⑴若R b a ∈,,则ab b a 222≥+;⑵若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取=) ⑶若R b a ∈,,则22)(222b a b a +≥+(当且仅当b a =时取=) 2、⑴若+∈R b a ,,则ab b a ≥+2;⑵若+∈R b a ,,则ab b a 2≥+(当且仅当b a =时取=)⑶若+∈R b a ,,则2)2(b a ab +≤(当且仅当b a =时取=) 3、若0>x ,则21≥+x x (当且仅当1=x 时取=),若0<x ,则21-≤+xx (当且仅当1-=x 时取=),若0≠x ,则2|1|≥+xx (当且仅当1||=x 时取=) 4、若0>ab ,则2≥+ba ab (当且仅当b a =时取=) 若0≠ab ,则2||≥+ba ab (当且仅当b a =时取=) 注意:利用基本不等式的条件“一正二定三相等”;两正数乘积一定时,和有最小值;两正数之和一定时,积有最大值.二、解题技巧技巧一:凑项例1 已知45<x ,求函数54124-+-=x x y 的最大值. 解:因为054<-x ,所以 首先要“调整”符号,又541)24(-⋅-x x 不是常数,所以对要进行拆、凑项,∵ 054<-x ,∴ 045>-x ,∴ 1323)45145(54124=+-≤+-+--=-+-=x x x x y ,当且仅当x x 4514-5-=,即1=x 时,等号成立,故1=x 时,1max =y .评注:本题需要调整项的符号,又要配凑项的系数,使其积为常数.技巧二:凑系数例2 当40<<x 时,求)28(x x y -=的最大值.解析:由40<<x 可知028>-x ,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

《基本不等式》知识点及题型总结

《基本不等式》知识点及题型总结

基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。

基本不等式应用-利用基本不等式求最值的技巧-知识点总结与题型分析

基本不等式应用-利用基本不等式求最值的技巧-知识点总结与题型分析

基本不等式应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x =2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --g 不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

不等式基本原理和基本题型

不等式基本原理和基本题型

不等式基本原理和基本题型
一、不等式基本原理
不等式是数学中常见的一种表示关系的方法,它描述了数值之间的大小关系。

不等式的基本原理包括以下几点:
1. 加法原理:如果一个不等式两边同时加上(或减去)相同的数,不等式的方向不变。

2. 乘法原理:如果一个不等式两边同时乘以(或除以)同一个正数,不等式的方向不变;如果乘以(或除以)同一个负数,不等式的方向改变。

3. 复合不等式:如果两个不等式都成立,那么它们的复合不等式也成立。

二、不等式基本题型
不等式作为数学题目中一个重要的考查内容,有几种常见的基本题型,包括以下几点:
1. 解不等式:求出不等式的解集,即满足不等式条件的一组数值。

2. 求最大最小值:对于给定的一组数值,通过不等式条件求出其中的最大值或最小值。

3. 不等式的证明:给定一个不等式,通过推导和证明,证明其成立。

4. 不等式的应用:将不等式应用到实际问题中,通过求解不等式来解决实际问题。

以上是不等式的基本原理和基本题型的简要介绍。

不等式在数学中广泛应用于各个领域,对于学习数学和解决实际问题都具有重要意义。

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。

基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。

要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。

基本不等式知识点及题型归纳总结

基本不等式知识点及题型归纳总结

基本不等式知识点及题型归纳总结知识点精讲1. 几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“”时取“”).特例:同号.(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2. 均值定理已知.(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.题型归纳及思路提示题型1 基本不等式及其应用思路提示熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例7.5“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:由能推出;但反之不然,因为的条件是,故选A.变式1 已知且,则()A. B. C. D.变式2下列不等式中一定成立的是()A. B.C. D.例7.6 若,则下列不等式对一切满足条件的恒成立的是(写出所有正确命题的序号).①;②;③;④;⑤.解析:对于①,由及得,即(当且仅当时取等号),故①正确;对于②,由及得,即(当且仅当时取等号),故②正确;对于③,由得,故③正确.对于④,,因此(当且仅当时取等号),故④不恒成立;对于⑤,,又,则,故⑤正确,故填①③⑤.变式1如果正数满足,那么()A. ,且等号成立时的取值唯一B. ,且等号成立时的取值唯一C. ,且等号成立时的取值不唯一D. ,且等号成立时的取值不唯一题型2 利用基本不等式求函数最值思路提示(1)在利用基本不等式求最值时,要把握四个方面,即“一正各项都是正数;二定和或积为定值;三相等等号能否取到(对于不满足‘相等’的函数求最值,可考虑利用函数单调性解题);四同时多次使用基本不等式时等号要同时取得”,求最值时,这是个方面缺一不可,若忽视了某个条件的验证,可能会出现错误.(2)利用基本不等式求函数最值常用的技巧有:1通过加减项的方法配凑成使用基本不等式的形式;2注意“1”的变换;3灵活选择和应用基本不等式的变形形式;4合理配组,反复使用基本不等式等.一、利用基本不等式求最值要注意条件的验证例7.7 (1)若,求函数的最小值;(2)若,求函数的值域.分析:(1)因为满足不等式条件,可以直接利用基本不等式求最值.(2)因为,故需先转化为,才能利用基本不等式求最值.解析:因为,由基本不等式得,当且仅当,即时,取最小值.(2)因为,所以,则,且,即. 当且仅当,即时,取最大值.故函数的值域为.评注:解(1)时,应注意积为定值这个前提条件;解(2)时,应注意使用基本不等式求最值时,各项必须为正数.变式1 (1)求函数的值域(2)求函数的最小值;(3)求函数的最小值.二、通过代数变换凑配成使用基本不等式的形式例7.8已知,求函数的最大值.分析:因为,所以首先要调整符号,又不是常数,所以要对进行拆凑项,通过将函数解析式拆凑成可以使用基本不等式的形式,从而求得函数的最值.解析:因为,所以,由(当且仅当时,即时取等号)得. 所以函数的最大值为1.当且仅当时,即时取等号,故当时,.评注:利用基本不等式求最值时要重视各种条件,即“一正二定上相等四同时”必须全部满足,方可利用其求得最值. 如果本题中的条件“”改为“”,则如下求解:因为,所以,为错误求解,错误原因:在于只注重基本不等式的形式构造而未对成立条件“三相等”加以验证,事实上,.一般地,对勾函数在上单调递减,在上单调递增,若不满足“三相等”的条件可以利用函数的单调性求最值.另外,还要注意与对勾函数同形质异的函数在上和均为单调增函数.如可直接利用单调性求最值.变式1 求函数的最大值.变式2 设正实数满足,则当取得最大值时,最大值为( )A. 0B. 1C.D. 3 三、“1”的变换 例7.9 已知,且,求的最小值.分析:利用条件中“1”的变换.解析:解法一:因为,且,所以.当且仅当即,的最小值为16.解法二:由,且,得,所以10.因为0y >,所以90y ->,所以99(9)102(9)101699y y y y -++≥-+=--. 当且仅当999y y -=-,即12y =时取等号,此时4x =,所以当4,12x y ==时,x y +取得最小值16 评注 本题的解法一是利用条件中的“1”,代换成“19x y+”,将其所求的形配凑成利用基本不等式的形式,使得题目顺利求解,但下面的解法是错误的:因为1919612x y x y xy+=≥=,即36xy ≥,所以223612x y xy +≥=,错误的原因在于连续使用了两次基本不等式,但未对两个“=”成立的条件是否吻合进行验证,其实,这两次“=”不能同时取得,这就提醒我们,在多次使用基本不等式时,一定要验证多次“=”满足的条件能否同时成立.变式1 已知0a >,0b >,2a b +=,则11y a b=+的最小值是 变式2 求函数2214(0)sin cos 2y x x x π=+<<的最小值 变式3已知a b c >>,证明:1113a b b c c a a c++≥---- 变式4 设2a b +=,0b >则当a = 时,12a a b+最得最小值. 四、转化思想和方程消元思想在求二元函数最值中的应用例7.10若正数,a b 满足3ab a b =++,则:(1)ab 的取值范围是 (2)a b +的取值范围是分析 由等量关系的结构特征可知,只需将所求部分之外的部分利用不等式转化为所求的形式,然后解不等式即可.解析(1)解法一:基本不等式.33ab a b =++≥,当且仅当a b =时取等号,所以230≥,3≥1-(舍),3≥,故有9ab ≥.当且仅当3a b ==时取等号,即ab 的取值范围是[9,)+∞解法二:判别式法.令ab t =(3t >),则t b a =,代入原式得,3t t a a=++,整理得2(3)0a t a t +-+=. 2(3)40t t ∆=--≥,得9t ≥或1t ≤(舍),ab 的取值范围是[9,)+∞(2)解法一:23()2a b ab a b +=++≤,当且仅当a b =时取等号,令0S a b =+>,则234S S +≤,整理得即24120S S --≥得6S ≥或2S ≤-(舍),即a b +的取值范围是[6,)+∞解法二:判别式法,令a b t +=(0t >),则b t a =-,代入原式得,()3a t a t -=+,整理得230a at t -++=24(3)0t t ∆=-+≥,得6t ≥或2t ≤-(舍).即a b +的取值范围是[6,)+∞评注:注意体会使用方程消元法求范围与利用基本不等式求范围的优劣,试用方程消元法求解本题的第(2)问.变式1 若,0x y >满足26x y xy ++=,则xy 的最小值是变式2 若,0x y >满足2x y xy ++=,则x y +的最小值是 变式3 若,0x y >满足228x y xy ++=,则2x y +的最小值是( ).A 3 .B 4 .C 92 .D 112五、灵活选择和运用基本不等式的变形形式例7.11 设0,0x y ≥≥,2212y x +=,则的最大值为 分析 观察所求式子与题中所给条件的联系,运用基本不等式灵活建立两者之间的关系是解题的核心.解析 0x ≥,0y ≥,2212y x +=所以== 221222y x ++≤2212222y x ++==(当且仅当2212y x +=时取“=”,即x =,2y =时取“=”). 评注 本题除了利用基本不等式求解外,还可以利用已知条件中的2212y x +=,采用三角换元来求解,望同学们自己尝试.变式1 已知0a >,0b >,4a b +=,求2211()()a b a b+++的最小值. 六、合理配组,反复应用基本不等式 例7.12 设0a b >>,则211()a ab a a b ++-的最小值是( ) .A 1 .B 2 .C 3 .D 4解析 解法一:因为2112a b a b +≤+,所以411a b a b+≥+.故2114()ab a a b a ab ab +≥-+- 则211()a ab a a b ++-224a a ab ab≥++-2222444a a a =+≥=(当且仅当2ab a ab =-与44a =,0a b >>同时成立时,取得“=”),即当a =2b =211()a ab a a b ++-的最小值为4,故选D解法二:22111111()()a a ab a a b ab b a b a++=++---,因为0b >,0a b ->,所以22()()24a a b a b -≤=(当且仅当2a b =时取“=”),则222221444()a a b a b a a+≥+≥=-(当且仅当a ==”),所以当a =2b =时,211()a ab a a b ++-的最小值为4,故选D变式1 若0a >,0b >,满足11a b++ ).A 2 .B .C 4 .D 5变式2 若,x y 是正数,则2211()()22x y y x+++的最小值是( ) .A 3 .B 72 .C 4 .D 92题型3 利用基本不等式证明不等式思路提示类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明. 例7.13 (1),,a b c R +∈,求证:11()()4a b c a b c+++≥+ (2),,a b c R +∈,求证:222a b c a b c b c a++≥++(3),,x y z R +∈,且1x y z ++=解析 (1)因为,,0a b c >,所以1111()()[()]()a b c a b c a b c a b c+++=+++++ 11a b c b c a +=++++2a b cb c a+=+++224≥+=当且仅当a b c =+时等号成立. (2)因为,,0a b c >,所以22a b a b +≥,22b c b c +≥,22c a c a +≥三式相加得:222()()()a b c b c a b c a +++++222a b c ≥++,即222a b c a b c b c a++≥++(3)分析法.要证明≤,只需证3x y z +++≤,只需证:1≤因为,,x y z R +∈,x y +≥,x z +≥,y z +≥,所以2()x y z ++≥1≤成立.评注 本题(2)的证明是综合法,(3)的证明是分析法.综合是从已知出发推导结果,分析法是从结果出发,去分析命题成立的条件,一般情况下两种方法是可以通用的,对于比较复习的问题,也可以结合这两种方法使用变式1若,,a b c R +∈,且1a b c ++=,求证:111(1)(1)(1)8a b c---≥变式2 证明:若,,,,,x y z a b c R +∈,则222()b c c a a b y z xy yz xz a b c+++++≥++最有效训练题1.函数1()2f x x x =+-(2x >)在x a =处取得最小值,则a =( ).A 1 .B 1 .C 3 .D 42.已知0a >,0b >,2a b +=,则19y a b=+的最小值是( ).A 72 .B 8 .C 92.D 5 3.若0x >,0y >,2282y xm m x y+>+恒成立,则实数m 的取值范围是( ) .A (,2][4,)-∞-⋃+∞ .B (,4][2,)-∞-⋃+∞ .C (2,4)- .D (4,2)-4.已知,a b R +∈,且21a b +=,则224S a b =-的最大值为( ).A .B 1 .C 1 .D 5.若0x >,0y >,且()1xy x y -+=则( ).A 2x y +≤ .B 2x y +≥ .C 21)x y +≤ .D 21)x y +≥6.若224mn+<,则点(,)m n 必在( ).A 直线20x y +-=的左下方 .B 直线20x y +-=的右上方 .C 直线220x y +-=的右上方 .D 直线220x y +-=的左下方7.在“4+91=”中的“ ”处分别填上一个自然数,使他们的和最小,其和的最小值为8.已知函数()1pf x x x =+-(p 为常数,且0p >),若()f x 在(1,)+∞上的最小值是4,则实数p 的值为9.已知关于x 的不等式227x x a+≥-在(,)x a ∈+∞上恒成立,则实数a 的最小值为10.(1)设02x <<,求函数(42)y x x =-最大值. (2)设(0,)x π∈,求函数4()sin sin f x x x=+的最小值. (3)已知0x >,0y >,且1x y +=,求34x y+的最小值 (4)若正数,x y 满足35x y xy +=,则34x y +的最小值是11.已知,a b≥12.提高过江大桥车辆的通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车辆速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0,当车流速度不超过20辆/千米时,车流速度为60千米/小时,研究表明,当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x x v x =可以达到最大,并求出最大值(精确到1辆/小时).。

等式性质与不等式性质(基础知识+基本题型)(含解析)

等式性质与不等式性质(基础知识+基本题型)(含解析)

2.1 等式性质与不等式性质(基础知识+基本题型)知识点一不等式的有关概念1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号,,≥,≤,连接两个数或代数式以表示它们之间的不等关系.含有这些不等号的式子,叫做不等式.2.同向不等式和异向不等式对于两个不等式,如果每一个不等式的左边都大于(或大于等于)右边或每一个不等式的左边都小于(或小于等于)右边,那么这两个不等式叫做同向不等式.例如,f x g x 与S x T x是同向不等式,()()f x g x ≤与()()S x T x ≤也是同向不等式.对于两个不等式,如果一个不等式的左边都大于(或大于等于)右边,而另一个不等式的左边小于(或小于等于)右边,那么这两个不等式叫做异向不等式.例如,f x g x 与S x T x是异向不等式,()()f x g x ≤与()()S x T x ≥也是异向不等式.提示文字语言 大于,高于,超过 小于,低于,少于大于等于,至少,不低于 小于等于,至多,不超过符号语言≥≤知识点二比较实数大小的依据与方法1.比较实数大小的依据在数轴上,不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示(如图 3.11所示),可以看出a,b之间具有以下性质:如果a b-等于零,那么>;如果a b-是正数,那么a ba b;如果a b<.反之也成立.它是本章内容的理论基础,是不等式性质的证明、证-是负数,那么a b明不等式和解不等式的主要依据.2.比较两个实数大小的方法⑴作差法:对于两个实数a,b,通过比较a b-与0的大小关系,从而得到实数a,b的大小关系,具体方法如下:a b a b-=⇔=;0-<⇔<.a b a b->⇔>;0a b a b⑵作商法:对于任意两个正数a ,b ,通过比较a b与1的大小关系,从而得到正数a ,b 的大小关系,具体方法如下:当0a ,0b 时,1a a bb >⇔>;1aa b b=⇔=;1aa b b<⇔<.知识点三 等式的性质等式有下面的基本性质:性质1 如果a b =,那么b a =;性质2 如果a b =,b c =,那么a c =;性质3 如果a b =,那么a c b c ±=±;性质4 如果a b =,那么ac bc =;性质5 如果a b =,0c ≠,那么a b c c=. 知识点四 不等式的性质性质 具体名称 性质内容注意 1 对称性 a b b a >⇔< ⇔ 2 传递性 a b ,b c a c >⇒> ⇒ 3 可加性a b a c b c >⇔+>+ ⇔4 可乘性 0a b ac bc c >⎫⇒>⎬>⎭c 的符号0a b ac bc c >⎫⇒<⎬<⎭5 同向可加性 a b a c b d c d >⎫⇒+>+⎬>⎭⇒ 6 同向同正可乘性 00a b ac bd c d >>⎫⇒>⎬>>⎭⇒7 可乘方性 0n n a b a b >>⇒>(n N ∈,1n ≥) 同正8可开方性0n n a b a b >>⇒>(n N ∈,2n ≥)9 取倒数11a bab a b>⎫⇒<⎬>⎭a,b同号考点一:用不等式表示不等关系180m,拟分割成大、例1.某人有楼房一幢,室内面积共218m,小两类房间作为旅游客房,大房间面积为215m 可住游客5人,每名游客每天住宿费40元;小房间每间面积为2,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式.【思路点拨】把已知条件用等式或不等式列出来(代数化),把目标用代数式表示,再研究条件和目标的关系。

基本不等式知识点及题型归纳总结

基本不等式知识点及题型归纳总结

基本不等式知识点及题型归纳总结知识点精讲1. 几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“”时取“”).特例:同号.(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2. 均值定理已知.(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.题型归纳及思路提示题型1 基本不等式及其应用思路提示熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例7.5“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:由能推出;但反之不然,因为的条件是,故选A.变式1 已知且,则()A. B. C. D.变式2下列不等式中一定成立的是()A. B.C. D.例7.6 若,则下列不等式对一切满足条件的恒成立的是(写出所有正确命题的序号).①;②;③;④;⑤.解析:对于①,由及得,即(当且仅当时取等号),故①正确;对于②,由及得,即(当且仅当时取等号),故②正确;对于③,由得,故③正确.对于④,,因此(当且仅当时取等号),故④不恒成立;对于⑤,,又,则,故⑤正确,故填①③⑤.变式1如果正数满足,那么()A. ,且等号成立时的取值唯一B. ,且等号成立时的取值唯一C. ,且等号成立时的取值不唯一D. ,且等号成立时的取值不唯一题型2 利用基本不等式求函数最值思路提示(1)在利用基本不等式求最值时,要把握四个方面,即“一正各项都是正数;二定和或积为定值;三相等等号能否取到(对于不满足‘相等’的函数求最值,可考虑利用函数单调性解题);四同时多次使用基本不等式时等号要同时取得”,求最值时,这是个方面缺一不可,若忽视了某个条件的验证,可能会出现错误.(2)利用基本不等式求函数最值常用的技巧有:1通过加减项的方法配凑成使用基本不等式的形式;2注意“1”的变换;3灵活选择和应用基本不等式的变形形式;4合理配组,反复使用基本不等式等.一、利用基本不等式求最值要注意条件的验证例7.7 (1)若,求函数的最小值;(2)若,求函数的值域.分析:(1)因为满足不等式条件,可以直接利用基本不等式求最值.(2)因为,故需先转化为,才能利用基本不等式求最值.解析:因为,由基本不等式得,当且仅当,即时,取最小值.(2)因为,所以,则,且,即. 当且仅当,即时,取最大值.故函数的值域为.评注:解(1)时,应注意积为定值这个前提条件;解(2)时,应注意使用基本不等式求最值时,各项必须为正数.变式1 (1)求函数的值域(2)求函数的最小值;(3)求函数的最小值.二、通过代数变换凑配成使用基本不等式的形式例7.8已知,求函数的最大值.分析:因为,所以首先要调整符号,又不是常数,所以要对进行拆凑项,通过将函数解析式拆凑成可以使用基本不等式的形式,从而求得函数的最值.解析:因为,所以,由(当且仅当时,即时取等号)得. 所以函数的最大值为1.当且仅当时,即时取等号,故当时,.评注:利用基本不等式求最值时要重视各种条件,即“一正二定上相等四同时”必须全部满足,方可利用其求得最值. 如果本题中的条件“”改为“”,则如下求解:因为,所以,为错误求解,错误原因:在于只注重基本不等式的形式构造而未对成立条件“三相等”加以验证,事实上,.一般地,对勾函数在上单调递减,在上单调递增,若不满足“三相等”的条件可以利用函数的单调性求最值.另外,还要注意与对勾函数同形质异的函数在上和均为单调增函数.如可直接利用单调性求最值.变式1 求函数的最大值.变式2 设正实数满足,则当取得最大值时,最大值为( )A. 0B. 1C.D. 3 三、“1”的变换 例7.9 已知,且,求的最小值.分析:利用条件中“1”的变换.解析:解法一:因为,且,所以.当且仅当即,的最小值为16.解法二:由,且,得,所以10.因为0y >,所以90y ->,所以99(9)102(9)101699y y y y -++≥-+=--. 当且仅当999y y -=-,即12y =时取等号,此时4x =,所以当4,12x y ==时,x y +取得最小值16 评注 本题的解法一是利用条件中的“1”,代换成“19x y+”,将其所求的形配凑成利用基本不等式的形式,使得题目顺利求解,但下面的解法是错误的:因为1919612x y x y xy+=≥=,即36xy ≥,所以223612x y xy +≥=,错误的原因在于连续使用了两次基本不等式,但未对两个“=”成立的条件是否吻合进行验证,其实,这两次“=”不能同时取得,这就提醒我们,在多次使用基本不等式时,一定要验证多次“=”满足的条件能否同时成立.变式1 已知0a >,0b >,2a b +=,则11y a b=+的最小值是 变式2 求函数2214(0)sin cos 2y x x x π=+<<的最小值 变式3已知a b c >>,证明:1113a b b c c a a c++≥---- 变式4 设2a b +=,0b >则当a = 时,12a a b+最得最小值. 四、转化思想和方程消元思想在求二元函数最值中的应用例7.10若正数,a b 满足3ab a b =++,则:(1)ab 的取值范围是 (2)a b +的取值范围是分析 由等量关系的结构特征可知,只需将所求部分之外的部分利用不等式转化为所求的形式,然后解不等式即可.解析(1)解法一:基本不等式.33ab a b =++≥,当且仅当a b =时取等号,所以230≥,3≥1-(舍),3≥,故有9ab ≥.当且仅当3a b ==时取等号,即ab 的取值范围是[9,)+∞解法二:判别式法.令ab t =(3t >),则t b a =,代入原式得,3t t a a=++,整理得2(3)0a t a t +-+=. 2(3)40t t ∆=--≥,得9t ≥或1t ≤(舍),ab 的取值范围是[9,)+∞(2)解法一:23()2a b ab a b +=++≤,当且仅当a b =时取等号,令0S a b =+>,则234S S +≤,整理得即24120S S --≥得6S ≥或2S ≤-(舍),即a b +的取值范围是[6,)+∞解法二:判别式法,令a b t +=(0t >),则b t a =-,代入原式得,()3a t a t -=+,整理得230a at t -++=24(3)0t t ∆=-+≥,得6t ≥或2t ≤-(舍).即a b +的取值范围是[6,)+∞评注:注意体会使用方程消元法求范围与利用基本不等式求范围的优劣,试用方程消元法求解本题的第(2)问.变式1 若,0x y >满足26x y xy ++=,则xy 的最小值是变式2 若,0x y >满足2x y xy ++=,则x y +的最小值是 变式3 若,0x y >满足228x y xy ++=,则2x y +的最小值是( ).A 3 .B 4 .C 92 .D 112五、灵活选择和运用基本不等式的变形形式例7.11 设0,0x y ≥≥,2212y x +=,则的最大值为 分析 观察所求式子与题中所给条件的联系,运用基本不等式灵活建立两者之间的关系是解题的核心.解析 0x ≥,0y ≥,2212y x +=所以== 221222y x ++≤2212222y x ++==(当且仅当2212y x +=时取“=”,即x =,2y =时取“=”). 评注 本题除了利用基本不等式求解外,还可以利用已知条件中的2212y x +=,采用三角换元来求解,望同学们自己尝试.变式1 已知0a >,0b >,4a b +=,求2211()()a b a b+++的最小值. 六、合理配组,反复应用基本不等式 例7.12 设0a b >>,则211()a ab a a b ++-的最小值是( ) .A 1 .B 2 .C 3 .D 4解析 解法一:因为2112a b a b +≤+,所以411a b a b+≥+.故2114()ab a a b a ab ab +≥-+- 则211()a ab a a b ++-224a a ab ab≥++-2222444a a a =+≥=(当且仅当2ab a ab =-与44a =,0a b >>同时成立时,取得“=”),即当a =2b =211()a ab a a b ++-的最小值为4,故选D解法二:22111111()()a a ab a a b ab b a b a++=++---,因为0b >,0a b ->,所以22()()24a a b a b -≤=(当且仅当2a b =时取“=”),则222221444()a a b a b a a+≥+≥=-(当且仅当a ==”),所以当a =2b =时,211()a ab a a b ++-的最小值为4,故选D变式1 若0a >,0b >,满足11a b++ ).A 2 .B .C 4 .D 5变式2 若,x y 是正数,则2211()()22x y y x+++的最小值是( ) .A 3 .B 72 .C 4 .D 92题型3 利用基本不等式证明不等式思路提示类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明. 例7.13 (1),,a b c R +∈,求证:11()()4a b c a b c+++≥+ (2),,a b c R +∈,求证:222a b c a b c b c a++≥++(3),,x y z R +∈,且1x y z ++=解析 (1)因为,,0a b c >,所以1111()()[()]()a b c a b c a b c a b c+++=+++++ 11a b c b c a +=++++2a b cb c a+=+++224≥+=当且仅当a b c =+时等号成立. (2)因为,,0a b c >,所以22a b a b +≥,22b c b c +≥,22c a c a +≥三式相加得:222()()()a b c b c a b c a +++++222a b c ≥++,即222a b c a b c b c a++≥++(3)分析法.要证明≤,只需证3x y z +++≤,只需证:1≤因为,,x y z R +∈,x y +≥,x z +≥,y z +≥,所以2()x y z ++≥1≤成立.评注 本题(2)的证明是综合法,(3)的证明是分析法.综合是从已知出发推导结果,分析法是从结果出发,去分析命题成立的条件,一般情况下两种方法是可以通用的,对于比较复习的问题,也可以结合这两种方法使用变式1若,,a b c R +∈,且1a b c ++=,求证:111(1)(1)(1)8a b c---≥变式2 证明:若,,,,,x y z a b c R +∈,则222()b c c a a b y z xy yz xz a b c+++++≥++最有效训练题1.函数1()2f x x x =+-(2x >)在x a =处取得最小值,则a =( ).A 1 .B 1 .C 3 .D 42.已知0a >,0b >,2a b +=,则19y a b=+的最小值是( ).A 72 .B 8 .C 92.D 5 3.若0x >,0y >,2282y xm m x y+>+恒成立,则实数m 的取值范围是( ) .A (,2][4,)-∞-⋃+∞ .B (,4][2,)-∞-⋃+∞ .C (2,4)- .D (4,2)-4.已知,a b R +∈,且21a b +=,则224S a b =-的最大值为( ).A .B 1 .C 1 .D 5.若0x >,0y >,且()1xy x y -+=则( ).A 2x y +≤ .B 2x y +≥ .C 21)x y +≤ .D 21)x y +≥6.若224mn+<,则点(,)m n 必在( ).A 直线20x y +-=的左下方 .B 直线20x y +-=的右上方 .C 直线220x y +-=的右上方 .D 直线220x y +-=的左下方7.在“4+91=”中的“ ”处分别填上一个自然数,使他们的和最小,其和的最小值为8.已知函数()1pf x x x =+-(p 为常数,且0p >),若()f x 在(1,)+∞上的最小值是4,则实数p 的值为9.已知关于x 的不等式227x x a+≥-在(,)x a ∈+∞上恒成立,则实数a 的最小值为10.(1)设02x <<,求函数(42)y x x =-最大值. (2)设(0,)x π∈,求函数4()sin sin f x x x=+的最小值. (3)已知0x >,0y >,且1x y +=,求34x y+的最小值 (4)若正数,x y 满足35x y xy +=,则34x y +的最小值是11.已知,a b≥12.提高过江大桥车辆的通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车辆速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0,当车流速度不超过20辆/千米时,车流速度为60千米/小时,研究表明,当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x x v x =可以达到最大,并求出最大值(精确到1辆/小时).。

(完整版)基本不等式知识点和基本题型

(完整版)基本不等式知识点和基本题型

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+ 二、题型分析题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项) 1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数) 1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值; 变式2:设230<<x ,求函数)23(4x x y -=的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+ 二、题型分析题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥.7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y 题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值; 变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

2、若02<<x ,求y x x =-()63的最大值;变式:若40<<x ,求)28(x x y -=的最大值;3、求函数)2521(2512<<-+-=x x x y 的最大值; (提示:平方,利用基本不等式)变式:求函数)41143(41134<<-+-=x x x y 的最大值;题型五:巧用“1”的代换求最值问题1、已知12,0,=+>b a b a ,求t a b=+11的最小值; 法一: 法二:变式1:已知22,0,=+>b a b a ,求t a b=+11的最小值; 变式2:已知28,0,1x y x y>+=,求xy 的最小值; 变式3:已知0,>y x ,且119x y +=,求x y +的最小值。

变式4:已知0,>y x ,且194x y+=,求x y +的最小值;变式5:(1)若0,>y x 且12=+y x ,求11x y +的最小值;(2)若+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值; 变式6:已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,,使得14a a a n m =,求nm 41+的最小值;题型六:分离换元法求最值(了解)1、求函数)1(11072-≠+++=x x x x y 的值域; 变式:求函数)1(182>-+=x x x y 的值域; 2、求函数522++=x x y 的最大值;(提示:换元法) 变式:求函数941++=x x y 的最大值;题型七:基本不等式的综合应用1、已知1log log 22≥+b a ,求ba93+的最小值2、(2009天津)已知0,>b a ,求ab ba 211++的最小值;变式1:(2010四川)如果0>>b a ,求关于b a ,的表达式)(112b a a ab a -++的最小值; 变式2:(2012湖北武汉诊断)已知,当1,0≠>a a 时,函数1)1(log +-=x y a 的图像恒过定点A ,若点A 在直线0=+-n y mx 上,求n m 24+的最小值;3、已知0,>y x ,822=++xy y x ,求y x 2+最小值; 变式1:已知0,>b a ,满足3++=b a ab ,求ab 范围;变式2:(2010山东)已知0,>y x ,312121=+++y x ,求xy 最大值;(提示:通分或三角换元) 变式3:(2011浙江)已知0,>y x ,122=++xy y x ,求xy 最大值;4、(2013年山东(理))设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,z y x 212-+的最大值为( 1 )(提示:代入换元,利用基本不等式以及函数求最值)变式:设z y x ,,是正数,满足032=+-z y x ,求xzy 2的最小值;题型八:利用基本不等式求参数范围 1、(2012沈阳检测)已知0,>y x ,且9)1)((≥++yax y x 恒成立,求正实数a 的最小值; 2、已知0>>>z y x 且zx n z y y x -≥-+-11恒成立,如果+∈N n ,求n 的最大值;(参考:4) (提示:分离参数,换元法) 变式:已知0,>b a 满则241=+ba ,若cb a ≥+恒成立,求c 的取值范围; 题型九:利用柯西不等式求最值 1、二维柯西不等式),,,,(时等号成立;即当且仅当bc ad db c a R d c b a ==∈若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+2、二维形式的柯西不等式的变式bd ac d c b a +≥+⋅+2222)1(, ),,,,(时等号成立;即当且仅当bc ad d b c a R d c b a ==∈2)())()(3(bd ac d c b a +≥++, ),0,,,(时等号成立;即当且仅当bc ad dbc ad c b a ==≥3、二维形式的柯西不等式的向量形式≤, ),,,0(等号成立时使或存在实数当且仅当→→→→==ββk a k4、三维柯西不等式若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++5、一般n 维柯西不等式设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有:22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+ 题型分析题型一:利用柯西不等式一般形式求最值1、设,,x y z R ∈,若2224x y z ++=,则z y x 22+-的最小值为 时,=),,(z y x 析:]2)2(1)[()22(2222222+-+++≤+-z y x z y x 3694=⨯= ,∴z y x 22+-最小值为6- 此时322)2(16221222-=+-+-==-=z y x ,∴ 32-=x ,34=y ,34-=z 2、设,,x y z R ∈,226x y z --=,求222x y z ++的最小值m ,并求此时,,x y z 之值。

Ans :)34,32,34(),,(;4--==z y x m3、设,,x y z R ∈,332=+-z y x ,求222)1(z y x +-+之最小值为 ,此时=y (析:0)1(32332=+--⇔=+-z y x z y x )4、(2013年湖南卷(理))已知,,,236,a b c a b c ∈++=则22249a b c ++的最小值是 (12:Ans )5、(2013年湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,求z y x ++的值;6、求φθφθθcos cos sin cos 3sin 2-+ 的最大值与最小值。

(Ans :最大值为22,最小值为 ?22) 析:构造法:令→a ? (2sin ?,3cos ?,? cos ?),→b ? (1,sin ?,cos ?)。

相关文档
最新文档